Science.gov

Sample records for abnormal vascular development

  1. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities?

    PubMed

    Stagi, Stefano; Rigante, Donato; Lepri, Gemma; Matucci Cerinic, Marco; Falcini, Fernanda

    2016-07-01

    Twenty-five-hydroxyvitamin D (25(OH)-vitamin D) is crucial in the regulation of immunologic processes, but-although its deficiency has been reported in patients with different rheumatological disorders-no data are available for Kawasaki disease (KD). The goals of this study were to assess the serum levels of 25(OH)-vitamin D in children with KD and evaluate the relationship with the eventual occurrence of KD-related vascular abnormalities. We evaluated serum 25(OH)-vitamin D levels in 79 children with KD (21 females, 58 males, median age 4.9 years, range 1.4-7.5 years) in comparison with healthy sex-/age-matched controls. A significantly higher percentage of KD patients (98.7 %) were shown to have reduced 25(OH)-vitamin D levels (<30 ng/mL) in comparison with controls (78.6 %, p < 0.0001). Furthermore, KD patients had severely low levels of 25(OH)-vitamin D than controls (9.17 ± 4.94 vs 23.3 ± 10.6 ng/mL, p < 0.0001), especially the subgroup who developed coronary artery abnormalities (4.92 ± 1.36 vs 9.41 ± 4.95 ng/mL, p < 0.0001). In addition, serum 25(OH)-vitamin D levels correlated not only with erythrosedimentation rate (p < 0.0001), C-reactive protein (p < 0.0001), hemoglobin level at KD diagnosis (p < 0.0001) but also with both coronary artery aneurysms (p = 0.005) and non-aneurysmatic cardiovascular lesions (p < 0.05). Low serum concentrations of 25(OH)-vitamin D might have a contributive role in the development of coronary artery complications observed in children with KD. PMID:25994612

  2. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development

    PubMed Central

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma. PMID:26492318

  3. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage. PMID:26275663

  4. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  5. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  6. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  7. Ultrasonographic diagnosis of unusual portal vascular abnormalities in two cats.

    PubMed

    McConnell, J F; Sparkes, A H; Ladlow, J; Doust, R; Davies, S

    2006-06-01

    Two cases of ascites secondary to portal vascular abnormalities associated with portal hypertension are described. In the first case a five-month-old cat was presented with recurrent ascites and investigations showed that the underlying cause was a hepatic arteriovenous fistula. Ultrasonography showed direct communication of the coeliac artery and right branch of the portal vein. There was also hepatofugal flow in the main portal vein consistent with portal hypertension. The ultrasonographic features were similar to those seen in dogs with hepatic arteriovenous fistulae. In the second case, ascites, portal hypertension and an intraluminal mass in the main portal vein was diagnosed in a 16-year-old cat that had been presented with hyperthyroidism and hepatomegaly. Acquired portosystemic collaterals involving the left renal vein were present. Additional diagnostic investigations were not permitted. Ultrasonography was useful in both cases to document portal hypertension and the underlying cause. PMID:16761986

  8. Plasma concentrations of endothelin in patients with abnormal vascular reactivity

    SciTech Connect

    Predel, H.G.; Meyer-Lehnert, H.; Baecker, A.; Stelkens, H.; Kramer, H.J. )

    1990-01-01

    We measured circulating concentrations of endothelin in healthy subjects and in patients with abnormal vascular reactivity. Endothelin concentrations were determined by radioimmunoassay after extraction of plasma using Sep-Pak C-18 cartridges in healthy subjects, in patients with diabetes mellitus type I, in patients with mild to moderate essential hypertension and in non-dialyzed patients with stable chronic renal failure. Plasma concentrations were similar in healthy controls, in diabetics and in hypertensive patients averaging 5.0{plus minus}0.6 pg/ml, 4.7{plus minus}0.2 pg/ml and 6.5{plus minus}1.0 pg/ml, respectively. In contrast, plasma concentrations of endothelin were markedly elevated in patients with chronic renal failure averaging 16.6{plus minus}2.9 pg/ml. No correlations were observed between serum creatinine concentrations ranging from 124 to 850 {mu}mol/l or blood pressure and plasma concentrations of endothelin. Bicycle ergometric exercise in six healthy subjects and an acute modest i.v. saline load of 1,000 ml of 0.45% NaCl administered within 60 min in six patients with mild essential hypertension did not affect plasma concentrations of endothelin.

  9. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  10. Hemangiomas, angiosarcomas, and vascular malformations represent the signaling abnormalities of pathogenic angiogenesis.

    PubMed

    Arbiser, J L; Bonner, M Y; Berrios, R L

    2009-11-01

    Angiogenesis is a major factor in the development of benign, inflammatory, and malignant processes of the skin. Endothelial cells are the effector cells of angiogenesis, and understanding their response to growth factors and inhibitors is critical to understanding the pathogenesis and treatment of skin disease. Hemangiomas, benign tumors of endothelial cells, represent the most common tumor of childhood. In our previous studies, we have found that tumor vasculature in human solid tumors expresses similarities in signaling to that of hemangiomas, making the knowledge of signaling in hemangiomas widely applicable. These similarities include expression of reactive oxygen, NFkB and akt in tumor vasculature. Furthermore, we have studied malignant vascular tumors, including hemangioendothelioma and angiosarcoma and have shown distinct signaling abnormalities in these tumors. The incidence of these tumors is expected to rise due to environmental insults, such as radiation and lumpectomy for breast cancer, dietary and industrial carcinogens (hepatic angiosarcoma), and chronic ultraviolet exposure and potential Agent Orange exposure. I hypothesize that hemangiomas, angiosarcomas, and vascular malformations represent the extremes of signaling abnormalities seen in pathogenic angiogenesis. PMID:19925405

  11. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. PMID:26500193

  12. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  13. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  14. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-01

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. PMID:26645582

  15. Major and minor arterial malformations in patients with cutaneous vascular abnormalities.

    PubMed

    Pascual-Castroviejo, Ignacio; Pascual-Pascual, Samuel I; Viaño, Juan; López-Gutierrez, Juan C; Palencia, Rafael

    2010-05-01

    The association of persistent embryonic arteries and the absence of 1 carotid or vertebral arteries with facial or neck hemangioma or vascular malformation have been frequently described. The abnormalities can involve major or minor vessels. Of 22 patients of our series with this neurocutaneous syndrome, 20 had the origin of both anterior cerebral arteries from the same internal carotid artery. Thirteen patients showed absence or hypoplasia of 1 carotid artery and 10 of 1 vertebral artery; 10 showed persistence of the trigeminal artery; 3 had persistent proatlantal artery; 6 showed the absence of the posterior communicating artery; and 4 had hypoplastic posterior cerebral artery. Other less frequent abnormalities were found in 7 patients. Intellectual level of most patients was either borderline or below normal. Abnormalities in the vascularization and perfusion of the frontal lobes may contribute to the borderline or lower mental level of these patients. PMID:19808986

  16. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time. PMID:25571442

  17. Abnormalities associated with progressive aortic vascular dysfunction in chronic kidney disease

    PubMed Central

    Ameer, Omar Z.; Boyd, Rochelle; Butlin, Mark; Avolio, Alberto P.; Phillips, Jacqueline K.

    2015-01-01

    Increased stiffness of large arteries in chronic kidney disease (CKD) has significant clinical implications. This study investigates the temporal development of thoracic aortic dysfunction in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Animals aged 12 and 18 weeks were studied alongside age-matched Lewis controls (total n = 94). LPK rodents had elevated systolic blood pressure, left ventricular hypertrophy and progressively higher plasma creatinine and urea. Relative to Lewis controls, LPK exhibited reduced maximum aortic vasoconstriction (Rmax) to noradrenaline at 12 and 18 weeks, and to K+ (12 weeks). Sensitivity to noradrenaline was greater in 18-week-old LPK vs. age matched Lewis (effective concentration 50%: 24 × 10−9 ± 78 × 10−10 vs. 19 × 10−8 ± 49 × 10−9, P < 0.05). Endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation was diminished in LPK, declining with age (12 vs. 18 weeks Rmax: 80 ± 8% vs. 57 ± 9% and 92 ± 6% vs. 70 ± 9%, P < 0.05, respectively) in parallel with the decline in renal function. L-Arginine restored endothelial function in LPK, and L-NAME blunted acetylcholine relaxation in all groups. Impaired nitric oxide synthase (NOS) activity was recovered with L-Arginine plus L-NAME in 12, but not 18-week-old LPK. Aortic calcification was increased in LPK rats, as was collagen I/III, fibronectin and NADPH-oxidase subunit p47 (phox) mRNAs. Overall, our observations indicate that the vascular abnormalities associated with CKD are progressive in nature, being characterized by impaired vascular contraction and relaxation responses, concurrent with the development of endothelial dysfunction, which is likely driven by evolving deficits in NO signaling. PMID:26042042

  18. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye.

    PubMed

    Jia, Yali; Bailey, Steven T; Hwang, Thomas S; McClintic, Scott M; Gao, Simon S; Pennesi, Mark E; Flaxel, Christina J; Lauer, Andreas K; Wilson, David J; Hornegger, Joachim; Fujimoto, James G; Huang, David

    2015-05-01

    Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities. PMID:25897021

  19. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models.

    PubMed

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-10-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell-pericyte interactions, and in the epithelial-mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  20. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  1. Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD)

    PubMed Central

    O'Neill, Kalisha D.; Chen, Xianming; Moorthi, Ranjani N.; Gattone, Vincent H.; Allen, Matthew R.; Moe, Sharon M.

    2013-01-01

    Patients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses. Expression of these vascular miRNAs miR-125b, miR-145, and miR-155 was decreased in the thoracic aorta in CKD rats compared to normal rats, with concordant changes in target genes of RUNX2, angiotensin II type I receptor (AT1R), and myocardin. Furthermore, the expression of miR-155 was negatively correlated with the quantity of calcification in the aorta, a process known to be preceded by vascular de-differentiation in these animals. We then examined the mechanisms of miRNA regulation in primary VSMC and found decreased expression of miR-125b, 145, and 155 in VSMC from rats with CKD compared to normal littermates but no alteration in DROSHA or DICER, indicating that the low levels of expression is not due to altered intracellular processing. Finally, overexpression of miR-155 in VSMC from CKD rats inhibited AT1R expression and decreased cellular proliferation supporting a direct effect of miR-155 on VSMC. In conclusion, we have found ex vivo and in vitro evidence for decreased expression of these vascular miRNA in CKD, suggesting that alterations in miRNAs may lead to the synthetic state of VSMC found in CKD. The decreased levels in the circulation may reflect decreased vascular release but more studies are needed to confirm this relationship. PMID:23717629

  2. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA. PMID:24048981

  3. Vascular corrosion casting: analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents.

    PubMed

    Van Steenkiste, Christophe; Trachet, Bram; Casteleyn, Christophe; van Loo, Denis; Van Hoorebeke, Luc; Segers, Patrick; Geerts, Anja; Van Vlierberghe, Hans; Colle, Isabelle

    2010-11-01

    Vascular corrosion casting is an established method of anatomical preparation that has recently been revived and has proven to be an excellent tool for detailed three-dimensional (3D) morphological examination of normal and pathological microcirculation. In addition, the geometry provided by vascular casts can be further used to calculate wall shear stress (WSS) in a vascular bed using computational techniques. In the first part of this study, the microvascular morphological changes associated with portal hypertension (PHT) and cirrhosis in vascular casts are described. The second part of this study consists of a quantitative analysis of the WSS in the portal vein in casts of different animal models of PHT and cirrhosis using computational fluid dynamics (CFD). Microvascular changes in the splanchnic, hepatic and pulmonary territory of portal hypertensive and cirrhotic mice are described in detail with stereomicroscopic examination and scanning electron microscopy. To our knowledge, our results are the first to report the vascular changes in the common bile duct ligation cirrhotic model. Calculating WSS using CFD methods is a feasible technique in PHT and cirrhosis, enabling the differentiation between different animal models. First, a dimensional analysis was performed, followed by a CFD calculation describing the spatial and temporal WSS distributions in the portal vein. WSS was significantly different between sham/cirrhotic/pure PHT animals with the highest values in the latter. Up till now, no techniques have been developed to quantify WSS in the portal vein in laboratory animals. This study showed for the first time that vascular casting has an important role not only in the morphological evaluation of animal models of PHT and cirrhosis, but also in defining the biological response of the portal vein wall to hemodynamic changes. CFD in 3D geometries can be used to describe the spatial and temporal variations in WSS in the portal vein and to better understand

  4. Vascular Endothelial Growth Factor-A and Islet Vascularization Are Necessary in Developing, but Not Adult, Pancreatic Islets

    PubMed Central

    Reinert, Rachel B.; Brissova, Marcela; Shostak, Alena; Pan, Fong Cheng; Poffenberger, Greg; Cai, Qing; Hundemer, Gregory L.; Kantz, Jeannelle; Thompson, Courtney S.; Dai, Chunhua; McGuinness, Owen P.; Powers, Alvin C.

    2013-01-01

    Pancreatic islets are highly vascularized mini-organs, and vascular endothelial growth factor (VEGF)-A is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult β-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced β-cell proliferation in both developing and adult islets and, ultimately, reduced β-cell mass and impaired glucose clearance. When VEGF-A was inactivated in adult β-cells, islet vascularization was reduced twofold. Surprisingly, even after 3 months of reduced islet vascularization, islet architecture and β-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult β-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and β-cell mass. PMID:23884891

  5. Retinal Vascular Abnormalities in NEMO-Deficient Mice: An Animal Model for Incontinentia Pigmenti

    PubMed Central

    Oster, Stephen F.; McLeod, D. Scott; Otsuji, T.; Goldberg, Morton F.; Lutty, Gerard A.

    2016-01-01

    The majority of patients with incontinentia pigmenti (IP) have a mutation in the nuclear factor-kappa-β essential modulator (NEMO) gene, and mice with a targeted deletion of NEMO exhibit skin pathology remarkably similar to the human disease. This study characterizes the retinal vascular abnormalities of NEMO-deficient mice, and compares this phenotype to known features of human IP. Nineteen heterozygous NEMO-deficient female mice, ages ranging from post-natal day 8 (P-8) through 6.5 months of life, were studied. Eyes were sectioned and stained either whole or as retinal flat mounts after incubation for enzyme histochemical demonstration of ADPase, which labels the vasculature. With maturation, retinal arteriolar abnormalities became evident at 3 months of age. Global assessment of the retinal vasculature with ADPase staining showed increased arteriolar tortuosity. Microscopic examination of sections of ADPase-incubated retinas revealed arteriolar luminal narrowing due to endothelial cell hypertrophy and increased basement membrane deposition. Venous morphology was normal. This study characterized the histological retinal phenotype of heterozygous NEMO-deficient female mice. Most striking were retinal arteriolar abnormalities, including luminal narrowing, endothelial cell hypertrophy, and basement membrane thickening. Retinal flat mounts revealed arteriolar tortuosity without evidence of vaso-occlusion or neovascularization. PMID:19068214

  6. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities.

    PubMed

    Kathuria, Sonam; Mahadevan, Nanjaian; Balakumar, Pitchai

    2013-02-01

    Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating

  7. Abnormal thallium kinetics in postoperative coarctation of the aorta: evidence for diffuse hypertension-induced vascular pathology

    SciTech Connect

    Kimball, B.P.; Shurvell, B.L.; Mildenberger, R.R.; Houle, S.; McLaughlin, P.R.

    1986-03-01

    After operative correction of congenital coarctation of the aorta, patients continue to have excess cardiovascular mortality, including manifestations of ischemic heart disease. Previous morphologic studies support the concept of direct hypertensive vascular injury in these patients. To determine whether abnormalities of myocardial perfusion were present in an asymptomatic group of patients with coarctation repair, 18 men and 9 women with a mean age of 26 years (range 19 to 41) were studied between 2 and 25 years after operative correction. Stress electrocardiography and quantitative thallium imaging by a circumferential profile technique were used. These patients were compared with a normal group, statistically defined as having a less than 1% prevalence of significant obstructive coronary artery disease. The postoperative coarctation group demonstrated a reduction in global thallium redistribution in each view analyzed. As compared with findings in the control subjects, thallium washout in the anterior view (41.9 versus 48.6%, p = 0.02) and left anterior oblique projection (40.5 versus 48.2%, p = 0.007) was significantly diminished. Although the postoperative coarctation group had a lower thallium redistribution rate in the lateral view (41.4 versus 46.3%, p = 0.09) this difference did not reach statistical significance because of the intrinsic variability of this projection. Plots of the median percent thallium washout revealed independence from circumferential profile angle, indicating global abnormalities in perfusion. No correlation between clinical variables and thallium kinetics could be established, suggesting marked individual variability in the development of this vascular lesion. The observation of abnormal thallium kinetics in patients with coarctation repair may have consequences for long-term follow-up and therapy.

  8. Focal 123I-FP-CIT SPECT Abnormality in Midbrain Vascular Parkinsonism

    PubMed Central

    Solla, Paolo; Cannas, Antonino; Arca, Roberta; Fonti, Davide; Orofino, Gianni; Marrosu, Francesco

    2015-01-01

    Cerebrovascular diseases are considered among possible causes of acute/subacute parkinsonism, representing up to 22% of secondary movement disorders. In cases of suspected vascular parkinsonism (VP), dopamine transporter SPECT has been highly recommended to exclude nigrostriatal dopaminergic degeneration. We report the case of a hemiparkinsonism related to a left midbrain infarct with focal lateralized putaminal abnormalities at 123I-FP-CIT SPECT imaging. The asymmetric uptake at dopamine transporter SPECT was different to findings commonly observed in typical PD pattern, because the ipsilateral striatum, in opposite to idiopathic PD, showed normal tracer binding. However, this selective parkinsonism after infarction of the midbrain was responsive to levodopa. In conclusion, we retain that there is a need of more functional imaging studies in VP addressed to a more consistent classification of its different clinical forms and to a better understanding of the adequate pharmacological management. PMID:26550502

  9. An unusual case of vascular abnormality mimicking a lateral meniscal cyst.

    PubMed

    Vergis, A; Maletius, W; Messner, K

    1995-10-01

    An unusual case of a vascular abnormality mimicking a lateral meniscal cyst is reported. The patient was a 31-year-old active sportsman who presented with intermittent pain over the lateral aspect of the left knee joint line, occurring only during activities involving twisting motions such as playing soccer. He did not experience local tenderness or swelling, clicking, locking, or giving way. The magnetic resonance imaging, which was done after a diagnostic arthroscopy with normal intra-articular findings, showed a cyst formation of approximately 4-mm diameter adjacent to the lateral meniscus periphery, but no meniscal tissue degeneration. Exactly at the preoperatively marked site of most intensive pain sensation during twisting motions, surgical exposure showed a venous-aneurysm-like tumor, which was removed. The operation resulted in complete relief of symptoms and undisturbed sporting activities including soccer. PMID:8534307

  10. Vascular toxicity of silver nanoparticles to developing zebrafish (Danio rerio).

    PubMed

    Gao, Jiejun; Mahapatra, Cecon T; Mapes, Christopher D; Khlebnikova, Maria; Wei, Alexander; Sepúlveda, Marisol S

    2016-11-01

    Nanoparticles (NPs, 1-100 nm) can enter the environment and result in exposure to humans and other organisms leading to potential adverse health effects. The aim of the present study is to evaluate the effects of early life exposure to polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs, 50 nm), particularly with respect to vascular toxicity on zebrafish embryos and larvae (Danio rerio). Previously published data has suggested that PVP-AgNP exposure can inhibit the expression of genes within the vascular endothelial growth factor (VEGF) signaling pathway, leading to delayed and abnormal vascular development. Here, we show that early acute exposure (0-12 h post-fertilization, hpf) of embryos to PVP-AgNPs at 1 mg/L or higher results in a transient, dose-dependent induction in VEGF-related gene expression that returns to baseline levels at hatching (72 hpf). Hatching results in normoxia, negating the effects of AgNPs on vascular development. Interestingly, increased gene transcription was not followed by the production of associated proteins within the VEGF pathway, which we attribute to NP-induced stress in the endoplasmic reticulum (ER). The impaired translation may be responsible for the observed delays in vascular development at later stages, and for smaller larvae size at hatching. Silver ion (Ag(+)) concentrations were < 0.001 mg/L at all times, with no significant effects on the VEGF pathway. We propose that PVP-AgNPs temporarily delay embryonic vascular development by interfering with oxygen diffusion into the egg, leading to hypoxic conditions and ER stress. PMID:27499207

  11. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    strength, showed that the multilayer graft possessed properties mimicking those of native vessels. Achieving these FDA-required functional properties is essential because they play critical roles in graft performances in vivo such as thrombus formation, occlusion, healing, and bleeding. In addition, cell studies and animal studies have been performed on the multilayer graft. Our results show that the multilayer graft support mimetic vascular culture of cells and the acellular graft serves as an artery equivalent in vivo to sustain the physiological conditions and promote appropriate cellular activity. In conclusion, the newly-developed hybrid multilayer graft provides a proper balance of biomechanical and biochemical properties and demonstrates the potential for the use of vascular tissue engineering and regeneration.

  12. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  13. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats.

    PubMed

    Chen, Shiu-Jen; Li, Shaio-Yun; Shih, Chih-Chin; Liao, Mei-Huei; Wu, Chin-Chen

    2010-05-01

    Calcium plays an important role in determining vascular smooth muscle tone. Norepinephrine (NE)-induced vascular contraction contains two components: 1) Ca2+ release from the sarcoplasmic reticulum as the fast phase and 2) Ca2+ influx via a voltage-dependent calcium channel as the slow phase. This study used functional isometric tension recording to evaluate mediators contributing to abnormal NE-induced Ca2+ handling and reactivity in isolated thoracic aortas from septic rats. Sepsis was induced by cecal ligation and puncture (CLP), and thoracic aortas were removed at 18 h after CLP. Our results showed that rats that received CLP for 18 h manifested severe hypotension and vascular hyporeactivity to NE in vivo. This vascular hyporeactivity to NE was also observed in the aorta obtained from CLP-induced sepsis rat. Both the fast and slow phases of NE-induced contraction were reduced in aortas from sepsis rats. To clarify what possible mediators contribute to the abnormal Ca2+ handling in aortas from sepsis animals, inhibitors of Ca2+ channel and release were used. Inhibition by 2-aminoethoxy-diphenyl borane, ryanodine, and cyclopiazonic acid of the NE-induced contraction in Ca2+-free solution was greater in the aorta from sepsis rats and inhibitions of cyclopiazonic acid and ryanodine, but not of 2-aminoethoxy-diphenyl borane, were attenuated by NOS inhibitor N[omega]-nitro-l-arginine methyl ester. In addition, the attenuation of NE-induced contraction by nifedipine in the aorta was also greater in the CLP group. Our results suggest that abnormal NE-induced Ca2+ handling associated with vascular hyporeactivity in the CLP-induced sepsis is caused by a major decrease in sarcoplasmic reticulum function and a minor impairment of voltage-dependent Ca2+ channels on membrane to Ca2+ handling, at least, in the aorta, and this could be attributed to an overproduction of NO in sepsis. PMID:19749606

  14. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis. PMID:26109427

  15. Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in idiopathic interstitial pneumonias

    PubMed Central

    Parra, Edwin Roger; Kairalla, Ronaldo Adib; de Carvalho, Carlos Roberto Ribeiro; Capelozzi, Vera Luiza

    2007-01-01

    Background Vascular remodelling has recently been shown to be a promising pathogenetic indicator in idiopathic interstitial pneumonias (IIPs). Aim To validate the importance of the collagen/elastic system in vascular remodelling and to study the relationships between the collagen/elastic system, survival and the major histological patterns of IIPs. Methods Collagen/elastic system fibres were studied in 25 patients with acute interstitial pneumonia/diffuse alveolar damage, 22 with non‐specific interstitial pneumonia/non‐specific interstitial pneumonia and 55 with idiopathic pulmonary fibrosis/usual interstitial pneumonia. The Picrosirius polarisation method and Weigert's resorcin–fuchsin histochemistry and morphometric analysis were used to evaluate the amount of vascular collagen/elastic system fibres and their association with the histological pattern of IIPs. The association between vascular remodelling and the degree of parenchymal fibrosis in usual interstitial pneumonia (UIP) was also considered. Results The vascular measurement of collagen/elastic fibres was significantly higher in UIP than in the lungs of controls, and in those with diffuse alveolar damage and those with non‐specific interstitial pneumonia. In addition, the increment of collagen/elastic fibres in UIP varied according to the degree and activity of the parenchymal fibrosis. The most important predictors of survival in UIP were vascular remodelling classification and vascular collagen deposition. Conclusion A progressive vascular fibroelastosis occurs in IIP histological patterns, probably indicating evolutionarily adapted responses to parenchymal injury. The vascular remodelling classification and the increase in vascular collagen were related to survival in IIP and possibly play a role in its pathogenesis. Further studies are needed to determine whether this relationship is causal or consequential. PMID:17251318

  16. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  17. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  18. Lifetime consequences of abnormal fetal pancreatic development

    PubMed Central

    Holemans, K; Aerts, L; Van Assche, F A

    2003-01-01

    There is ample evidence that an adverse intrauterine environment has harmful consequences for health in later life. Maternal diabetes and experimentally induced hyperglycaemia result in asymmetric overgrowth, which is associated with an increased insulin secretion and hyperplasia of the insulin-producing B-cells in the fetuses. In adult life, a reduced insulin secretion is found. In contrast, intrauterine growth restriction is associated with low insulin secretion and a delayed development of the insulin-producing B-cells. These perinatal alterations may induce a deficient adaptation of the endocrine pancreas and insulin resistance in later life. Intrauterine growth restriction in human pregnancy is mainly due to a reduced uteroplacental blood flow or to maternal undernutrition or malnutrition. However, intrauterine growth restriction can be present in severe diabetes complicated by vasculopathy and nephropathy. In animal models, intrauterine growth retardation can be obtained through pharmacological (streptozotocin), dietary (semi-starvation, low protein diet) or surgical (intrauterine artery ligation) manipulation of the maternal animal. The endocrine pancreas and more specifically the insulin-producing B-cells play an important role in the adaptation to an adverse intrauterine milieu and the consequences in later life. The long-term consequences of an unfavourable intrauterine environment are of major importance worldwide. Concerted efforts are needed to explore how these long-term effects can be prevented. This review will consist of two parts. In the first part, we discuss the long-term consequences in relation to the development of the fetal endocrine pancreas and fetal growth in the human; in the second part, we focus on animal models with disturbed fetal and pancreatic development and the consequences for later life. PMID:12562919

  19. [The growing spine : Normal and abnormal development].

    PubMed

    Stücker, R

    2016-06-01

    Growth of the pediatric spine occurs in phases. The first 5 years of life are characterized by rapid growth. The lower extremities and trunk contribute equally to the entire growth by 50 % each. In the following years, until the onset of puberty, a steady but reduced rate of growth is observed. During these years a T1-S1 growth of only 1 cm per year can be detected and the spine contributes only one third to the entire growth. Puberty consists of an acceleration phase lasting 2 years. In the first year of this phase the growth peak of the extremities and in the following year the growth peak of the spine can be noticed. The ensuing deceleration phase of puberty lasts for 3 years. During that period the development of the Risser sign, menarche, and fusion of the trochanter epiphysis are taking place. Clinical parameters such as sitting height, standing height, and arm span may be used to evaluate growth. Important radiological parameters include the Risser sign, the determination of skeletal age according to Greulich and Pyle, and the T1-T12 height. The use of the olecranon method during the ascending phase of puberty can be recommended. Problems of the developing spine may include malformations, developmental disruptions or deformations. According to their manifestations they have a different prognosis, which can be estimated by knowledge of residual growth and the typical course of spinal growth in childhood. PMID:27250620

  20. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    PubMed

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy andAmhr2-cretransgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). TheAmhr2-cretransgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenicAmhr2-cre, Rosa(Notch1)females were infertile, whereas controlRosa(Notch1)mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression ofWnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activatedSmoand inbeta-catenin,Wnt4,Wnt7a, andDicerconditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  1. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype.

    PubMed

    Shroff, Rukshana; Speer, Thimoteus; Colin, Sophie; Charakida, Marietta; Zewinger, Stephen; Staels, Bart; Chinetti-Gbaguidi, Giulia; Hettrich, Inga; Rohrer, Lucia; O'Neill, Francis; McLoughlin, Eve; Long, David; Shanahan, Catherine M; Landmesser, Ulf; Fliser, Danilo; Deanfield, John E

    2014-11-01

    Endothelial dysfunction begins in early CKD and contributes to cardiovascular mortality. HDL is considered antiatherogenic, but may have adverse vascular effects in cardiovascular disease, diabetes, and inflammatory conditions. The effect of renal failure on HDL properties is unknown. We studied the endothelial effects of HDL isolated from 82 children with CKD stages 2-5 (HDL(CKD)), who were free of underlying inflammatory diseases, diabetes, or active infections. Compared with HDL from healthy children, HDL(CKD) strongly inhibited nitric oxide production, promoted superoxide production, and increased vascular cell adhesion molecule-1 expression in human aortic endothelial cells, and reduced cholesterol efflux from macrophages. The effects on endothelial cells correlated with CKD grade, with the most profound changes induced by HDL from patients on dialysis, and partial recovery observed with HDL isolated after kidney transplantation. Furthermore, the in vitro effects on endothelial cells associated with increased aortic pulse wave velocity, carotid intima-media thickness, and circulating markers of endothelial dysfunction in patients. Symmetric dimethylarginine levels were increased in serum and fractions of HDL from children with CKD. In a longitudinal follow-up of eight children undergoing kidney transplantation, HDL-induced production of endothelial nitric oxide, superoxide, and vascular cell adhesion molecule-1 in vitro improved significantly at 3 months after transplantation, but did not reach normal levels. These results suggest that in children with CKD without concomitant disease affecting HDL function, HDL dysfunction begins in early CKD, progressing as renal function declines, and is partially reversed after kidney transplantation. PMID:24854267

  2. Modeling of angioadaptation: insights for vascular development.

    PubMed

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2011-01-01

    Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution. PMID:21858766

  3. Modeling of angioadaptation: insights for vascular development

    PubMed Central

    PRIES, AXEL R.; REGLIN, BETTINA; SECOMB, TIMOTHY W.

    2016-01-01

    Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution. PMID:21858766

  4. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  5. Microfluidic Techniques for Development of 3D Vascularized Tissue

    PubMed Central

    Hasan, Anwarul; Paul, Arghya; Vrana, Nihal Engin; Zhao, Xin; Memic, Adnan; Hwang, Yu-Shik; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2014-01-01

    Development of a vascularized tissue is one of the key challenges for the successful clinical application of tissue engineered constructs. Despite the significant efforts over the last few decades, establishing a gold standard to develop three dimensional (3D) vascularized tissues has still remained far from reality. Recent advances in the application of microfluidic platforms to the field of tissue engineering have greatly accelerated the progress toward the development of viable vascularized tissue constructs. Numerous techniques have emerged to induce the formation of vascular structure within tissues which can be broadly classified into two distinct categories, namely (1) prevascularization-based techniques and (2) vasculogenesis and angiogenesis-based techniques. This review presents an overview of the recent advancements in the vascularization techniques using both approaches for generating 3D vascular structure on microfluidic platforms. PMID:24906345

  6. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  7. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    ERIC Educational Resources Information Center

    Ozonoff, Sally; Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2008-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with…

  8. Abnormalities of pulmonary vascular dynamics and inflammation in early progressive systemic sclerosis

    SciTech Connect

    Furst, D.E.; Davis, J.A.; Clements, P.J.; Chopra, S.K.; Theofilopoulos, A.N.; Chia, D.

    1981-11-01

    Abnormalities of pulmonary function were studied in 10 patients with progressive systemic sclerosis (PSS) and 3 control subjects. All underwent 81M krypton lung scanning and total body gallium scanning. Immune complexes were measured by Raji cell radioimmunoassay and polyethylene glycol (PEG) assay. Perfusion scans were abnormal in 7 of 9 patients, and 5 of 9 showed a decrease in pulmonary perfusion after cold challenge. Increased gallium uptake was noted in the lungs of 6 of 9 patients. Krypton scans were normal in the control group. Elevated immune complexes were noted in 8 of 10 patients by the Raji assay and in 5 of 10 with the PEG assay. Efforts to separate patients with PSS into subgroups may lead to a better understanding of and advances in therapy for PSS.

  9. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  10. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  11. Novel application of a multiscale entropy index as a sensitive tool for detecting subtle vascular abnormalities in the aged and diabetic.

    PubMed

    Wu, Hsien-Tsai; Lo, Men-Tzung; Chen, Guan-Hong; Sun, Cheuk-Kwan; Chen, Jian-Jung

    2013-01-01

    Although previous studies have shown the successful use of pressure-induced reactive hyperemia as a tool for the assessment of endothelial function, its sensitivity remains questionable. This study aims to investigate the feasibility and sensitivity of a novel multiscale entropy index (MEI) in detecting subtle vascular abnormalities in healthy and diabetic subjects. Basic anthropometric and hemodynamic parameters, serum lipid profiles, and glycosylated hemoglobin levels were recorded. Arterial pulse wave signals were acquired from the wrist with an air pressure sensing system (APSS), followed by MEI and dilatation index (DI) analyses. MEI succeeded in detecting significant differences among the four groups of subjects: healthy young individuals, healthy middle-aged or elderly individuals, well-controlled diabetic individuals, and poorly controlled diabetic individuals. A reduction in multiscale entropy reflected age- and diabetes-related vascular changes and may serve as a more sensitive indicator of subtle vascular abnormalities compared with DI in the setting of diabetes. PMID:23509600

  12. Novel Application of a Multiscale Entropy Index as a Sensitive Tool for Detecting Subtle Vascular Abnormalities in the Aged and Diabetic

    PubMed Central

    Wu, Hsien-Tsai; Lo, Men-Tzung; Chen, Guan-Hong; Sun, Cheuk-Kwan; Chen, Jian-Jung

    2013-01-01

    Although previous studies have shown the successful use of pressure-induced reactive hyperemia as a tool for the assessment of endothelial function, its sensitivity remains questionable. This study aims to investigate the feasibility and sensitivity of a novel multiscale entropy index (MEI) in detecting subtle vascular abnormalities in healthy and diabetic subjects. Basic anthropometric and hemodynamic parameters, serum lipid profiles, and glycosylated hemoglobin levels were recorded. Arterial pulse wave signals were acquired from the wrist with an air pressure sensing system (APSS), followed by MEI and dilatation index (DI) analyses. MEI succeeded in detecting significant differences among the four groups of subjects: healthy young individuals, healthy middle-aged or elderly individuals, well-controlled diabetic individuals, and poorly controlled diabetic individuals. A reduction in multiscale entropy reflected age- and diabetes-related vascular changes and may serve as a more sensitive indicator of subtle vascular abnormalities compared with DI in the setting of diabetes. PMID:23509600

  13. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  14. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed Central

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-01-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  15. βA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development

    PubMed Central

    Sinha, Debasish; Klise, Andrew; Sergeev, Yuri; Hose, Stacey; Bhutto, Imran A.; Hackler, Laszlo; Malpic-llanos, Tanya; Samtani, Sonia; Grebe, Rhonda; Goldberg, Morton F.; Hejtmancik, J. Fielding; Nath, Avindra; Zack, Donald J.; Fariss, Robert N.; McLeod, D. Scott; Sundin, Olof; Broman, Karl W.; Lutty, Gerard A.; Zigler, J. Samuel

    2016-01-01

    Vascular remodeling is a complex process critical to development of the mature vascular system. Astrocytes are known to be indispensable for initial formation of the retinal vasculature; our studies with the Nuc1 rat provide novel evidence that these cells are also essential in the retinal vascular remodeling process. Nuc1 is a spontaneous mutation in the Sprague–Dawley rat originally characterized by nuclear cataracts in the heterozygote and microphthalmia in the homozygote. We report here that the Nuc1 allele results from mutation of the βA3/A1-crystallin gene, which in the neural retina is expressed only in astrocytes. We demonstrate striking structural abnormalities in Nuc1 astrocytes with profound effects on the organization of intermediate filaments. While vessels form in the Nuc1 retina, the subsequent remodeling process required to provide a mature vascular network is deficient. Our data implicate βA3/A1-crystallin as an important regulatory factor mediating vascular patterning and remodeling in the retina. PMID:17931883

  16. Emotion processes in normal and abnormal development and preventive intervention.

    PubMed

    Izard, Carroll E; Fine, Sarah; Mostow, Allison; Trentacosta, Christopher; Campbell, Jan

    2002-01-01

    We present an analysis of the role of emotions in normal and abnormal development and preventive intervention. The conceptual framework stems from three tenets of differential emotions theory (DET). These principles concern the constructs of emotion utilization; intersystem connections among modular emotion systems, cognition, and action; and the organizational and motivational functions of discrete emotions. Particular emotions and patterns of emotions function differentially in different periods of development and in influencing the cognition and behavior associated with different forms of psychopathology. Established prevention programs have not emphasized the concept of emotion as motivation. It is even more critical that they have generally neglected the idea of modulating emotions, not simply to achieve self-regulation, but also to utilize their inherently adaptive functions as a means of facilitating the development of social competence and preventing psychopathology. The paper includes a brief description of a theory-based prevention program and suggestions for complementary targeted interventions to address specific externalizing and internalizing problems. In the final section, we describe ways in which emotion-centered preventions can provide excellent opportunities for research on the development of normal and abnormal behavior. PMID:12549703

  17. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  18. Development of vascularization in the chondroepiphysis of the rabbit.

    PubMed

    Ganey, T M; Love, S M; Ogden, J A

    1992-07-01

    Although numerous studies have addressed the presence of cartilage canals within developing epiphyses, the chronology of their appearance and their vascular contribution to the developing chondroepiphysis remain to be studied. We have selected a model, similar to the developing human skeletal system, in which extensive cartilage canal development precedes the subsequent secondary ossification process. In the rabbit proximal tibia, both chondroepiphyseal and vascular (cartilage canals) development were quantified from the first evidence of vessels until the formation of the secondary center of ossification. The volume of hyaline cartilage increased 25 times after intraepiphyseal vessels were initially observed. The blood supply, measured in cartilage canal volume, increased 400-fold over the same period. Three distinct cartilage canal morphologies were identifiable before the formation of the secondary center of ossification: (a) an early phase, in which the canals appeared as infoldings derived from the perichondrium; (b) a reactive phase, occurring simultaneously with chondrocyte hypertrophy and characterized by a very large increase in mesenchymal cells within the cartilage canal; and (c) a vascular phase, coincident with mineralization of the matrix, in which the familiar, unitary canal morphology was replaced by that of a vascular plexus. While matrix mineralization and the formation of bone seem dependent on critical cellular events, notably chondrocyte hypertrophy, the role that the vascular supply plays in developing sufficient biological inertia for the ossifying transition must not be underestimated. PMID:1613625

  19. CHRONIC PERCHLORATE EXPOSURE CAUSES MORPHOLOGICAL ABNORMALITIES IN DEVELOPING STICKLEBACK

    PubMed Central

    Bernhardt, Richard R.; Von Hippel, Frank A.; O’Hara, Todd M.

    2011-01-01

    Few studies have examined the effects of chronic perchlorate exposure during growth and development, and fewer still have analyzed the effects of perchlorate over multiple generations. We describe morphological and developmental characteristics for threespine stickleback (Gasterosteus aculeatus) that were spawned and raised to sexual maturity in perchlorate-treated water (G1,2003) and for their offspring (G2,2004) that were not directly treated with perchlorate. The G1,2003 displayed a variety of abnormalities, including impaired formation of calcified traits, slower growth rates, aberrant sexual development, poor survivorship, and reduced pigmentation that allowed internal organs to be visible. Yet these conditions were absent when the offspring of contaminated fish (G2,2004) were raised in untreated water, suggesting a lack of transgenerational effects and that surviving populations may be able to recover following remediation of perchlorate-contaminated sites PMID:21465539

  20. Normal and Abnormal Development in the Arabidopsis Vegetative Shoot Apex.

    PubMed Central

    Medford, JI; Behringer, FJ; Callos, JD; Feldmann, KA

    1992-01-01

    Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development. PMID:12297656

  1. Feasibility of US-CT image fusion to identify the sources of abnormal vascularization in posterior sacroiliac joints of ankylosing spondylitis patients

    PubMed Central

    Hu, Zhenlong; Zhu, Jiaan; Liu, Fang; Wang, Niansong; Xue, Qin

    2015-01-01

    Ultrasound (US) can be used to evaluate the inflammatory activity of the sacroiliac joints (SIJs) in ankylosing spondylitis (AS) patients, but to precisely locate the abnormal vascularization observed on color Doppler US (CDUS) was difficult. To address this issue, we performed US and computed tomography (CT) fusion imaging of SIJs with 84 inpatients and 30 controls, and then assessed the sources of abnormal vascularization in the posterior SIJs of AS patients based on the fused images. Several possible factors impacting the fusion process were considered including the lesion classes of SIJ, the skinfold thickness of the sacral region and the cross-sectional levels of the first, second and third posterior sacral foramina. Our data showed high image fusion success rates at the 3 levels in the AS group (97.0%, 87.5% and 79.8%, respectively) and the control group (96.7%, 86.7%, and 86.7%, respectively).The skinfold thickness was identified as the main factor affecting the success rates. The successfully fused images revealed significant differences in the distribution of abnormal vascularization between 3 levels, as detected via CDUS (P = 0.011), which suggested that inflammation occurred in distinct tissues at different levels of the SIJ (intraligamentous inflammation in Regions 1 and 2; intracapsular inflammation in Region 3). PMID:26669847

  2. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension

    PubMed Central

    Galambos, Csaba; Minic, Angela D.; Bush, Douglas; Nguyen, Dominique; Dodson, Blair; Seedorf, Gregory; Abman, Steven H.

    2016-01-01

    Background and Aims Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. Methods Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. Results The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. Conclusions We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and

  3. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  4. Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

    PubMed Central

    Kawakami, Tomoko; Puri, Nitin; Sodhi, Komal; Bellner, Lars; Takahashi, Toru; Morita, Kiyoshi; Rezzani, Rita; Oury, Tim D.; Abraham, Nader G.

    2012-01-01

    Heme oxygenase (HO) system is one of the key regulators of cellular redox homeostasis which responds to oxidative stress (ROS) via HO-1 induction. However, recent reports have suggested an inhibitory effect of ROS on HO activity. In light of these conflicting reports, this study was designed to evaluate effects of chronic oxidative stress on HO system and its role in contributing towards patho-physiological abnormalities observed in extracellular superoxide dismutase (EC-SOD, SOD3) KO animals. Experiments were performed in WT and EC-SOD(−/−) mice treated with and without HO inducer, cobalt protoporphyrin (CoPP). EC-SOD(−/−) mice exhibited oxidative stress, renal histopathological abnormalities, elevated blood pressure, impaired endothelial function, reduced p-eNOS, p-AKT and increased HO-1 expression; although, HO activity was significantly (P < 0.05) attenuated along with attenuation of serum adiponectin and vascular epoxide levels (P < 0.05). CoPP, in EC-SOD(−/−) mice, enhanced HO activity (P < 0.05) and reversed aforementioned pathophysiological abnormalities along with restoration of vascular EET, p-eNOS, p-AKT and serum adiponectin levels in these animals. Taken together our results implicate a causative role of insufficient activation of heme-HO-adiponectin system in pathophysiological abnormalities observed in animal models of chronic oxidative stress such as EC-SOD(−/−) mice. PMID:22292113

  5. Critical roles of CD146 in zebrafish vascular development.

    PubMed

    Chan, Barden; Sinha, Sonia; Cho, Dan; Ramchandran, Ramani; Sukhatme, Vikas P

    2005-01-01

    In this report, we use zebrafish as a model system to understand the importance of CD146 in vascular development. Endothelial-specific expression of CD146 was verified by whole-mount in situ hybridization. Suppression of CD146 protein expression by antisense morpholino oligonucleotides (MO) resulted in poorly developed intersomitic vessels (ISVs). In CD146 morphants, we observed a lack of blood flow through the ISV region, despite that fluorescence microangiography showed that the ISVs were present. This finding suggests that the lumens of the developing ISVs may be too narrow for proper circulation. Additionally, remodeling of the caudal vein plexus into functional vascular tubes appeared to be affected. Suppression of CD146 protein expression resulted in a circulation shunt that caused the circulation to by-pass part of the caudal artery/vein system. The same vascular defects were recapitulated by using a second morpholino oligonucleotide. This morphant expressed a truncated CD146 protein with amino acids V32 to T57 at the N terminus deleted in an in-frame manner. This region, therefore, is likely to contain elements critical for CD146 function. This study provides the first in vivo functional assessment of CD146 in embryonic development by showing that knockdown of CD146 protein expression severely hinders vascular development in zebrafish. PMID:15580611

  6. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma. PMID:27068508

  7. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  8. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  9. Rosiglitazone, a peroxisome proliferator-activated receptor γ stimulant, abrogates diabetes-evoked hypertension by rectifying abnormalities in vascular reactivity.

    PubMed

    El-Bassossy, Hany M; Abo-Warda, Shaymaa M; Fahmy, Ahmed

    2012-08-01

    In addition to insulin sensitization, rosiglitazone exhibits favourable circulatory effects. In the present study, we tested the hypothesis that rosiglitazone protects against hypertension and vascular derangements caused by diabetes. Diabetes was induced by a single bolus injection of streptozotocin (50 mg/kg, i.p.). After 2 weeks, rats were started on a treatment regimen of 5 mg/kg rosiglitazone daily for a period of 6 weeks. The control group consisted of rats treated with vehicle (distilled water) for the same period of time. After 6 weeks treatment, blood pressure (BP) was recorded and serum levels of glucose, advanced glycation end-products (AGE), triglycerides, total cholesterol and low-density lipoprotein-cholesterol (LDL-C) were determined. In in vitro experiments, concentration-response curves were constructed to phenylephrine (PE), KCl and acetylcholine (ACh) in thoracic aorta rings. In addition, ACh-induced nitric oxide (NO) generation and KCl-induced intracellular Ca accumulation were determined in the aorta. Compared with values in control rats, both diastolic and systolic BP were increased in diabetic rats. Rosiglitazone treatment of diabetic rats abolished the increase in diastolic BP and significantly reduced the increased systolic BP without affecting the development of hyperglycaemia. The possibility that changes in vascular reactivity and/or lipid profile contributed to the effects of rosiglitazone on BP in diabetic rats was investigated. In aortic rings from diabetic rats, contractile responses to KCl were increased, whereas the relaxant responses to ACh were decreased. In rings from diabetic rosiglitazone-treated rats, the exaggerated response to KCl and the impaired response to ACh were abolished. Furthermore, rosiglitazone abrogated impaired ACh-stimulated NO generation in aortas isolated from diabetic rats. Diabetes in rats was accompanied by elevated levels of triglycerides, total cholesterol, LDL-C and AGE. Rosiglitazone treatment

  10. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry. PMID:23462277

  11. Developing fungal pigments for "painting" vascular plants.

    PubMed

    Robinson, Sara C

    2012-02-01

    The use of fungal pigments as color additives to wood as a method to increase forest revenue is a relatively new, but quickly developing field. Sugar maple (Acer saccharum) is currently the primary utilized hardwood for spalting and appears to be the best suited North American hardwood for such purposes. The combination of Trametes versicolor and Bjerkandera adusta has been identified in several instances as a strong fungal pairing for zone line production; however, Xylaria polymorpha is capable of creating zone lines without the antagonism of a secondary fungus. Few fungal pigments have been developed for reliable use; Scytalidium cuboideum is capable of producing a penetrating pink/red stain, as well as a blue pigment after extended incubation, and Chlorociboria sp. produces a blue/green pigment if grown on aspen (Populus tremuloides). Several opportunities exist for stimulation of fungal pigments including the use of copper sulfate and changes in wood pH. PMID:22237673

  12. Placental Vascular Obstructive Lesions: Risk Factor for Developing Necrotizing Enterocolitis

    PubMed Central

    Dix, Laure; Roth-Kleiner, Matthias; Osterheld, Maria-Chiara

    2010-01-01

    Necrotizing enterocolitis (NEC) is a severe neonatal disease affecting particularly preterm infants. Its exact pathogenesis still remains unknown. In this study, we have compared the prevalence of vascular obstructive lesions in placentae of premature newborns which developed NEC and of a control group. We further compared separately the findings of placentae of infants of less than 30 weeks of gestation, the age group in which NEC occurs most frequently. We found signs of fetal vascular obstructive lesions in 65% of the placentae of preterm patients developing NEC, compared to only 17% of the placentae of preterm patients in the control group. In the age groups below 30 weeks of gestation, 58.5% of placentae of later NEC patients presented such lesions compared to 24.5% in the control group. The significant difference between NEC and control group suggests a strong association between fetal vascular obstructive lesions and NEC. Therefore, we propose that fetal vascular obstructive lesions might be considered as a risk factor for the development of NEC in premature infants. PMID:21151528

  13. Normal and abnormal spine and thoracic cage development

    PubMed Central

    Canavese, Federico; Dimeglio, Alain

    2013-01-01

    Development of the spine and thoracic cage consists of a complex series of events involving multiple metabolic processes, genes and signaling pathways. During growth, complex phenomena occur in rapid succession. This succession of events, this establishment of elements, is programmed according to a hierarchy. These events are well synchronized to maintain harmonious limb, spine and thoracic cage relationships, as growth in the various body segments does not occur simultaneously at the same magnitude or rate. In most severe cases of untreated progressive early-onset spinal deformities, respiratory insufficiency and pulmonary and cardiac hypertension (cor pulmonale), which characterize thoracic insufficiency syndrome (TIS), can develop, sometimes leading to death. TIS is the inability of the thorax to ensure normal breathing. This clinical condition can be linked to costo-vertebral malformations (e.g., fused ribs, hemivertebrae, congenital bars), neuromuscular diseases (e.g., expiratory congenital hypotonia), Jeune or Jarcho-Levin syndromes or to 50% to 75% fusion of the thoracic spine before seven years of age. Complex spinal deformities alter normal growth plate development, and vertebral bodies become progressively distorted, perpetuating the disorder. Therefore, many scoliotic deformities can become growth plate disorders over time. This review aims to provide a comprehensive review of how spinal deformities can affect normal spine and thoracic cage growth. Previous conceptualizations are integrated with more recent scientific data to provide a better understanding of both normal and abnormal spine and thoracic cage growth. PMID:24147251

  14. Vascular Precursors in Developing Human Retina

    PubMed Central

    Hasegawa, Takuya; McLeod, D. Scott; Prow, Tarl; Merges, Carol; Grebe, Rhonda; Lutty, Gerard A.

    2016-01-01

    Purpose Prior investigation has demonstrated that angioblasts are present in the inner retinas of human embryos and fetuses and that they differentiate and organize to form the primordial retinal vasculature. The purpose of this study was to characterize these angioblasts further and examine ligands that might control their migration and differentiation. Methods Immunohistochemistry was used to localize stroma-derived factor-1 (SDF-1), its receptor CXCR4, stem cell factor (SCF), and its receptor c-Kit on sections obtained from human eyes at from 6 to 23 weeks’ gestation (WG). Coexpression of CD39 (marker for retinal angioblasts and endothelial cells) and CXCR4 or c-Kit was investigated by confocal microscopy. Results SDF-1 was prominent in inner retina with the greatest reaction product near the internal limiting membrane (ILM). SCF immunoreactivity was also confined to the inner retina and increased significantly between 7 and 12 WG. The level of both ligands declined by 22 WG. A layer of CXCR4+ and c-Kit+ precursors, some of which coexpressed CD39, existed in the inner retina from 7 to 12 WG. With migration, c-Kit was downregulated, whereas CD39+ cells continued to express CXCR4 as they formed cords. With canalization, CXCR4 expression was downregulated. Conclusions Embryonic human retina has a pool of precursors (CXCR4+ and c-Kit+) that enlarged centrifugally during fetal development. From this pool emerges angioblasts, which migrate anteriorly into the nerve fiber layer where SDF-1 and SCF levels are highest. c-Kit expression declines with apparent migration, and CXCR4 expression declines with canalization of new vessels. Both SCF and SDF-1 are associated with the differentiation of retinal precursors into angioblasts and their migration to sites of vessel assembly. PMID:18436851

  15. Quantification of Blood Flow and Topology in Developing Vascular Networks

    PubMed Central

    Kloosterman, Astrid; Hierck, Beerend; Westerweel, Jerry; Poelma, Christian

    2014-01-01

    Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25–500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules. PMID:24823933

  16. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies. PMID:25311587

  17. Histology Atlas of the Developing Mouse Hepatobiliary Hemolymphatic Vascular System with Emphasis on Embryonic Days 11.5-18.5 and Early Postnatal Development.

    PubMed

    Swartley, Olivia M; Foley, Julie F; Livingston, David P; Cullen, John M; Elmore, Susan A

    2016-07-01

    A critical event in embryo development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has led researchers to use transgenic mice to identify the critical steps involved in developmental disorders associated with the hepatobiliary vascular system. Vascular development is dependent upon normal vasculogenesis, angiogenesis, and the transformation of vessels into their adult counterparts. Any alteration in vascular development has the potential to cause deformities or embryonic death. Numerous publications describe specific stages of vascular development relating to various organs, but a single resource detailing the stage-by-stage development of the vasculature pertaining to the hepatobiliary system has not been available. This comprehensive histology atlas provides hematoxylin & eosin and immunohistochemical-stained sections of the developing mouse blood and lymphatic vasculature with emphasis on the hepatobiliary system between embryonic days (E) 11.5-18.5 and the early postnatal period. Additionally, this atlas includes a 3-dimensional video representation of the E18.5 mouse venous vasculature. One of the most noteworthy findings of this atlas is the identification of the portal sinus within the mouse, which has been erroneously misinterpreted as the ductus venosus in previous publications. Although the primary purpose of this atlas is to identify normal hepatobiliary vascular development, potential embryonic abnormalities are also described. PMID:26961180

  18. The type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis

    PubMed Central

    Hill, Cynthia R.; Jacobs, Britni H.; Brown, Christopher B.; Barnett, Joey V.; Goudy, Steven L.

    2015-01-01

    Background Cleft palate occurs in up to 1:1000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown. Results The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3-/- embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3-/- embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3-/- palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3. Conclusions These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis. PMID:25382630

  19. Mechanosensitive β-catenin signaling regulates lymphatic vascular development.

    PubMed

    Cha, Boksik; Srinivasan, R Sathish

    2016-08-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404]. PMID:27418286

  20. Abnormal Canine Bone Development Associated with Hypergravity Exposure

    NASA Technical Reports Server (NTRS)

    Morgan, J. P.; Fisher, G. L.; McNeill, K. L.; Oyama, J.

    1979-01-01

    Chronic centrifugation of 85- to 92-day-old Beagles at 2.0 x g and 2.6 x g for 26 weeks during the time of active skeletal growth caused skeletal abnormalities in the radius and the ulna of ten of 11 dogs. The pattern of change mimicked that found in naturally occurring and experimentally induced premature distal ulnar physeal closure or delayed growth at this physis. Minimal changes in bone density were detected by sensitive photon absorptiometric techniques. Skeletal abnormalities also were found in five of the six cage-control dogs, although the run-control dogs were radiographically normal.

  1. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  2. Endothelial cell–cell adhesion during zebrafish vascular development

    PubMed Central

    Lagendijk, Anne Karine; Yap, Alpha S; Hogan, Benjamin M

    2014-01-01

    The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell–cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell–cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell–cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell–cell adhesion. PMID:24621476

  3. Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development

    PubMed Central

    Duan, Xuchen; Murata, Yurie; Liu, Yanqiu; Nicolae, Claudia; Olsen, Bjorn R.; Berendsen, Agnes D.

    2015-01-01

    ABSTRACT Vascular endothelial growth factor A (Vegfa) has important roles in endochondral bone formation. Osteoblast precursors, endothelial cells and osteoclasts migrate from perichondrium into primary ossification centers of cartilage templates of future bones in response to Vegfa secreted by (pre)hypertrophic chondrocytes. Perichondrial osteolineage cells also produce Vegfa, but its function is not well understood. By deleting Vegfa in osteolineage cells in vivo, we demonstrate that progenitor-derived Vegfa is required for blood vessel recruitment in perichondrium and the differentiation of osteoblast precursors in mice. Conditional deletion of Vegfa receptors indicates that Vegfa-dependent effects on osteoblast differentiation are mediated by Vegf receptor 2 (Vegfr2). In addition, Vegfa/Vegfr2 signaling stimulates the expression and activity of Indian hedgehog, increases the expression of β-catenin and inhibits Notch2. Our findings identify Vegfa as a regulator of perichondrial vascularity and osteoblast differentiation at early stages of bone development. PMID:25977369

  4. Hyperoxia Inhibits Several Critical Aspects of Vascular Development

    PubMed Central

    Uno, Koichi; Merges, Carol A.; Grebe, Rhonda; Lutty, Gerard A.; Prow, Tarl W.

    2016-01-01

    Normal human retinal vascular development uses angiogenesis and vasculogenesis, both of which are interrupted in the vaso-obliteration phase of retinopathy of prematurity (ROP). Canine oxygen-induced retinopathy (OIR) closely resembles human ROP. Canine retinal endothelial cells (ECs) and angioblasts were used to model OIR and characterize the effects of hyperoxia on angiogenesis and vasculogenesis. Cell cycle analysis showed that hyperoxia reduced the number of G1 phase cells and showed increased arrest in S phase for both cell types. Migration of ECs was significantly inhibited in hyperoxia (P < 0.01). Hyperoxia disrupted the cytoskeleton of angioblasts but not ECs after 2 days. Differentiation of angioblasts into ECs (determined by acetylated low-density lipoprotein uptake) was evaluated after basic fibroblast growth factor treatment. Differentiation of angioblasts into pericytes was determined by smooth muscle actin expression after treatment with platelet-derived growth factor. Differentiation into ECs was significantly inhibited by hyperoxia (P < 0.0001). The percentage of CXCR4+ cells (a marker for retinal vascular precursors) increased in both treatment groups after hyperoxia. These data show novel mechanisms of hyperoxia-induced disruption of vascular development. PMID:17366630

  5. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  6. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.

    PubMed

    Isogai, S; Horiguchi, M; Weinstein, B M

    2001-02-15

    We have used confocal microangiography to examine and describe the vascular anatomy of the developing zebrafish, Danio rerio. This method and the profound optical clarity of zebrafish embryos make it possible to view the entire developing vasculature with unprecedented resolution. A staged series of three-dimensional images of the vascular system were collected beginning shortly after the onset of circulation at 1 day postfertilization through early- to midlarval stages at approximately 7 days postfertilization. Blood vessels in every region of the animal were imaged at each stage, and detailed "wiring patterns" were derived describing the interconnections between every major vessel. We present an overview of these data here in this paper and in an accompanying Web site "The interactive atlas of zebrafish vascular anatomy" online at (http://eclipse.nichd.nih.gov/nichd/lmg/redirect.html). We find a highly dynamic but also highly stereotypic pattern of vascular connections, with different sets of primitive embryonic vessels severing connections and rewiring in new configurations according to a reproducible plan. We also find that despite variation in the details of the vascular anatomy, the basic vascular plan of the developing zebrafish shows strong similarity to that of other vertebrates. This atlas will provide an invaluable foundation for future genetic and experimental studies of vascular development in the zebrafish. PMID:11161578

  7. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  8. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding. PMID:12270009

  9. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  10. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group. PMID:16225232

  11. Contemporary issues in the management of abnormal placentation during pregnancy in developing nations: An Indian perspective

    PubMed Central

    Bajwa, Sukhwinder Kaur; Singh, Anita; Bajwa, Sukhminder Jit Singh

    2013-01-01

    The gap between the developed and developing nations with regards to maternal mortality and morbidity may have narrowed but still a lot of dedicated work is required to bridge these differences. Obstetrical haemorrhage is the leading cause of maternal deaths in these developing nations especially in India. The most common causes of this fatal haemorrhage are the placental abnormalities which rarely get detected before delivery. Numerous factors have been incremental in the causation of this abnormal placental implantation with resultant complications. The present article is an attempt to review possible predictors of abnormal placental implantation. Also, a genuine attempt has been made to enumerate possible measures to identify the predictors of abnormal placentation during early pregnancy and their suitable prevention and management. PMID:24404455

  12. CELLULAR AND MOLECULAR MECHANISMS OF ABNORMAL REPRODUCTIVE DEVELOPMENT

    EPA Science Inventory

    This project will determine the critical factors that account for exposures to endocrine disrupting chemicals, or EDCs (ER, AR, AhR mediated and inhibitors of steroidogenesis) during development resulting in adverse effects seen later in life in male and female offspring. Such f...

  13. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that

  14. A comprehensive approach to the spectrum of abnormal pubertal development.

    PubMed

    Appelbaum, Heather; Malhotra, Shilpa

    2012-04-01

    Puberty is the biological transition from childhood to adulthood. The process involves the coordination of hormonal, physical, psychosocial, and cognitive systems to result in physiologic change. Precocious puberty is defined as pubertal development beginning earlier than expected based on normal standards. Gonadotropin dependent precocious puberty is caused by premature activation of the hypothalamus resulting in pulsatile secretion of GnRH. Gonadotropin independent precocious puberty is caused by excess sex hormones from peripheral or external sources. Treatment with GnRH agonists should be offered to prevent early fusion of the epiphyseal plates to avoid unnecessary short stature and should not be based on perceived psychosocial consequences of early puberty. Delayed puberty is the absence of or incomplete development of secondary sexual characteristics. Hypergonadotropic hypogonadism or primary hypogonadism may result from genetic mutation syndromes or can be acquired from antiovarian antibodies, exposure to radiation or chemotherapy, inflammatory insult, or surgical removal of the gonads. Hypogonadotropic hypogonadism or secondary hypogonadism is due to hypothalamic dysfunction resulting in impaired secretion of GnRH. The long-term goal for patients with inadequate estrogen stimulation is to maintain the serum concentration of sex steroids within the normal adult range to promote the development of secondary sexual characteristics, prevent premature bone loss, and ultimately to induce fertility when indicated. PMID:22764552

  15. Environmental Enteropathy: Elusive but Significant Subclinical Abnormalities in Developing Countries.

    PubMed

    Watanabe, Koji; Petri, William A

    2016-08-01

    Environmental enteropathy/Environmental enteric dysfunction (EE/EED) is a chronic disease of small intestine characterized by gut inflammation and barrier disruption, malabsorption and systemic inflammation in the absence of diarrhea. It is predominantly diseases of children in low income countries and is hypothesized to be caused by continuous exposure to fecally contaminated food, water and fomites. It had not been recognized as a priority health issue because it does not cause overt symptoms and was seen in apparently healthy individuals. However, there is a growing concern of EE/EED because of its impact on longitudinal public health issues, such as growth faltering, oral vaccine low efficacy and poor neurocognitive development. Recent works have provided important clues to unravel its complex pathogenesis, and suggest possible strategies for controlling EE/EED. However, effective diagnostic methods and interventions remain unsettled. Here, we review the existing literature, especially about its pathogenesis, and discuss a solution for children living in the developing world. PMID:27495791

  16. Early estrogen exposure induces abnormal development of Fundulus heteroclitus.

    PubMed

    Urushitani, Hiroshi; Shimizu, Akio; Katsu, Yoshinao; Iguchi, Taisen

    2002-12-01

    Many chemicals released into the environment exhibit estrogenic activity, having the potential to disrupt development and the functioning of the endocrine system. In order to establish a model system to study the effects of such environmental chemicals on aquatic animals, we examined the effects of a natural estrogen, 17 beta-estradiol (E(2)), on early development of Fundulus heteroclitus. Embryos of F. heteroclitus were reared in seawater containing 10(-10), 10(-8), and 10(-6) M E(2) throughout the experiment. Hatching and survival rates decreased in a dose-dependent manner, and fry treated with 10(-6) M E(2) and 10(-8) M E(2) were dead by two weeks and 12 weeks after hatching, respectively. More than 85% of fry treated with 10(-8) M E(2) showed malformations: i.e., eye extrusion, crooked vertebral column, faded lateral-stripe pattern eight weeks after hatching. Body weight and head and body lengths were significantly reduced in E(2)-treated fry when compared to controls. Ossification was not completed in vertebrae, cranial bones, and other bones in fry treated with 10(-8) M E(2) even 12 weeks after hatching. Sex ratio of control fry was 57% male and 43% female, whereas fry treated with 10(-8) M E(2) were 100% female eight weeks after hatching. The present results demonstrate that exogenous estrogen induced death of embryos and fry, malformations, sex reversal, and incomplete ossification of vertebrae and cranial bones, which would result in shorter body and head lengths and in malformed vertebrae leading to a hunchback condition. PMID:12410597

  17. Immediate and long-term consequences of vascular toxicity during zebrafish development

    EPA Science Inventory

    Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we developed a quantitative ...

  18. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Tobias, C. A.

    Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study on the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggests that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.

  19. The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development

    PubMed Central

    Neves, Hélia; Gomes, Andreia C.; Saavedra, Pedro; Carvalho, Catarina C.; Duarte, António; Cidadão, António; Parreira, Leonor

    2012-01-01

    Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis. PMID:22514637

  20. Development of pluripotent stem cells for vascular therapy

    PubMed Central

    Volz, Katharina S.; Miljan, Erik; Khoo, Amanda; Cooke, John P.

    2013-01-01

    Peripheral arterial disease (PAD) is characterized by reduced limb blood flow due to arterial obstruction. Current treatment includes surgical or endovascular procedures, the failure of which may result in amputation of the affected limb. An emerging therapeutic approach is cell therapy to enhance angiogenesis and tissue survival. Small clinical trials of adult progenitor cell therapies have generated promising results, although large randomized clinical trials using well-defined cells have not been performed. Intriguing pre-clinical studies have been performed using vascular cells derived from human embryonic stem cells (hESC) or human induced pluripotent stem cells (hiPSCs). In particular, hiPSC-derived vascular cells may be a superior approach for vascular regeneration. The regulatory roadmap to the clinic will be arduous, but achievable with further understanding of the reprogramming and differentiation processes; with meticulous attention to quality control; and perseverance. PMID:22387745

  1. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  2. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development.

    PubMed

    Hensley, Monica R; Cui, Zhibin; Chua, Rhys F M; Simpson, Stefanie; Shammas, Nicole L; Yang, Jer-Yen; Leung, Yuk Fai; Zhang, GuangJun

    2016-01-01

    Gene co-option, usually after gene duplication, in the evolution of development is found to contribute to vertebrate morphological innovations, including the endothelium-based vascular system. Recently, a zebrafish kank gene was found expressed in the vascular vessel primordium, suggesting KANK genes are a component of the developmental tool kit for the vertebrate vascular system. However, how the KANK gene family is involved in vascular vessel development during evolution remains largely unknown. First, we analyzed the molecular evolution of the KANK genes in metazoan, and found that KANK1, KANK2, KANK3 and KANK4 emerged in the lineage of vertebrate, consistent with the two rounds of vertebrate whole-genome duplications (WGD). Moreover, KANK genes were further duplicated in teleosts through the bony-fish specific WGD, while only kank1 and kank4 duplicates were retained in some of the examined fish species. We also found all zebrafish kank genes, except kank1b, are primarily expressed during embryonic vascular development. Compared to invertebrate KANK gene expression in the central nervous system, the vascular expression of zebrafish kank genes suggested KANK genes were co-opted for vertebrate vascular development. Given the cellular roles of KANK genes, our results suggest that this co-option may facilitate the evolutionary origin of vertebrate vascular vessels. PMID:27292017

  3. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development

    PubMed Central

    Hensley, Monica R.; Cui, Zhibin; Chua, Rhys F. M.; Simpson, Stefanie; Shammas, Nicole L.; Yang, Jer-Yen; Leung, Yuk Fai; Zhang, GuangJun

    2016-01-01

    Gene co-option, usually after gene duplication, in the evolution of development is found to contribute to vertebrate morphological innovations, including the endothelium-based vascular system. Recently, a zebrafish kank gene was found expressed in the vascular vessel primordium, suggesting KANK genes are a component of the developmental tool kit for the vertebrate vascular system. However, how the KANK gene family is involved in vascular vessel development during evolution remains largely unknown. First, we analyzed the molecular evolution of the KANK genes in metazoan, and found that KANK1, KANK2, KANK3 and KANK4 emerged in the lineage of vertebrate, consistent with the two rounds of vertebrate whole-genome duplications (WGD). Moreover, KANK genes were further duplicated in teleosts through the bony-fish specific WGD, while only kank1 and kank4 duplicates were retained in some of the examined fish species. We also found all zebrafish kank genes, except kank1b, are primarily expressed during embryonic vascular development. Compared to invertebrate KANK gene expression in the central nervous system, the vascular expression of zebrafish kank genes suggested KANK genes were co-opted for vertebrate vascular development. Given the cellular roles of KANK genes, our results suggest that this co-option may facilitate the evolutionary origin of vertebrate vascular vessels. PMID:27292017

  4. The embryonic development of ear-tufts and associated structural head and neck abnormalities of the Araucana fowl.

    PubMed

    Pabilonia, M S; Somes, R G

    1983-08-01

    Developing embryonic structural abnormalities of ear-tufted embryos of the Araucana fowl are described. These abnormal structures are peduncle, cleft, ear opening, tympanic membrane, and columella auris. The structural abnormalities are believed to be due to the early incomplete fusion of the hyoid and mandibular arches from the distal part of the ear opening to the neck area. PMID:6634592

  5. Calcitonin gene-related peptide does not mediate the abnormal vascular reactivity observed in a rat model of acute Pseudomonas pneumonia.

    PubMed

    Fox, G A; Paterson, N A; McCormack, D G

    1996-06-01

    Abnormal systemic and pulmonary vascular reactivity has been demonstrated in numerous models of sepsis and pneumonia. Furthermore, the attenuated hypoxic pulmonary pressor response observed in these animals probably is responsible for the ventilation/perfusion (V/Q) mismatching and consequent arterial hypoxemia. We hypothesized that excess release of endogenous vasodilators such as calcitonin gene-related peptide (CGRP) in pneumonia was responsible for the diminished hypoxic pressor response. Using the CGRP receptor antagonist CGRP (8-37), we examined the role of CGRP in the attenuated hypoxic pulmonary response in a rat model of acute Pseudomonas pneumonia. Sixteen Sprague-Dawley rats were instrumented for chronic hemodynamic monitoring and subsequently randomized to either Pneumonia (n = 8), induced by the instillation of 0.2 ml broth containing 2 x 10(8) colony-forming units (CFU)/ml Pseudomonas aeruginosa into the right lower lobe, or Sham (n = 8) procedure. Hemodynamic measurements and the hypoxic (FiO2 = 0.08) pulmonary pressor response were recorded at baseline, 48 h after the pneumonia or sham procedure and after the administration of 250 micrograms CGRP (8-37) (post-CGRP(8-37)). The regional distribution of pulmonary blood flow was determined by the injection of radioactive microspheres. Forty-eight hours after the instillation of Pseudomonas, Pneumonia animals had significantly increased cardiac output (CO) as compared with Sham (193 +/- 7 vs. 154 +/- 7 ml/min, p < 0.05), slightly decreased mean arterial pressure (MAP 109 +/- 4 vs. 118 +/- 3 mm Hg, p = NS), and reduced total systemic vascular resistance (TSVR 0.57 +/- 0.03 vs. 0.78 +/- 0.05 mm Hg.min.ml-1, p < 0.05). Pneumonia animals were further characterized by increased mean pulmonary artery pressure (MPAP) as compared with Sham (24 +/- 2 vs. 20 +/- 1 mm Hg, p < 0.05) animals, and an increased alveolar-arterial (A-a) oxygen gradient (31 +/- 3 vs. 20 +/- 4 mm Hg, p < 0.05). The administration of CGRP

  6. Abnormal Development of Thalamic Microstructure in Premature Neonates with Congenital Heart Disease

    PubMed Central

    Paquette, Lisa B.; Votava-Smith, Jodie K.; Ceschin, Rafael; Nagasunder, Arabhi C.; Jackson, Hollie A.; Blüml, Stefan; Wisnowski, Jessica L.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Preterm birth is associated with alteration in cortico-thalamic development, which underlies poor neurodevelopmental outcomes. Our hypothesis was that preterm neonates with CHD would demonstrate abnormal thalamic microstructure when compared to critically ill neonates without CHD. A secondary aim was to identify any association between thalamic microstructural abnormalities and peri-operative clinical variables. Material and Methods We compared thalamic DTI measurements in 21 preterm neonates with CHD to two cohorts of neonates without CHD: 28 term and 27 preterm neonates, identified from the same neonatal intensive care unit. Comparison was made with three other selected white matter regions using ROI manual based measurements. Correlation was made with post-conceptional age and peri-operative clinical variables. Results In preterm neonates with CHD, there were age-related differences in thalamic diffusivity (axial and radial) compared to the preterm and term non-CHD group, in contrast to no differences in anisotropy. Contrary to our hypothesis, abnormal thalamic and optic radiation microstructure was most strongly associated with an elevated first arterial blood gas pO2 and elevated pre-operative arterial blood gas pH (p<0.05). Conclusion Age-related thalamic microstructural abnormalities were observed in preterm neonates with CHD. Perinatal hyperoxemia and increased peri-operative serum pH was associated with abnormal thalamic microstructure in preterm neonates with CHD. This study emphasizes the vulnerability of thalamo-cortical development in the preterm neonate with CHD. PMID:25608695

  7. Developing vascular and hypoxia based theranostics in solid tumors

    NASA Astrophysics Data System (ADS)

    Koonce, Nathan A.

    Tissue hypoxia was recognized for its biological attenuating effects on ionizing radiation over a century ago and is a characteristic feature of many solid tumors. Clinical and experimental evidence indicates tumor hypoxia plays diverse and key roles in tumor progression, angiogenesis, and resistance to chemotherapy/radiotherapy. Hypoxia has known effects on progression and resistance to several standard treatment approaches and the significant history of study might suggest diagnostic imaging and therapeutic interventions would be routine in oncological practice. Curiously, this is not the case and the research results involved in this report will attempt to better understand and contribute to why this gap in knowledge exists and a rationale for harnessing the potential of detecting and targeting hypoxia. Despite the addition of oxygen and reversal of hypoxia being known as the best radiosensitizer, hypoxia remains unexploited in clinical cancer therapy. The studies reported herein detail development of a novel imaging technique to detect a subtype of tumor hypoxia, vascular hypoxia or hypoxemia, with a 17-fold increase (p<0.05) in uptake of pimonidazole targeted microbubbles observed compared to controls. This technique creates the potential to study the role of hypoxemia in progression and therapeutic response. Additionally, description of a nanoparticle-based therapy that targets tumor areas associated with tumor hypoxia and the tumor microenvironment in general is reported. TNF-loaded nanoparticles combined with radiotherapy resulted in a 5.25-fold growth delay that was found to be synergistic (p<0.05) and suggests clinical evaluation is warranted. An additional study to evaluate an approach to use thermal ablation of intratumoral hypoxia by an image-guided technique developed in our group is described along with a sequence dependence of radiation preceding ablation. A final study on the use of galectin-1 antagonist to significantly decrease (p<0.05) hypoxia

  8. Association of Traditional Cardiovascular Risk Factors With Development of Major and Minor Electrocardiographic Abnormalities: A Systematic Review.

    PubMed

    Healy, Caroline F; Lloyd-Jones, Donald M

    2016-01-01

    Electrocardiographic (ECG) abnormalities are prevalent in middle aged and are associated with risk of adverse cardiovascular events. It is unclear whether and to what extent traditional risk factors are associated with the development of ECG abnormalities. To determine whether traditional cardiovascular risk factors are associated with the presence or development of ECG abnormalities, we performed a systematic review of the English-language literature for cross-sectional and prospective studies examining associations between traditional cardiovascular risk factors and ECG abnormalities, including major and minor ECG abnormalities, isolated nonspecific ST-segment and T-wave abnormalities, other ST-segment and T-wave abnormalities, QT interval, Q waves, and QRS duration. Of the 202 papers initially identified, 19 were eligible for inclusion. We examined data analyzing risk factor associations with ECG abnormalities in individuals free of cardiovascular disease. For composite major or minor ECG abnormalities, black race, older age, higher blood pressure, use of antihypertensive medications, higher body mass index, diabetes, smoking, and evidence of left ventricular hypertrophy or higher left ventricular mass are the factors most commonly associated with prevalence and incidence. Risk factor associations differ somewhat according to types of specific ECG abnormalities. Because major and minor ECG abnormalities have important and independent prognostic significance, understanding the groups at risk for their development may inform prevention strategies focused on modifiable risk factors to reduce the burden of ECG abnormalities, which may in turn promote CVD prevention. PMID:27054606

  9. Vascular smooth muscle in hypertension.

    PubMed

    Winquist, R J; Webb, R C; Bohr, D F

    1982-06-01

    The cause of the elevated arterial pressure in most forms of hypertension is an increase in total peripheral resistance. This brief review is directed toward an assessment of recent investigations contributing information about the factors responsible for this increased vascular resistance. Structural abnormalities in the vasculature that characterize the hypertensive process are 1) changes in the vascular media, 2) rarefication of the resistance vessels, and 3) lesions of the intimal vascular surface. These abnormalities are mainly the result of an adaptive process and are secondary to the increase in wall stress and/or to pathological damage to cellular components in the vessel wall. Functional alterations in the vascular smooth muscle are described as changes in agonist-smooth muscle interaction or plasma membrane permeability. These types of changes appear to play a primary, initiating role in the elevation of vascular resistance of hypertension. These alterations are not the result of an increase in wall stress and they often precede the development of high blood pressure. The functional changes are initiated by abnormal function of neurogenic, humoral, and/or myogenic changes that alter vascular smooth muscle activity. PMID:6282652

  10. Analysis of Vascular Development in the hydra Sterol Biosynthetic Mutants of Arabidopsis

    PubMed Central

    Pullen, Margaret; Clark, Nick; Zarinkamar, Fatemeh; Topping, Jennifer; Lindsey, Keith

    2010-01-01

    Background The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning. Methodology/Principal Findings Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2∶GUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development. Conclusions The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development. PMID:20808926

  11. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  12. Neutralization of vascular endothelial growth factor antiangiogenic isoforms or administration of proangiogenic isoforms stimulates vascular development in the rat testis.

    PubMed

    Baltes-Breitwisch, Michelle M; Artac, Robin A; Bott, Rebecca C; McFee, Renee M; Kerl, Jill G; Clopton, Debra T; Cupp, Andrea S

    2010-08-01

    Vascular endothelial growth factor A (VEGFA) plays a role in both angiogenesis and seminiferous cord formation, and alternative splicing of the Vegfa gene produces both proangiogenic isoforms and antiangiogenic isoforms (B-isoforms). The objectives of this study were to evaluate the expression of pro- and antiangiogenic isoforms during testis development and to determine the role of VEGFA isoforms in testis morphogenesis. Quantitative RT-PCR determined that Vegfa_165b mRNA was most abundant between embryonic days 13.5 and 16 (E13.5 and 16; P<0.05). Compared with ovarian mRNA levels, Vegfa_120 was more abundant at E13-14 (P<0.05), Vegfa_164 was less abundant at E13 (P<0.05), and Vegfa_165b tended to be less abundant at E13 (P<0.09) in testes. Immunohistochemical staining localized antiangiogenic isoforms to subsets of germ cells at E14-16, and western blot analysis revealed similar protein levels for VEGFA_165B, VEGFA_189B, and VEGFA_206B at this time point. Treatment of E13 organ culture testes with VEGFA_120, VEGFA_164, and an antibody to antiangiogenic isoforms (anti-VEGFAxxxB) resulted in less organized and defined seminiferous cords compared with paired controls. In addition, 50 ng/ml VEGFA_120 and VEGFA_164 treatments increased vascular density in cultured testes by 60 and 48% respectively, and treatment with VEGFAxxxB antibody increased vascular density by 76% in testes (0.5 ng/ml) and 81% in ovaries (5 ng/ml) compared with controls (P<0.05). In conclusion, both pro- and antiangiogenic VEGFA isoforms are involved in the development of vasculature and seminiferous cords in rat testes, and differential expression of these isoforms may be important for normal gonadal development. PMID:20457593

  13. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice

    PubMed Central

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  14. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice.

    PubMed

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  15. Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss

    PubMed Central

    Winship, Amy; Correia, Jeanne; Krishnan, Tara; Menkhorst, Ellen; Cuman, Carly; Zhang, Jian-Guo; Nicola, Nicos A.; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy. PMID:26272398

  16. Vascular Development during Distraction Osteogenesis Proceeds by Sequential Intramuscular Arteriogenesis Followed by Intraosteal Angiogenesis

    PubMed Central

    Morgan, Elise F.; Hussein, Amira I.; Al-Awadhi, Bader A.; Hogan, Daniel E.; Matsubara, Hidenori; Al-Alq, Zainab; Fitch, Jennifer; Andre, Billy; Hosur, Krutika; Gerstenfeld, Louis C.

    2012-01-01

    Vascular formation is intimately associated with bone formation during distraction osteogenesis (DO). While prior studies on this association have focused on vascular formation locally within the regenerate, we hypothesized that this vascular formation, as well as the resulting osteogenesis, rely heavily on the response of the vascular network in surrounding muscular compartments. To test this hypothesis, the spatiotemporal sequence of vascular formation was assessed in both muscular and osseous compartments in a murine model of DO and was compared to the progression of osteogenesis. Micro-computed tomography (μCT) scans were performed sequentially, before and after demineralization, on specimens containing contrast-enhanced vascular casts. Image registration and subtraction procedures were developed to examine the co-related, spatiotemporal patterns of vascular and osseous tissue formation. Immunohistochemistry was used to assess the contributory roles of arteriogenesis (formation of large vessels) and angiogenesis (formation of small vessels) to overall vessel formation. Mean vessel thickness showed an increasing trend during the period of active distraction (p=0.068), whereas vessel volume showed maximal increases during the consolidation period (p=0.009). The volume of mineralized tissue in the regenerate increased over time (p<0.039), was correlated with vessel volume (r=0.59; p=0.025), and occurred primarily during consolidation. Immunohistological data suggested that: 1) the period of active distraction was characterized primarily by arteriogenesis in the surrounding muscle; 2) during consolidation, angiogenesis predominated in the intraosteal region; 3) vessel formation proceeded from the surrounding muscle into the regenerate. These data show that formation of vascular tissue occurs in both muscular and osseous compartments during DO and that periods of intense osteogenesis are concurrent with those of angiogenesis. The results further suggest the

  17. Non-Destructive Measurement of Vascular Tissue Development in Stems of Miniature Tomato Using Acoustic Method

    NASA Astrophysics Data System (ADS)

    Kageyama, Kensuke; Watanabe, Eiko; Kato, Hiroshi

    The guided wave effect resembling that of annual rings found in woods and the cortical region of bones is believed to be observable in vascular tissues of herbaceous plants. The properties of acoustic waves traveling through the vascular tissue in the stem of a miniature tomato were measured using a piezoelectric pulser and receiver. The thickness of the vascular tissues and the stem's water content were measured. The detected acoustic waves showed a guided wave effect. The apparent sound velocity, va, was related to the vascular tissue thickness, tv. These results reveal that the detected acoustic waves traveled along the vascular tissues in stems. The maximum peak intensity of the detected acoustic waves, Imax was also related to t. Furthermore, wilting of the examined plants decreased the Imax, although va was not changed. The decrease in Imax might result from cavitations and embolisms with a subsequent increase in air pores in xylem tissues. These results demonstrate that the measurement of acoustic waves traveling through vascular tissue is a useful tool for the non-destructive evaluation of vascular tissue development and embolism density in xylem tissues.

  18. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  19. Abnormal visual experience during development alters the early stages of visual-tactile integration.

    PubMed

    Niechwiej-Szwedo, Ewa; Chin, Jessica; Wolfe, Paul J; Popovich, Christina; Staines, W Richard

    2016-05-01

    Visual experience during the critical periods in early postnatal life is necessary for the normal development of the visual system. Disruption of visual input during this period results in amblyopia, which is associated with reduced activation of the striate and extrastriate cortices. It is well known that visual input converges with other sensory signals and exerts a significant influence on cortical processing in multiple association areas. Recent work in healthy adults has also shown that task-relevant visual input can modulate neural excitability at very early stages of information processing in the primary somatosensory cortex. Here we used electroencephalography to investigate visual-tactile interactions in adults with abnormal binocular vision due to amblyopia and strabismus. Results showed three main findings. First, in comparison to a visually normal control group, participants with abnormal vision had a significantly lower amplitude of the P50 somatosensory event related potential (ERP) when visual and tactile stimuli were presented concurrently. Second, the amplitude of the P100 somatosensory ERP was significantly greater in participants with abnormal vision. These results indicate that task relevant visual input does not significantly influence the excitability of the primary somatosensory cortex, instead, the excitability of the secondary somatosensory cortex is increased. Third, participants with abnormal vision had a higher amplitude of the P1 visual ERP when a tactile stimulus was presented concurrently. Importantly, these results were not modulated by viewing condition, which indicates that the impact of amblyopia on crossmodal interactions is not simply related to the reduced visual acuity as it was evident when viewing with the unaffected eye and binocularly. These results indicate that the consequences of abnormal visual experience on neurophysiological processing extend beyond the primary and secondary visual areas to other modality

  20. Bioresorbable vascular scaffolds technology: current use and future developments

    PubMed Central

    Giacchi, Giuseppe; Ortega-Paz, Luis; Brugaletta, Salvatore; Ishida, Kohki; Sabaté, Manel

    2016-01-01

    Coronary bioresorbable vascular scaffolds are a new appealing therapeutic option in interventional cardiology. The most used and studied is currently the Absorb BVS™. Its backbone is made of poly-L-lactide and coated by a thin layer of poly-D,L-lactide, it releases everolimus and is fully degraded to H2O and CO2 in 2–3 years. Absorb BVS™ seems to offer several theoretical advantages over metallic stent, as it gives temporary mechanical support to vessel wall without permanently caging it. Therefore, long-term endothelial function and structure are not affected. A possible future surgical revascularization is not compromised. Natural vasomotion in response to external stimuli is also recovered. Several observational and randomized trials have been published about BVS clinical outcomes. The main aim of this review is to carry out a systematic analysis about Absorb BVS™ studies, evaluating also the technical improvements of the Absorb GT1 BVS™. PMID:27468252

  1. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development

    PubMed Central

    Hegarty, Jeffrey M.; Yang, Hongbo; Chi, Neil C.

    2013-01-01

    Multi-organ animals, such as vertebrates, require the development of a closed vascular system to ensure the delivery of nutrients to, and the transport of waste from, their organs. As a result, an organized vascular network that is optimal for tissue perfusion is created through not only the generation of new blood vessels but also the remodeling and maintenance of endothelial cells via apoptotic and cell survival pathways. Here, we show that UBIAD1, a vitamin K2/menaquinone-4 biosynthetic enzyme, functions cell-autonomously to regulate endothelial cell survival and maintain vascular homeostasis. From a recent vascular transgene-assisted zebrafish forward genetic screen, we have identified a ubiad1 mutant, reddish/reh, which exhibits cardiac edema as well as cranial hemorrhages and vascular degeneration owing to defects in endothelial cell survival. These findings are further bolstered by the expression of UBIAD1 in human umbilical vein endothelial cells and human heart tissue, as well as the rescue of the reh cardiac and vascular phenotypes with either zebrafish or human UBIAD1. Furthermore, we have discovered that vitamin K2, which is synthesized by UBIAD1, can also rescue the reh vascular phenotype but not the reh cardiac phenotype. Additionally, warfarin-treated zebrafish, which have decreased active vitamin K, display similar vascular degeneration as reh mutants, but exhibit normal cardiac function. Overall, these findings reveal an essential role for UBIAD1-generated vitamin K2 to maintain endothelial cell survival and overall vascular homeostasis; however, an alternative UBIAD1/vitamin K-independent pathway may regulate cardiac function. PMID:23533172

  2. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  3. Diabetes and Retinal Vascular Dysfunction

    PubMed Central

    Shin, Eui Seok; Sorenson, Christine M.; Sheibani, Nader

    2014-01-01

    Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR). We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR. PMID:25667739

  4. notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish

    PubMed Central

    Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.

    2013-01-01

    abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults. PMID:23720232

  5. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    SciTech Connect

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  6. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. PMID:26706459

  7. VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish

    PubMed Central

    Jensen, Lasse D.; Nakamura, Masaki; Bräutigam, Lars; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2015-01-01

    Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling. PMID:26483474

  8. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs.

    PubMed

    Yan, Zhengli; Wei, Huimiao; Ren, Chuanlu; Yuan, Shishan; Fu, Hu; Lv, Yuan; Zhu, Yongfei; Zhang, Tianbao

    2015-06-01

    Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes. PMID:25352652

  9. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development.

    PubMed

    Magnusson, Peetra; Rolny, Charlotte; Jakobsson, Lars; Wikner, Charlotte; Wu, Yan; Hicklin, Daniel J; Claesson-Welsh, Lena

    2004-03-15

    We have employed embryoid bodies derived from murine embryonal stem cells to study effects on vascular development induced by fibroblast growth factor (FGF)-2 and FGF receptor-1, in comparison to the established angiogenic factor vascular endothelial growth factor (VEGF)-A and its receptor VEGF receptor-2. Exogenous FGF-2 promoted formation of morphologically distinct, long slender vessels in the embryoid bodies, whereas VEGF-A-treated bodies displayed a compact plexus of capillaries. FGF-2 stimulation of embryonal stem cells under conditions where VEGF-A/VEGFR-2 function was blocked, led to formation of endothelial cell clusters, which failed to develop into vessels. FGFR-1(-/-) embryoid bodies responded to VEGF-A by establishment of the characteristic vascular plexus, but FGF-2 had no effect on vascular development in the absence of FGFR-1. The FGFR-1(-/-) embryoid bodies displayed considerably increased basal level of vessel formation, detected by immunohistochemical staining for platelet-endothelial cell adhesion molecule (PECAM)/CD31. This basal vascularization was blocked by neutralizing antibodies against VEGFR-2 or VEGF-A and biochemical analyses indicated changes in regulation of VEGFR-2 in the absence of FGFR-1 expression. We conclude that VEGF-A/VEGFR-2-dependent vessel formation occurs in the absence of FGF-2/FGFR-1, which, however, serve to modulate vascular development. PMID:15020678

  10. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina.

    PubMed

    Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2015-01-01

    Vascular development and maintenance are controlled by a complex transcriptional program, which integrates both extracellular and intracellular signals in endothelial cells. Here we study the roles of three closely related SoxF family transcription factors-Sox7, Sox17, and Sox18 -in the developing and mature mouse vasculature using targeted gene deletion on a mixed C57/129/CD1 genetic background. In the retinal vasculature, each SoxF gene exhibits a distinctive pattern of expression in different classes of blood vessels. On a mixed genetic background, vascular endothelial-specific deletion of individual SoxF genes has little or no effect on vascular architecture or differentiation, a result that can be explained by overlapping function and by reciprocal regulation of gene expression between Sox7 and Sox17. By contrast, combined deletion of Sox7, Sox17, and Sox18 at the onset of retinal angiogenesis leads to a dense capillary plexus with a nearly complete loss of radial arteries and veins, whereas the presence of a single Sox17 allele largely restores arterial identity, as determined by vascular smooth muscle cell coverage. In the developing retina, expression of all three SoxF genes is reduced in the absence of Norrin/Frizzled4-mediated canonical Wnt signaling, but SoxF gene expression is unaffected by reduced VEGF signaling in response to deletion of Neuropilin1 (Npn1). In adulthood, Sox7, Sox17, and Sox18 act in a largely redundant manner to maintain blood vessel function, as adult onset vascular endothelial-specific deletion of all three SoxF genes leads to massive edema despite nearly normal vascular architecture. These data reveal critical and partially redundant roles for Sox7, Sox17 and Sox18 in vascular growth, differentiation, and maintenance. PMID:26630461

  11. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina

    PubMed Central

    Zhou, Yulian; Williams, John; Smallwood, Philip M.; Nathans, Jeremy

    2015-01-01

    Vascular development and maintenance are controlled by a complex transcriptional program, which integrates both extracellular and intracellular signals in endothelial cells. Here we study the roles of three closely related SoxF family transcription factors–Sox7, Sox17, and Sox18 –in the developing and mature mouse vasculature using targeted gene deletion on a mixed C57/129/CD1 genetic background. In the retinal vasculature, each SoxF gene exhibits a distinctive pattern of expression in different classes of blood vessels. On a mixed genetic background, vascular endothelial-specific deletion of individual SoxF genes has little or no effect on vascular architecture or differentiation, a result that can be explained by overlapping function and by reciprocal regulation of gene expression between Sox7 and Sox17. By contrast, combined deletion of Sox7, Sox17, and Sox18 at the onset of retinal angiogenesis leads to a dense capillary plexus with a nearly complete loss of radial arteries and veins, whereas the presence of a single Sox17 allele largely restores arterial identity, as determined by vascular smooth muscle cell coverage. In the developing retina, expression of all three SoxF genes is reduced in the absence of Norrin/Frizzled4-mediated canonical Wnt signaling, but SoxF gene expression is unaffected by reduced VEGF signaling in response to deletion of Neuropilin1 (Npn1). In adulthood, Sox7, Sox17, and Sox18 act in a largely redundant manner to maintain blood vessel function, as adult onset vascular endothelial-specific deletion of all three SoxF genes leads to massive edema despite nearly normal vascular architecture. These data reveal critical and partially redundant roles for Sox7, Sox17 and Sox18 in vascular growth, differentiation, and maintenance. PMID:26630461

  12. Junb controls lymphatic vascular development in zebrafish via miR-182.

    PubMed

    Kiesow, Kristin; Bennewitz, Katrin; Miranda, Laura Gutierrez; Stoll, Sandra J; Hartenstein, Bettina; Angel, Peter; Kroll, Jens; Schorpp-Kistner, Marina

    2015-01-01

    JUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB target. Loss-of-function studies by morpholino-mediated knockdown and the CRISPR/Cas9 technology identify a novel function for both JUNB and its target miR-182 in lymphatic vascular development in zebrafish. Furthermore, we show that miR-182 attenuates foxo1 expression indicating that strictly balanced Foxo1 levels are required for proper lymphatic vascular development in zebrafish. In conclusion, our findings uncover with the Junb/miR-182/Foxo1 regulatory axis a novel key player in governing lymphatic vascular morphogenesis in zebrafish. PMID:26458334

  13. Junb controls lymphatic vascular development in zebrafish via miR-182

    PubMed Central

    Kiesow, Kristin; Bennewitz, Katrin; Miranda, Laura Gutierrez; Stoll, Sandra J.; Hartenstein, Bettina; Angel, Peter; Kroll, Jens; Schorpp-Kistner, Marina

    2015-01-01

    JUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB target. Loss-of-function studies by morpholino-mediated knockdown and the CRISPR/Cas9 technology identify a novel function for both JUNB and its target miR-182 in lymphatic vascular development in zebrafish. Furthermore, we show that miR-182 attenuates foxo1 expression indicating that strictly balanced Foxo1 levels are required for proper lymphatic vascular development in zebrafish. In conclusion, our findings uncover with the Junb/miR-182/Foxo1 regulatory axis a novel key player in governing lymphatic vascular morphogenesis in zebrafish. PMID:26458334

  14. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    PubMed Central

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  15. ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis.

    PubMed

    Zhao, Jun; Liu, Jiang-Shu; Meng, Fu-Ning; Zhang, Zhen-Zhen; Long, Hao; Lin, Wen-Hui; Luo, Xiao-Min; Wang, Zhi-Yong; Zhu, Sheng-Wei

    2016-05-01

    Vascular tissues are very important for providing both mechanical strength and long-distance transport. The molecular mechanisms of regulation of vascular tissue development are still not fully understood. In this study we identified ANAC005 as a membrane-associated NAC family transcription factor that regulates vascular tissue development. Reporter gene assays showed that ANAC005 was expressed mainly in the vascular tissues. Increased expression of ANAC005 protein in transgenic Arabidopsis caused dwarf phenotype, reduced xylem differentiation, decreased lignin content, repression of a lignin biosynthetic gene and genes related to cambium and primary wall, but activation of genes related to the secondary wall. Expression of a dominant repressor fusion of ANAC005 had overall the opposite effects on vascular tissue differentiation and lignin synthetic gene expression. The ANAC005-GFP fusion protein was localized at the plasma membrane, whereas deletion of the last 20 amino acids, which are mostly basic, caused its nuclear localization. These results indicate that ANAC005 is a cell membrane-associated transcription factor that inhibits xylem tissue development in Arabidopsis. PMID:26178734

  16. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development

    PubMed Central

    Moore, John C.; Sheppard, Sarah; Shestopalov, Ilya A.; Chen, James K.; Lawson, Nathan

    2014-01-01

    etv2 is an endothelial-specific ETS transcription factor that is essential for vascular differentiation and morphogenesis in vertebrates. While recent data suggest that Etv2 is dynamically regulated during vascular development, little is known about the mechanisms involved in this process. Here, we find that etv2 transcript and protein expression are highly dynamic during zebrafish vascular development, with both apparent during early somitogenesis and subsequently down-regulated as development proceeds. Inducible knockdown of Etv2 in zebrafish embryos prior to mid-somitogenesis stages, but not later, caused severe vascular defects, suggesting a specific role in early commitment of lateral mesoderm to the endothelial linage. Accordingly, Etv2-overexpressing cells showed an enhanced ability to commit to endothelial lineages in mosaic embryos. We further find that the etv2 3’ untranslated region (UTR) is capable of repressing an endothelial autonomous transgene and contains binding sites for members of the let-7 family of microRNAs. Ectopic expression of let-7a could repress the etv2 3’UTR in sensor assays and was also able to block endogenous Etv2 protein expression, leading to concomitant reduction of endothelial genes. Finally, we observed that Etv2 protein levels persisted in maternal-zygotic dicer1 mutant embryos, suggesting that microRNAs contribute to its repression during vascular development. Taken together, our results suggest that etv2 acts during early development to specify endothelial lineages and is then down-regulated, in part through post-transcriptional repression by microRNAs, to allow normal vascular development. PMID:24036310

  17. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  18. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  19. The effect of ethanol exposure on extraembryonic vascular development in the chick area vasculosa.

    PubMed

    Tufan, A Cevik; Satiroglu-Tufan, N Lale

    2003-01-01

    The effect of ethanol (EtOH) exposure on extraembryonic vascular development was examined using the chick embryo area vasculosa (AV) in shell-less culture. Embryos were placed in cultures at Hamburger Hamilton (HH) stage 11/12 and a single dose of EtOH (10, 30 or 50%) was applied to the center of the blastodisc. Untreated/sodium-chloride-treated controls showed normal embryonic growth and well-developed extraembryonic vessels at 24/48 h of treatment. At doses of 30 and 50%, the mortality rate was significantly increased, and survivors demonstrated significant growth retardation and inhibition of normal vascular development in a dose-dependent manner. Immunostaining for vascular endothelial growth factor (VEGF) showed that mesenchymal cells continued to differentiate into angioblasts to form blood islands, but their assembly into primitive vessels was perturbed in a dose-dependent manner. Northern blot analyses of basic fibroblast growth factor, VEGF, Flt-1 and Flk-1 mRNA expression supported these findings and showed a dose-dependent decrease in EtOH-treated cultures compared to controls. Co-treatment with alpha-tocopherol (0.05 M) or all-trans-retinoic acid (10(-8) M) significantly decreased the mortality rate and improved both embryonic growth and extraembryonic vascular development in the cultures. On the other hand, almost all embryos treated with 10% EtOH survived the first 48 h after treatment. However, the complexity of the vascular tree measured as the relative vasculogenesis index, the surface area of the AV and the mRNA expression of vasculogenic molecules were increased during the first 24 h. This acute effect disappeared 48 h after treatment and the vascular tree continued to develop parallel to the controls. No significant growth retardation was observed in this group. These results suggest that, in terms of extraembryonic vascular development, an early, single, low-dose EtOH exposure may have an acute, short-term positive effect, whereas moderate- or

  20. [Development of vascular and endovascular surgery over the next 20 years].

    PubMed

    Schmitz-Rixen, T; Lang, W

    2009-12-01

    Vascular surgery is a young surgical discipline which has experienced a stormy development driven by internal motivation and external constraints. Changes in the field are primarily a result of diverse external influences which are expected to continue into the future. The most significant intrinsic change has been the development of stent graft technology. External influences include extensive demographic changes, rapid progress in endovascular techniques to treat obstructive vascular disease, improved advanced training, state and non-state controls, certification requests without considering the feasibility of professional and structural implementation and changing public expectations. Progress in vascular medicine is stimulated by advances in imaging techniques and subsequent improved endovascular procedures. Nevertheless, external influences have, at least within the 'surgical' sphere of influence, led to formidable innovative efforts on the part of associations representing vascular surgeons. These innovative efforts are concentrated in the Academy of the German Society of Vascular Surgery and Medicine and will determine trends in coming years. The future will reflect their quality. PMID:19936992

  1. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    PubMed Central

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  2. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development.

    PubMed

    Yang, Zefeng; Zhou, Yong; Huang, Jinling; Hu, Yunyun; Zhang, Enying; Xie, Zhengwen; Ma, Sijia; Gao, Yun; Song, Song; Xu, Chenwu; Liang, Guohua

    2015-04-01

    A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments. PMID:25420550

  3. Development and Physical Characteristics of Novel Zero-Porosity Vascular Graft “Triplex®”

    PubMed Central

    Takamoto, Shinichi

    2013-01-01

    We developed a novel large-diameter graft “Triplex®” that uses a non-biodegradable material as a coating material. This time, in order to demonstrate the physical properties of Triplex® grafts, we conducted physical tests in accordance with the international guidelines, using the collagen coated vascular grafts (Hemashield, Boston Scientific, Natick, Massachusetts, USA) as the controls. The grafts were tested with regard to strength (burst strength, circumferential tensile strength, longitudinal tensile strength), suture retention strength, integral water permeability, water leakage (needle puncture, after using clamp), and change in luminal diameter following pacing stress according to ISO7198 and FDA guidance. As indicated by the results, we experimentally demonstrated that uniquely designed vascular graft Triplex® led to less blood leakage from the vascular graft and less leakage from the needle puncture, although it has fundamental physical properties comparable to those of the vascular grafts using biodegradable material that has been utilized conventionally in clinical settings. Triplex ®is expected to play its role as a clinically beneficial next-generation vascular graft. PMID:23641287

  4. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  5. Red light, green light: Signals that control endothelial cell proliferation during embryonic vascular development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proper regulation of endothelial cell proliferation is critical for vascular development in the embryo. VEGF-A and bFGF, which are important in the induction of mesodermal progenitors to form a capillary plexus, are also key mitogenic signals. Disruption in VEGF-A or bFGF decreases endothelial c...

  6. Avians as a Model System of Vascular Development

    PubMed Central

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    Summary For more then 2000 years philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle; Needham, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl, and ease at which the embryo can be visualized by simply opening the shell, have made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology, into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608

  7. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  8. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  9. Avians as a model system of vascular development.

    PubMed

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    For more than 2,000 years, philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle and Peck Generations of Animals. Loeb Classics, vol. XIII. Harvard University Press, Cambridge, 1943; Needham, A history of embryology. Abelard-Schuman, New York, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl and ease at which the embryo can be visualized by simply opening the shell has made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608

  10. Pkd1 regulates lymphatic vascular morphogenesis during development

    PubMed Central

    Coxam, Baptiste; Sabine, Amélie; Bower, Neil I.; Smith, Kelly A.; Pichol-Thievend, Cathy; Skoczylas, Renae; Astin, Jonathan W.; Frampton, Emmanuelle; Jaquet, Muriel; Crosier, Philip S.; Parton, Robert G.; Harvey, Natasha L.; Petrova, Tatiana V.; Schulte-Merker, Stefan; Francois, Mathias; Hogan, Benjamin M.

    2016-01-01

    Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by well-studied signaling and transcriptional mechanisms. Less well understood is the ongoing elaboration of vessels to form a network. This involves cell polarisation, coordinated migration, adhesion, mixing, regression and cell shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. We found a mutation in polycystic kidney disease 1a to be responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial sprouting of lymphatic precursors is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice also has no effect on sprouting of precursors but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development. PMID:24767999

  11. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    PubMed

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. GLIA 2016;64:716-729. PMID:26711882

  12. The character of abnormalities found in eye development of quail embruos exposed under space flight conditions

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Dadheva, O.; Polinskaya, V.; Guryeva, T.

    The avian embryonic eye is used as a model system for studies on the environmental effects on central nervous system development. Here we present results of qualitative investigation of the eye development in quail embryos incubated in micro-"g" environment. In this study we used eyes of Japanese quail (Coturnix coturnix Japonica) embryos "flown" onboard biosatellite Kosmos-1129 and on Mir station within the framework of Mir-NASA Program. Eyes obtained from embryos ranging in age from 3-12 days (E3-E12) were prepared histologically and compared with those of the synchronous and laboratory gound controls. Ther most careful consideration was given to finding and analysis of eye developmental abnormalities. Then they were compared with those already described by experimental teratology for birds and mammals. At the stage of the "eye cup" (E3) we found the case of invalid formation of the inner retina. The latter was represented by disorganized neuroblasts occupying whole posterior chamber of the eye. On the 7th day of quail eye development, at the period of cellular growth activation some cases of small eyes with many folds of overgrowing neural and pigmented retinal layers were detected. In retinal folds of these eyes the normal layering was disturbed as well as the formation of aqueous body and pecten oculi. At this time point the changes were also found in the anterior part of the eye. The peculiarities came out of the bigger width of the cornea and separation of its layers, but were found in synchronous control as well. Few embryos of E10 had also eyes with the abnormities described for E7 but this time they were more vivid because of the completion of eye tissue differentiation. At the stage E12 we found the case evaluated as microphthalmia attending by overgrowth of anterior pigmented tissues - iris and ciliary body attached with the cornea. Most, but not all, of abnormalities we found in eye morphogeneses belonged to the birds "flown" aboard Kosmos- 1129 and

  13. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  14. Placental development during early pregnancy in sheep: Effects of embryo origin on vascularization

    PubMed Central

    Grazul-Bilska, Anna T.; Johnson, Mary Lynn; Borowicz, Pawel P.; Bilski, Jerzy J.; Cymbaluk, Taylor; Norberg, Spencer; Redmer, Dale A.; Reynolds, Lawrence P.

    2014-01-01

    Utero-placental growth and vascular development are critical for pregnancy establishment that may be altered by various factors including assisted reproductive technologies (ART), nutrition, or others, leading to compromised pregnancy. We hypothesized that placental vascularization and expression of angiogenic factors are altered early in pregnancies after transfer of embryos created using selected ART methods. Pregnancies were achieved through natural mating (NAT), or transfer of embryos from natural mating (NAT-ET), or in vitro fertilization (IVF) or activation (IVA). Placental tissues were collected on day 22 of pregnancy. In maternal caruncles (CAR), vascular cell proliferation was less (P<0.05) for IVA than other groups. Compared to NAT, density of blood vessels was less (P<0.05) for IVF and IVA in fetal membranes (FM), and for NAT-ET, IVF and IVA in CAR. In FM, mRNA expression was decreased (P<0.01–0.08) in NAT-ET, IVF and IVA compared to NAT for vascular endothelial growth factor (VEGF) and its receptor FLT-1, placental growth factor (PGF), neuropilin (NP) 1 and 2, angiopoietin (ANGPT) 1 and 2, endothelial nitric oxide synthase (NOS3), hypoxia inducible factor-1A (HIF1A), fibroblast growth factor (FGF) 2 and its receptor FGFR2. In CAR, mRNA expression was decreased (P<0.01–0.05) in NAT-ET, IVF and IVA compared to NAT for VEGF, FLT-1, PGF, ANGPT1 and TEK. Decreased mRNA expression for 12 of 14 angiogenic factors across FM and CAR in NAT-ET, IVF and IVA pregnancies was associated with reduced placental vascular development, which would lead to poor placental function and compromised fetal and placental growth and development. PMID:24472816

  15. Development of abnormal fluid pressures beneath a ramping thrust sheet: Where's the evidence

    SciTech Connect

    Wiltschko, D.V.; Smith, R.E. . Dept. of Geology and Center for Tectonophysics)

    1992-01-01

    Many models for the mechanics of fold and thrust belts hold that fluid pressure is locally, or even everywhere, abnormal, thus aiding both internal deformation and motion along the base. Recent support comes from studies of accretionary prisms where drill-stem measurements of both fluid flow in fault zones and formation pressure are pointed to as evidence for a hydrodynamic system characterized by wide-spread excess fluid pressure. However, despite the general acceptance of high fluid pressure (Pf) as a potentially important controlling mechanism for thrust motion, and despite nearly 30 years of looking, direct evidence for abnormal fluid pressure in ancient continental thrust belts is either rare or ambiguous. The authors have developed a two-dimensional model for the evolution of fluid pressure within and beneath a ramping thrust sheet. In the model, the fluid and heat flow equations are solved and applied at each time step. The model accounts for porosity compaction, thermal pressuring, and fluid flow. Results of this model show, first, that high fluid pressure can be developed during deposition, before thrust motion. The authors used typical rates of deposition, duration of deposition, and a simplified three-layer stratigraphy for North American thrust belts. Second, the models show that high Pf can be maintained and/or further enhanced during thrusting depending upon the permeabilities assigned to the model hydrostratigraphic section. Of the rock properties studied in detail, modes are most sensitive to permeability. Nevertheless, the models show that for best guesses of the relevant rock properties it should be possible to find evidence for high fluid pressure in, (1) the crests of ramp anticlines and, (2) the toe region, especially in the lower plate.

  16. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects.

    PubMed

    Fernandes, Marilyse B L; Maximino, Luciana P; Perosa, Gimol B; Abramides, Dagma V M; Passos-Bueno, Maria Rita; Yacubian-Fernandes, Adriano

    2016-06-01

    Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc. PMID:27028366

  17. Selenoprotein N deficiency in mice is associated with abnormal lung development

    PubMed Central

    Moghadaszadeh, Behzad; Rider, Branden E.; Lawlor, Michael W.; Childers, Martin K.; Grange, Robert W.; Gupta, Kushagra; Boukedes, Steve S.; Owen, Caroline A.; Beggs, Alan H.

    2013-01-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1−/−) mouse line. Homozygous Sepn1−/− mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1−/− mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1−/− lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles.—Moghadaszadeh, B., Rider B. E., Lawlor, M. W., Childers, M. K., Grange, R. W., Gupta, K., Boukedes, S. S., Owen, C. A., Beggs, A. H. Selenoprotein N deficiency in mice is associated with abnormal lung development. PMID:23325319

  18. Rho kinase as a target for cerebral vascular disorders

    PubMed Central

    Bond, Lisa M; Sellers, James R; McKerracher, Lisa

    2015-01-01

    The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations. PMID:26062400

  19. Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation

    PubMed Central

    Zhang, Rui; Zhu, Wan

    2015-01-01

    Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM. PMID:26463919

  20. Stabiliztin of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 is Critical for Vascular Development

    SciTech Connect

    Y He; H Zhang; L Yu; M Gunel; T Boggon; H Chen; W Min

    2011-12-31

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.

  1. Development of ultrafine polyester fiber vascular grafts with high endothelialization capability. Angiogenesis by ultrafine polyester fibers.

    PubMed

    Niu, S; Satoh, S; Shirakata, S; Oka, T; Noishiki, Y; Kurumatani, H; Watanabe, K

    1989-01-01

    The authors previously showed that a vascular prosthesis made of ultrafine polyester fibers (UFPF) had high healing ability even when of low porosity. In this study, new highly porous vascular grafts fabricated from UFPF (water porosity: 3,600 ml/min/cm2, 8 mm in inner diameter and 5 cm in length), were developed and implanted in the thoracic descending aorta of dogs to evaluate their endothelialization capability. Two weeks after implantation, many colonies of endothelial cells with openings of capillary blood vessels were noted, even in the middle portion of the grafts. Numerous fibroblasts and capillary blood vessels were also observed in the synthetic walls. These results suggest that UFPF vascular grafts provide a suitable microenvironment for infiltration and proliferation of fibroblasts, which are accompanied by the capillary formation as nutrient supply; these capillaries provide multiple sources of endothelial coverage on the luminal surface. It is expected that the new, highly porous vascular grafts may have rich endothelialization capability and stable healing properties in humans. PMID:2480800

  2. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice.

    PubMed

    Lee, Kristie; Tan, Jacqueline; Morris, Michael B; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q

    2012-01-01

    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885

  3. Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice

    PubMed Central

    Lee, Kristie; Tan, Jacqueline; Morris, Michael B.; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q.

    2012-01-01

    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885

  4. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development.

    PubMed

    Chueasiri, Chutharat; Chunthong, Ketsuwan; Pitnjam, Keasinee; Chakhonkaen, Sriprapai; Sangarwut, Numphet; Sangsawang, Kanidta; Suksangpanomrung, Malinee; Michaelson, Louise V; Napier, Johnathan A; Muangprom, Amorntip

    2014-01-01

    The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development. PMID:25192280

  5. Abnormal Development of Tapetum and Microspores Induced by Chemical Hybridization Agent SQ-1 in Wheat

    PubMed Central

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility. PMID:25803723

  6. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  7. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  8. Immediate and long-term consequences of vascular toxicity during zebrafish development.

    PubMed

    Tal, T L; McCollum, C W; Harris, P S; Olin, J; Kleinstreuer, N; Wood, C E; Hans, C; Shah, S; Merchant, F A; Bondesson, M; Knudsen, T B; Padilla, S; Hemmer, M J

    2014-09-01

    Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we evaluated a quantitative assay in transgenic zebrafish using angiogenesis inhibitors that target VEGFR2 (PTK787) or EGFR (AG1478). Both PTK787 and AG1478 exposure impaired intersegmental vessel (ISV) sprouting, while AG1478 also produced caudal and pectoral fin defects at concentrations below those necessary to blunt ISV morphogenesis. The functional consequences of vessel toxicity during early development included decreased body length and survival in juvenile cohorts developmentally exposed to inhibitor concentrations sufficient to completely block ISV sprouting angiogenesis. These data show that concentration-dependent disruption of the presumed targets for these inhibitors produce adverse outcomes at advanced life stages. PMID:24907688

  9. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.

    PubMed

    De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf

    2014-08-01

    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue. PMID:25104393

  10. Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis

    PubMed Central

    Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul

    1998-01-01

    Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117

  11. Development of an autologous connective tissue tube as a small caliber vascular substitute.

    PubMed

    Satoh, S; Niu, S; Shirakata, S; Oka, T; Noishiki, Y

    1988-01-01

    A small-caliber vascular graft with good healing properties was developed using an autologous connective tissue tube (ACTT) and in situ heparinization. ACTT is the best material for implantable grafts, but as a small-caliber vascular graft, both the high thrombogenicity and requirement for time to preparation in situ were serious problems. To overcome these difficulties, an ultrafine polyester fiber (UFPF) mesh was used for the framework of the graft. it has been shown that UFPF provides a good framework for fibroblast migration and proliferation both in vivo and in vitro. The granulomatous connective tissue tube could be constructed very rapidly and had numerous capillary blood vessels, which opened onto the luminal surface of the graft when it was implanted as a vascular substitute and provided colonies of endothelial cells. These colonies spread rapidly all over the luminal surface, and the graft developed permanent antithrombogenicity by endothelialization. The next problem was attainment of temporary antithrombogenicity of the graft before complete endothelialization. Since collagen fibrils are highly thrombogenic, the fact that ACTT collagen fibrils face the luminal surface requires greater antithrombogenicity. A new technique for binding heparin to collagen fibrils in situ was also developed. This was proved to be useful in maintaining the antithrombogenicity of the grafts (3 mm in inner diameter, 6 to 7 cm in length) in the animal studies. The graft showed rapid healing of the neonintima with endothelialization and long-term stability of the graft wall. PMID:3196580

  12. Nestin-expressing vascular wall cells drive development of pulmonary hypertension.

    PubMed

    Saboor, Farhan; Reckmann, Ansgar N; Tomczyk, Claudia U M; Peters, Dorothea M; Weissmann, Norbert; Kaschtanow, Andre; Schermuly, Ralph T; Michurina, Tatyana V; Enikolopov, Grigori; Müller, Dieter; Mietens, Andrea; Middendorff, Ralf

    2016-03-01

    Nestin, a well-known marker of neuronal stem cells, was recently suggested to characterise stem cell-like progenitors in non-neuronal structures during development and tissue repair. Integrating novel morphological approaches (CLARITY), we investigate whether nestin expression defines the proliferating cell population that essentially drives vascular remodelling during development of pulmonary hypertension.The role of nestin was investigated in lungs of nestin-GFP (green fluorescent protein) mice, models of pulmonary hypertension (rat: monocrotaline, SU5416/hypoxia; mouse: hypoxia), samples from pulmonary hypertension patients and human pulmonary vascular smooth muscle cells (VSMCs).Nestin was solely found in lung vasculature and localised to proliferating VSMCs, but not bronchial smooth muscle cells. Nestin was shown to affect cell number and was significantly enhanced in lungs early during development of pulmonary hypertension, correlating well with increased VSMC proliferation, expression of phosphorylated (activated) platelet-derived growth factor receptor β and downregulation of the smooth muscle cell differentiation marker calponin. At later time points when pulmonary hypertension became clinically evident, nestin expression and proliferation returned to control levels. Increase of nestin-positive VSMCs was also found in human pulmonary hypertension, both in vessel media and neointima.Nestin expression seems to be obligatory for VSMC proliferation, and specifies lung vascular wall cells that drive remodelling and (re-)generation. Our data promise novel diagnostic tools and therapeutic targets for pulmonary hypertension. PMID:26699726

  13. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves

    PubMed Central

    Cha, Boksik; Geng, Xin; Mahamud, Md. Riaj; Fu, Jianxin; Mukherjee, Anish; Kim, Yeunhee; Jho, Eek-hoon; Kim, Tae Hoon; Kahn, Mark L.; Xia, Lijun; Dixon, J. Brandon; Chen, Hong; Srinivasan, R. Sathish

    2016-01-01

    Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2. PMID:27313318

  14. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    PubMed Central

    Cassandro, Ettore; Cassandro, Claudia; Sequino, Giuliano; Scarpa, Alfonso; Petrolo, Claudio; Chiarella, Giuseppe

    2015-01-01

    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests. PMID:26693371

  15. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  16. Deficiency of the Chromatin Regulator Brpf1 Causes Abnormal Brain Development*

    PubMed Central

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  17. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development.

    PubMed

    You, Linya; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-13

    Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo. PMID:25568313

  18. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat.

    PubMed

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  19. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs

    PubMed Central

    Syed, Mansoor A.; Choo-Wing, Rayman; Homer, Robert J.; Bhandari, Vineet

    2016-01-01

    Background The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. Methodology We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. Results VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2−/− and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Conclusion Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung. PMID:26799210

  20. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    PubMed

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. PMID:25987500

  1. MiR-221 and miR-130a Regulate Lung Airway and Vascular Development

    PubMed Central

    Mujahid, Sana

    2013-01-01

    Epithelial-mesenchymal interactions play a crucial role in branching morphogenesis, but very little is known about how endothelial cells contribute to this process. Here, we examined how anti-angiogenic miR-221 and pro-angiogenic miR-130a affect airway and vascular development in the fetal lungs. Lung-specific effects of miR-130a and miR-221 were studied in mouse E14 whole lungs cultured for 48 hours with anti-miRs or mimics to miR-130a and miR-221. Anti-miR 221 treated lungs had more distal branch generations with increased Hoxb5 and VEGFR2 around airways. Conversely, mimic 221 treated lungs had reduced airway branching, dilated airway tips and decreased Hoxb5 and VEGFR2 in mesenchyme. Anti-miR 130a treatment led to reduced airway branching with increased Hoxa5 and decreased VEGFR2 in the mesenchyme. Conversely, mimic 130a treated lungs had numerous finely arborized branches extending into central lung regions with diffusely localized Hoxa5 and increased VEGFR2 in the mesenchyme. Vascular morphology was analyzed by GSL-B4 (endothelial cell-specific lectin) immunofluorescence. Observed changes in airway morphology following miR-221 inhibition and miR-130a enhancement were mirrored by changes in vascular plexus formation around the terminal airways. Mouse fetal lung endothelial cells (MFLM-91U) were used to study microvascular cell behavior. Mimic 221 treatment resulted in reduced tube formation and cell migration, where as the reverse was observed with mimic 130a treatment. From these data, we conclude that miR-221 and miR-130a have opposing effects on airway and vascular morphogenesis of the developing lung. PMID:23409087

  2. Selenoprotein N deficiency in mice is associated with abnormal lung development.

    PubMed

    Moghadaszadeh, Behzad; Rider, Branden E; Lawlor, Michael W; Childers, Martin K; Grange, Robert W; Gupta, Kushagra; Boukedes, Steve S; Owen, Caroline A; Beggs, Alan H

    2013-04-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1(-/-)) mouse line. Homozygous Sepn1(-/-) mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1(-/-) mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1(-/-) lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles. PMID:23325319

  3. Abnormal Sperm Development in pcd3J-/- Mice: the Importance of Agtpbp1 in Spermatogenesis

    PubMed Central

    Kim, Nameun; Xiao, Rui; Choi, Hojun; Kim, Jin-Hoi; Sang-Jun, Uhm; Chankyu, Park

    2011-01-01

    Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd3J-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd3J-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward. PMID:21110128

  4. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1. PMID:26531852

  5. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development.

    PubMed

    Fukami, Maki; Homma, Keiko; Hasegawa, Tomonobu; Ogata, Tsutomu

    2013-04-01

    We review the current knowledge about the "backdoor" pathway for the biosynthesis of dihydrotestosterone (DHT). While DHT is produced from cholesterol through the conventional "frontdoor" pathway via testosterone, recent studies have provided compelling evidence for the presence of an alternative "backdoor" pathway to DHT without testosterone intermediacy. This backdoor pathway is known to exist in the tammar wallaby pouch young testis and the immature mouse testis, and has been suggested to be present in the human as well. Indeed, molecular analysis has identified pathologic mutations of genes involved in the backdoor pathway in genetic male patients with undermasculinized external genitalia, and urine steroid profile analysis has argued for the relevance of the activated backdoor pathway to abnormal virilization in genetic females with cytochrome P450 oxidoreductase deficiency and 21-hydroxylase deficiency. It is likely that the backdoor pathway is primarily operating in the fetal testis in a physiological condition to produce a sufficient amount of DHT for male sex development, and that the backdoor pathway is driven with a possible interaction between fetal and permanent adrenals in pathologic conditions with increased 17-hydroxyprogesterone levels. These findings provide novel insights into androgen biosynthesis in both physiological and pathological conditions. PMID:23073980

  6. Normal and Abnormal Development of the Intrapericardial Arterial Trunks in Man and Mouse

    PubMed Central

    Anderson, Robert H.; Chaudhry, Bill; Mohun, Timothy J.; Bamforth, Simon D.; Hoyland, Darren; Phillips, Helen M.; Webb, Sandra; Moorman, Antoon F.J.; Brown, Nigel A.; Henderson, Deborah J.

    2014-01-01

    Aims The definitive cardiac outflow channels have three components: the intrapericardial arterial trunks; the arterial roots with valves; and the ventricular outflow tracts. We studied the normal and abnormal development of the most distal of these, the arterial trunks, comparing findings in mouse and man. Methods and Results Using lineage tracing and three-dimensional visualization by episcopic reconstruction and scanning electron microscopy, we studied embryonic day 9.5 to 12.5 mouse hearts, clarifying the development of the outflow tracts distal to the primordia of the arterial valves. We characterize a transient aortopulmonary foramen, located between the leading edge of a protrusion from the dorsal wall of the aortic sac and the distal margins of the two outflow cushions. The foramen is closed by fusion of the protrusion, with its cap of neural crest cells, with the neural crest cell-filled cushions; the resulting structure then functioning transiently as an aortopulmonary septum. Only subsequent to this closure is it possible to recognize, more proximally, the previously described aortopulmonary septal complex. The adjacent walls of the intrapericardial trunks are derived from the protrusion and distal parts of the outflow cushions, while the lateral walls are formed from intrapericardial extensions of pharyngeal mesenchyme derived from the second heart field. Conclusions We provide, for the first time, objective evidence of the mechanisms of closure of an aortopulmonary foramen that exists distally between the lumens of the developing intrapericardial arterial trunks. Our findings provide insights into the formation of aortopulmonary windows and the variants of common arterial trunk. PMID:22499773

  7. The development of blood-retinal barrier during the interaction of astrocytes with vascular wall cells

    PubMed Central

    Yao, Huanling; Wang, Tianshi; Deng, Jiexin; Liu, Ding; Li, Xiaofei; Deng, Jinbo

    2014-01-01

    Astrocytes are intimately involved in the formation and development of retinal vessels. Astrocyte dysfunction is a major cause of blood-retinal barrier injury and other retinal vascular diseases. In this study, the development of the retinal vascular system and the formation of the blood-retinal barrier in mice were investigated using immunofluorescence staining, gelatin-ink perfusion, and transmission electron microscopy. The results showed that the retinal vascular system of mice develops from the optic disc after birth, and radiates out gradually to cover the entire retina, taking the papilla optica as the center. First, the superficial vasculature is formed on the inner retinal layer; then, the vasculature extends into the inner and outer edges of the retinal inner nuclear layer, forming the deep vasculature that is parallel to the superficial vasculature. The blood-retinal barrier is mainly composed of endothelium, basal lamina and the end-feet of astrocytes, which become mature during mouse development. Initially, the naive endothelial cells were immature with few organelles and many microvilli. The basal lamina was uniform in thickness, and the glial end-feet surrounded the outer basal lamina incompletely. In the end, the blood-retinal barrier matures with smooth endothelia connected through tight junctions, relatively thin and even basal lamina, and relatively thin glial cell end-feet. These findings indicate that the development of the vasculature in the retina follows the rules of “center to periphery” and “superficial layer to deep layers”. Its development and maturation are spatially and temporally consistent with the functional performance of retinal neurons and photosensitivity. The blood-retinal barrier gradually becomes mature via the process of interactions between astrocytes and blood vessel cells. PMID:25206758

  8. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development.

    PubMed

    Etchells, J Peter; Smit, Margot E; Gaudinier, Allison; Williams, Clara J; Brady, Siobhan M

    2016-01-01

    474 I. 474 II. 475 III. 475 IV. 477 V. 477 VI. 477 VII. 479 VIII. 481 482 References 482 SUMMARY: A significant proportion of terrestrial biomass is constituted of xylem cells that make up woody plant tissue. Xylem is required for water transport, and is present in the vascular tissue with a second conductive tissue, phloem, required primarily for nutrient transport. Both xylem and phloem are derived from cell divisions in vascular meristems known as the cambium and procambium. One major component that influences several aspects of plant vascular development, including cell division in the vascular meristem, vascular organization and differentiation of vascular cell types, is a signalling module characterized by a peptide ligand called TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) and its cognate receptor, PHLOEM INTERCALATED WITH XYLEM (PXY). In this review, we explore the literature that describes signalling components, phytohormones and transcription factors that interact with these two central factors, to control the varying outputs required in vascular tissues for normal organization and elaboration of plant vascular tissue. PMID:26414535

  9. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata. PMID:27097408

  10. The trajectory of gray matter development in Broca's area is abnormal in people who stutter.

    PubMed

    Beal, Deryk S; Lerch, Jason P; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L; De Nil, Luc F

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca's area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter. PMID

  11. The role of estrogens in normal and abnormal development of the prostate gland.

    PubMed

    Prins, Gail S; Huang, Liwei; Birch, Lynn; Pu, Yongbing

    2006-11-01

    Estrogens play a physiologic role during prostate development with regard to programming stromal cells and directing early morphogenic events. However, if estrogenic exposures are abnormally high during the critical developmental period, permanent alterations in prostate branching morphogenesis and cellular differentiation will result, a process referred to as neonatal imprinting or developmental estrogenization. These perturbations are associated with an increased incidence of prostatic lesions with aging, which include hyperplasia, inflammation, and dysplasia. To understand how early estrogenic exposures can permanently alter the prostate and predispose it to neoplasia, we examined the effects of estrogens on prostatic steroid receptors and key developmental genes. Transient and permanent alterations in prostatic AR, ERalpha, ERbeta, and RARs are observed. We propose that estrogen-induced alterations in these critical transcription factors play a fundamental role in initiating prostatic growth and differentiation defects by shifting the prostate from an androgen-dominated gland to one whose development is regulated by estrogens and retinoids. This in turn leads to specific disruptions in the expression patterns of key prostatic developmental genes that normally dictate morphogenesis and differentiation. Specifically, we find transient reductions in Nkx3.1 and permanent reductions in Hoxb-13, which lead to differentiation defects particularly within the ventral lobe. Prolonged developmental expression of Bmp-4 contributes to hypomorphic growth throughout the prostatic complex. Reduced expression of Fgf10 and Shh and their cognate receptors in the dorsolateral lobes leads to branching defects in those specific regions in response to neonatal estrogens. We hypothesize that these molecular changes initiated early in life predispose the prostate to the neoplastic state upon aging. PMID:17261752

  12. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries

    PubMed Central

    Geary, Greg G; Osol, George J; Longo, Lawrence D

    2004-01-01

    We have shown recently that development from neonatal to adult life affects cerebrovascular tone of mouse cerebral arteries through endothelium-derived vasodilatory mechanisms. The current study tested the hypothesis that development from fetal to adult life affects cerebral artery vascular smooth muscle (VSM) [Ca2+]i sensitivity and tone through a mechanism partially dependent upon endothelium-dependent signalling. In pressurized resistance sized cerebral arteries (∼150 μm) from preterm (95 ± 2 days gestation (95 d)) and near-term (140 ± 2 days gestation (140 d)) fetuses, and non-pregnant adults, we measured vascular diameter (μm) and [Ca2+]i (nm) as a function of intravascular pressure. We repeated these studies in the presence of inhibition of nitric oxide synthase (NOS; with l-NAME), cyclo-oxygenase (COX; with indomethacin) and endothelium removal (E–). Cerebrovasculature tone (E+) was greater in arteries from 95 d fetuses and adults compared to 140 d sheep. Ca2+ sensitivity was similar in 95 d fetuses and adults, but much lower in 140 d fetuses. Removal of endothelium resulted in a reduction in lumen diameter as a function of pressure (greater tone) in all treatment groups. [Ca2+]i sensitivity differences among groups were magnified after E–. NOS inhibition decreased diameter as a function of pressure in each age group, with a significant increase in [Ca2+]i to pressure ratio only in the 140 d fetuses. Indomethacin increased tone and increased [Ca2+]i in the 140 d fetuses, but not the other age groups. Development from near-term to adulthood uncovered an interaction between NOS- and COX-sensitive substances that functioned to modulate artery diameter but not [Ca2+]i. This study suggests that development is associated with significant alterations in cerebral vascular smooth muscle (VSM), endothelium, NOS and COX responses to intravascular pressure. We speculate that these changes have important implications in the regulation of cerebral blood flow in

  13. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development.

    PubMed

    Yun, Eun Jun; Lorizio, Walter; Seedorf, Gregory; Abman, Steven H; Vu, Thiennu H

    2016-02-15

    Prevention or treatment of lung diseases caused by the failure to form, or destruction of, existing alveoli, as observed in infants with bronchopulmonary dysplasia and adults with emphysema, requires understanding of the molecular mechanisms of alveolar development. In addition to its critical role in gas exchange, the pulmonary circulation also contributes to alveolar morphogenesis and maintenance by the production of paracrine factors, termed "angiocrines," that impact the development of surrounding tissue. To identify lung angiocrines that contribute to alveolar formation, we disrupted pulmonary vascular development by conditional inactivation of the Vegf-A gene during alveologenesis. This resulted in decreased pulmonary capillary and alveolar development and altered lung elastin and retinoic acid (RA) expression. We determined that RA is produced by pulmonary endothelial cells and regulates pulmonary angiogenesis and elastin synthesis by induction of VEGF-A and fibroblast growth factor (FGF)-18, respectively. Inhibition of RA synthesis in newborn mice decreased FGF-18 and elastin expression and impaired alveolarization. Treatment with RA and vitamin A partially reversed the impaired vascular and alveolar development induced by VEGF inhibition. Thus we identified RA as a lung angiocrine that regulates alveolarization through autocrine regulation of endothelial development and paracrine regulation of elastin synthesis via induction of FGF-18 in mesenchymal cells. PMID:26566904

  14. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential

  15. Development of early postnatal peripheral nerve abnormalities in Trembler-J and PMP22 transgenic mice

    PubMed Central

    ROBERTSON, A. M.; HUXLEY, C.; KING, R. H. M.; THOMAS, P. K.

    1999-01-01

    Mutations in the gene for peripheral myelin protein 22 (PMP22) are associated with peripheral neuropathy in mice and humans. Although PMP22 is strongly expressed in peripheral nerves and is localised largely to the myelin sheath, a dual role has been suggested as 2 differentially expressed promoters have been found. In this study we compared the initial stages of postnatal development in transgenic mouse models which have, in addition to the murine pmp22 gene, 7 (C22) and 4 (C61) copies of the human PMP22 gene and in homozygous and heterozygous Trembler-J (TrJ) mice, which have a point mutation in the pmp22 gene. The number of axons that were singly ensheathed by Schwann cells was the same in all groups indicating that PMP22 does not function in the initial ensheathment and separation of axons. At both P4 and P12 all mutants had an increased proportion of fibres that were incompletely surrounded by Schwann cell cytoplasm indicating that this step is disrupted in PMP22 mutants. C22 and homozygous TrJ animals could be distinguished by differences in the Schwann cell morphology at the initiation of myelination. In homozygous TrJ animals the Schwann cell cytoplasm had failed to make a full turn around the axon whereas in the C22 strain most fibres had formed a mesaxon. It is concluded that PMP22 functions in the initiation of myelination and probably involves the ensheathment of the axon by the Schwann cell, and the extension of this cell along the axon. Abnormalities may result from a failure of differentiation but more probably from defective interactions between the axon and the Schwann cell. PMID:10580849

  16. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder?

    PubMed Central

    Kelleher, Rory J; Soiza, Roy L

    2013-01-01

    The etiology of Alzheimer’s disease (AD) remains unclear. The emerging view is that cerebrovascular dysfunction is a feature not only of cerebrovascular diseases, such as stroke, but also of neurodegenerative conditions, such as AD. In AD, there is impaired structure and function of cerebral blood vessels and cells in the neurovascular unit. These effects are mediated by vascular oxidative stress. Injury to the neurovascular unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood-brain barrier and reduces the brain’s repair capacity. Such injury can exacerbate the cognitive dysfunction exerted by incident ischemia and coexisting neurodegeneration. This article summarises data regarding cardiovascular risk factors, vascular abnormalities and brain endothelial damage in AD. In view of accumulating evidence of vascular pathology in AD, we also review the literature (MEDLINE, EMBASE) for clinical evidence of impaired endothelial function in AD. A total of 15 articles investigating endothelial dysfunction in AD were identified. 10 of these articles showed impaired endothelial function in AD patients. The current literature suggests endothelial dysfunction may be involved in the pathogenesis of AD. This aspect of AD pathology is particularly interesting in view of its potential for therapeutic intervention. Future research on endothelial function in AD should concentrate on population-based analysis and combine multiple methods to evaluate endothelial function. PMID:24224133

  17. Hemovascular Progenitors in the Kidney Require Sphingosine-1-Phosphate Receptor 1 for Vascular Development.

    PubMed

    Hu, Yan; Li, Minghong; Göthert, Joachim R; Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S

    2016-07-01

    The close relationship between endothelial and hematopoietic precursors during early development of the vascular system suggested the possibility of a common yet elusive precursor for both cell types. Whether similar or related progenitors for endothelial and hematopoietic cells are present during organogenesis is unclear. Using inducible transgenic mice that specifically label endothelial and hematopoietic precursors, we performed fate-tracing studies combined with colony-forming assays and crosstransplantation studies. We identified a progenitor, marked by the expression of helix-loop-helix transcription factor stem cell leukemia (SCL/Tal1). During organogenesis of the kidney, SCL/Tal1(+) progenitors gave rise to endothelium and blood precursors with multipotential colony-forming capacity. Furthermore, appropriate morphogenesis of the kidney vasculature, including glomerular capillary development, arterial mural cell coating, and lymphatic vessel development, required sphingosine 1-phosphate (S1P) signaling via the G protein-coupled S1P receptor 1 in these progenitors. Overall, these results show that SCL/Tal1(+) progenitors with hemogenic capacity originate and differentiate within the early embryonic kidney by hemovasculogenesis (the concomitant formation of blood and vessels) and underscore the importance of the S1P pathway in vascular development. PMID:26534925

  18. Vascular endothelial growth factor signaling affects both angiogenesis and osteogenesis during the development of scleral ossicles.

    PubMed

    Jabalee, James; Franz-Odendaal, Tamara A

    2015-10-01

    Intramembranous ossification is a complex multi-step process which relies on extensive interactions among bone cells and surrounding tissues. The embryonic vasculature is essential in regulating endochondral ossification; however, its role during intramembranous ossification remains poorly understood, and in vivo studies are lacking. Previous research from our lab on the development of the intramembranous scleral ossicles has demonstrated an intriguing pattern of vascular development in which the areas of future osteogenesis remain avascular until after bone induction has occurred. Such avascular zones are located directly beneath each of the conjunctival papillae, epithelial structures which provide osteogenic signals to the underlying mesenchyme. Here we provide a high-resolution map of the developing vasculature from the time of ossicle induction to mineralization using a novel technique. We show that vegfa is expressed by the papillae and nearby mesenchymal tissue throughout HH 34-37, when vascular growth is taking place, and is down-regulated thereafter. Localized inhibition of Vegf results in expansion of the avascular zone surrounding the implanted papilla and mispatterning of the scleral ossicles. These results demonstrate that Vegf signaling could provide important insights into the complex relationship between bone and vasculature during intramembranous bone development. PMID:26210172

  19. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  20. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine.

    PubMed

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  1. Histology atlas of the developing mouse hepatobiliary hemolymphatic vascular system with emphasis on embryonic days 11.5-18.5 and early postnatal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A critical event in fetal development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has lead pathologists and scientists to utilize transgenic mice to identify developmental disorders associated with the hepatobiliary vascular system. Va...

  2. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors

    PubMed Central

    Kalaria, Raj N; Maestre, Gladys E; Arizaga, Raul; Friedland, Robert P; Galasko, Doug; Hall, Kathleen; Luchsinger, José A; Ogunniyi, Adesola; Perry, Elaine K; Potocnik, Felix; Prince, Martin; Stewart, Robert; Wimo, Anders; Zhang, Zhen-Xin; Antuono, Piero

    2010-01-01

    Despite mortality due to communicable diseases, poverty, and human conflicts, dementia incidence is destined to increase in the developing world in tandem with the ageing population. Current data from developing countries suggest that age-adjusted dementia prevalence estimates in 65 year olds are high (≥5%) in certain Asian and Latin American countries, but consistently low (1–3%) in India and sub-Saharan Africa; Alzheimer's disease accounts for 60% whereas vascular dementia accounts for ∼30% of the prevalence. Early-onset familial forms of dementia with single-gene defects occur in Latin America, Asia, and Africa. Illiteracy remains a risk factor for dementia. The APOE ε4 allele does not influence dementia progression in sub-Saharan Africans. Vascular factors, such as hypertension and type 2 diabetes, are likely to increase the burden of dementia. Use of traditional diets and medicinal plant extracts might aid prevention and treatment. Dementia costs in developing countries are estimated to be US$73 billion yearly, but care demands social protection, which seems scarce in these regions. PMID:18667359

  3. Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs

    PubMed Central

    Ames, Juliana; Chokshi, Mithil; Aiad, Norman; Sanyal, Sonali; Kawabata, Kimihito C.; Levental, Ilya; Sundararaghavan, Harini G.; Burdick, Jason A.; Janmey, Paul; Miyazono, Kohei; Wells, Rebecca G.; Jones, Peter L.

    2015-01-01

    Abstract Although there are many studies focusing on the molecular pathways underlying lung vascular morphogenesis, the extracellular matrix (ECM)–dependent regulation of mesenchymal cell differentiation in vascular smooth muscle development needs better understanding. In this study, we demonstrate that the paired related homeobox gene transcription factor Prx1 maintains the elastic ECM properties, which are essential for vascular smooth muscle precursor cell differentiation. We have found that Prx1null mouse lungs exhibit defective vascular smooth muscle development, downregulated elastic ECM expression, and compromised transforming growth factor (TGF)–β localization and signaling. Further characterization of ECM properties using decellularized lung ECM scaffolds derived from Prx1 mice demonstrated that Prx1 is required to maintain lung ECM stiffness. The results of cell culture using stiffness-controlled 2-D and 3-D synthetic substrates confirmed that Prx1-dependent ECM stiffness is essential for promotion of smooth muscle precursor differentiation for effective TGF-β stimulation. Supporting these results, both decellularized Prx1null lung ECM and Prx1WT (wild type) ECM scaffolds with blocked TGF-β failed to support mesenchymal cell to 3-D smooth muscle cell differentiation. These results suggest a novel ECM-dependent regulatory pathway of lung vascular development wherein Prx1 regulates lung vascular smooth muscle precursor development by coordinating the ECM biophysical and biochemical properties. PMID:26064466

  4. Estrogens and development of pulmonary hypertension - Interaction of estradiol metabolism and pulmonary vascular disease

    PubMed Central

    Tofovic, Stevan P.

    2010-01-01

    endothelial remodeling in PAH and this may be even more significant if the E2’s effects on injured endothelium are not opposed by 2ME (e.g., in the event of reduced E2 conversion to 2ME due to hypoxia, inflammation, drugs, environmental factors, or genetic polymorphism of metabolizing enzymes). This review focuses on the effects of estrogens and their metabolites on pulmonary vascular pathobiology and the development of experimental PAH, and offers potential explanation for the estrogen paradox in PAH. Furthermore, we propose that unbalanced estradiol metabolism may lead to the development of PAH. Recent animal data and studies in patients with PAH support this concept. PMID:20881610

  5. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology?

    PubMed

    Bergwerff, M; Verberne, M E; DeRuiter, M C; Poelmann, R E; Gittenberger-de Groot, A C

    1998-02-01

    In this study, the distribution patterns of neural crest (NC) cells (NCCs) in the developing vascular system of the chick were thoroughly studied and examined for a correlation with smooth muscle cell differentiation and vascular morphogenesis. For this purpose, we performed long-term lineage tracing using quail-chick chimera techniques and premigratory NCC infection with a replication-incompetent retrovirus containing the LacZ reporter gene in combination with immunohistochemistry. Results indicate that NCC deposition around endothelial tubes is influenced by anteroposterior positional information from the pharyngeal arterial system. NCCs were shown to be among the first cells to differentiate into primary smooth muscle cells of the arch arteries. At later stages, NCCs eventually differentiated into adventitial fibroblasts and smooth muscle cells and nonmuscular cells of the media and intima. NCCs were distributed in the aortic arch and pulmonary arch arteries and in the brachiocephalic and carotid arteries. The coronary and pulmonary arteries and the descending aorta, however, remained devoid of NCCs. A new finding was that the media of part of the anterior cardinal veins was also determined to be NC-derived. NC-derived elastic arteries differed from non-NC elastic vessels in their cellular constitution and elastic fiber organization, and the NC appeared not to be involved in designating a muscular or elastic artery. Boundaries between NC-infested areas and mesodermal vessel structures were mostly very sharp and tended to coincide with marked changes in vascular morphology, with the exception of an intriguing area in the aortic and pulmonary trunks. PMID:9468193

  6. Hedgehog Signaling Regulates Size of the Dorsal Aortae and Density of the Plexus During Avian Vascular Development

    PubMed Central

    Moran, Carlos M.; Salanga, Matthew C.; Krieg, Paul A.

    2016-01-01

    Signaling by the hedgehog (Hh) family of secreted growth factors is essential for development of embryonic blood vessels. Embryos lacking Hh function have abundant endothelial cells but fail to assemble vascular cords or lumenized endothelial tubes. However, the role of Hh signaling during later aspects of vascular patterning and morphogenesis is largely unexplored. We have used small molecule inhibitors and agonists to alter activity of the Hh signaling pathway in the chick embryo. When cyclopamine is added after cord formation, aortal cells form tubes, but these are small and disorganized and the density of the adjacent vascular plexus is reduced. Activation of the Hh pathway with SAG leads to formation of enlarged aortae and increased density of the plexus. The number of endothelial cell filopodia is found to correlate with Hh signaling levels. These studies show that Hh signaling levels must be tightly regulated for normal vascular patterning to be achieved. PMID:21384473

  7. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments.

    PubMed

    Ji, Ya-Ting; Liu, Yan-Na; Liu, Zhao-Peng

    2015-01-01

    Tumor vasculature is an important target in cancer treatment. Two distinct vasculartargeting therapeutic strategies are applied to attack cancer cells indirectly. The antiangiogenic approach intervenes in the neovascularization processes and blocks the formation of new blood vessels, while th e antivascular approach targets the established tumor blood vessels, making vascular shutdown and resulting in rapid haemorrhagic necrosis and tumor cell death. A number of compounds with diverse structural scaffolds have been designed to target tumor vasculature and they are called vascular disrupting agents (VDAs). The biological or ligand-directed VDAs utilize antibodies, peptides or growth factors to deliver toxins or pro-coagulants or proapoptotic affectors to tumor-related blood vessels, while the small-molecule VDAs selectively target tumor blood vessels and have little effects on the normal endothelium. Among the small-molecule VDAs, the tubulin colchicine binding site inhibitors have been extensively studied and many of them have entered the clinical trials, including CA-4P, CA-1P, AVE8062, OXi4503, CKD-516, BNC105P, ABT-751, CYT- 997, ZD6126, NPI-2358, MN-029 and EPC2407. This review makes a summary of the small-molecule VDAs in clinical developments and highlights some potential VDA leads or candidates for the treatment of tumors. PMID:25620094

  8. Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.

    PubMed

    van Almen, Geert C; Talacua, Hanna; Ippel, Bastiaan D; Mollet, Björne B; Ramaekers, Mellany; Simonet, Marc; Smits, Anthal I P M; Bouten, Carlijn V C; Kluin, Jolanda; Dankers, Patricia Y W

    2016-03-01

    Cell-free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell-adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non-cell adhesive properties via a mix-and-match approach using ureido-pyrimidinone (UPy)-modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end-functionalized or chain-extended UPy-polycaprolactone (UPy-PCL or CE-UPy-PCL, respectively) with end-functionalized UPy-poly(ethylene glycol) (UPy-PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy-PCL with UPy-PEG, but poor mechanical properties, whereas CE-UPy-PCL scaffolds are mechanically stable. As a proof-of-concept for the use of non-cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy-PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing. PMID:26611660

  9. Compared myocardial and vascular effects of captopril and dihydralazine during hypertension development in spontaneously hypertensive rats.

    PubMed Central

    Freslon, J. L.; Giudicelli, J. F.

    1983-01-01

    When administered to young spontaneously hypertensive rats (SHRs), dihydralazine (25 mg kg-1, daily) and captopril (100 mg kg-1, daily) prevent with the same efficacy genetic hypertension development (GHD). Dihydralazine treatment increased vascular mesenteric compliance, as shown by a significant decrease in the stiffness of the vessels (-27%), and induced slight reductions in contractility (-12%) and in wall to lumen (W/L) ratio (-15%). After treatment withdrawal, all these parameters returned to control values within 7 weeks, as did blood pressure. Captopril treatment also strongly increased the mesenteric vessels compliance, vessel stiffness being decreased by 16%, and reduced their contractility (-15%) and their W/L ratio (-30%). These effects as well as those exerted on blood pressure persisted up to 7 weeks after treatment ceased although there was a slight trend to a progressive reduction in the intensity of both phenomena. These experiments show that captopril but not dihydralazine has a long-lasting effect in opposing the functional and morphological vascular alterations occurring during GHD in SHRs and this phenomenon probably contributes to a large extent to the sustained preventive effects of the drug against GHD. PMID:6357337

  10. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development

    PubMed Central

    Everett, Allen D.; Lobe, David R.; Matsumura, Martin E.; Nakamura, Hideji; McNamara, Coleen A.

    2000-01-01

    Hepatoma-derived growth factor (HDGF) is the first member identified of a new family of secreted heparin-binding growth factors highly expressed in the fetal aorta. The biologic role of HDGF in vascular growth is unknown. Here, we demonstrate that HDGF mRNA is expressed in smooth muscle cells (SMCs), most prominently in proliferating SMCs, 8–24 hours after serum stimulation. Exogenous HDGF and endogenous overexpression of HDGF stimulated a significant increase in SMC number and DNA synthesis. Rat aortic SMCs transfected with a hemagglutinin-epitope–tagged rat HDGF cDNA contain HA-HDGF in their nuclei during S-phase. We also detected native HDGF in nuclei of cultured SMCs, of SMCs and endothelial cells from 19-day fetal (but not in the adult) rat aorta, of SMCs proximal to abdominal aortic constriction in adult rats, and of SMCs in the neointima formed after endothelial denudation of the rat common carotid artery. Moreover, HDGF colocalizes with the proliferating cell nuclear antigen (PCNA) in SMCs in human atherosclerotic carotid arteries, suggesting that HDGF helps regulate SMC growth during development and in response to vascular injury. PMID:10712428

  11. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  12. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  13. Pulmonary vascular and alveolar development in tetralogy of Fallot: a recommendation for early correction.

    PubMed

    Johnson, R J; Haworth, S G

    1982-12-01

    Using quantitative morphometric techniques, we analysed pulmonary arterial and alveolar development in the lungs of seven children aged 1.2-12 years who died during or soon after repair of tetralogy of Fallot. One child had a residual ventricular septal defect and survived for five months. One other child had had a previous Waterston-Cooley anastomosis (Waterston shunt). Postmortem lung volume in relation to body surface area was generally below normal for age, the alveoli were small, and the total alveolar number was below normal in five of the seven cases. Microscopically, airway and alveolar structure appeared normal. The preacinar arteries were larger and the intra-acinar arteries were smaller than normal for age. The preacinar elastic pulmonary arteries appeared to contain less elastin and in both preacinar and intra-acinar muscular arteries the media was thinner than normal, although muscle was normally distributed along the arterial pathway. Eccentric areas of intimal fibrosis were small and uncommon. The bronchial arteries were generally more prominent than usual both macroscopically and microscopically, but no abnormal bronchopulmonary connections were present. After corrective surgery a residual ventricular septal defect and pulmonary hypertension were associated with arterial medial hypertrophy, and this change was also found in the right lung of a normotensive patient who had had a Waterston shunt. This group probably represents the most favourable clinical picture of tetralogy in patients who usually survive but, even so, pulmonary arterial and alveolar development was abnormal. The structural findings are discussed in relation to the functional outcome in patients with tetralogy who have survived. Repair of the abnormality during the first two to three years of life is recommended. PMID:7170679

  14. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  15. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    PubMed Central

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  16. Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development

    PubMed Central

    Darland, Diane C.; Cain, Jacob T.; Berosik, Matthew A.; Saint-Geniez, Magali; Odens, Patrick W.; Schaubhut, Geoffrey J.; Frisch, Sarah; Stemmer-Rachamimov, Anat; Darland, Tristan; D’Amore, Patricia A.

    2011-01-01

    This work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium. PMID:21803034

  17. Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue

    PubMed Central

    Ribeiro, Luciana Andrea; Turba, Maria Elena; Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

    2006-01-01

    Background The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed. Results Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were observed in swine CL during different luteal phases and at pregnancy. Immediately after ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. Conclusion Our findings, obtained from a precisely controlled in vivo model of CL development and regression, allow us to determine relationships among VEGF, MMPs and endonucleases during angiogenesis and angioregression. Thus, CL provides a very interesting model for studying factors involved in vascular remodelling. PMID:17137503

  18. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. PMID:26486996

  19. Development of a sintering methodology through abnormal glow discharge for manufacturing metal matrix composites

    NASA Astrophysics Data System (ADS)

    Pérez, S.; Pineda, Y.; Sarmiento, A.; López, A.

    2016-02-01

    In this study, a sintering methodology is presented by using abnormal glow discharge to metal matrix composites (MMC), consisting of 316 steel, reinforced with titanium carbide (TiC). The wear behaviour of these compounds was evaluated according to the standard ASTM G 99 in a tribometer pin-on-disk. The effect of the percentage of reinforcement (3, 6, and 9%), with 40 minutes of mixing in the planetary mill is analysed, using compaction pressure of 700MPa and sintering temperature of 1,100°C±5°C, gaseous atmosphere of H2 - N2, and sintering time of 30 minutes. As a result of the research, it shows that the best behaviour against wear is obtained when the MMC contains 6% TiC. Under this parameter the lowest percentage of pores and the lowest coefficient of friction are achieved, ensuring that the incorporation of ceramic particles (TiC) in 316 austenitic steel matrix significantly improves the wear resistance. Also, it is shown that it is possible to sinter such materials using the abnormal glow discharge, being a novel and effective method in which the working temperature is reached in a short time.

  20. Expression of fibronectin variants in vascular and visceral smooth muscle cells in development.

    PubMed

    Glukhova, M A; Frid, M G; Shekhonin, B V; Balabanov, Y V; Koteliansky, V E

    1990-09-01

    Monoclonal antibodies recognizing extra domain A (ED-A) and extra domain B (ED-B) fibronectin (FN) sequences were used to characterize FN variants expressed in human vascular smooth muscle cells (SMC) during fetal and postnatal development and to compare spectrum of FN variants produced by vascular and visceral SMC. In 8- to 12-week-old fetuses both ED-A-containing FN (A-FN) and ED-B-containing FN (B-FN) were found in all smooth muscles studied--aorta, esophagus, stomach, and jejunum. By 20-25 weeks of gestation relative amounts of both A-FN and B-FN were reduced significantly in the aortic media (fivefold for A-FN and twofold for B-FN), while in visceral SMC only B-FN content was decreased. All the adult visceral smooth muscles examined contained A-FN rather than B-FN. Therefore, the cells from adult aortic media appear to be the only SMC so far known to produce FN that contains neither ED-A nor ED-B. Moreover, the data obtained show that, unlike other cells, medial SMC are embedded in vivo in the extracellular matrix that contains FN lacking both ED-A and ED-B. SMC from the minor intimal thickenings in the human child aorta as well as those from the atherosclerotic plaques produce A-FN rather than B-FN. We conclude that (1) vascular SMC change the spectrum of produced FN variants at least twice--during prenatal development between 12 and 20 weeks of gestation, and during the postnatal period, when they are recruited into the intimal cell population; (2) the production of FN variants in visceral SMC is also developmentally regulated; (3) all visceral SMC unlike the cells from adult aortic media produce A-FN; (4) the presence of ED-A and ED-B sequences in the FN molecule is not necessary for the extracellular matrix assembly in vivo. PMID:2202605

  1. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development

    PubMed Central

    Seiradake, Elena; del Toro, Daniel; Nagel, Daniel; Cop, Florian; Härtl, Ricarda; Ruff, Tobias; Seyit-Bremer, Gönül; Harlos, Karl; Border, Ellen Clare; Acker-Palmer, Amparo; Jones, E. Yvonne; Klein, Rüdiger

    2014-01-01

    Summary FLRTs are broadly expressed proteins with the unique property of acting as homophilic cell adhesion molecules and as heterophilic repulsive ligands of Unc5/Netrin receptors. How these functions direct cell behavior and the molecular mechanisms involved remain largely unclear. Here we use X-ray crystallography to reveal the distinct structural bases for FLRT-mediated cell adhesion and repulsion in neurons. We apply this knowledge to elucidate FLRT functions during cortical development. We show that FLRTs regulate both the radial migration of pyramidal neurons, as well as their tangential spread. Mechanistically, radial migration is controlled by repulsive FLRT2-Unc5D interactions, while spatial organization in the tangential axis involves adhesive FLRT-FLRT interactions. Further, we show that the fundamental mechanisms of FLRT adhesion and repulsion are conserved between neurons and vascular endothelial cells. Our results reveal FLRTs as powerful guidance factors with structurally encoded repulsive and adhesive surfaces. PMID:25374360

  2. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. PMID:26178373

  3. Role of retinal vascular endothelial cells in development of CMV retinitis.

    PubMed Central

    Rao, N A; Zhang, J; Ishimoto, S

    1998-01-01

    PURPOSE: Although cytomegalovirus (CMV) retinitis is known to occur in association with retinal microangiopathy in individuals with marked immunodeficiency, glial cells are believed to be the initial target cells in the development of retinitis. Moreover, it has been hypothesized that CMV gains access to the retinal glia because of altered vascular permeability. In an attempt to address the hypothesis, we studied 30 autopsy eyes of AIDS patients with systemic CMV infection, with or without clinically apparent CMV retinitis. METHODS: The autopsy eyes were processed in three ways. First, dual immunohistochemical studies were done by using anti-CMV antibodies for immediate early, early, and late antigens. The retinal cell types infected with the virus were then determined by using anti-GFAP, anti-VonWillebrand's factor, neuronal specific enolase, and leukocyte marker CD68. Second, selected eyes were processed for in situ hybridization with DNA probe specific to CMV. Third, an eye with clinically apparent CMV retinitis was submitted for electron microscopic examination. RESULTS: At the site of retinal necrosis in those eyes with a clinical diagnosis of CMV retinitis, the immunohistochemical, in situ hybridization, and ultrastructural examinations revealed that CMV was present primarily in the Müller cells and in perivascular glial cells. Adjacent to these infected cells, focal areas of positive staining for CMV antigen were seen in the glial cells, neuronal cells, and retinal pigment epithelial cells. At these sites most of the retinal capillaries were devoid of endothelial cells. Few vessels located at the advancing margin of retinal necrosis showed the presence of viral proteins in the endothelial cells. CONCLUSIONS: The present results indicate that retinal vascular endothelial cells could be the initial target in the development of viral retinitis, with subsequent spread of the infection to perivascular glia, Müller cells, and other retinal cells, including the

  4. Development of advanced pulmonary vascular disease in D-transposition of the great arteries after the neonatal arterial switch operation.

    PubMed Central

    Rivenes, S M; Grifka, R G; Feltes, T F

    1998-01-01

    We report the case of a neonate with D-transposition of the great arteries who, after undergoing an uneventful arterial switch operation at the age of 4 days, was found at the age of 42 months to have developed advanced pulmonary vascular disease. Because the arterial switch operation was performed when our patient was only 4 days old, this case challenges the hypothesis that postnatal hemodynamics alone dictate the development of advanced pulmonary vascular disease in infants and children with transposition of the great arteries. Images PMID:9782561

  5. [Elastin and microfibrils in vascular development and ageing: complementary or opposite roles?].

    PubMed

    Fhayli, Wassim; Ghandour, Zeinab; Mariko, Boubacar; Pezet, Mylène; Faury, Gilles

    2012-01-01

    Large arteries allow the vascular system to be more than a simple route in which the blood circulates within the organism. The elastic fibers present in the wall endow these vessels with elasticity and are responsible for the smoothing of the blood pressure and flow, which are delivered discontinuously by the heart. This function is very important to ensure appropriate hemodynamics. Elastic fibers are composed of elastin (90%) and fibrillin-rich microfibrils (10%) which provide the vessels with elasticity and are also signals able to bind to relatively specific cell membrane receptors. Stimulation of the high affinity elastin receptor by elastin peptides or tropoelastin--the elastin precursor--triggers an increase in intracellular free calcium in vascular cells, especially endothelial cells, associated with attachment, migration or proliferation. Similar effects of the stimulation of endothelial cells by microfibrils or fibrillin-1 fragments, which bind to integrins, have been demonstrated. This dual function--mechanical and in signaling--makes the elastic fibers an important actor of the development and ageing processes taking place in blood vessels. An alteration of the elastin (Eln) or fibrillin (Fbn) gene products leads to severe genetic pathologies of the cardiovascular system, such as supravalvular aortic stenosis, or Williams Beuren syndrome--in which elastin deficiency induces aortic stenoses--or Marfan syndrome, in which on the contrary fibrillin-1 deficiency promotes the appearance of aortic aneurysms. Genetically-engineered mouse models of these pathologies (such as Eln+/- mice and Fbn-1+/mgΔ mice, Eln+/-Fbn-1+/- mice) have permitted a better understanding of the pathogenesis of these syndromes. In particular, it has been shown that elastin and fibrillin-1 roles can be complementary in some aspects, while they can be opposed in some other situations. For instance, the double heterozygosity in elastin and fibrillin-1 leads to increased arterial wall

  6. SM22α-Targeted Deletion of Bone Morphogenetic Protein Receptor IA in Mice Impairs Cardiac and Vascular Development and Influences Organogenesis

    PubMed Central

    El-Bizri, Nesrine; Guignabert, Christophe; Wang, Lingli; Cheng, Alexander; Stankunas, Kryn; Chang, Ching-Pin; Mishina, Yuji; Rabinovitch, Marlene

    2009-01-01

    Summary Expression of bone morphogenetic protein receptor 1a (Bmpr1a) is attenuated in lung vessels of patients with pulmonary arterial hypertension, but the functional impact of this abnormality is unknown. We therefore ablated Bmpr1a in cardiomyocytes and vascular smooth muscle cells (VSMC) by breeding mice with a loxP allele of Bmpr1a (Bmpr1aflox) expressing R26R with SM22α-Cre mice. SM22α-Cre;R26R;Bmpr1aflox/flox mice died soon after embryonic day 11 (E11) with massive vascular and pericardial hemorrhage and impaired brain development. At E10.5, SM22α-Cre;R26R;Bmpr1aflox/flox embryos showed thinning of the myocardium associated with reduced cell proliferation. These embryos also had severe dilatation of the aorta and large vessels with impaired investment of SMC that was also related to reduced proliferation. SM22α-Cre;R26R;Bmpr1aflox/flox mice showed collapsed telencephalon in association with impaired clearing of brain microvessels in areas where reduced apoptosis was observed. Transcript and protein levels of matrix metalloproteinase (MMP)-2 and -9 were reduced in E9.5 and E10.5 SM22α-Cre;R26R;Bmpr1aflox/flox embryos, respectively. Knock-down of Bmpr1a by RNA interference in human pulmonary artery SMC reduced MMP-2 and MMP-9 activity, attenuated serum-induced proliferation, and impaired PDGF-BB-directed migration. RNA interference of MMP-2 or MMP-9 recapitulated these abnormalities, supporting a functional interaction between BMP signaling and MMP expression. In human brain microvascular pericytes, knock-down of Bmpr1a reduced MMP-2 activity and knock-down of either Bmpr1a or MMP-2 caused resistance to apoptosis. Thus loss of Bmpr1a, by decreasing MMP-2 and/or MMP-9 activity, can account for vascular dilatation and persistence of brain microvessels leading to impaired organogenesis documented in the brain. PMID:18667463

  7. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  8. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  9. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  10. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  11. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development.

    PubMed Central

    Kamat, B. R.; Brown, L. F.; Manseau, E. J.; Senger, D. R.; Dvorak, H. F.

    1995-01-01

    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a cytokine that is overexpressed in many tumors, in healing wounds, and in rheumatoid arthritis. VPF/VEGF is thought to induce angiogenesis and accompanying connective tissue stroma in two ways: 1), by increasing microvascular permeability, thereby modifying the extracellular matrix and 2), as an endothelial cell mitogen. VPF/VEGF has been reported in animal corpora lutea and we investigated the possibility that it might be present in human ovaries and have a role in corpus luteum formation. We here report that VPF/VEGF mRNA and protein are expressed by human ovarian granulosa and theca cells late in follicle development and, subsequent to ovulation, by granulosa and theca lutein cells. Therefore, VPF/VEGF is ideally positioned to provoke the increased permeability of thecal blood vessels that occurs shortly before ovulation. VPF/VEGF likely also contributes to the angiogenesis and connective tissue stroma generation that accompany corpus luteum/corpus albicans formation. Finally, VPF/VEGF was overexpressed in the hyperthecotic ovarian stroma of Stein-Leventhal syndrome in which it may also have a pathophysiological role. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7531945

  12. Abnormal development of cardiovascular systems in rat embryos treated with bisdiamine.

    PubMed

    Tasaka, H; Takenaka, H; Okamoto, N; Onitsuka, T; Koga, Y; Hamada, M

    1991-03-01

    Administration of N,N'-bis(dichloroacetyl)-1,8-octamethylenediamine, bisdiamine, in pregnant Donryu rats on day 10 of gestation induces a high incidence of cardiovascular anomalies in fetuses. Bisdiamine administration induced aplasia of the sixth aortic arch artery, with both the right and left primitive pulmonary arteries being directly linked to the truncus, and resulting in four types of malformation of pulmonary arteries (PAs). When two primitive PAs shared a single root, the consequence was either pulmonary trunk hypoplasia, as is seen in tetralogy of Fallot, or type I persistent truncus arteriosus (PTA) as classified by Collet and Edwards. When root portions of two PAs did not fuse, either type II or type III PTA resulted. In controls, the right dorsal aorta (DA) between the right seventh intersegmental artery (IA) and the site where both DAs fuse degenerated and the left aortic arch (AA) and the right subclavian artery (SA) were formed. Bisdiamine administration induced two additional types of vascular anomalies. In one of these, the right DA between the right 4AA and the right 7IA degenerated and a left AA accompanied by an aberrant right SA resulted. In the other type, the left DA between the left 4AA and the left 7IA degenerated and a right AA accompanied by an aberrant left SA resulted. These results indicate that administration of bisdiamine induces malformation in the great blood vessels by disturbing persistency and degeneration of aortic arch arteries and DAs. PMID:2014482

  13. Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes.

    PubMed

    Kere, M; Siriboon, C; Liao, J W; Lo, N W; Chiang, H I; Fan, Y K; Kastelic, J P; Ju, J C

    2014-10-01

    Vascular endothelial growth factor is a multipotent angiogenic factor implicated in cell survival and proliferation. The objective was to determine effects of exogenous recombinant human VEGFA (or VEGFA165) in culture media on porcine oocyte maturation and parthenote development. Adding 5 ng/mL VEGFA to the culture medium improved the maturation rate of denuded oocytes (P < 0.05), although 5, 50, or 500 ng/mL did not significantly affect nuclear maturation of oocytes. Parthenotes from oocytes cultured either in in vitro maturation or in vitro culture medium supplemented with 5 or 50 ng/mL VEGFA had an improved blastocyst rate and increased total numbers of cells (P < 0.05). Moreover, those treated with 5 ng/mL of VEGFA had a higher hatched blastocyst rate (average of 121 cells per blastocyst). All VEGFA-treated oocytes had reduced apoptotic indices (P < 0.05), except for those with a higher dose (500 ng/mL) of VEGFA which had more apoptotic cells (P < 0.05). Adding 5 ng/mL VEGFA to oocytes during the last 22 h of in vitro maturation improved (P < 0.05) blastocyst rates and total numbers of cells, with reduced apoptosis indices similar to that of long-term (44 h) culture. Furthermore, Axitinib (VEGFR inhibitor) reversed the effects of VEGFA on parthenote development (P < 0.05). Follicular fluids from medium (2-6 mm) to large (>6 mm) follicles contained 5.3 and 7.0 ng/mL vascular endothelial growth factor protein, respectively, higher (P < 0.05) than concentrations in small (<2 mm) follicles (0.4 ng/mL). Also, VEGFA and its receptor (VEGFR-2) were detected (immunohistochemistry) in growing follicles and developing blastocysts. In addition, VEGFA inhibited caspase-3 activation in matured oocytes (P < 0.05). In conclusion, this is apparently the first report that VEGFA has proliferative and cytoprotective roles in maturing porcine oocytes and parthenotes. Furthermore, an optimal VEGFA concentration promoted porcine oocyte maturation and subsequent

  14. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  15. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  16. Malformation of cortical and vascular development in one family with parietal foramina determined by an ALX4 homeobox gene mutation.

    PubMed

    Valente, Marcelo; Valente, Kette D; Sugayama, Sofia S M; Kim, Chong Ae

    2004-01-01

    Vascular and cortical anomalies have been found in a family with parietal foramina type 2 (PFM2), which is determined by the ALX4 gene. It is believed that ALX4 has a bone-restricted expression. We report a case of PFM with age-related size variation in a 4-year-old boy, as well as in his mother, aunt and grandfather. MR imaging of the child demonstrates prominent malformations of cortical (polymicrogyric cortex with an unusual infolding pattern) and vascular development (persistence median prosencephalic vein), associated with high tentorial incisure periatrial white matter changes. PMID:15569759

  17. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile

    PubMed Central

    Selvaraj, Vimal; Asano, Atsushi; Page, Jennifer L.; Nelson, Jacquelyn L.; Kothapalli, Kumar S. D.; Foster, James A.; Brenna, J. Thomas; Weiss, Robert S.; Travis, Alexander J.

    2010-01-01

    The male germ cell-specific fatty acid binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9−/− mice were viable and fertile. Phenotypic analysis showed that FABP9−/− mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the “ventral spur” in ~10% of FABP9−/− sperm. However, deficiency of FABP9 neither affected membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9−/− mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function. PMID:20920498

  18. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development.

    PubMed

    Lavine, Kory J; White, Andrew C; Park, Changwon; Smith, Craig S; Choi, Kyunghee; Long, Fanxin; Hui, Chi-chung; Ornitz, David M

    2006-06-15

    Myocardial infarction and ischemic heart disease are the leading cause of death in the industrial world. Therapies employed for treating these diseases are aimed at promoting increased blood flow to cardiac tissue. Pharmacological induction of new coronary growth has recently been explored, however, clinical trials with known proangiogenic factors have been disappointing. To identify novel therapeutic targets, we have explored signaling pathways that govern embryonic coronary development. Using a combination of genetically engineered mice and an organ culture system, we identified novel roles for fibroblast growth factor (FGF) and Hedgehog (HH) signaling in coronary vascular development. We show that FGF signals promote coronary growth indirectly by signaling to the cardiomyoblast through redundant function of Fgfr1 and Fgfr2. Myocardial FGF signaling triggers a wave of HH activation that is essential for vascular endothelial growth factor (Vegf)-A, Vegf-B, Vegf-C, and angiopoietin-2 (Ang2) expression. We demonstrate that HH is necessary for coronary vascular development and activation of HH signaling is sufficient to promote coronary growth and to rescue coronary defects due to loss of FGF signaling. These studies implicate HH signaling as an essential regulator of coronary vascular development and as a potential therapeutic target for coronary neovascularization. Consistent with this, activation of HH signaling in the adult heart leads to an increase in coronary vessel density. PMID:16778080

  19. Delayed development of os odontoideum after traumatic cervical injury: support for a vascular etiology.

    PubMed

    Zygourakis, Corinna C; Cahill, Kevin S; Proctor, Mark R

    2011-02-01

    A previously healthy 2-year-old girl sustained a C1-2 ligamentous injury after a motor vehicle accident and underwent successful halo immobilization, with postimmobilization images showing good cervical alignment. At the time, plain radiography, CT scanning, and MR imaging showed a normal odontoid. Four years later, however, the patient was found to have an os odontoideum, evident on plain radiography and CT imaging. At the 10-year follow-up, the os odontoideum had not been surgically repaired, and the child had mild hypermobility. This is the first documented case in the modern imaging era of delayed os odontoideum formation after definitive CT scanning showed no fracture. As such, this suggests that os odontoideum may result from traumatic vascular interruption in the developing spine, with resulting osseous remodeling leading to an os odontoideum. This case argues against the congenital etiology of os odontoideum, as well as the strict posttraumatic theory whereby a trauma-induced odontoid fracture leads to osseous remodeling and subsequent development of an os odontoideum. PMID:21284467

  20. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco.

    PubMed

    Niu, Shihui; Li, Zhexin; Yuan, Huwei; Fang, Pan; Chen, Xiaoyang; Li, Wei

    2013-08-01

    Bioactive gibberellins (GAs) are involved in many developmental aspects of the life cycle of plants, acting either directly or through interaction with other hormones. Accumulating evidence suggests that GAs have an important effect on root growth; however, there is currently little information on the specific regulatory mechanism of GAs during adventitious root development. A study was conducted on tobacco (Nicotiana tabacum) plants for altered rates of biosynthesis, catabolism, and GA signalling constitutively or in specific tissues using a transgenic approach. In the present study, PtGA20ox, PtGA2ox1, and PtGAI were overexpressed under the control of the 35S promoter, vascular cambium-specific promoter (LMX5), or root meristem-specific promoter (TobRB7), respectively. Evidence is provided that the precise localization of bioactive GA in the stem but not in the roots is required to regulate adventitious root development in tobacco. High levels of GA negatively regulate the early initiation step of root formation through interactions with auxin, while a proper and mobile GA signal is required for the emergence and subsequent long-term elongation of established primordia. The results demonstrated that GAs have an inhibitory effect on adventitious root formation but a stimulatory effect on root elongation. PMID:23918971

  1. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  2. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  3. The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development

    PubMed Central

    Nakajima, Chikako; Haffner, Philipp; Goerke, Sebastian M.; Zurhove, Kai; Adelmann, Giselind; Frotscher, Michael; Herz, Joachim; Bock, Hans H.; May, Petra

    2014-01-01

    Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates Gi-dependent sphingosine-1-phosphate (S1P) signaling and integrates S1P and PDGF-BB signaling pathways, which are both crucial for mural cell recruitment, via its intracellular domain. Loss of LRP1 leads to a lack of S1P-dependent inhibition of RAC1 and loss of constraint of PDGF-BB-induced cell migration. Our studies thus identify LRP1 as a novel player in angiogenesis and in the recruitment and maintenance of mural cells. Moreover, they reveal an unexpected link between lipoprotein receptor and sphingolipid signaling that, in addition to angiogenesis during embryonic development, is of potential importance for other targets of these pathways, such as tumor angiogenesis and inflammatory processes. PMID:25377550

  4. Vascular Precursor Cells

    PubMed Central

    Chaudhury, Hera; Goldie, Lauren C.

    2011-01-01

    Understanding the mechanisms that regulate the proliferation and differentiation of human stem and progenitor cells is critically important for the development and optimization of regenerative medicine strategies. For vascular regeneration studies, specifically, a true “vascular stem cell” population has not yet been identified. However, a number of cell types that exist endogenously, or can be generated or propagated ex vivo, function as vascular precursor cells and can participate in and/or promote vascular regeneration. Herein, we provide an overview of what is known about the regulation of their differentiation specifically toward a vascular endothelial cell phenotype. PMID:22866199

  5. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    NASA Astrophysics Data System (ADS)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  6. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    NASA Astrophysics Data System (ADS)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  7. The alternative splicing factor Nova2 regulates vascular development and lumen formation.

    PubMed

    Giampietro, Costanza; Deflorian, Gianluca; Gallo, Stefania; Di Matteo, Anna; Pradella, Davide; Bonomi, Serena; Belloni, Elisa; Nyqvist, Daniel; Quaranta, Valeria; Confalonieri, Stefano; Bertalot, Giovanni; Orsenigo, Fabrizio; Pisati, Federica; Ferrero, Elisabetta; Biamonti, Giuseppe; Fredrickx, Evelien; Taveggia, Carla; Wyatt, Chris D R; Irimia, Manuel; Di Fiore, Pier Paolo; Blencowe, Benjamin J; Dejana, Elisabetta; Ghigna, Claudia

    2015-01-01

    Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the 'angioneurins' family. PMID:26446569

  8. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  9. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals

    PubMed Central

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  10. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    PubMed

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  11. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale.

    PubMed

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R; Thelen, Jay J

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  12. Large-Scale Proteome Comparative Analysis of Developing Rhizomes of the Ancient Vascular Plant Equisetum Hyemale

    PubMed Central

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R.; Thelen, Jay J.

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  13. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  14. The persistent trigeminal artery: development, imaging anatomy, variants, and associated vascular pathologies.

    PubMed

    Meckel, Stephan; Spittau, Bjoern; McAuliffe, William

    2013-01-01

    The persistent trigeminal artery (PTA) is the most common and most cephalad-located embryological anastomosis between the developing carotid artery and vertebrobasilar system to persist into adulthood. As such, it is frequently reported as an incidental finding in computed tomography angiography and magnetic resonance angiography studies. Here, we review the embryology, anatomy, and angiographic imaging findings, including important variants of this commonly encountered cerebrovascular anomaly (reported incidence of PTA/PTA variants ranges from 0.1% to 0.76%). Further, the aim is to present the range of associated arterial anomalies or syndromes, as well as pathologies that are associated with a PTA: aneurysms, trigeminal cavernous fistulas, and trigeminal nerve compression. Besides summarizing the risks and clinical presentation of such pathologies, their management is discussed with endovascular strategies mostly being the primary choice for aneurysms and trigeminal cavernous fistulas. Symptomatic trigeminal nerve compression can be treated with microvascular decompression surgery. As an illustrative example, a case of a trigeminal cavernous fistula on a PTA variant is included, mainly to emphasize the importance of understanding the variant anatomy for treatment planning in such pathologies. Finally, recommendations on how to manage patients with PTA-associated vascular pathologies are advanced. PMID:22170080

  15. Development of a vascular prosthesis for a growing child. A graft expandable in vivo.

    PubMed

    Satoh, S; Niu, S; Kanda, K; Hirai, J; Doi, K; Oka, T

    1994-01-01

    Specially designed vascular prostheses that can be dilated after implantation using a percutaneous transluminal angioplasty (PTA) balloon catheter have been developed. The grafts are made of woven polyester fiber fabrics, the circumferential yarns of which consist of two different types of polyester fiber bundles: One is a straight weak bundle, the other is a strong bundle wound around the former. The graft with an initial diameter of 6 mm could be dilated to 9 mm by luminal inflation of the balloon four to five times at 10 atmospheres (atm) in vitro. After disrupting the weak bundle by the dilatation procedure, the strong bundles were straightened, which maintained the enlarged diameter of the new caliber. Grafts of 6 mm in initial diameter implanted into the thoracic aortas of mongrel dogs for 3 months also could be dilated in vivo by inflating the PTA four to five times at 15 atm, as found in the vitro study. Macroscopic observation revealed that, around the dilated grafts, only a tiny hematoma was formed and nominal subsequent bleeding was observed, which indicated that the dilatation procedure was performed safely. The graft, which enables adaptation of the hydrodynamic property of the graft to the increased blood flow by PTA after implantation, is applicable in a growing child. PMID:8555526

  16. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  17. Abnormal Development of the Femoral Head Epiphysis in an Infant with no Developmental Dysplasia of the Hip Apparent on Ultrasonography

    PubMed Central

    Atalar, Hakan; Gunay, Cuneyd; Aytekin, Mahmut Nedim

    2014-01-01

    Introduction: In the investigation of hip development in newborns and infants, ultrasonography and radiography are widely used, but their optimal roles in this setting remain controversial. Case Report: Here we describe an 8.5-month-old infant who had undergone hip radiography at a primary care facility and was referred to our hospital to be evaluated for developmental dysplasia of the hip. Ultrasonography showed no developmental dysplasia of the hip according to standard criteria, but developmental retardation of the femoral head was apparent on the radiograph. Conclusion: This patient's findings demonstrate that abnormalities in femoral head epiphysis development can go undetected during routine ultrasonographic evaluations for developmental dysplasia of the hip. PMID:27298982

  18. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development

    PubMed Central

    Lange, Clemens A. K.; Luhmann, Ulrich F. O.; Mowat, Freya M.; Georgiadis, Anastasios; West, Emma L.; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B.; Fruttiger, Marcus; Smith, Alexander J.; Sowden, Jane C.; Maxwell, Patrick H.; Ali, Robin R.; Bainbridge, James W. B.

    2012-01-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature. PMID:22627278

  19. Steroid abnormalities and the developing brain: Declarative memory for emotionally arousing and neutral material in children with congenital adrenal hyperplasia

    PubMed Central

    Maheu, Françoise S.; Merke, Deborah P.; Schroth, Elizabeth A.; Keil, Margaret F.; Hardin, Julie; Poeth, Kaitlin; Pine, Daniel S.; Ernst, Monique

    2008-01-01

    Summary Steroid hormones modulate memory in animals and human adults. Little is known on the developmental effect of these hormones on the neural networks underlying memory. Using Congenital Adrenal Hyperplasia (CAH) as a naturalistic model of early steroid abnormalities, this study examines the consequences of CAH on memory and its neural correlates for emotionally arousing and neutral material in children. Seventeen patients with CAH and 17 age- and sex-matched healthy children (ages 12 to 14 years) completed the study. Subjects were presented positive, negative and neutral pictures. Memory recall occurred about 30 minutes after viewing the pictures. Children with CAH showed memory deficits for negative pictures compared to healthy children (p < 0.01). There were no group differences on memory performance for either positive or neutral pictures (p’s >0.1). In patients, 24h urinary-free cortisol levels (reflecting glucocorticoid replacement therapy) and testosterone levels were not associated with memory performance. These findings suggest that early steroid imbalances affect memory for negative material in children with CAH. Such memory impairments may result from abnormal brain organization and function following hormonal dysfunction during critical periods of development. PMID:18162329

  20. Development of an Open Source Image-Based Flow Modeling Software - SimVascular

    NASA Astrophysics Data System (ADS)

    Updegrove, Adam; Merkow, Jameson; Schiavazzi, Daniele; Wilson, Nathan; Marsden, Alison; Shadden, Shawn

    2014-11-01

    SimVascular (www.simvascular.org) is currently the only comprehensive software package that provides a complete pipeline from medical image data segmentation to patient specific blood flow simulation. This software and its derivatives have been used in hundreds of conference abstracts and peer-reviewed journal articles, as well as the foundation of medical startups. SimVascular was initially released in August 2007, yet major challenges and deterrents for new adopters were the requirement of licensing three expensive commercial libraries utilized by the software, a complicated build process, and a lack of documentation, support and organized maintenance. In the past year, the SimVascular team has made significant progress to integrate open source alternatives for the linear solver, solid modeling, and mesh generation commercial libraries required by the original public release. In addition, the build system, available distributions, and graphical user interface have been significantly enhanced. Finally, the software has been updated to enable users to directly run simulations using models and boundary condition values, included in the Vascular Model Repository (vascularmodel.org). In this presentation we will briefly overview the capabilities of the new SimVascular 2.0 release. National Science Foundation.

  1. Dealing with vascular conundrums with MR imaging.

    PubMed

    Angthong, Wirana; Semelka, Richard C

    2014-07-01

    Magnetic resonance (MR) imaging is a robust imaging modality for evaluation of vascular diseases. Technological advances have made MR imaging widely available for accurate and time-efficient vascular assessment. In this article the clinical usefulness of MR imaging techniques and their application are reviewed, using examples of vascular abnormalities commonly encountered in clinical practice, including abdominal, pelvic, and thoracic vessels. Common pitfalls and problem solving in interpretation of vascular findings in body MR imaging are also discussed. PMID:24889175

  2. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  3. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  4. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene.

    PubMed

    Abrass, C K; Berfield, A K; Ryan, M C; Carter, W G; Hansen, K M

    2006-09-01

    Mice with targeted disruption of the lama3 gene, which encodes the alpha3 chain of laminin-5 (alpha3beta3gamma2, 332), develop a blistering skin disease similar to junctional epidermolysis bullosa in humans. These animals also develop abnormalities in glomerulogenesis. In both wild-type and mutant animals (lama3(-/-)), podocytes secrete glomerular basement membrane and develop foot processes. Endothelial cells migrate into this scaffolding and secrete a layer of basement membrane that fuses with the one formed by the podocyte. In lama3(-/-) animals, glomerular maturation arrests at this stage. Endothelial cells do not attenuate, develop fenestrae, or form typical lumens, and mesangial cells (MCs) were not identified. LN alpha3 subunit (LAMA3) protein was identified in the basement membrane adjacent to glomerular endothelial cells (GEnCs) in normal rats and mice. In developing rat glomeruli, the LAMA3 subunit was first detectable in the early capillary loop stage, which corresponds to the stage at which maturation arrest was observed in the mutant mice. Lama3 mRNA and protein were identified in isolated rat and mouse glomeruli and cultured rat GEnCs, but not MC. These data document expression of LAMA3 in glomeruli and support a critical role for it in GEnC differentiation. Furthermore, LAMA3 chain expression and/or another product of endothelial cells are required for MC migration into the developing glomerulus. PMID:16850021

  5. Overexpression of the CmACS-3 gene in melon causes abnormal pollen development.

    PubMed

    Zhang, H; Luan, F

    2015-01-01

    Sexual diversity expressed by the Curcurbitaceae family is a primary example of developmental plasticity in plants. Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. Over-expression of the CmACS-3 gene in melon plants showed an increased number of flower buds, and increased femaleness as demonstrated by a larger number bisexual buds. Transformation of CmACS-3 in melons showed earlier development of and an increased number of bisexual buds that matured to anthesis but also increased the rate of development of the bisexual buds to maturity. Field studies showed that CmACS-3-overexpressing melons had earlier mature bisexual flowers, earlier fruit set, and an increased number of fruits set on closely spaced nodes on the main stem. PMID:26400274

  6. Baseline sacroiliac joint magnetic resonance imaging abnormalities and male sex predict the development of radiographic sacroiliitis.

    PubMed

    Akar, Servet; Isik, Sibel; Birlik, Bilge; Solmaz, Dilek; Sari, Ismail; Onen, Fatos; Akkoc, Nurullah

    2013-10-01

    We evaluated the relationship between the baseline sacroiliac joint (SIJ) magnetic resonance imaging (MRI) findings and the development of radiographic sacroiliitis and tested their prognostic significance in cases of ankylosing spondylitis. Patients who had undergone an SIJ MRI at the rheumatology department were identified. Individuals for whom pelvic X-rays were available after at least 1 year of MRI were included in the analysis. All radiographs and MRI examinations were scored by two independent readers. Medical records of the patients were reviewed to obtain potentially relevant demographic and clinical data. We identified 1,069 SIJ MRIs, and 328 fulfilled our inclusion criteria. Reliability analysis revealed moderate to good inter- and intra-observer agreement. On presentation data, 14 cases were excluded because they had unequivocal radiographic sacroiliitis at baseline. After a mean of 34.8 months of follow-up, 24 patients developed radiographic sacroiliitis. The presence of active sacroiliitis (odds ratio (OR) 15.1) and structural lesions on MRI (OR 8.3), male sex (OR 4.7), fulfillment of Calin's inflammatory back pain criteria (P = 0.001), and total MRI activity score (P < 0.001) were found to be related to the development of radiographic sacroiliitis. By regression modeling, the presence of both active inflammatory and structural damage lesions on MRI and male sex were found to be predictive factors for the development of radiographic sacroiliitis. Our present results suggest that the occurrence of both active inflammatory and structural lesions in SIJs revealed by MRI is a significant risk factor for radiographic sacroiliitis, especially in male patients with early inflammatory back pain. PMID:23765093

  7. Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth

    PubMed Central

    Kapellou, Olga; Counsell, Serena J; Kennea, Nigel; Dyet, Leigh; Saeed, Nadeem; Stark, Jaroslav; Maalouf, Elia; Duggan, Philip; Ajayi-Obe, Morenike; Hajnal, Jo; Allsop, Joanna M; Boardman, James; Rutherford, Mary A; Cowan, Frances; Edwards, A. David

    2006-01-01

    Background We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment. Methods and Findings We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25–1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth. Conclusions Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery. PMID:16866579

  8. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development

    PubMed Central

    McNeill, Elizabeth M.; Klöckner-Bormann, Mariana; Roesler, Elizabeth C.; Talton, Lynn E.; Moechars, Dieder; Clagett-Dame, Margaret

    2011-01-01

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  9. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  10. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.

    PubMed

    McNeill, Elizabeth M; Klöckner-Bormann, Mariana; Roesler, Elizabeth C; Talton, Lynn E; Moechars, Dieder; Clagett-Dame, Margaret

    2011-05-15

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests that the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  11. Vascular endothelial growth factor and angiopoietins during hen ovarian follicle development.

    PubMed

    Kim, Dongwon; Lee, Jeeyoung; Johnson, A L

    2016-06-01

    Growth and maturation of ovarian follicles in the hen (Gallus gallus) requires a network of blood vessels that increases in complexity during development. The present studies investigate expression of vascular endothelial growth factor A (VEGF), angiopoietin1 (ANGPT1) and ANGPT2 mRNAs together with their associated receptors (VEGFR and TIE2, respectively) during maturation. Elevated expression of VEGF and its receptors is associated with healthy, compared to atretic, follicles. Levels of VEGF significantly increase, while antagonistic ANGPT2 decrease, in granulosa cells (GC) at follicle selection. By comparison, levels of VEGF, VEGFR1, VEGFR2, ANGPT1, ANGPT2 and TIE2 within the theca layer do not change (P>0.05) relative to developmental stages surrounding follicle selection (6-8mm versus 9-12mm follicles). Prior to selection, treatment with transforming growth factor β1 (TGFβ1) significantly increases levels of VEGF in undifferentiated GC from prehierarchal (6-8mm) follicles and actively differentiating GC from selected (9-12 and F4) follicles. Moreover, subsequent to selection follicle stimulating hormone (FSH) increases VEGF expression in GC from 9 to 12mm follicles, and eventually luteinizing hormone (LH) promotes VEGF expression in GC from more mature preovulatory follicles. It is concluded that prior to follicle selection VEGF expression is regulated by autocrine and paracrine actions of TGFβ1 (but not FSH), and that a comparatively limited extent of vasculature is sufficient to maintain prehierarchal follicles in a viable and undifferentiated state. At follicle selection, FSH- and subsequently LH-induced VEGF production within the GC layer enhance angiogenesis within the theca layer, which facilitates the rapid growth of preovulatory follicles via enhanced incorporation of yellow yolk. PMID:26996428

  12. Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement.

    PubMed

    Ranjan, Rajiv; Dey, Nrisingha

    2012-07-01

    A Caulimovirus-based hybrid-promoter, EFCFS, was derived by fusing the distal region (-227 to -54, FUAS) of Figwort mosaic virus full-length transcript promoter (F20) with the core promoter (-151 to +12, FS3CP) domain of Figwort mosaic virus sub-genomic transcript promoter (FS3). The hybrid-promoter (EFCFS) showed enhanced activity compared to the CaMV35S, F20 and FS3 promoters; while it showed equivalent activity with that of the CAMV35S(2) promoter in both transient protoplast (Nicotiana tabacum cv. Xanthi Brad) and transgenic plants (Nicotiana tabacum; Samsun NN). Further, we have engineered the EFCFS promoter sequence by inserting additional copies of the stress-inducible 'AAAG' cis-motif (Dof-1) to generate a set of three hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3-containing 10, 11 and 13 'AAAG' motif, respectively. Transgenic plants expressing these hybrid synthetic promoters coupled to the GUS reporter were developed and their transcriptional activities were compared with F20, FS3, 35S and 35S(2) promoters, respectively. The relative levels of uidA-mRNA accumulation in transgenic plants driven by above promoters individually were compared by qRT-PCR. Localization of GUS reporter activity in plant tissue was assayed by histochemical approach. CLSM-based study revealed that hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3 showed enhanced activity in vascular tissue compared to the CaMV35S promoter. In the presence of abiotic stress elicitors, salicylic acid and jasmonic acid, the EFCFS-HS-1 promoters showed enhanced activity compared to the 35S promoter. Newly derived hybrid-synthetic promoter/s with enhanced activity and stress inducibility could become efficient tools for advancement of plant biotechnology. PMID:22610660

  13. Development and evaluation of a novel method for preclinical measurement of tissue vascular volume.

    PubMed

    Boswell, C Andrew; Ferl, Gregory Z; Mundo, Eduardo E; Schweiger, Michelle G; Marik, Jan; Reich, Michael P; Theil, Frank-Peter; Fielder, Paul J; Khawli, Leslie A

    2010-10-01

    Identification of clinically predictive models of disposition kinetics for antibody therapeutics is an ongoing pursuit in drug development. To encourage translation of drug candidates from early research to clinical trials, clinical diagnostic agents may be used to characterize antibody disposition in physiologically relevant preclinical models. TechneScan PYP was employed to measure tissue vascular volumes (V(v)) in healthy mice. Two methods of red blood cell (RBC) labeling were compared: a direct in vivo method that is analogous to a clinical blood pool imaging protocol, and an indirect method in which radiolabeled blood was transfused from donor mice into recipient mice. The indirect method gave higher precision in RBC labeling yields, lower V(v) values in most tissues, and lower (99m)Tc uptake in kidneys and bladder by single photon emission computed tomographic (SPECT) imaging relative to the direct method. Furthermore, the relative influence of each method on the calculated area under the first 7 days of the concentration-time curve (AUC(0-7)) of an IgG in nude mice was assessed using a physiologically based pharmacokinetic model. The model was sensitive to the source of V(v) values, whether obtained from the literature or measured by either method, when used to predict experimental AUC(0-7) values for radiolabeled trastuzumab in healthy murine tissues. In summary, a novel indirect method for preclinical determination of V(v) offered higher precision in RBC labeling efficiency and lower renal uptake of (99m)Tc than the direct method. In addition, these observations emphasize the importance of obtaining accurate physiological parameter values for modeling antibody uptake. PMID:20704296

  14. Transgenic mice over-expressing ET-1 in the endothelial cells develop systemic hypertension with altered vascular reactivity.

    PubMed

    Leung, Justin Wai-Chung; Wong, Wing Tak; Koon, Hon Wai; Mo, Fong Ming; Tam, Sidney; Huang, Yu; Vanhoutte, Paul M; Chung, Stephen Sum Man; Chung, Sookja Kim

    2011-01-01

    Endothelin-1 (ET-1) is a potent vasoconstrictor involved in the regulation of vascular tone and implicated in hypertension. However, the role of small blood vessels endothelial ET-1 in hypertension remains unclear. The present study investigated the effect of chronic over-expression of endothelial ET-1 on arterial blood pressure and vascular reactivity using transgenic mice approach. Transgenic mice (TET-1) with endothelial ET-1 over-expression showed increased in ET-1 level in the endothelial cells of small pulmonary blood vessels. Although TET-1 mice appeared normal, they developed mild hypertension which was normalized by the ET(A) receptor (BQ123) but not by ET(B) receptor (BQ788) antagonist. Tail-cuff measurements showed a significant elevation of systolic and mean blood pressure in conscious TET-1 mice. The mice also exhibited left ventricular hypertrophy and left axis deviation in electrocardiogram, suggesting an increased peripheral resistance. The ionic concentrations in the urine and serum were normal in 8-week old TET-1 mice, indicating that the systemic hypertension was independent of renal function, although, higher serum urea levels suggested the occurrence of kidney dysfunction. The vascular reactivity of the aorta and the mesenteric artery was altered in the TET-1 mice indicating that chronic endothelial ET-1 up-regulation leads to vascular tone imbalance in both conduit and resistance arteries. These findings provide evidence for the role of spatial expression of ET-1 in the endothelium contributing to mild hypertension was mediated by ET(A) receptors. The results also suggest that chronic endothelial ET-1 over-expression affects both cardiac and vascular functions, which, at least in part, causes blood pressure elevation. PMID:22096514

  15. Vascular parkinsonism: Deconstructing a syndrome

    PubMed Central

    Vizcarra, Joaquin A.; Lang, Anthony E.; Sethi, Kapil D; Espay, Alberto J.

    2015-01-01

    Progressive ambulatory impairment and abnormal white matter signal on neuroimaging come together under the diagnostic umbrella of vascular parkinsonism. A critical appraisal of the literature, however, suggests that (1) no abnormal structural imaging pattern is specific to vascular parkinsonism; (2) there is poor correlation between brain magnetic resonance imaging hyperintensities and microangiopathic brain disease and parkinsonism from available clinicopathologic data; (3) pure parkinsonism from vascular injury (“definite” vascular parkinsonism) consistently results from ischemic or hemorrhagic strokes involving the substantia nigra and/or nigrostriatal pathway but sparing the striatum itself, the cortex, and the intervening white matter; and (4) many cases reported as vascular parkinsonism may represent pseudovascular parkinsonism (e.g., Parkinson disease or another neurodegenerative parkinsonism such as progressive supranuclear palsy with non-specific neuroimaging signal abnormalities), vascular pseudoparkinsonism (e.g., akinetic mutism due to bilateral mesial frontal strokes or apathetic depression from bilateral striatal lacunar strokes), or pseudovascular pseudoparkinsonism (e.g., higher-level gait disorders, including normal pressure hydrocephalus with transependimal exudate). These syndromic designations are preferable over vascular parkinsonism until pathology or validated biomarkers confirm the underlying nature and relevance of the leukoaraiosis. PMID:25997420

  16. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  17. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  18. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  19. Vascular restoration therapy and bioresorbable vascular scaffold

    PubMed Central

    Wang, Yunbing; Zhang, Xingdong

    2014-01-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article. PMID:26816624

  20. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  1. Improving on Army Field Gauze for Lethal Vascular Injuries: Challenges in Dressing Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accounting for half of all deaths, uncontrolled hemorrhage remains the leading cause of death on the battlefield. Gaining hemostatic control of lethal vascular injuries sustained in combat using topical agents remains a challenge. Recent animal testing using a lethal arterial injury model compared a...

  2. The alternative splicing factor Nova2 regulates vascular development and lumen formation

    PubMed Central

    Giampietro, Costanza; Deflorian, Gianluca; Gallo, Stefania; Di Matteo, Anna; Pradella, Davide; Bonomi, Serena; Belloni, Elisa; Nyqvist, Daniel; Quaranta, Valeria; Confalonieri, Stefano; Bertalot, Giovanni; Orsenigo, Fabrizio; Pisati, Federica; Ferrero, Elisabetta; Biamonti, Giuseppe; Fredrickx, Evelien; Taveggia, Carla; Wyatt, Chris D. R.; Irimia, Manuel; Di Fiore, Pier Paolo; Blencowe, Benjamin J.; Dejana, Elisabetta; Ghigna, Claudia

    2015-01-01

    Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the ‘angioneurins' family. PMID:26446569

  3. Modulation of Serotonin Transporter Function during Fetal Development Causes Dilated Heart Cardiomyopathy and Lifelong Behavioral Abnormalities

    PubMed Central

    Noorlander, Cornelle W.; Ververs, Frederique F. T.; Nikkels, Peter G. J.; van Echteld, Cees J. A.; Visser, Gerard H. A.; Smidt, Marten P.

    2008-01-01

    Background Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI. Methodology/Principal Findings In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring. Conclusions These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher

  4. Abnormal development of monoaminergic neurons is implicated in mood fluctuations and bipolar disorder.

    PubMed

    Jukic, Marin M; Carrillo-Roa, Tania; Bar, Michal; Becker, Gal; Jovanovic, Vukasin M; Zega, Ksenija; Binder, Elisabeth B; Brodski, Claude

    2015-03-01

    Subtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons. Here we behaviorally phenotyped mouse mutants overexpressing Otx2 in the hindbrain, resulting in an increased number of DA neurons and a decreased number of 5-HT neurons in both developing and mature animals. Over the course of 1 month, control animals exhibited stable locomotor activity in their home cages, whereas mutants showed extended periods of elevated or decreased activity relative to their individual average. Additional behavioral paradigms, testing for manic- and depressive-like behavior, demonstrated that mutants showed an increase in intra-individual fluctuations in locomotor activity, habituation, risk-taking behavioral parameters, social interaction, and hedonic-like behavior. Olanzapine, lithium, and carbamazepine ameliorated the behavioral alterations of the mutants, as did the mixed serotonin receptor agonist quipazine and the specific 5-HT2C receptor agonist CP-809101. Testing the relevance of the genetic networks specifying monoaminergic neurons for BPD in humans, we applied an interval-based enrichment analysis tool for genome-wide association studies. We observed that the genes specifying DA and 5-HT neurons exhibit a significant level of aggregated association with BPD but not with schizophrenia or major depressive disorder. The results of our translational study suggest that aberrant development of monoaminergic neurons leads to mood fluctuations and may be associated with BPD. PMID:25241801

  5. Development of cytotoxic antibodies following renal allograft transplantation is associated with reduced graft survival due to chronic vascular rejection.

    PubMed

    Davenport, A; Younie, M E; Parsons, J E; Klouda, P T

    1994-01-01

    We prospectively followed 64 patients who had had no cytotoxic antibodies prior to first cadaveric renal allograft transplantation for post-transplant antibodies. During a mean follow-up period of 62 months (range 45-92) cytotoxic antibodies developed in 36 patients (56%). Sixteen grafts were lost due to chronic vascular rejection in the group of patients who developed antibodies compared to two in those who remained antibody negative, P < 0.01. Renal function was worse in the antibody-positive group, median serum creatinine 215 mumol/l (131-256) (interquartile range) versus 111 mumol/l (98-127) in the antibody-negative group, P = 0.002, and creatinine clearance 39 ml/min (25-55) versus 90 ml/min (55-104), P < 0.001. There were no significant differences in immunosuppressive protocol, HLA-mismatching, blood transfusion history, the number of acute rejection episodes, mean arterial blood pressure, or proteinuria between the groups. The presence of cytotoxic antibodies predated the classical manifestations of chronic vascular rejection. This suggests that humoral mechanisms may play a role in the development of chronic vascular rejection. PMID:7816298

  6. Wnt7b can replace Ihh to induce hypertrophic cartilage vascularization but not osteoblast differentiation during endochondral bone development.

    PubMed

    Joeng, Kyu Sang; Long, Fanxin

    2014-01-01

    Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh(-/-) mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh(-/-) mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh(-/-); Gli3(-/-) embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development. PMID:26273517

  7. Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis

    PubMed Central

    Baek, Kon; Seo, Pil Joon; Park, Chung-Mo

    2011-01-01

    The ATPases associated with various cellular activities (AAA) proteins are widespread in living organisms. Some of the AAA-type ATPases possess metalloprotease activities. Other members constitute the 26S proteasome complexes. In recent years, a few AAA members have been implicated in vesicle-mediated secretion, membrane fusion, cellular organelle biogenesis, and hypersensitive responses (HR) in plants. However, the physiological roles and biochemical activities of plant AAA proteins have not yet been defined at the molecular level, and regulatory mechanisms underlying their functions are largely unknown. In this study, we showed that overexpression of an Arabidopsis gene encoding a mitochondrial AAA protein, ATPase-in-Seed-Development (ASD), induces morphological and anatomical defects in seed maturation. The ASD gene is expressed at a high level during the seed maturation process and in mature seeds but is repressed rapidly in germinating seeds. Transgenic plants overexpressing the ASD gene are morphologically normal. However, seed formation is severely disrupted in the transgenic plants. The ASD gene is induced by abiotic stresses, such as low temperatures and high salinity, in an abscisic acid (ABA)- dependent manner. The ASD protein possesses ATPase activity and is localized into the mitochondria. Our observations suggest that ASD may play a role in seed maturation by influencing mitochondrial function under abiotic stress. PMID:21359673

  8. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice

    PubMed Central

    Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Wei, Wei; Zhu, Guojing; Khoriaty, Rami N.; Zhang, Bin

    2015-01-01

    COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo. PMID:26494538

  9. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  10. Abnormal etioplast development in barley seedlings infected with BSMV by seed transmission.

    PubMed

    Harsányi, Anett; Böddi, Béla; Bóka, Károly; Almási, Asztéria; Gáborjányi, Richard

    2002-01-01

    The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley (Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus. PMID:11982946

  11. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice

    PubMed Central

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J.; Hong, Seok-Ho; DeMayo, Francesco J.; Lydon, John P.; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-01-01

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8d/d) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8d/d females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8d/d mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice. PMID:26833131

  12. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  13. Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    PubMed Central

    Yuan, Jupeng; Qian, Yanyan; Sun, Wenjie; Zou, Yongxin; Guo, Chenhong; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2012-01-01

    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse. PMID:22606329

  14. Anti-angiogenic, vascular-disrupting and anti-metastatic activities of vinflunine, the latest vinca alkaloid in clinical development.

    PubMed

    Kruczynski, Anna; Poli, Maura; Dossi, Romina; Chazottes, Eric; Berrichon, Géraldine; Ricome, Christel; Giavazzi, Raffaella; Hill, Bridget T; Taraboletti, Giulia

    2006-11-01

    The aim of this study was to investigate the anti-angiogenic, vascular-disrupting and anti-metastatic properties of vinflunine, the latest vinca alkaloid in phase III clinical development. The effects of vinflunine on in vitro endothelial cell functions relevant to the performance of an already formed vasculature and to the angiogenic process were evaluated. The in vivo anti-angiogenic properties of vinflunine were also investigated, as were its activity against a model of experimental metastasis. In vitro vinflunine induced a rapid change in the morphology of endothelial cells and disrupted the network of capillary-like structures, indicating potential vascular-disrupting activity. Furthermore, vinflunine showed anti-angiogenic properties, since it inhibited endothelial cell migration and the capacity of these cells to organise into a network of capillary-like structures. All these effects were observed under conditions that only marginally affect endothelial cell proliferation. In vivo, vinflunine inhibited bFGF-induced angiogenesis in Matrigel implants at doses 40-20-fold lower than its maximal therapeutic dose (MTD). Treatment of mice with vinflunine reduced the number of liver metastases induced by intrasplenic injection of LS174T cells, with significant effects also observed at low doses; i.e. 16-fold lower than the MTD. This study demonstrates that vinflunine expresses both vascular-disrupting and anti-angiogenic activities and induced marked effects against experimental metastases, all properties that support its ongoing clinical development. PMID:16973349

  15. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    NASA Astrophysics Data System (ADS)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  16. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities

    PubMed Central

    Lyons, W. Ernest; Mamounas, Laura A.; Ricaurte, George A.; Coppola, Vincenzo; Reid, Susan W.; Bora, Susan H.; Wihler, Cornelia; Koliatsos, Vassilis E.; Tessarollo, Lino

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) has trophic effects on serotonergic (5-HT) neurons in the central nervous system. However, the role of endogenous BDNF in the development and function of these neurons has not been established in vivo because of the early postnatal lethality of BDNF null mice. In the present study, we use heterozygous BDNF+/− mice that have a normal life span and show that these animals develop enhanced intermale aggressiveness and hyperphagia accompanied by significant weight gain in early adulthood; these behavioral abnormalities are known to correlate with 5-HT dysfunction. Forebrain 5-HT levels and fiber density in BDNF+/− mice are normal at an early age but undergo premature age-associated decrements. However, young adult BDNF+/− mice show a blunted c-fos induction by the specific serotonin releaser-uptake inhibitor dexfenfluramine and alterations in the expression of several 5-HT receptors in the cortex, hippocampus, and hypothalamus. The heightened aggressiveness can be ameliorated by the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that endogenous BDNF is critical for the normal development and function of central 5-HT neurons and for the elaboration of behaviors that depend on these nerve cells. Therefore, BDNF+/− mice may provide a useful model to study human psychiatric disorders attributed to dysfunction of serotonergic neurons. PMID:10611369

  17. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    SciTech Connect

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.; Ruginsk, Silvia G.; Uchoa, Ernane T.; Correa, Fernando M.A.; Elias, Lucila L.K.; Antunes-Rodrigues, José; Resstel, Leonardo B.M.

    2014-10-15

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  18. Radiologic atlas of pulmonary abnormalities in children

    SciTech Connect

    Singleton, E.B.; Wagner, M.L.; Dutton, R.V.

    1988-01-01

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.

  19. Secondary growth of the Arabidopsis hypocotyl-vascular development in dimensions.

    PubMed

    Lehmann, Fabio; Hardtke, Christian S

    2016-02-01

    The secondary thickening of plant organs in extant dicotyledons is a massive growth process that constitutes the major carbon sink in perennial, woody plants. Yet, our understanding of its molecular genetic control has been mostly obtained by its analysis in an herbaceous annual model, Arabidopsis. Recent years have seen increased interest in this somewhat under-researched topic, and various (non-)cell autonomous factors that guide the extent and vascular patterning of secondary growth have been identified. Concomitantly, a more detailed understanding of vascular differentiation processes has been obtained through analyses of primary growth, mostly in the root meristem. A future challenge will be the integration of these patterning and differentiation modules together with cambial activity into the 4-dimensional frame of secondary thickening. PMID:26667498

  20. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development.

    PubMed

    Maegdefessel, Lars; Spin, Joshua M; Raaz, Uwe; Eken, Suzanne M; Toh, Ryuji; Azuma, Junya; Adam, Matti; Nakagami, Futoshi; Nagakami, Futoshi; Heymann, Helen M; Chernogubova, Ekaterina; Chernugobova, Ekaterina; Jin, Hong; Roy, Joy; Hultgren, Rebecka; Caidahl, Kenneth; Schrepfer, Sonja; Hamsten, Anders; Eriksson, Per; McConnell, Michael V; Dalman, Ronald L; Tsao, Philip S

    2014-01-01

    Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and plasma analysis, that miR-24 is a key regulator of vascular inflammation and AAA pathology. In vivo and in vitro studies reveal chitinase 3-like 1 (Chi3l1) to be a major target and effector under the control of miR-24, regulating cytokine synthesis in macrophages as well as their survival, promoting aortic smooth muscle cell migration and cytokine production, and stimulating adhesion molecule expression in vascular endothelial cells. We further show that modulation of miR-24 alters AAA progression in animal models, and that miR-24 and CHI3L1 represent novel plasma biomarkers of AAA disease progression in humans. PMID:25358394

  1. Development of salmon collagen vascular graft: mechanical and biological properties and preliminary implantation study.

    PubMed

    Nagai, Nobuhiro; Nakayama, Yasuhide; Zhou, Yue-Min; Takamizawa, Keiichi; Mori, Kazuo; Munekata, Masanobu

    2008-11-01

    Elastic salmon collagen (SC) vascular grafts were prepared by incubating a mixture of acidic SC solution and a fibrillogenesis-inducing buffer containing a crosslinking agent [water-soluble carbodiimide (WSC)] in a tubular mold at 4 degrees C for 24 h and then at 60 degrees C for 5 min. Subsequently, re-crosslinking in ethanol solution containing WSC was performed. The dimension of the SC grafts was easily controlled by changing the size of the mold used. The compliance (stiffness parameter: beta) and burst strength of the SC grafts (internal diameter, 2 mm; length, 20 mm; and wall thickness, 0.75 mm) that were prepared for implantation were 18.2 and 1434 mmHg, respectively; both these values were comparable with those of native vessels. Upon placement in rat subcutaneous pouches, the SC grafts were gradually biodegraded with little inflammatory reaction. The SC grafts were preliminarily implanted in rat abdominal aortas by using specially designed vascular connecting system. This system was used because the graft exhibited easy tearing and thus inadequate suturability. There was neither aneurysm formation nor graft rupture, but mild thrombus formation was seen within the 4-week observation period. These grafts may be ideal for use in regenerative medicine because we believe that SC would be completely replaced with native vascular tissues after implantation, although further improvement in the mechanical properties of the graft is needed for anastomosis. PMID:18478534

  2. The "self-similarity logic" applied to the development of the vascular system.

    PubMed

    Guidolin, Diego; Crivellato, Enrico; Ribatti, Domenico

    2011-03-01

    From a structural standpoint, living systems exhibit a hierarchical pattern of organization in which structures are nested within one another. From a temporal point of view, this type of organization is the outcome of a 'history' resulting from a set of developmental steps. Recently, it has been suggested that some auto similarity prevails at each nested level or time step and a principle of "self-similarity logic" has been proposed to convey the concept of a multi-level organization in which very similar rules (logic) apply at each level. In this study, the hypothesis is put forward that such a principle is particularly apparent in many morphological and developmental aspects of the vascular system. In fact, not only the morphology of the vascular system exhibits a high degree of geometrical self-similarity, but its remodelling processes also seem to be characterized by the application of almost the same rules, from the macroscopic to the endothelial cell to the sub-cellular levels, potentially allowing a unitary description of features such as sprouting and intussusceptive angiogenesis, and phenotypic differences of endothelial cells. The influence of the "self-similarity logic" shaping the vascular system on the organogenesis has been also discussed. PMID:21215741

  3. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus).

    PubMed

    Mesarič, Tina; Sepčić, Kristina; Drobne, Damjana; Makovec, Darko; Faimali, Marco; Morgana, Silvia; Falugi, Carla; Gambardella, Chiara

    2015-06-01

    We examined egg fertilisation in purple sea urchin (Paracentrotus lividus) after sperm exposure to carbon-based nanomaterials, carbon black (CB) and graphene oxide (GO), from 0.0001 mg/L to 1.0mg/L. Gastrula stage embryos were investigated for acetylcholinesterase and propionylcholinesterase activities, and their morphological characteristics. Plutei were analysed for morphological abnormalities, with emphasis on skeletal rod formation. Egg fertilisation was significantly affected by CB, at all concentrations tested. Loss of cell adhesion at the gastrula surface was observed in eggs fertilised with sperm treated with CB. However, concentration-dependent morphological anomalies were observed in the gastrulae and plutei formed after sperm exposure to either CB or GO. The activities of both cholinesterases decreased in the gastrulae, although not in a concentration-dependent manner. These effects appear to arise from physical interactions between these carbon-based nanomaterials and the sperm, whereby nanomaterials attached to the sperm surface interfere with fertilisation, which leads to disturbances in the signalling pathways of early embryonic development. Reduced cholinesterase activity in gastrulae from eggs fertilised with nanomaterial-treated sperm confirms involvement of the cholinergic system in early sea urchin development, including skeletogenesis. PMID:25897690

  4. Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets.

    PubMed

    Máthé, Csaba; Beyer, Dániel; Erdodi, Ferenc; Serfozo, Zoltán; Székvölgyi, Lóránt; Vasas, Gábor; M-Hamvas, Márta; Jámbrik, Katalin; Gonda, Sándor; Kiss, Andrea; Szigeti, Zsuzsa M; Surányi, Gyula

    2009-05-01

    Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in

  5. Development of a percutaneous optical imaging system for tracking vascular gene expression: a feasibility study using human tissuelike phantoms

    NASA Astrophysics Data System (ADS)

    Kar, Sourav K.; Kumar, Ananda; Yang, Xiaoming

    2004-05-01

    Noninvasive tracking of vascular gene delivery and expression forms an important part of successfully implementing vascular gene therapy methods for the treatment of atherosclerosis and various cardiovascular disorders. While ultrasound and MR imaging have shown promise in the monitoring of gene delivery to the vasculatures, optical imaging has shown promise for tracking gene expression. Optical imaging using bioreporter genes like Green Fluorescent Protein (GFP), Red Fluorescent Protein (RFP) and Luciferase to track and localize the therapeutic gene have helped provide an in vivo detection method of the process. The usage of GFP and RFP entails the detection of the fluorescent signal emitted by them on excitation with light of appropriate wavelength. We have developed a novel percutaneous optical imaging system that may be used for in vivo tracking vascular fluorescent gene expression in deep-seated vessels. It is based on the detection of the fluorescent signal emitted from GFP tagged cells. This phantom study was carried out to investigate the performance of the optical imaging system and gain insights into its performance record and study improvisation possibilities.

  6. Characterization of the Skeletal Fusion with Sterility (sks) Mouse Showing Axial Skeleton Abnormalities Caused by Defects of Embryonic Skeletal Development

    PubMed Central

    Akiyama, Kouyou; Katayama, Kentaro; Tsuji, Takehito; Kunieda, Tetsuo

    2014-01-01

    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs. PMID:24521859

  7. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. PMID:25736181

  8. Development and pathologies of the arterial wall.

    PubMed

    Seidelmann, Sara B; Lighthouse, Janet K; Greif, Daniel M

    2014-06-01

    Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies. PMID:24071897

  9. Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension.

    PubMed

    Happé, C M; Szulcek, R; Voelkel, N F; Bogaard, H J

    2016-08-01

    In pulmonary arterial hypertension (PAH) structural and functional abnormalities of the small lung vessels interact and lead to a progressive increase in pulmonary vascular resistance and right heart failure. A current pathobiological concept characterizes PAH as a 'quasi-malignant' disease focusing on cancer-like alterations in endothelial cells (EC) and the importance of their acquired apoptosis-resistant, hyper-proliferative phenotype in the process of vascular remodeling. While changes in pulmonary blood flow (PBF) have been long-since recognized and linked to the development of PAH, little is known about a possible relationship between an altered PBF and the quasi-malignant cell phenotype in the pulmonary vascular wall. This review summarizes recognized and hypothetical effects of an abnormal PBF on the pulmonary vascular bed and links these to quasi-malignant changes found in the pulmonary endothelium. Here we describe that abnormal PBF does not only trigger a pulmonary vascular cell growth program, but may also maintain the cancer-like phenotype of the endothelium. Consequently, normalization of PBF and EC response to abnormal PBF may represent a treatment strategy in patients with established PAH. PMID:26804008

  10. Inhibition of tyrosine kinase receptors by SU6668 promotes abnormal stromal development at the periphery of carcinomas

    PubMed Central

    Farace, P; Galiè, M; Merigo, F; Daducci, A; Calderan, L; Nicolato, E; Degrassi, A; Pesenti, E; Sbarbati, A; Marzola, P

    2009-01-01

    Dynamic contrast-enhanced (albumin-Gd-DTPA) magnetic resonance imaging, performed during 2 weeks of daily administration of an inhibitor of tyrosine kinase receptors (SU6668) in an HT-29 colon carcinoma model, revealed the onset of a hyper-enhancing rim, not observed in untreated tumours. To account for tissue heterogeneity in the quantitative analysis, we segmented tumours into three subunits automatically identified by cluster analysis of the enhancement curves using a k-means algorithm. Transendothelial permeability (Kps) and fractional plasma volume (fPV) were calculated in each subunit. An avascular and necrotic region, an intermediate zone and a well-vascularised periphery were reliably identified. During untreated tumour growth, the identified sub-regions did not substantially change their enhancement pattern. Treatment with SU6668 induced major changes at tumour periphery where a significant increase of Kps and fPV was observed with respect to control tumours. Histology revealed a sub-capsular layer composed of hyper-dense viable tumour cells in the periphery of untreated tumours. The rim of viable neoplastic cells was reduced in treated tumours, and replaced by loose connective tissue characterised by numerous vessels, which explains the observed hyper-enhancement. The present data show a peripheral abnormal development of cancer-associated stroma, indicative of an adaptive response to anti-angiogenic treatment. PMID:19384298

  11. Suppression of vascular network formation by chronic hypoxia and prolyl-hydroxylase 2 (phd2) deficiency during vertebrate development.

    PubMed

    Metikala, Sanjeeva; Neuhaus, Herbert; Hollemann, Thomas

    2016-04-01

    In the adult, new vessels and red blood cells form in response to hypoxia. Here, the oxygen-sensing system (PHD-HIF) has recently been put into focus, since the prolyl-hydroxylase domain proteins (PHD) and hypoxia-inducible factors (HIF) are considered as potential therapeutic targets to treat ischemia, cancers or age-related macula degeneration. While the oxygen-sensing system (PHD-HIF) has been studied intensively in this respect, only little is known from developing vertebrate embryos since mutations within this pathway led to an early decease of embryos due to placental defects. During vertebrate embryogenesis, a progenitor cell called hemangioblast is assumed to give rise to blood cells and blood vessels in a process called hematopoiesis and vasculogenesis, respectively. Xenopus provides an ideal experimental system to address these processes in vivo, as its development does not depend on a functional placenta and thus allows analyzing the role of oxygen directly. To this end, we adopted a computer-controlled four-channel system, which allowed us to culture Xenopus embryos under defined oxygen concentrations. Our data show that the development of vascular structures and blood cells is strongly impaired under hypoxia, while general development is less compromised. Interestingly, suppression of Phd2 function using specific antisense morpholinos or a chemical inhibitor resulted in mostly overlapping vascular defects; nevertheless, blood cell was formed almost normally. Our results provide the first evidence that oxygen via Phd2 has a decisive influence on the formation of the vascular network during vertebrate embryogenesis. These findings may be considered in certain potential treatment concepts. PMID:26678600

  12. Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus.

    PubMed

    Gao, Juanmei; Ruan, Hangze; Qi, Xianjie; Guo, Xia; Zheng, Jingna; Liu, Cong; Fang, Yanxiao; Huang, Minjiao; Xu, Miao; Shen, Wanhua

    2016-09-01

    Xylene and its derivatives are raw materials widely used in industry and known to be toxic to animals. However, the mechanism underlying the neurotoxicity of para-xylene (PX) to the central nervous system (CNS) in vivo is less clear. Here, we exposed Xenopus laevis tadpoles to sub-lethal concentrations of PX during the critical period of brain development to determine the effects of PX on Xenopus development and visual behavior. We found that the abnormality rate was significantly increased with exposure to increasing concentrations of PX. In particular, the number of apoptotic cells in the optic tectum was dramatically increased with exposure to PX at 2mM. Long-term PX exposure also resulted in significant deficits in visually guided avoidance behavior. Strikingly, co-incubation with PX and d-glucuronolactone (GA) decreased the number of apoptotic cells and rescued the avoidance behavior. Furthermore, we found that the acetylation of H4K12 (H4K12ac) and the dimethylation of H3K9 (H3K9me2) in the optic tectum were significantly increased in PX-treated animals, and these effects were suppressed by GA treatment. In particular, the increase in apoptotic cells in PX-treated brains was also inhibited by GA treatment. These effects indicate that epigenetic regulation plays a key role in PX-induced apoptosis and animal behavior. In an effort to characterize the neurotoxic effects of PX on brain development and behavior, these results suggest that the neurotoxicity of PX requires further evaluation regarding the safety of commercial and industrial uses. PMID:27343828

  13. An Autopsied Case of Malignant Sarcomatoid Pleural Mesothelioma in Which Chest Pain Developed Several Months Earlier without Abnormality on Imaging

    PubMed Central

    Yaguchi, Daizo; Ichikawa, Motoshi; Inoue, Noriko; Kobayashi, Daisuke; Matsuura, Akinobu; Shizu, Masato; Imai, Naoyuki; Watanabe, Kazuko

    2015-01-01

    The patient experienced chest pain for about 7 months, but a diagnosis could not be made until after death. He was diagnosed with malignant sarcomatoid pleural mesothelioma on autopsy. In this case report, difficult aspects of the diagnosis are discussed. The 70-year-old Japanese man was a driver who transported ceramic-related products. Right chest pain developed in July 2013, but no abnormality was detected on a chest computed tomography (CT) performed in September 2013, and the pain was managed as right intercostal neuralgia. A chest CT performed in late October 2013 revealed a right pleural effusion, and the patient was referred to our hospital in early November 2013. Thoracentesis was performed, but the cytology was negative, and no diagnosis could be made. Close examination was postponed because the patient developed a subarachnoid hemorrhage. He underwent 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) after discharge from the neurosurgery department, and extensive right pleural thickening and 18F-FDG accumulation in this region were observed. Based on these findings, malignant pleural mesothelioma was suspected, and a thoracoscopy was performed under local anesthesia in early December 2013, but no definite diagnosis could be made. The patient selected best supportive care and died about 7 months after the initial development of right chest pain. The disease was definitively diagnosed as malignant sarcomatoid pleural mesothelioma by a pathological autopsy. When chronic chest pain of unknown cause is observed and past exposure to asbestos is suspected, actions to prevent delay in diagnosis should be taken, including testing for suspicion of malignant pleural mesothelioma. PMID:26600776

  14. An Autopsied Case of Malignant Sarcomatoid Pleural Mesothelioma in Which Chest Pain Developed Several Months Earlier without Abnormality on Imaging.

    PubMed

    Yaguchi, Daizo; Ichikawa, Motoshi; Inoue, Noriko; Kobayashi, Daisuke; Matsuura, Akinobu; Shizu, Masato; Imai, Naoyuki; Watanabe, Kazuko

    2015-01-01

    The patient experienced chest pain for about 7 months, but a diagnosis could not be made until after death. He was diagnosed with malignant sarcomatoid pleural mesothelioma on autopsy. In this case report, difficult aspects of the diagnosis are discussed. The 70-year-old Japanese man was a driver who transported ceramic-related products. Right chest pain developed in July 2013, but no abnormality was detected on a chest computed tomography (CT) performed in September 2013, and the pain was managed as right intercostal neuralgia. A chest CT performed in late October 2013 revealed a right pleural effusion, and the patient was referred to our hospital in early November 2013. Thoracentesis was performed, but the cytology was negative, and no diagnosis could be made. Close examination was postponed because the patient developed a subarachnoid hemorrhage. He underwent (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) after discharge from the neurosurgery department, and extensive right pleural thickening and (18)F-FDG accumulation in this region were observed. Based on these findings, malignant pleural mesothelioma was suspected, and a thoracoscopy was performed under local anesthesia in early December 2013, but no definite diagnosis could be made. The patient selected best supportive care and died about 7 months after the initial development of right chest pain. The disease was definitively diagnosed as malignant sarcomatoid pleural mesothelioma by a pathological autopsy. When chronic chest pain of unknown cause is observed and past exposure to asbestos is suspected, actions to prevent delay in diagnosis should be taken, including testing for suspicion of malignant pleural mesothelioma. PMID:26600776

  15. Multiple Renal Cyst Development but Not Situs Abnormalities in Transgenic RNAi Mice against Inv::GFP Rescue Gene

    PubMed Central

    Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke

    2014-01-01

    In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938

  16. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    PubMed

    Goktas, Selda; Uslu, Fazil E; Kowalski, William J; Ermek, Erhan; Keller, Bradley B; Pekkan, Kerem

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  17. Development and assessment of a biodegradable solvent cast polyester fabric small-diameter vascular graft

    PubMed Central

    Brandes, Zachary R; Jonas, Richard A.; Fisher, John P.

    2014-01-01

    Adjusting the mechanical properties of polyester-based vascular grafts is crucial to achieving long-term success in vivo. While previous studies using a fabric-based approach have achieved some success, a central issue with pure poly(lactic acid) (PLA) or poly(glycolic acid) (PGA) grafts sealed with poly(DL-caprolactone-co-lactic acid) (P(CL/LA)) has been stenosis. Intimal hyperplasia, a leading cause of stenosis, can be caused by the mechanical incompatibility of synthetic vascular grafts. Investigating the performance of poly(glycolic-co-lactic acid) grafts (PGLA) could lead to insight into whether graft stenosis stems from mechanical issues such as non-compliance and unfavorable degradation times. This could be achieved by examining grafts with tunable mechanical properties between the ranges of such properties in pure PGA and PLA based grafts. In this study, we examined PGLA-based grafts sealed with different P(CL/LA) solutions to determine the PGLA-P(CL/LA) grafts' mechanical properties and tissue functionality. Cell attachment and proliferation on graft surfaces were also observed. For in vivo assessment, grafts were implanted in a mouse model. Mechanical properties and degradation times appeared adequate compared to recorded values of vessels used in autograft procedures. Initial neotissue formation was observed in the grafts and patency maintained during the pilot study. This study presents a ~1mm diameter degradable graft demonstrating suitable mechanical properties and in vivo pilot study success, enabling further investigation into the tuning of mechanical properties to reduce complications in degradable polyester fabric-based vascular grafts. PMID:23852776

  18. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  19. PlexinD1 is required for proper patterning of the periocular vascular network and for the establishment of corneal avascularity during avian ocular development.

    PubMed

    Kwiatkowski, Sam C; Ojeda, Ana F; Lwigale, Peter Y

    2016-03-01

    The anterior eye is comprised of an avascular cornea surrounded by a dense periocular vascular network and therefore serves as an excellent model for angiogenesis. Although signaling through PlexinD1 underlies various vascular patterning events during embryonic development, its role during the formation of the periocular vascular network is yet to be determined. Our recent study showed that PlexinD1 mRNA is expressed by periocular angioblasts and blood vessels during ocular vasculogenesis in patterns that suggest its involvement with Sema3 ligands that are concurrently expressed in the anterior eye. In this study, we used in vivo knockdown experiments to determine the role of PlexinD1 during vascular patterning in the anterior eye of the developing avian embryos. Knockdown of PlexinD1 in the anterior eye caused mispatterning of the vascular network in the presumptive iris, which was accompanied by lose of vascular integrity and profuse hemorrhaging in the anterior chamber. We also observed ectopic vascularization of the cornea in PlexinD1 knockdown eyes, which coincided with the formation of the limbal vasculature in controls. Finally we show that Sema3E and Sema3C transcripts are expressed in ocular tissue that is devoid of vasculature. These results indicate that PlexinD1 plays a critical role during vascular patterning in the iris and limbus, and is essential for the establishment of corneal avascularity during development. We conclude that PlexinD1 is involved in vascular response to antiangiogenic Sema3 signaling that guides the formation of the iris and limbal blood vessels by inhibiting VEGF signaling. PMID:26783882

  20. CSF biomarkers in neurodegenerative and vascular dementias.

    PubMed

    Llorens, Franc; Schmitz, Matthias; Ferrer, Isidro; Zerr, Inga

    2016-01-01

    Neurodegenerative diseases with abnormal protein aggregates such as Alzheimer's disease, tauopathies, synucleinopathies, and prionopathies, together with vascular encephalopathies, are cause of cognitive impairment and dementia. Identification of reliable biomarkers in biological fluids, particularly in the cerebrospinal fluid (CSF), is of extreme importance in optimizing the precise early clinical diagnosis of distinct entities and predicting the outcome in particular settings. In addition, the study of CSF biomarkers is useful to identify and monitor the underlying pathological processes developing in the central nervous system of affected individuals. Evidence suggests that levels of key CSF molecules correlate, in some circumstances, with prediction, disease progression, and severity of cognitive decline. Correlation of CSF markers and underlying pathological molecular substrates in brain is an exciting field for further study. However, while some dementias such as Creutzfeldt-Jakob disease have accurate CSF biomarkers, other disease types such as dementia with Lewy bodies, vascular dementia, and frontotemporal dementia lack reliable biomarkers for their specific clinical diagnosis. PMID:27016008

  1. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter

    PubMed Central

    Beal, Deryk S.; Lerch, Jason P.; Cameron, Brodie; Henderson, Rhaeling; Gracco, Vincent L.; De Nil, Luc F.

    2015-01-01

    The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter

  2. VEGF is crucial for the hepatic vascular development required for lipoprotein uptake.

    PubMed

    Carpenter, Brian; Lin, Yuankai; Stoll, Stephanie; Raffai, Robert L; McCuskey, Robert; Wang, Rong

    2005-07-01

    Hepatic lipid catabolism begins with the transport of lipoprotein remnants from the sinusoidal vasculature into hepatocytes by endocytosis via microvilli. To test the hypothesis that fenestrated sinusoidal endothelial cells (SECs) are crucial for this process, we selectively disrupted SECs by downregulating vascular endothelial growth factor (VEGF) signaling, using hepatocyte-specific, tetracycline-regulatable expression of a VEGF receptor that can sequester VEGF but cannot relay its signal. Newborn mutant livers appeared grossly normal, but displayed a dark-red color that was distinguishable from normal physiological lipid-rich pink livers. Mutant sinusoidal networks were reduced and their SECs lacked fenestrae. Hepatocellular lipid levels were profoundly reduced, as determined by Oil Red O staining and transmission electron microscopy, and fewer hepatocytic microvilli were evident, indicating impaired lipoprotein endocytosis. Levels of apolipoprotein (APO) E bound to mutant sinusoidal networks were significantly reduced, and fluorescently-labeled murine remnant lipoproteins injected into the blood stream failed to accumulate in the space of Disse and diffuse into hepatocytes, providing evidence that reduced hepatocellular lipid levels in mutant livers are due to impaired lipoprotein uptake. Temporal downregulation of VEGF signaling revealed that it is crucial at all developmental stages of hepatic vascular morphogenesis, and repression of the dominant-negative effect can rescue the phenotype. These findings provide the first genetic evidence that VEGF dynamically regulates SEC fenestration during liver organogenesis, a process that is required for lipoprotein uptake by the liver. PMID:15944181

  3. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes.

    PubMed

    Mercado-Pagán, Ángel E; Kang, Yunqing; Findlay, Michael W; Yang, Yunzhi

    2015-04-01

    Engineering of small diameter (<6mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1-4MPa, strengths from 1-5MPa, and max strains from 300-500%. Permeability of the HFMs varies from 0.5-3.5×10(-6)cm/s, while burst pressure varies from 25 to 35psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. PMID:25686982

  4. Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts.

    PubMed

    Croy, B Anne; Chen, Zhilin; Hofmann, Alexander P; Lord, Edith M; Sedlacek, Abigail L; Gerber, Scott A

    2012-11-01

    In species with endometrial decidualization and hemochorial placentation (humans, mice, and others), leukocytes localize to early implant sites and contribute to decidual angiogenesis, spiral arterial remodeling, and trophoblast invasion. Relationships between leukocytes, trophoblasts, and the decidual vasculature are not fully defined. Early C57BL/6J implant sites were analyzed by flow cytometry to define leukocyte subsets and by whole-mount immunohistochemistry to visualize relationships between leukocytes, decidual vessels, and trophoblasts. Ptprc(+) (CD45(+)) cells increased in decidua between Gestational Day (GD) 5.5 and GD 9.5. Uterine natural killer (uNK) cells that showed dynamic expression of Cd (CD) 69, an activating receptor, and Klrg1 (KLRG1), an inhibitory receptor, localized mesometrially and were the dominant CD45(+) cells between GD 5.5 and GD 7.5. At GD 8.5, immature monocytes that occurred throughout decidua exceeded uNK cells numerically and many leukocytes acquired irregular shapes, and leukocyte-leukocyte conjugates became frequent. Vessels were morphologically heterogeneous and regionally unique. Migrating trophoblasts were first observed at GD 6.5 and, at GD 9.5, breached endothelium, entered vascular lumens, and appeared to occlude some vessels, as described for human spiral arteries. No leukocyte-trophoblast conjugates were detected. Whole-mount staining gave unparalleled decidual vascular detail and cell-specific positional information. Its application across murine models of pregnancy disturbances should significantly advance our understanding of the maternal-fetal interface. PMID:22954796

  5. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    PubMed Central

    Mercado-Pagán, Ángel E.; Kang, Yunqing; Findlay, Michael W.; Yang, Yunzhi

    2015-01-01

    Engineering of small diameter (<6 mm) vascular grafts (SDVGs) for clinical use, remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFM) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5×10−6 cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. PMID:25686982

  6. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    PubMed

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  7. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    PubMed Central

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  8. Nonrandom development of immunologic abnormalities after infection with human immunodeficiency virus: implications for immunologic classification of the disease.

    PubMed Central

    Zolla-Pazner, S; Des Jarlais, D C; Friedman, S R; Spira, T J; Marmor, M; Holzman, R; Mildvan, D; Yancovitz, S; Mathur-Wagh, U; Garber, J

    1987-01-01

    Blood specimens from 165 intravenous drug users who were seropositive for the human immunodeficiency virus (HIV), from 158 seropositive homosexual men with lymphadenopathy, and from 77 patients with acquired immunodeficiency syndrome (AIDS) were assessed immunologically. Immunologic parameters were analyzed by the Guttman scalogram technique to determine if immunologic abnormalities occurred in a nonrandom pattern. The following four patterns emerged: (i) seropositivity for HIV with no immunologic abnormalities; (ii) seropositivity for HIV with a depressed T4/T8 cell ratio; (iii) seropositivity with a depressed T4/T8 cell ratio and T4-cell depletion; and (iv) seropositivity with a depressed T4/T8 cell ratio, T4-cell depletion, and lymphopenia. Ninety-two to 100% of subjects in each of the three groups of patients were found "to scale" because the abnormalities occurred in the cumulative, ordered fashion described. This nonrandom occurrence of abnormalities indicates an ordered progression of immunologic abnormalities in individuals infected with HIV, a finding useful in the staging of both symptomatic and asymptomatic HIV-seropositive subjects. PMID:3496603

  9. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development.

    PubMed

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  10. Simultaneous optical and mr imaging of tissue within implanted window chamber: System development and application in measuring vascular permeability

    NASA Astrophysics Data System (ADS)

    Shayegan Salek, Mir Farrokh

    Simultaneous optical imaging and MRI of a dorsal skin-fold window chamber mouse model is investigated as a novel methodology to study the tumor microenvironment. Simultaneous imaging with two modalities allows for cross-validation of results, integration of the capabilities of the two modalities in one study and mitigation of invasive factors, such as surgery and anesthesia, in an in-vivo experiment. To make this investigation possible, three optical imaging systems were developed that operated inside the MRI scanner. One of the developed systems was applied to estimate vascular kinetic parameters of tumors in a dorsal skin-fold window chamber mouse model with simultaneous optical and MRI imaging. The target of imaging was a molecular agent that was dual labeled with both optical and MRI contrast agents. The labeling of the molecular agent, characteristics of the developed optical systems, the methodologies of measuring vascular kinetic parameters using optical imaging and MRI data, and the obtained results are described and illustrated.

  11. Recrystallization and the Development of Abnormally Large Grains After Small Strain Deformation in a Polycrystalline Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Miller, Victoria M.; Johnson, Anthony E.; Torbet, Chris J.; Pollock, Tresa M.

    2016-04-01

    The formation of abnormally large grains has been investigated in the polycrystalline nickel-based superalloy René 88DT. Cylindrical specimens with a 15 μm grain size were compressed to plastic strains up to 11.0 pct and subsequently rapidly heated to above the γ' solvus at 1423 K (1150° C) and held for 60 seconds. All deformed samples partially recrystallized during the heat treatment, with the recrystallized grain size varying with the degree of deformation. The largest final grain size occurred in samples deformed to approximately 2 pct strain, with isolated grains as large as 700 μm in diameter observed. It is proposed that abnormally large grains appear due to nucleation-limited recrystallization, not abnormal grain growth, based on the high boundary velocities measured and the observed reduction in grain orientation spread.

  12. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development.

    PubMed

    Ingrosso, Ilaria; Bonsegna, Stefania; De Domenico, Stefania; Laddomada, Barbara; Blando, Federica; Santino, Angelo; Giovinazzo, Giovanna

    2011-10-01

    A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits. PMID:21843947

  13. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  14. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia.

    PubMed

    Chetty, Anne; Bennett, Michelle; Dang, Linh; Nakamura, Daisy; Cao, Gong-Jie; Mujahid, Sana; Volpe, MaryAnn; Herman, Ira; Becerra, S Patricia; Nielsen, Heber C

    2015-03-01

    Bronchopulmonary dysplasia is a chronic lung disease of preterm infants characterized by arrested microvascularization and alveolarization. Studies show the importance of proangiogenic factors for alveolarization, but the importance of antiangiogenic factors is unknown. We proposed that hyperoxia increases the potent angiostatin, pigment epithelium-derived factor (PEDF), in neonatal lungs, inhibiting alveolarization and microvascularization. Wild-type (WT) and PEDF(-/-) mice were exposed to room air (RA) or 0.9 fraction of inspired oxygen from Postnatal Day 5 to 13. PEDF protein was increased in hyperoxic lungs compared with RA-exposed lungs (P < 0.05). In situ hybridization and immunofluorescence identified PEDF production primarily in alveolar epithelium. Hyperoxia reduced alveolarization in WT mice (P < 0.05) but not in PEDF(-/-) mice. WT hyperoxic mice had fewer platelet endothelial cell adhesion molecule (PECAM)-positive cells per alveolus (1.4 ± 0.4) than RA-exposed mice (4.3 ± 0.3; P < 0.05); this reduction was absent in hyperoxic PEDF(-/-) mice. The interactive regulation of lung microvascularization by vascular endothelial growth factor and PEDF was studied in vitro using MFLM-91U cells, a fetal mouse lung endothelial cell line. Vascular endothelial growth factor stimulation of proliferation, migration, and capillary tube formation was inhibited by PEDF. MFLM-91U cells exposed to conditioned medium (CM) from E17 fetal mouse lung type II (T2) cells cultured in 0.9 fraction of inspired oxygen formed fewer capillary tubes than CM from T2 cells cultured in RA (hyperoxia CM, 51 ± 10% of RA CM, P < 0.05), an effect abolished by PEDF antibody. We conclude that PEDF mediates reduced vasculogenesis and alveolarization in neonatal hyperoxia. Bronchopulmonary dysplasia likely results from an altered balance between pro- and antiangiogenic factors. PMID:25054647

  15. Development of novel short-term heating angioplasty: diameter and elasticity change of vascular wall ex vivo

    NASA Astrophysics Data System (ADS)

    Shimazaki, Natsumi; Kaneko, Kenji; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    In order to investigate the optimum operation parameters on novel short-term heating (<15s, approx. 70 °C) balloon, named Photo-thermo dynamic balloon (PTDB), we studied diameter and elasticity change of vascular wall after dilatation ex vivo. We have been studying to develop the PTDB angioplasty in which we demonstrated sufficient vascular dilatation with lower pressure by heat- induced denaturation of arterial collagen. And we have also demonstrated the suppression of intimal hyperplasia in animal experiments. We need to understand the PTDB dilatation mechanism to determine the optimum operation parameters. The prototype PTDB with diameter of 3mm was used in our experiments. The internal diameters of extracted fresh porcine carotid arteries at pre- and post- PTDB dilatation were measured. Balloon parameters were follows; pressure P=2atm, peak temperature in balloon T=60-80 °C, and heating duration t=4-30s. Morphological change in the media of dilated artery with PTDB were microscopically examined with Weigert staining. Elastic properties were carried out by stress-strain measurements with calculation of young's modulus. We found that PTDB dilatation provided the effect to prevent elastic recoil. We explained that the reason of this effect might be arrangement of micro- structure in the media, i.e., heat-denatured collagen fibers sustained the elastic recoil due to rubbery elastin fibers. The arterial elasticity was not significant different after PTDB dilatation. It was suggested that there could be no compliance mismatch after PTDB dilatation in physiological range. We found that a part of PTDB dilatation mechanism, in which the vascular wall structure played an important role. The optimum operation parameters for PTDB might be determined in consideration of collagen denaturation progress and arterial composition.

  16. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    PubMed Central

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  17. Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  18. Sox17 is required for normal pulmonary vascular morphogenesis

    PubMed Central

    Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.

    2015-01-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  19. Sox17 is required for normal pulmonary vascular morphogenesis.

    PubMed

    Lange, Alexander W; Haitchi, Hans Michael; LeCras, Timothy D; Sridharan, Anusha; Xu, Yan; Wert, Susan E; James, Jeanne; Udell, Nicholas; Thurner, Philipp J; Whitsett, Jeffrey A

    2014-03-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  20. Nail abnormalities

    MedlinePlus

    ... nails include systemic amyloidosis , malnutrition, vitamin deficiency, and lichen planus . Skin cancers near the nail and fingertip ... the nail bed. Chemotherapy medicines can affect nail growth. Normal aging affects the growth and development of ...

  1. Synergism between radiotherapy and vascular risk factors in the accelerated development of atherosclerosis: a report of three cases.

    PubMed

    Pherwani, Arun D; Reid, Julie A; Keane, Patrick F; Hannon, Raymond J; Soong, Chee Voon; Lee, Bernard

    2002-09-01

    Radiotherapy is commonly used in the management of testicular tumors. However, to date the risk of radiation-induced vascular occlusive disease in men following radiotherapy for testicular cancer has not been regarded as a major factor in their long-term care. Several animal studies have shown the importance of established vascular risk factors such as hypercholesterolemia and hypertension in the pathogenesis of radiation-induced atherosclerosis. This report presents three cases of premature chronic iliofemoral arterial disease presenting 5,13, and 16 years following exposure to therapeutic irradiation for the treatment of testicular cancer. The patients were in the age group of 40-45 years and all demonstrated associated known atherosclerotic risk factors. The patients had received radiotherapy in the dose of 3,500-4,000 rads in a standard "dog-leg" fashion to the ipsilateral aortoiliac lymphatic chain. Our results showed that young men treated with radiotherapy for testicular cancer may be targeted from the outset for atherosclerotic risk factor reduction to minimize the risk of development of late chronic occlusive arterial disease. It may be that a cohort of men so treated with historical regimes of radiotherapy and now entering middle age should be screened for arterial disease and risk factor reduction. PMID:12183769

  2. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. PMID:27301603

  3. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract

    PubMed Central

    Ramanathan, Subramaniyan; Kumar, Devendra; Khanna, Maneesh; Al Heidous, Mahmoud; Sheikh, Adnan; Virmani, Vivek; Palaniappan, Yegu

    2016-01-01

    Congenital abnormalities of the kidney and urinary tract (CAKUT) include a wide range of abnormalities ranging from asymptomatic ectopic kidneys to life threatening renal agenesis (bilateral). Many of them are detected in the antenatal or immediate postnatal with a significant proportion identified in the adult population with varying degree of severity. CAKUT can be classified on embryological basis in to abnormalities in the renal parenchymal development, aberrant embryonic migration and abnormalities of the collecting system. Renal parenchymal abnormalities include multi cystic dysplastic kidneys, renal hypoplasia, number (agenesis or supernumerary), shape and cystic renal diseases. Aberrant embryonic migration encompasses abnormal location and fusion anomalies. Collecting system abnormalities include duplex kidneys and Pelvi ureteric junction obstruction. Ultrasonography (US) is typically the first imaging performed as it is easily available, non-invasive and radiation free used both antenatally and postnatally. Computed tomography (CT) and magnetic resonance imaging (MRI) are useful to confirm the ultrasound detected abnormality, detection of complex malformations, demonstration of collecting system and vascular anatomy and more importantly for early detection of complications like renal calculi, infection and malignancies. As CAKUT are one of the leading causes of end stage renal disease, it is important for the radiologists to be familiar with the varying imaging appearances of CAKUT on US, CT and MRI, thereby helping in prompt diagnosis and optimal management. PMID:26981222

  4. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract.

    PubMed

    Ramanathan, Subramaniyan; Kumar, Devendra; Khanna, Maneesh; Al Heidous, Mahmoud; Sheikh, Adnan; Virmani, Vivek; Palaniappan, Yegu

    2016-02-28

    Congenital abnormalities of the kidney and urinary tract (CAKUT) include a wide range of abnormalities ranging from asymptomatic ectopic kidneys to life threatening renal agenesis (bilateral). Many of them are detected in the antenatal or immediate postnatal with a significant proportion identified in the adult population with varying degree of severity. CAKUT can be classified on embryological basis in to abnormalities in the renal parenchymal development, aberrant embryonic migration and abnormalities of the collecting system. Renal parenchymal abnormalities include multi cystic dysplastic kidneys, renal hypoplasia, number (agenesis or supernumerary), shape and cystic renal diseases. Aberrant embryonic migration encompasses abnormal location and fusion anomalies. Collecting system abnormalities include duplex kidneys and Pelvi ureteric junction obstruction. Ultrasonography (US) is typically the first imaging performed as it is easily available, non-invasive and radiation free used both antenatally and postnatally. Computed tomography (CT) and magnetic resonance imaging (MRI) are useful to confirm the ultrasound detected abnormality, detection of complex malformations, demonstration of collecting system and vascular anatomy and more importantly for early detection of complications like renal calculi, infection and malignancies. As CAKUT are one of the leading causes of end stage renal disease, it is important for the radiologists to be familiar with the varying imaging appearances of CAKUT on US, CT and MRI, thereby helping in prompt diagnosis and optimal management. PMID:26981222

  5. Development of a Mechanically Tuneable 3D Scaffold for Vascular Reconstruction

    PubMed Central

    Rodriguez, Maritza; Juran, Cassandra; McClendon, Mark; Eyadiel, Cyril; McFetridge, Peter

    2012-01-01

    Material compliance has been shown to be a predictor of vascular graft patency and as such is a critical parameter when designing new materials. While ex vivo derived materials have been clinically successful in a number of applications their mechanical properties are a direct function of the original vessel and are not easily controllable. These investigations describe an approach to modulate the mechanical properties of an ex vivo derived scaffold by machining variable (discrete) wall thicknesses to control compliance. Human umbilical arteries (HUA) were machine-lathed directly from the umbilical cord at wall thicknesses of 250, 500, 750, and 1000 μm then decellularized using 1 % sodium dodecyl sulfate (SDS). Compliance over physiological pressures, increased from 3.08±1.84% to 11.47±4.11% as direct function of each discrete vessel diameter. Radial stress strain analysis revealed primary and secondary failure points attributed to the discrete layers within the anisotropic scaffold. Maximum strength and suture retention were shown to increase with increasing wall thickness, by contrast stress failure decreased with increasing thickness due to increasing proportions of the mechanically weaker amorphous Wharton’s jelly (WJ). Reseeded smooth muscle cells were shown to adhere, proliferate, and migrate from the scaffold surface showing the potential of the HUA as a mechanically ‘tunable’ material with applications as an acellular implant or as a tissue engineered construct. PMID:22826192

  6. Dissociation of cutaneous vascular permeability and the development of cutaneous late-phase allergic reactions

    SciTech Connect

    Keahey, T.M.; Indrisano, J.; Kaliner, M.A.

    1989-03-01

    Cutaneous late-phase allergic reactions (LPR) are characterized by an early, immediate hypersensitivity whealing reaction followed by persistent, localized induration that peaks 6 to 8 hours later. In this study we used rodents to examine the relationship between vascular permeability (VP) and induration during LPR. Efflux of macromolecular tracers from the vasculature into skin was measured with the use of radiolabeled albumin and neutral dextran tracers having large molecular radii. To induce LPR immunologically, we used either intradermal injections of antirat IgE or passive cutaneous sensitization with IgE antidinitrophenyl followed 24 hours later by intravenous injection of albumin-dinitrophenyl. (/sup 125/I)albumin and (/sup 3/H)dextran tracers were injected intravenously before and at various intervals after the induction of LPR. Although a marked increase in VP occurred within the first 30 minutes after induction of mast cell degranulation, analysis of radiolabeled tracer accumulation at 2, 4, 8, and 24 hours failed to demonstrate any further increase in VP. These findings indicate that the induration observed in rodent LPR is not associated with increased VP beyond the immediate hypersensitivity stage and suggest that impairment of lymphatic drainage, cellular infiltration, and/or fibrin deposition are contributing factors.

  7. Development of a mechanically tuneable 3D scaffold for vascular reconstruction.

    PubMed

    Rodriguez, Maritza; Juran, Cassandra; McClendon, Mark; Eyadiel, Cyril; McFetridge, Peter S

    2012-12-01

    Material compliance has been shown to be a predictor of vascular graft patency and as such is a critical parameter when designing new materials. Although ex vivo derived materials have been clinically successful in a number of applications their mechanical properties are a direct function of the original vessel and are not easily controllable. These investigations describe an approach to modulate the mechanical properties of an ex vivo derived scaffold by machining variable (discrete) wall thicknesses to control compliance. Human umbilical arteries (HUAs) were machine lathed directly from the umbilical cord at wall thicknesses of 250, 500, 750, and 1000 μm then decellularized using 1% sodium dodecyl sulfate. Compliance over physiological pressures, increased from 3.08 ± 1.84% to 11.47 ± 4.11% as direct function of each discrete vessel diameter. Radial stress strain analysis revealed primary and secondary failure points attributed to the discrete layers within the anisotropic scaffold. Maximum strength and suture retention were shown to increase with increasing wall thickness, by contrast stress failure decreased with increasing thickness due to increasing proportions of the mechanically weaker amorphous Wharton's jelly. Reseeded smooth muscle cells were shown to adhere, proliferate, and migrate from the scaffold surface showing the potential of the HUA as a mechanically "tunable" material with applications as an acellular implant or as a tissue engineered construct. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3189-3196, 2012. PMID:22826192

  8. Vascular Tumors

    PubMed Central

    Sepulveda, Abel; Buchanan, Edward P.

    2014-01-01

    Vascular anomalies are divided into two main groups: tumors and malformations. Vascular tumors are a large and complex group of lesions, especially for clinicians with none or little experience in this field. In the past, these lesions caused a great deal of confusion because many appear analogous to the naked eye. Thankfully, recent advances in diagnostic techniques have helped the medical community to enhance our comprehension, accurately label, diagnose, and treat these lesions. In this article, we will review the most frequent vascular tumors and provide the reader with the tools to properly label, diagnose, and manage these complex lesions. PMID:25045329

  9. The Vascular Depression Hypothesis: Mechanisms Linking Vascular Disease with Depression

    PubMed Central

    Taylor, Warren D.; Aizenstein, Howard J.; Alexopoulos, George S.

    2013-01-01

    The ‘Vascular Depression’ hypothesis posits that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes. This hypothesis stimulated much research that has improved our understanding of the complex relationships between late-life depression (LLD), vascular risk factors, and cognition. Succinctly, there are well-established relationships between late-life depression, vascular risk factors, and cerebral hyperintensities, the radiological hallmark of vascular depression. Cognitive dysfunction is common in late-life depression, particularly executive dysfunction, a finding predictive of poor antidepressant response. Over time, progression of hyperintensities and cognitive deficits predicts a poor course of depression and may reflect underlying worsening of vascular disease. This work laid the foundation for examining the mechanisms by which vascular disease influences brain circuits and influences the development and course of depression. We review data testing the vascular depression hypothesis with a focus on identifying potential underlying vascular mechanisms. We propose a disconnection hypothesis, wherein focal vascular damage and white matter lesion location is a crucial factor influencing neural connectivity that contributes to clinical symptomatology. We also propose inflammatory and hypoperfusion hypotheses, concepts that link underlying vascular processes with adverse effects on brain function that influence the development of depression. Testing such hypotheses will not only inform the relationship between vascular disease and depression but also provide guidance on the potential repurposing of pharmacological agents that may improve late-life depression outcomes. PMID:23439482

  10. Mechanisms of Vascular Calcification: The Pivotal Role of Pyruvate Dehydrogenase Kinase 4

    PubMed Central

    2016-01-01

    Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive degenerative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, despite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly understood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic strategies. PMID:26996423

  11. Mechanisms of Vascular Calcification: The Pivotal Role of Pyruvate Dehydrogenase Kinase 4.

    PubMed

    Leem, Jaechan; Lee, In Kyu

    2016-03-01

    Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive degenerative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, despite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly understood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic strategies. PMID:26996423

  12. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension

    PubMed Central

    Farha, Samar; Lichtin, Alan; Graham, Brian; George, Deepa; Aldred, Micheala; Hazen, Stanley L.; Loyd, James; Tuder, Rubin

    2012-01-01

    Hematopoietic myeloid progenitors released into the circulation are able to promote vascular remodeling through endothelium activation and injury. Endothelial injury is central to the development of pulmonary arterial hypertension (PAH), a proliferative vasculopathy of the pulmonary circulation, but the origin of vascular injury is unknown. In the present study, mice transplanted with BM-derived CD133+ progenitor cells from patients with PAH, but not from healthy controls, exhibited morbidity and/or death due to features of PAH: in situ thrombi and endothelial injury, angioproliferative remodeling, and right ventricular hypertrophy and failure. Myeloid progenitors from patients with heritable and/or idiopathic PAH all produced disease in xenografted mice. Analyses of hematopoietic transcription factors and colony formation revealed underlying abnormalities of progenitors that skewed differentiation toward the myeloid-erythroid lineage. The results of the present study suggest a causal role for hematopoietic stem cell abnormalities in vascular injury, right ventricular hypertrophy, and morbidity associated with PAH. PMID:22745307

  13. Vascular Diseases

    MedlinePlus

    ... heart and blood vessels, such as diabetes or high cholesterol Smoking Obesity Losing weight, eating healthy foods, being active and not smoking can help vascular disease. Other treatments include medicines and surgery.

  14. Development and use of sulodexide in vascular diseases: implications for treatment

    PubMed Central

    Coccheri, Sergio; Mannello, Ferdinando

    2014-01-01

    Sulodexide (SDX), a sulfated polysaccharide complex extracted from porcine intestinal mucosa, is a blend of two glycosaminoglycan (GAG) entities, namely a fast-moving heparin (HP) fraction and a dermatan sulfate (DS; 20%) component. The compound is unique among HP-like substances in that it is biologically active by both the parenteral and oral routes. A main feature of the agent is to undergo extensive absorption by the vascular endothelium. For this reason, in preclinical studies, SDX administered parenterally displays an antithrombotic action similar to that of HPs but associated with fewer alterations of the blood clotting mechanisms and tests, thus being much less conducive to bleeding risk than HPs. When given orally, SDX is associated with minimal changes in classic coagulation tests, but maintains a number of important effects on the structure and function of endothelial cells (EC), and the intercellular matrix. These activities include prevention or restoration of the integrity and permeability of EC, counteraction versus chemical, toxic or metabolic EC injury, regulation of EC–blood cell interactions, inhibition of microvascular inflammatory and proliferative changes, and other similar effects, thus allowing oral SDX to be considered as an endothelial-protecting agent. The best available clinical evidence of the efficacy of SDX administered orally with or without an initial parenteral phase is the following: alleviation of symptoms in chronic venous disease and especially acceleration of healing of venous leg ulcers; prevention of cardiovascular events in survivors after acute myocardial infarction; marked improvement of intermittent claudication in patients with peripheral occlusive arterial disease; and abatement of proteinuria in patients with diabetic nephropathy that may contribute to the amelioration or stabilization of kidney function. Although further clinical trials are warranted, SDX is presently widely accepted in many countries as an

  15. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development

    PubMed Central

    Girardi, G; Fraser, J; Lennen, R; Vontell, R; Jansen, M; Hutchison, G

    2015-01-01

    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders. PMID:25245499

  16. Development of synchrotron radiation x-ray intravital microscopy for in vivo imaging of rat heart vascular function.

    PubMed

    Umetani, Keiji; Pearson, James T; Schwenke, Daryl O; Shirai, Mikiyasu

    2011-01-01

    This study elucidates the vascular internal diameter response of coronary arterial circulation in closed-chest rats to evaluate endothelium-dependent and endothelium-independent vasodilatory ability and to investigate disease mechanisms. For this study, we developed an X-ray intravital microscopy system using a microangiography technique and a synchrotron radiation source at SPring-8. An X-ray direct-conversion type detector with 7-μm spatial resolution was used for real-time imaging. Microangiographic images were stored in a digital frame memory system at a maximum rate of 30 frame/s with a 1024 × 1024-pixel, 10-bit format. In imaging experiments, the small coronary arteries were visualized after iodine contrast agent injection into the coronary artery. PMID:22256145

  17. Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice.

    PubMed

    Wei, Hao; Zhang, Wei-Jian; McMillen, Timothy S; Leboeuf, Renee C; Frei, Balz

    2012-08-01

    Endothelial activation, which is characterized by upregulation of cellular adhesion molecules and pro-inflammatory chemokines and cytokines, and consequent monocyte recruitment to the arterial intima are etiologic factors in atherosclerosis. Redox-active transition metal ions, such as copper and iron, may play an important role in endothelial activation by stimulating redox-sensitive cell signaling pathways. We have shown previously that copper chelation by tetrathiomolybdate (TTM) inhibits LPS-induced acute inflammatory responses in vivo. Here, we investigated whether TTM can inhibit atherosclerotic lesion development in apolipoprotein E-deficient (apoE-/-) mice. We found that 10-week treatment of apoE-/- mice with TTM (33-66 ppm in the diet) reduced serum levels of the copper-containing protein, ceruloplasmin, by 47%, and serum iron by 26%. Tissue levels of "bioavailable" copper, assessed by the copper-to-molybdenum ratio, decreased by 80% in aorta and heart, whereas iron levels of these tissues were not affected by TTM treatment. Furthermore, TTM significantly attenuated atherosclerotic lesion development in whole aorta by 25% and descending aorta by 45% compared to non-TTM treated apoE-/- mice. This anti-atherogenic effect of TTM was accompanied by several anti-inflammatory effects, i.e., significantly decreased serum levels of soluble vascular cell and intercellular adhesion molecules (VCAM-1 and ICAM-1); reduced aortic gene expression of VCAM-1, ICAM-1, monocyte chemotactic protein-1, and pro-inflammatory cytokines; and significantly less aortic accumulation of M1 type macrophages. In contrast, serum levels of oxidized LDL were not reduced by TTM. These data indicate that TTM inhibits atherosclerosis in apoE-/- mice by reducing bioavailable copper and vascular inflammation, not by altering iron homeostasis or reducing oxidative stress. PMID:22770994

  18. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  19. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia

    PubMed Central

    Alvira, Cristina M.

    2016-01-01

    In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized. PMID:27243014

  20. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473

  1. Robust algorithmic detection of the developed cardiac pathologies and emerging or transient abnormalities from short periods of RR data

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, Valeriy V.; Senyukova, Olga

    2011-06-01

    Numerous research efforts and clinical testing have confirmed validity of heart rate variability (HRV) analysis as one of the cardiac diagnostics modalities. The majority of HRV analysis tools currently used in practice are based on linear indicators. Methods from nonlinear dynamics (NLD) provide more natural modeling framework for adaptive biological systems with multiple feedback loops. Compared to linear indicators, many NLD-based measures are much less sensitive to data artifacts and non-stationarity. However, majority of NLD measures require long time series for stable calculation. Similar restrictions also apply for linear indicators. Such requirements could drastically limit practical usability of HRV analysis in many applications, including express diagnostics, early indication of subtle directional changes during personalization of medical treatment, and robust detection of emerging or transient abnormalities. Recently we have illustrated that these challenges could be overcome by using classification framework based on boosting-like ensemble learning techniques that are capable of discovering robust meta-indicators from existing HRV measures and other incomplete empirical knowledge. In this paper we demonstrate universality of such meta-indicators and discuss operational details of their practical usage. Using such pathology examples as congestive heart failure (CHF) and arrhythmias, we show that classifiers trained on short RR segments (down to several minutes) could achieve reasonable classification accuracy (˜80-85% and higher). These indicators calculated from longer RR segments could be applicable for accurate diagnostics with classification accuracy approaching 100%. In addition, it is feasible to discover single "normal-abnormal" meta-classifier capable of detecting multiple abnormalities.

  2. Implications of Vascular Aging

    PubMed Central

    Barodka, Viachaslau M.; Joshi, Brijen L.; Berkowitz, Dan E.; Hogue, Charles W.; Nyhan, Daniel

    2011-01-01

    Chronological age is a well established risk factor for the development of cardiovascular diseases. The changes that accumulate in the vasculature with age, though, are highly variable. It is now increasingly recognized that indices of vascular health are more reliable than age per se in predicting adverse cardiovascular outcomes. The variation in the accrual of these age-related vascular changes is a function of multiple genetic and environmental factors. In this review, we highlight some of the pathophysiological mechanisms that characterize the vascular aging phenotype. Furthermore, we provide an overview of the key outcome studies that address the value of these vascular health indices in general and discuss potential effects on perioperative cardiovascular outcomes. PMID:21474663

  3. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  4. Identification of RNF213 as a Susceptibility Gene for Moyamoya Disease and Its Possible Role in Vascular Development

    PubMed Central

    Yamazaki, Satoru; Toyoda, Atsushi; Kikuta, Ken-ichiro; Takagi, Yasushi; Harada, Kouji H.; Fujiyama, Asao; Herzig, Roman; Krischek, Boris; Zou, Liping; Kim, Jeong Eun; Kitakaze, Masafumi; Miyamoto, Susumu; Nagata, Kazuhiro; Hashimoto, Nobuo; Koizumi, Akio

    2011-01-01

    Background Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Methodology/Principal Findings Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10-4). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10−119). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. Conclusions/Significance We provide evidence suggesting, for the first time, the involvement

  5. Mutation of rnf213a by TALEN causes abnormal angiogenesis and circulation defects in zebrafish.

    PubMed

    Wen, Jun; Sun, Xunsha; Chen, Huimin; Liu, Huijiao; Lai, Rong; Li, Jiaoxing; Wang, Yufang; Zhang, Jingjing; Sheng, Wenli

    2016-08-01

    Moyamoya disease (MMD) is characterized by a stenosis at the terminal of the internal carotid artery and an abnormal vascular network at the base of the brain. RNF213 is a susceptibility gene for MMD in East Asians. The role of RNF213 in the etiology of MMD remains unknown. Here we generated rnf213a mutant zebrafish using transcription activator-like effector nuclease (TALEN) technique and described the characteristics of a zebrafish embryonic model of MMD. rnf213a mutant zebrafish developed abnormal angiogenesis in intersegmental vessels and cranial secondary vessels. Endothelial cells exhibited the defects in morphogenesis and formation of vascular tubes despite normal cell to cell contacts under electron microscope. Circulatory disorder was induced by abnormal sprouts in the trunk and head. Reduced circulation in the abnormal vessels was revealed by microangiography. No blood flow permeated across the vessels wall despite the extremely abnormal structure. rnf213a mutant showed lower erythrocyte velocity in dorsal aorta than that in wild-type siblings. In this study, we provided a promising in vivo model for MMD, and this model would aid to understand the function of rnf213a in angiogenesis. PMID:27125596

  6. [The role of desensitization of glucocorticoid receptors in the development of vascular resistance to endogenous vasoconstrictors in traumatic shock].

    PubMed

    Kozhevnikova, L M; Avdonin, P P; Sukhanova, I F; Avdonin, P V

    2007-01-01

    The fact that the activity of cytosol glucocorticoid receptors decreases in shock have been shown before [Golikov P. P. et al., 2001]. The connection between the development of vascular hyporeactivity to endogenous vasoconstrictors and desensitization of glucocorticoid receptors was studied in this investigation. On Kenton traumatic model in a rat experiment, it was shown that the strength of the isometric constriction of the isolated aorta in response to angiotensin II, endothelin-1, phenylephrine, noradrenaline, and vasopressin falls on the second day after a severe mechanical injury (3.3, 2.1, 1.7, 1.6, and 1.5 times, respectively; p < 0.01). On the contrary, the strength of the constriction in response to serotonin increases more then twice. Artificial desensitization of glucocorticoid receptors by long-term administration of dexamethasone (3 mg per kg during five days) results in similar changes of vascular reactivity i.e. a 2.5, 2, 7, and 1.4-fold decrease in the strength of aortal constriction in response to angiotensin II, vasopressin, and endothelin-1, respectively. The strength of the constriction in response to serotonin tended to increase as well. Carbahol-induced relaxation of the aorta pre-constricted with noradrenaline did not change compared with control, being 70 to 80%, both in shock and after desensitization of glucocorticoid receptors with dexamethasone. Presumably, the pathogenetic mechanism of pressor reaction suppression, connected with a decrease in cytosol glucocorticoid receptor activity and thus with inhibition of glucocorticoid-induced expression of the membrane receptors of endogenous vasoconstrictors, is realized in traumatic shock together with other mechanisms. PMID:17694606

  7. Nuclear Receptor Subfamily 2 Group F Member 1a (nr2f1a) Is Required for Vascular Development in Zebrafish

    PubMed Central

    Wang, Wen-Der; Wang, Jia-Hong; Wen, Zhi-Hong; Liu, Wangta; Chang, Hsueh-Wei; Wu, Chang-Yi

    2014-01-01

    Genetic regulators and signaling pathways are important for the formation of blood vessels. Transcription factors controlling vein identity, intersegmental vessels (ISV) growth and caudal vein plexus (CVP) formation in zebrafish are little understood as yet. Here, we show the importance of the nuclear receptor subfamily member 1A (nr2f1a) in zebrafish vascular development. Amino acid sequence alignment and phylogenetic analysis of nr2f1a is highly conserved among the vertebrates. Our in situ hybridization results showed nr2f1a mRNA is expressed in the lateral plate mesoderm at 18 somite stage and in vessels at 24–30 hpf, suggesting its roles in vasculization. Consistent with this morpholino-based knockdown of nr2fla impaired ISV growth and failed to develop fenestrated vascular structure in CVP, suggesting that nr2f1a has important roles in controlling ISV and CVP growth. Consequently, nr2f1a morphants showed pericardial edema and circulation defects. We further demonstrated reduced ISV cells and decreased CVP endothelial cells sprouting in nr2f1a morphants, indicating the growth impairment of ISV and CVP is due to a decrease of cell proliferation and migration, but not results from cell death in endothelial cells after morpholino knockdown. To test molecular mechanisms and signals that are associated with nr2f1a, we examined the expression of vascular markers. We found that a loss of nr2f1a results in a decreased expression of vein/ISV specific markers, flt4, mrc1, vascular markers stabilin and ephrinb2. This indicates the regulatory role of nr2f1a in controlling vascular development. We further showed that nr2f1a likely interact with Notch signaling by examining nr2f1a expression in rbpsuh morphants and DAPT-treatment embryos. Together, we show nr2f1a plays a critical role for vascular development in zebrafish. PMID:25157918

  8. Developing Software to “Track and Catch” Missed Follow-up of Abnormal Test Results in a Complex Sociotechnical Environment

    PubMed Central

    Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.

    2013-01-01

    Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed

  9. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development

    PubMed Central

    Oh, Se-Yeong; Kim, Ju Young; Park, Changwon

    2015-01-01

    Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells. PMID:26694034

  10. Characterization of vascular tree architecture using the Tokunaga taxonomy

    NASA Astrophysics Data System (ADS)

    Galarreta-Valverde, Miguel A.; Zoghbi, Jihan M.; Pereira, Fabricio; Beregi, Jean-Paul; Mekkaoui, Choukri; Jackowski, Marcel P.

    2015-03-01

    The diagnosis of cardiovascular disease is usually assisted by resonance angiography (MRA) or computed tomography angiography (CTA) imaging. The identification of abnormal vascular architecture from angiographic three-dimensional images is therefore crucial to the diagnosis of cardiovascular disease. Automated detection and quantification of vascular structure and architecture thus holds significant clinical value. In this work, we employ a Lindenmayer system to represent vascular trees from angiographic images and describe a quantitative measure based on the Tokunaga taxonomy to differentiate vascular architectures. Synthetic vessel architectures with varying bifurcation patterns were compared and results showed that this architectural measure is proportional to the level of branching. In real MRA images, this measure was able to differentiate between normal and abnormal intracerebral vasculature containing an aneurysm. Hence, this methodology not only allows for compact representation of vascular architectures but also provides a quantitative metric of bifurcation complexity, which has the potential to characterize different types of vascular abnormalities.

  11. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    PubMed Central

    Donnan, Peter T; McLernon, David; Steinke, Douglas; Ryder, Stephen; Roderick, Paul; Sullivan, Frank M; Rosenberg, William; Dillon, John F

    2007-01-01

    Background Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT) in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people). The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000) between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT) database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1), dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150) with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision support tool. Discussion

  12. Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Produces Abnormalities in Tracheal Development in Neonatal Pigs and Young Children

    PubMed Central

    Meyerholz, David K.; Stoltz, David A.; Namati, Eman; Ramachandran, Shyam; Pezzulo, Alejandro A.; Smith, Amanda R.; Rector, Michael V.; Suter, Melissa J.; Kao, Simon; McLennan, Geoffrey; Tearney, Guillermo J.; Zabner, Joseph; McCray, Paul B.; Welsh, Michael J.

    2010-01-01

    Rationale: Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. Objectives: To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. Methods: We studied newborn CFTR−/− pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. Measurements and Main Results: We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. Conclusions: Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life. PMID:20622026

  13. Medical management of vascular anomalies.

    PubMed

    Trenor, Cameron C

    2016-03-01

    We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327

  14. Skeletal muscle insulin resistance in hamsters with diabetes developed from obesity is involved in abnormal skeletal muscle LXR, PPAR and SREBP expression

    PubMed Central

    LI, GUO-SHENG; LIU, XU-HAN; ZHU, HUA; HUANG, LAN; LIU, YA-LI; MA, CHUN-MEI

    2016-01-01

    Diabetic ‘lipotoxicity’ theory suggests that fat-induced skeletal muscle insulin resistance (FISMIR) in obesity induced by a high-fat diet (HFD), which leads to ectopic lipid accumulation in insulin-sensitive tissues, may play a pivotal role in the pathogenesis of type 2 diabetes. However, the changes in gene expression and the molecular mechanisms associated with the pathogenesis of FISMIR have not yet been fully elucidated. In the present study the changes in skeletal muscle gene expression were examined in FISMIR in obese insulin-resistant and diabetic hamster models induced by HFD with or without low-dose streptozotocin-treatment. Microarray technology and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to explore the potential underlying molecular mechanisms. The pathophysiological and metabolic features of obesity and type 2 diabetes in humans are closely resembled by these hamster models. The results of microarray analysis showed that the differentially expressed genes associated with metabolism were mostly related to the abnormal regulation and changes in the gene expression of liver X receptor (LXR), peroxisome proliferator-activated receptor (PPAR) and sterol regulatory element-binding protein (SREBP) transcriptional programs in the skeletal muscle from insulin-resistant and diabetic hamsters. The microarray findings confirmed by RT-qPCR indicated that the increased expression of SREBPs and LXRβ and the decreased expression of LXRα and PPARs were involved in the molecular mechanisms of FISMIR pathogenesis in insulin-resistant and diabetic hamsters. A significant difference in the abnormal expression of skeletal muscle LXRs, PPARs and SREBPs was found between insulin-resistant and diabetic hamsters. It may be concluded that the combined abnormal expression of LXR, PPAR and SREBP transcriptional programs may contribute to the development of FISMIR mediated by skeletal muscle lipid accumulation resulting from abnormal

  15. Role of leptin signaling in hemato-vascular development and niche function: Leptin receptor-mediated signaling regulates LT-HSC homeostasis in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homeostatic functioning of the cardiovascular and hematopoietic systems is known to be interdependent and strongly influenced by the microenvironment in which hemato-vascular cells develop and reside. The role of nutrition and metabolism as regulable and dynamic extracellular cues however, remains a...

  16. Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development.

    PubMed

    Huang, Jianhe; Wang, Tao; Wright, Alexander C; Yang, Jifu; Zhou, Su; Li, Li; Yang, Jisheng; Small, Aeron; Parmacek, Michael S

    2015-04-01

    Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes. PMID:25805819

  17. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate

    PubMed Central

    SundarRaj, Swathi; Deshmukh, Abhijeet; Priya, Nancy; Krishnan, Vidya S.; Cherat, Murali; Majumdar, Anish Sen

    2015-01-01

    Autologous fat grafting for soft tissue reconstruction is challenged by unpredictable long-term graft survival. Fat derived stromal vascular fraction (SVF) is gaining popularity in tissue reconstruction as SVF-enriched fat grafts demonstrate improved engraftment. SVF also has potential in regenerative medicine for remodeling of ischemic tissues by promoting angiogenesis. Since SVF cells do not require culture expansion, attempts are being made to develop automated devices to isolate SVF at the point of care. We report development of a closed, automated system to process up to 500 mL lipoaspirate using cell size-dependent filtration technology. The yield of SVF obtained by automated tissue digestion and filtration (1.17 ± 0.5 × 105 cells/gram) was equivalent to that obtained by manual isolation (1.15 ± 0.3 × 105; p = 0.8), and the viability of the cells isolated by both methods was greater than 90%. Cell composition included CD34+CD31− adipose stromal cells, CD34+CD31+ endothelial progenitor cells, and CD34−CD31+ endothelial cells, and their relative percentages were equivalent to SVF isolated by the manual method. CFU-F capacity and expression of angiogenic factors were also comparable with the manual method, establishing proof-of-concept for fully automated SVF isolation, suitable for use in reconstructive surgeries and regenerative medicine applications. PMID:26167182

  18. 123I-FP-CIT SPECT imaging in early diagnosis of dementia in patients with and without a vascular component

    PubMed Central

    Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy

    2015-01-01

    Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on Da

  19. (123)I-FP-CIT SPECT imaging in early diagnosis of dementia in patients with and without a vascular component.

    PubMed

    Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M Angels; Gonzalez, Jose M; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy

    2015-01-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. (123)I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on Da

  20. [DEVELOPMENT RISK FACTORS OF EARLY METABOLIC AND VASCULAR DISORDERS IN YOUNG SUBJECTS].

    PubMed

    Vasil'eva, E M; Nikitin, A V; Bulat, A A; Zhemnchuzhnikov, S V

    2016-01-01

    Deterioration of health characteristics and ever increasing diabetes and cardiovascular morbidity among young subjects imply the necessity of identification ofpossible risk factors of these conditions. We evaluated the prevalence of hyperlipoproteinemia and adipose tissue activity based on the results of screening for resistin level, aggravated heredity, disordered hydrocarbon metabolism, overweight, arterial hypertension, behaviour (physical overstrain, hypokinesia, smoking, inadequate dietary regime). The risk of developing type 2 diabetes mellitus and overall risk of cardiovascular disorders were calculated. PMID:27522731

  1. Pias1 is essential for erythroid and vascular development in the mouse embryo.

    PubMed

    Constanzo, Jerfiz D; Deng, Mi; Rindhe, Smita; Tang, Ke-Jing; Zhang, Cheng-Cheng; Scaglioni, Pier Paolo

    2016-07-01

    The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied. Here, we report that Pias1 is required for proper embryonic development. Approximately 90% of Pias1 null embryos die in utero between E10.5 and E12.5. We found significant apoptosis within the yolk sac (YS) blood vessels and concomitant loss of red blood cells (RBCs) resulting in profound anemia. In addition, Pias1 loss impairs YS angiogenesis and results in defective capillary plexus formation and blood vessel occlusions. Moreover, heart development is impaired as a result of loss of myocardium muscle mass. Accordingly, we found that Pias1 expression in primary myoblasts enhances the induction of cardiac muscle genes MyoD, Myogenin and Myomaker. PIAS1 protein regulation of cardiac gene transcription is dependent on transcription factors Myocardin and Gata-4. Finally, endothelial cell specific inactivation of Pias1 in vivo impairs YS erythrogenesis, angiogenesis and recapitulates loss of myocardium muscle mass. However, these defects are not sufficient to recapitulate the lethal phenotype of Pias1 null embryos. These findings highlight Pias1 as an essential gene for YS erythropoiesis and vasculogenesis in vivo. PMID:27155222

  2. KDR-LacZ-expressing cells are involved in ovarian and testis-specific vascular development, suggesting a role for VEGFA in the regulation of this vasculature.

    PubMed

    Bott, Rebecca C; Clopton, Debra T; Fuller, Anna M; McFee, Ryann M; Lu, Ningxia; McFee, Renee M; Cupp, Andrea S

    2010-10-01

    Our objectives were to evaluate kinase insert domain protein receptor (KDR)-β-galactosidase (LacZ) expression as a marker for vascular development during gonadal morphogenesis and to determine whether any novel non-angiogenic KDR-LacZ expression was present in mouse testes or ovaries. Gonads were collected from mice expressing LacZ driven by the Kdr promoter (KDR-LacZ) from embryonic day 11 (E11) through postnatal day 60 (P60). At E11.5, mesonephric cells expressing KDR-LacZ seemed to migrate into the developing testis and surrounded developing seminiferous cords. Cells expressing KDR-LacZ appeared in the ovary with no apparent migration from the adjacent mesonephros, suggesting a different origin of endothelial cells. Testis organ cultures from E11 mice were treated with 8 μM VEGFR-TKI, a vascular endothelial growth factor A signal transduction inhibitor; subsequently, the amount of KDR-LacZ staining was reduced by 66%-99% (P<0.002), and the ability of KDR-expressing cells to form a densely organized vascular network was inhibited. Novel non-angiogenic KDR-LacZ staining was detected in the testis on specific subsets of germ cells at E16, E17, P4, P20, P30, and P60. In ovaries, staining was present on oocytes within oocyte cysts at E17 and within late secondary follicles of postnatal mice. Thus, KDR is an excellent marker for analyzing vascular development in the gonads. Inhibition of VEGFA signal transduction prevents the development of testis-specific vasculature. Furthermore, non-vascular KDR-LacZ staining suggests that KDR directly affects both spermatogenesis and somatic-oocyte interactions during gametogenesis. PMID:20848132

  3. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development

    PubMed Central

    Lawson, Nathan D.; Mugford, Joshua W.; Diamond, Brigid A.; Weinstein, Brant M.

    2003-01-01

    In this study, we utilize transgenic zebrafish with fluorescently labeled blood vessels to identify and characterize a mutant (y10) that displays specific defects in the formation of arteries, but not veins. We find that y10 encodes phospholipase C gamma-1 (plcg1), a known effector of receptor tyrosine kinase signaling. We further show that plcg1y10 mutant embryos fail to respond to exogenous Vegf. Our results indicate that Plcg1 functions specifically downstream of the Vegf receptor during embryonic development to govern formation of the arterial system. PMID:12782653

  4. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    PubMed

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. PMID:26590911

  5. Brain abnormalities in male children and adolescents with hemophilia: detection with MR imaging. The Hemophilia Growth and Development Study Group.

    PubMed

    Wilson, D A; Nelson, M D; Fenstermacher, M J; Bohan, T P; Hopper, K D; Tilton, A; Mitchell, W G; Contant, C F; Maeder, M A; Donfield, S M

    1992-11-01

    Cranial magnetic resonance (MR) imaging was performed in 124 male patients (aged 7-19 years), from 14 institutions, in whom a diagnosis of moderate to severe hemophilia was made. Blood tests in all subjects were negative for human immunodeficiency virus. Findings in MR studies were abnormal in 25 (20.2%) subjects. Six lesions in five subjects were classified as congenital. The most commonly identified congenital lesion was a posterior fossa collection of cerebrospinal fluid (five cases). Twenty-two subjects had acquired lesions that were probably related to the hemophilia or its treatment. The most commonly acquired lesions were single- or multifocal areas of high signal intensity within the white matter on T2-weighted images noted in 14 (11.3%) subjects. Two subjects had large focal areas of brain atrophy, and six had some degree of diffuse cerebral cortical atrophy. Three subjects (2.4%) had hemorrhagic lesions. To the authors' knowledge, the unexpected finding of small, focal, nonhemorrhagic white matter lesions has not previously been reported. PMID:1410372

  6. [The role of nonenzymatic glycation and glyco-oxidation in the development of diabetic vascular complications].

    PubMed

    Jakus, V

    2003-05-01

    Hyperglycaemia is considered to be the key causal factor in the development of diabetic complications. Poor glycemic control a significant changes of erythrocyte membrane fluidity, erythrocyte deformability and antioxidant status. Nonenzymatic glycation and glycoxidation with cascade of free radical reactions, oxidative and carbonyl stress may play an important role in the development diabetic micro- and macrovascular complications. The serum levels of specific and nonspecific advanced glycation end products (s-AGEs) have been found elevated in type 1 and type 2 diabetic patients. Levels of s-AGEs. may serve as useful biochemical marker for monitoring progression of diabetic complications and pathological processes. Accumulation of AGEs on tissue proteins increases with pathogenesis of diabetic complications and atherosclerosis. AGEs are believed to induce cellular oxidative stress through the interaction with specific cellular receptors. Carbonyl stress-induced tissue damage is caused by AGE precursors formed by hyperglycaemia, hyperlipidemia, nonenzymatic glycation, peroxidation of lipids and metabolis processes. The toxic effects of AGE precursors can not be directly antagonized by antioxidants. Only a small number of biological carbonyl scavengers like glutathione have been identified to date. For therapeutic intervention, nucleophilic compounds as aminoguanidine, pyridoxamine, OPB-9195, 2,3-diaminophenazone, carnosine and tenilsetam give promising results. These potential therapeutics have been proposed to trap AGE precursors. Studies in vitro showed that these AGE inhibitors have also the antioxidant and chelating activity. Angiotensin converting enzyme (ACE) and angiotensin II receptor antagonists also significantly attenuate AGE production. These drugs do not trap AGE precursors, but impact on the production of AGE precursors by chelating transition metals and inhibiting various oxidative steps in the process of glycoxidation, including the formation of

  7. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  8. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata.

    PubMed

    Qiu, Zongbo; Li, Xiaojuan; Zhao, Yuanyuan; Zhang, Manman; Wan, Yinglang; Cao, Dechang; Lu, Shanfa; Lin, Jinxing

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in the process of plant development. To date, extensive studies of miRNAs have been performed in a few model plants, but few efforts have focused on small RNAs (sRNAs) in conifers because of the lack of reference sequences for their enormous genomes. In this study, Solexa sequencing of three sRNA libraries obtained from dormant, reactivating, and active vascular cambium in Chinese fir (Cunninghamia lanceolata) using tangential cryosectioning identified 20 known miRNA families and 18 novel potential miRNAs, of which nine novel miRNA precursors were validated by RT-PCR and sequencing. More than half of these novel miRNAs displayed stage-specific expression patterns in the vascular cambium. Furthermore, analysing the 103 miRNAs and their predicted targets indicated that about 70% appeared to negatively regulate their targets, of which two target genes involved in the regulation of cambial cell division were validated via RNA ligase-mediated rapid amplification of 5'-cDNA ends (RLM 5'-RACE) and transient co-expression in Nicotiana benthamiana leaves. Interestingly, miRNA156 and miRNA172 may regulate the phase transition in vascular cambium from dormancy to active growth. These results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers. PMID:25795740

  9. Development and In Vivo Evaluation of Small-Diameter Vascular Grafts Engineered by Outgrowth Endothelial Cells and Electrospun Chitosan/Poly(ɛ-Caprolactone) Nanofibrous Scaffolds

    PubMed Central

    Zhou, Min; Qiao, Wei; Liu, Zhao; Shang, Tao; Qiao, Tong

    2014-01-01

    Successful engineering of a small-diameter vascular graft is still a challenge despite numerous attempts for decades. The present study aimed at developing a tissue-engineered vascular graft (TEVG) using autologous outgrowth endothelial cells (OECs) and a hybrid biodegradable polymer scaffold. OECs were harvested from canine peripheral blood and proliferated in vitro, as well as identified by immunofluorescent staining. Electrospun hybrid chitosan/poly(ɛ-caprolactone) (CS/PCL) nanofibers were fabricated and served as vascular scaffolds. TEVGs were constructed in vitro by seeding OECs onto CS/PCL scaffolds, and then implanted into carotid arteries of cell-donor dogs (n=6). After 3 months of implantation, 5 out of 6 of TEVGs remained patent as compared with 1 out of 6 of unseeded grafts kept patent. Histological and immunohistochemical analyses of the TEVGs retrieved at 3 months revealed the regeneration of endothelium, and the presence of collagen and elastin. OECs labeled with fluorescent dye before implantation were detected in the retrieved TEVGs, indicating that the OECs participated in the vascular tissue regeneration. Biomechanical testing of TEVGs showed good mechanical properties that were closer to native carotid arteries. RT-PCR and western blot analysis demonstrated that TEVGs had favorable biological functional properties resembling native arteries. Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and regeneration ability. PMID:23902162

  10. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis.

    PubMed

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP(-/-) mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  11. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis

    PubMed Central

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M.; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP−/− mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  12. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies. PMID:26585821

  13. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  14. Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears.

    PubMed

    Salimović-Bešić, I; Hukić, M

    2015-09-01

    The objectives of this study were to identify human papillomavirus (HPV) genotypes in a group of Bosnian-Herzegovinian women with abnormal cytology and to assess their potential coverage by vaccines. HPVs were identified by multiplex real-time PCR test (HPV High Risk Typing Real-TM; Sacace Biotechnologies, Italy) of 105 women with an abnormal cervical Pap smear and positive high-risk (HR) HPV DNA screening test. The most common genotypes in the study were HPV-16 (32·6%, 48/147), HPV-31 (14·3%, 21/147), HPV-51 (9·5%, 14/147) and HPV-18 (7·5%, 11/147). The overall frequency of HR HPV-16 and/or HPV-18, covered by currently available vaccines [Gardasil® (Merck & Co., USA) and Cervarix®; (GlaxoSmithKline, UK)] was lower than the overall frequency of other HPVs detected in the study (40·1%, 59/174, P = 0·017). Group prevalence of HR HPVs targeted by a nine-valent vaccine in development (code-named V503) was higher than total frequency of other HPVs detected (68·0%, 100/147, P < 0·001). Development of cervical cytological abnormalities was independent of the presence of multiple infections (χ 2 = 0·598, P = 0·741). Compared to other HPVs, dependence of cervical diagnosis and HPV-16, -18 (P = 0·008) and HPV-16, -18, -31 (P = 0·008) infections were observed. Vaccines targeting HR HPV-16, -18 and -31 might be an important tool in the prevention of cervical disease in Bosnia and Herzegovina. PMID:25578155

  15. In vitro assessment of mouse fetal abdominal aortic vascular function

    PubMed Central

    Dilworth, Mark R.; Greenwood, Susan L.; Sibley, Colin P.; Wareing, Mark

    2014-01-01

    Fetal growth restriction (FGR) affects 3–8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function. PMID:25056105

  16. [Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides].

    PubMed

    Khaliluev, M R; Chaban, I A; Kononenko, N V; Baranova, E N; Dolgov, S V; Kharchenko, P N; Poliakov, V Iu

    2014-01-01

    In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. andA. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RT-PCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial

  17. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  18. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  19. [Vascular parkinsonism].

    PubMed

    Yamanouchi, H

    1997-01-01

    Critchley speculated that multiple vascular lesions of the basal ganglia must have an etiological connection to the symptoms of so-called vascular parkinsonism (VP), but without neuropathological confirmation. Some had doubts about its existence because of the lack of the pathologically confirmed case with adequate clinical correlation. At present, VP is characterized clinically by the short-stepped or frozen gait, lead-pipe rigidity, the symmetry of findings, absence of resting tremor, and negative response to levodopa in elderly patients with cerebrovascular lesions on CT/MRI. Pseudobulbar palsies, pyramidal tract findings, and/or multi-infarct dementia coexist in some of the cases. Most of clinically suspected VP patients have cerebral white matter lesions as well as basal ganglia lesions. PMID:9014431

  20. Microvascular Abnormality in Schizophrenia as Shown by Retinal Imaging

    PubMed Central

    Meier, Madeline H.; Shalev, Idan; Moffitt, Terrie E.; Kapur, Shitij; Keefe, Richard S.E.; Wong, Tien; Belsky, Daniel W.; Harrington, HonaLee; Hogan, Sean; Houts, Renate; Caspi, Avshalom; Poulton, Richie

    2013-01-01

    Objective Retinal and cerebral microvessels are structurally and functionally homologous, but, unlike cerebral microvessels, retinal microvessels can be noninvasively measured in vivo via retinal imaging. Here we test the hypothesis that individuals with schizophrenia show microvascular abnormality and evaluate the utility of retinal imaging as a tool for future schizophrenia research. Methods Participants were members of the Dunedin Study, a population-representative cohort followed from birth with 95% retention. Study members underwent retinal imaging at age 38 years. We assessed retinal arteriolar and venular caliber for all members of the cohort, including individuals who developed schizophrenia. Results Study members who developed schizophrenia were distinguished by wider retinal venules, suggesting microvascular abnormality reflective of insufficient brain oxygen supply. Analyses that controlled for confounding health conditions suggested that wider retinal venules are not simply an artifact of co-occurring health problems in schizophrenia patients. Wider venules were also associated with a dimensional measure of adult psychosis symptoms and with psychosis symptoms reported in childhood. Conclusions Findings provide initial support for the hypothesis that individuals with schizophrenia show microvascular abnormality. Moreover, results suggest that the same vascular mechanisms underlie subthreshold symptoms and clinical disorder and that these associations may begin early in life. These findings highlight the promise of retinal imaging as a tool for understanding the pathogenesis of schizophrenia. PMID:24030514

  1. The metabolic vascular syndrome - guide to an individualized treatment.

    PubMed

    Hanefeld, Markolf; Pistrosch, Frank; Bornstein, Stefan R; Birkenfeld, Andreas L

    2016-03-01

    In ancient Greek medicine the concept of a distinct syndrome (going together) was used to label 'a group of signs and symptoms' that occur together and 'characterize a particular abnormality and condition'. The (dys)metabolic syndrome is a common cluster of five pre-morbid metabolic-vascular risk factors or diseases associated with increased cardiovascular morbidity, fatty liver disease and risk of cancer. The risk for major complications such as cardiovascular diseases, NASH and some cancers develops along a continuum of risk factors into clinical diseases. Therefore we still include hyperglycemia, visceral obesity, dyslipidemia and hypertension as diagnostic traits in the definition according to the term 'deadly quartet'. From the beginning elevated blood pressure and hyperglycemia were core traits of the metabolic syndrome associated with endothelial dysfunction and increased risk of cardiovascular disease. Thus metabolic and vascular abnormalities are in extricable linked. Therefore it seems reasonable to extend the term to metabolic-vascular syndrome (MVS) to signal the clinical relevance and related risk of multimorbidity. This has important implications for integrated diagnostics and therapeutic approach. According to the definition of a syndrome the rapid global rise in the prevalence of all traits and comorbidities of the MVS is mainly caused by rapid changes in life-style and sociocultural transition resp. with over- and malnutrition, low physical activity and social stress as a common soil. PMID:26956847

  2. The vascular surgeon-scientist: a 15-year report of the Society for Vascular Surgery Foundation/National Heart, Lung, and Blood Institute-mentored Career Development Award Program.

    PubMed

    Kibbe, Melina R; Dardik, Alan; Velazquez, Omaida C; Conte, Michael S

    2015-04-01

    The Society for Vascular Surgery (SVS) Foundation partnered with the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) in 1999 to initiate a competitive career development program that provides a financial supplement to surgeon-scientists receiving NIH K08 or K23 career development awards. Because the program has been in existence for 15 years, a review of the program's success has been performed. Between 1999 and 2013, 41 faculty members applied to the SVS Foundation program, and 29 from 21 different institutions were selected as awardees, resulting in a 71% success rate. Three women (10%) were among the 29 awardees. Nine awardees (31%) were supported by prior NIH F32 or T32 training grants. Awardees received their K award at an average of 3.5 years from the start of their faculty position, at the average age of 39.8 years. Thirteen awardees (45%) have subsequently received NIH R01 awards and five (17%) have received Veterans Affairs Merit Awards. Awardees received their first R01 at an average of 5.8 years after the start of their K award at the average age of 45.2 years. The SVS Foundation committed $9,350,000 to the Career Development Award Program. Awardees subsequently secured $45,108,174 in NIH and Veterans Affairs funds, resulting in a 4.8-fold financial return on investment for the SVS Foundation program. Overall, 23 awardees (79%) were promoted from assistant to associate professor in an average of 5.9 years, and 10 (34%) were promoted from associate professor to professor in an average of 5.2 years. Six awardees (21%) hold endowed professorships and four (14%) have secured tenure. Many of the awardees hold positions of leadership, including 12 (41%) as division chief and two (7%) as vice chair within a department of surgery. Eight (28%) awardees have served as president of a regional or national society. Lastly, 47 postdoctoral trainees have been mentored by recipients of the SVS Foundation Career Development

  3. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization.

    PubMed Central

    Drake, C J; Little, C D

    1995-01-01

    Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation). Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7543999

  4. Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension

    PubMed Central

    Delaney, Cassidy; Wright, Rachel H.; Tang, Jen-Ruey; Woods, Crystal; Villegas, Leah; Sherlock, Laurie; Savani, Rashmin C.; Abman, Steven H.; Nozik-Grayck, Eva

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) worsens clinical outcomes in former preterm infants with bronchopulmonary dysplasia (BPD). Oxidant stress disrupts alveolar and vascular development in models of BPD. Bleomycin causes oxidative stress and induces BPD and PAH in neonatal rats. Disruption in the VEGF and nitric oxide signaling pathways contributes to BPD. We hypothesized that loss of EC-SOD would worsen PAH associated with BPD in a neonatal mouse model of bleomycin-induced BPD by disrupting the VEGF/NO signaling pathway. Methods Neonatal wild-type mice (WT), and mice lacking EC-SOD (EC-SOD KO) received intraperitoneal bleomycin (2 units/kg) or PBS three times weekly and were evaluated at week 3 or 4. Results Lack of EC-SOD impaired alveolar development and resulted in PH (elevated right ventricular systolic pressures, right ventricular hypertrophy (RVH)), decreased vessel density and an increased small vessel muscularization. Exposure to bleomycin further impaired alveolar development, worsened RVH and vascular remodeling. Lack of EC-SOD and bleomycin treatment decreased lung total and phosphorylated VEGFR2 and eNOS protein expression. Conclusion EC-SOD is critical in preserving normal lung development and loss of EC-SOD results in disrupted alveolar development, PAH and vascular remodeling at baseline, which is further worsened with bleomycin and associated with decreased activation of VEGFR2. PMID:26322414

  5. Obstructive sleep apnea and vascular disease

    PubMed Central

    Lanfranchi, Paola; Somers, Virend A

    2001-01-01

    There is emerging evidence linking obstructive sleep apnea (OSA) to vascular disease, including hypertension. This relationship may be independent of co-morbidity, such as obesity. Even apparently healthy OSA patients have evidence of subtle functional vascular abnormalities that are known to occur in patients with hypertension and atherosclerosis. Untreated OSA may possibly contribute to the initiation and/or progression of pathophysiologic mechanisms involved in hypertension, heart failure, cardiac ischemia and stroke. This brief commentary will examine the evidence and mechanisms linking OSA to vascular disease. PMID:11737928

  6. Are MPNs vascular diseases?

    PubMed

    Finazzi, Guido; De Stefano, Valerio; Barbui, Tiziano

    2013-12-01

    A high risk of arterial and venous thrombosis is the hallmark of chronic myeloproliferative neoplasms (MPNs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Clinical aspects, pathogenesis and management of thrombosis in MPN resemble those of other paradigmatic vascular diseases. The occurrence of venous thrombosis in atypical sites, such as the splanchnic district, and the involvement of plasmatic prothrombotic factors, including an acquired resistance to activated protein C, both link MPN to inherited thrombophilia. Anticoagulants are the drugs of choice for these complications. The pathogenic role of leukocytes and inflammation, and the high mortality rate from arterial occlusions are common features of MPN and atherosclerosis. The efficacy and safety of aspirin in reducing deaths and major thrombosis in PV have been demonstrated in a randomized clinical trial. Finally, the Virchow's triad of impaired blood cells, endothelium and blood flow is shared both by MPN and thrombosis in solid cancer. Phlebotomy and myelosuppressive agents are the current therapeutic options for correcting these abnormalities and reducing thrombosis in this special vascular disease represented by MPN. PMID:24037420

  7. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development

    PubMed Central

    2013-01-01

    Background The adverse effects of maternal diabetes on oocyte maturation and embryo development have been reported. Methods In this study, we used time-lapse live cell imaging confocal microscopy to investigate the dynamic changes of ER and the effects of diabetes on the ER’s structural dynamics during oocyte maturation, fertilization and early embryo development. Results We report that the ER first became remodeled into a dense ring around the developing MI spindle, and then surrounded the spindle during migration to the cortex. ER reorganization during mouse early embryo development was characterized by striking localization around the pronuclei in the equatorial section, in addition to larger areas of fluorescence deeper within the cytoplasm. In contrast, in diabetic mice, the ER displayed a significantly higher percentage of homogeneous distribution patterns throughout the entire ooplasm during oocyte maturation and early embryo development. In addition, a higher frequency of large ER aggregations was detected in GV oocytes and two cell embryos from diabetic mice. Conclusions These results suggest that the diabetic condition adversely affects the ER distribution pattern during mouse oocyte maturation and early embryo development. PMID:23597066

  8. Vascular Aging: Lessons From Pediatric Hypertension.

    PubMed

    Litwin, Mieczyslaw; Feber, Janusz; Ruzicka, Marcel

    2016-05-01

    Hypertension (HTN) in children is associated with early vascular aging (EVA) and underlying immunologic-metabolic abnormalities and accelerated biological maturation. Morphologic and functional vascular changes underlying EVA and HTN in children resemble those seen in the elderly including but not limited to an increase in intima-media thickness (IMT) and arterial stiffness and endothelial dysfunction. Although progeria syndrome leading to EVA and the development of clinically manifested cardiovascular (CV) disease in the second decade of life is a rare hereditary disorder, primary HTN, which is also associated with EVA, is much more common (reported in up to 10% in adolescents). EVA associated with HTN in children leads to the premature development of target organ injury in childhood and CV events in early adulthood. Limited evidence from prospective observational studies in children and adolescents indicates that early lifestyle measures (low salt/low sugar intake and exercise) or pharmacologic treatment of HTN, or both, partially reverses morphologic and functional changes underlying EVA such as an increase in carotid IMT and pulse wave velocity, a decrease in flow-mediated dilation of the brachial artery, and an increase in oxidative stress and visceral fat. Future mechanistic and therapeutic clinical trials are desirable to assess the mechanisms and treatment strategies of EVA in the context of HTN in children and their effect on CV events in early adulthood. PMID:27040097

  9. [The role of circulating immune complexes and the status of argyrophilic membranes of the vascular walls in the development of brain edema in patients with meningococcal meningoencephalitis].

    PubMed

    Gebesh, V V; Iarosh, O A

    1991-01-01

    Based on clinical and immunological examinations of 60 patients with MME and 30 normal persons, the dynamics of the blood CIC content was studied depending on the time and gravity of the disease. The discovered changes in argyrophilic membranes of the vascular walls are determined to a considerable measure by the pathogenic action of CIC on microvessels, which entails the derangement of blood-brain barrier function and contributes to the development of acute purulent meningitis. PMID:1647627

  10. Vascular dementia

    PubMed Central

    Korczyn, Amos D; Vakhapova, Veronika; Grinberg, Lea T

    2012-01-01

    The epidemic grow of dementia causes great concern for the society. It is customary to consider Alzheimer’s disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown “vascular” risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD are similar, although the former is less effective. For prevention of dementia it is important to treat aggressively all factors, even in stroke survivors who do not show evidence of cognitive decline,. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss it interaction with AD. PMID:22575403

  11. Arm exercise testing with myocardial scintigraphy in asymptomatic patients with peripheral vascular disease

    SciTech Connect

    Goodman, S.; Rubler, S.; Bryk, H.; Sklar, B.; Glasser, L.

    1989-04-01

    Arm exercise with myocardial scintigraphy and oxygen consumption determinations was performed by 33 men with peripheral vascular disease, 40 to 74 years of age (group 2). None had evidence of coronary disease. Nineteen age-matched male control subjects (group 1) were also tested to determine the normal endurance and oxygen consumption during arm exercise in their age group and to compare the results with those obtained during a standard treadmill performance. The maximal heart rate, systolic blood pressure, pressure rate product, and oxygen consumption were all significantly lower for arm than for leg exercise. However, there was good correlation between all these parameters for both types of exertion. The maximal heart rate, work load and oxygen consumption were greater for group 1 subjects than in patients with peripheral vascular disease despite similar activity status. None of the group 1 subjects had abnormal arm exercise ECGs, while six members of group 2 had ST segment changes. Thallium-201 scintigraphy performed in the latter group demonstrated perfusion defects in 25 patients. After nine to 29 months of follow-up, three patients who had abnormal tests developed angina and one of them required coronary bypass surgery. Arm exercise with myocardial scintigraphy may be an effective method of detecting occult ischemia in patients with peripheral vascular disease. Those with good exercise tolerance and no electrocardiographic changes or /sup 201/T1 defects are probably at lower risk for the development of cardiac complications, while those who develop abnormalities at low exercise levels may be candidates for invasive studies.

  12. Understanding the Pathophysiology and Challenges of Development of Medical Countermeasures for Radiation-Induced Vascular/Endothelial Cell Injuries: Report of a NIAID Workshop, August 20, 2015.

    PubMed

    Satyamitra, Merriline M; DiCarlo, Andrea L; Taliaferro, Lanyn

    2016-08-01

    After the events of September 11, 2001, a decade of research on the development of medical countermeasures (MCMs) to treat victims of a radiological incident has yielded two FDA-approved agents to mitigate acute radiation syndrome. These licensed agents specifically target the mitigation of radiation-induced neutropenia and infection potential, while the ramifications of the exposure event in a public health emergency incident could include the entire body, causing additional acute and/or delayed organ/tissue injuries. Anecdotal data as well as recent findings from both radiation accident survivors and animal experiments implicate radiation-induced injury or dysfunction of the vascular endothelium leading to tissue and organ injuries. There are significant gaps in our understanding of the disease processes and progression, as well as the optimum approaches to develop medical countermeasures to mitigate radiation vascular injury. To address this issue, the Radiation and Nuclear Countermeasures Program of the National Institute of Allergy and Infectious Diseases (NIAID) organized a one-day workshop to examine the current state of the science in radiation-induced vascular injuries and organ dysfunction, the natural history of the pathophysiology and the product development maturity of potential medical countermeasures to treat these injuries. Meeting presentations were followed by a NIAID-led open discussion among academic investigators, industry researchers and government agency representatives. This article provides a summary of these presentations and subsequent discussion from the workshop. PMID:27387859

  13. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation

    PubMed Central

    Du, Qian; Wang, Huanzhong

    2015-01-01

    The Arabidopsis vascular system is composed of xylem and phloem, which form a well-defined collateral pattern in vascular bundles. Xylary element and fibers develop secondary cell walls (SCWs) that provide mechanical strength to support plant growth and to transport water and minerals to all above ground organs. SCWs also constitute the majority of terrestrial biomass for biofuel production. The biosynthesis of secondary cell walls are known to be under transcriptional regulation. Transcription factors, such as NAC (NAM, ATAF1/2 and CUC2) and MYB domain proteins, serve as master regulators in SCW development. Recent studies indicated that Class III homeodomain leucine zipper transcription factors (HD-ZIP III TFs) and microRNA 165/166 (miR165/166) may play important roles in SCW formation. Here we discuss the diverse functions of miR165/166 and HD-ZIPIII in vascular development and their interaction with the regulatory pathways of SCW biosynthesis. PMID:26340415

  14. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish

    PubMed Central

    Aspatwar, Ashok; Barker, Harlan R.; Saralahti, Anni K.; Bäuerlein, Carina A.; Ortutay, Csaba; Pan, Peiwen; Kuuslahti, Marianne; Parikka, Mataleena; Rämet, Mika; Parkkila, Seppo

    2015-01-01

    Carbonic anhydrase related proteins (CARPs) X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder. PMID:26218428

  15. The role of pre-treatment white matter abnormalities in developing white matter changes following whole brain radiation: a volumetric study.

    PubMed

    Sabsevitz, David S; Bovi, Joseph A; Leo, Peter D; Laviolette, Peter S; Rand, Scott D; Mueller, Wade M; Schultz, Christopher J

    2013-09-01

    White matter injury is a known complication of whole brain radiation (WBRT). Little is known about the factors that predispose a patient to such injury. The current study used MR volumetrics to examine risk factors, in particular the influence of pre-treatment white matter health, in developing white matter change (WMC) following WBRT. Thirty-four patients with unilateral metastatic disease underwent FLAIR MRI pre-treatment and at several time points following treatment. The volume of abnormal FLAIR signal in the white matter was measured in the hemisphere contralateral to the diseased hemisphere at each time point. Analyses were restricted to the uninvolved hemisphere to allow for the measurement of WBRT effects without the potential confounding effects of the disease on imaging findings. The relationship between select pre-treatment clinical variables and the degree of WMC following treatment was examined using correlational and regression based analyses. Age when treated and volume of abnormal FLAIR prior to treatment were significantly associated with WMC following WBRT; however, pre-treatment FLAIR volume was the strongest predictor of post-treatment WMCs. Age did not add any predictive value once white matter status was considered. No significant relationships were found between biological equivalent dose and select cerebrovascular risk factors (total glucose, blood pressure, BMI) and development of WMCs. The findings from this study identify pre-treatment white matter health as an important risk factor in developing WMC following WBRT. This information can be used to make more informed decisions and counsel patients on their risk for treatment effects. PMID:23813291

  16. Intracranial vascular malformations: imaging of charged-particle radiosurgery. Part II. Complications

    SciTech Connect

    Marks, M.P.; Delapaz, R.L.; Fabrikant, J.I.; Frankel, K.A.; Phillips, M.H.; Levy, R.P.; Enzmann, D.R.

    1988-08-01

    Seven of 24 patients with intracranial vascular malformations who were treated with helium-ion Bragg-peak radiosurgery had complications of therapy. New symptoms and corresponding radiologic abnormalities developed 4-28 months after therapy. Five patients had similar patterns of white matter changes and mass effect on computed tomographic scans and magnetic resonance images. The abnormalities were centered in the radiation field. Gray matter changes and abnormal enhancement in the thalamus and hypothalamus outside the radiation field developed in one patient. This patient also had vasculopathic changes on angiograms. Rapidly progressive large vessel vasculopathy developed in another patient and caused occlusion of major vessels. Thus, different mechanisms may be involved in the complications of heavy-ion radiosurgery.

  17. Molecular abnormalities in Ewing's sarcoma.

    PubMed

    Burchill, Susan Ann

    2008-10-01

    Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics. PMID:18925858

  18. [Overview of the vascular interventional surgery robot].

    PubMed

    Li, Shenglin; Shen, Jie; Yan, Yonghua; Chen, Daguo

    2013-03-01

    In vascular invasive surgery procedures, because doctors suffered from a large number of X-ray radiation, and it is difficult to manipulate catheter, so vascular interventional robot has been rapidly developed. On the basis of analysis of vascular surgical intervention process, key technologies of vascular interventional surgical robots are provided. The image navigation system, the mechanical structure, control systems and force feedback are also analyzed. PMID:23777068

  19. The Role of Chronic Hypoxia in the Development of Neurocognitive Abnormalities in Preterm Infants with Bronchopulmonary Dysplasia

    ERIC Educational Resources Information Center

    Raman, Lakshmi; Georgieff, Michael K.; Rao, Raghavendra

    2006-01-01

    Bronchopulmonary dysplasia is the most common pulmonary morbidity in preterm infants and is associated with chronic hypoxia. Animal studies have demonstrated structural, neurochemical and functional alterations due to chronic hypoxia in the developing brain. Long-term impairments in visual-motor, gross and fine motor, articulation, reading,…

  20. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry.

    PubMed

    Su, Emily J

    2015-10-01

    Growth-restricted fetuses with absent or reversed end-diastolic velocities in the umbilical artery are at substantially increased risk for adverse perinatal and long-term outcome, even in comparison to growth-restricted fetuses with preserved end-diastolic velocities. Translational studies show that this Doppler velocimetry correlates with fetoplacental blood flow, with absent or reversed end-diastolic velocities signifying abnormally elevated resistance within the placental vasculature. The fetoplacental vasculature is unique in that it is not subject to autonomic regulation, unlike other vascular beds. Instead, humoral mediators, many of which are synthesized by local endothelial cells, regulate placental vascular resistance. Existing data demonstrate that in growth-restricted pregnancies complicated by absent or reversed umbilical artery end-diastolic velocities, an imbalance in production of these vasoactive substances occurs, favoring vasoconstriction. Morphologically, placentas from these pregnancies also demonstrate impaired angiogenesis, whereby vessels within the terminal villi are sparsely branched, abnormally thin, and elongated. This structural deviation from normal placental angiogenesis restricts blood flow and further contributes to elevated fetoplacental vascular resistance. Although considerable work has been done in the field of fetoplacental vascular development and function, much remains unknown about the mechanisms underlying impaired development and function of the human fetoplacental vasculature, especially in the context of severe fetal growth restriction with absent or reversed umbilical artery end-diastolic velocities. Fetoplacental endothelial cells are key regulators of angiogenesis and vasomotor tone. A thorough understanding of their role in placental vascular biology carries the significant potential of discovering clinically relevant and innovative approaches to prevention and treatment of fetal growth restriction with compromised

  1. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability.

    PubMed

    Brackenbury, William J; Yuan, Yukun; O'Malley, Heather A; Parent, Jack M; Isom, Lori L

    2013-01-15

    Voltage-gated Na(+) channel (VGSC) β1 subunits, encoded by SCN1B, are multifunctional channel modulators and cell adhesion molecules (CAMs). Mutations in SCN1B are associated with the genetic epilepsy with febrile seizures plus (GEFS+) spectrum disorders in humans, and Scn1b-null mice display severe spontaneous seizures and ataxia from postnatal day (P)10. The goal of this study was to determine changes in neuronal pathfinding during early postnatal brain development of Scn1b-null mice to test the hypothesis that these CAM-mediated roles of Scn1b may contribute to the development of hyperexcitability. c-Fos, a protein induced in response to seizure activity, was up-regulated in the Scn1b-null brain at P16 but not at P5. Consistent with this, epileptiform activity was observed in hippocampal and cortical slices prepared from the P16 but not from the P5-P7 Scn1b-null brain. On the basis of these results, we investigated neuronal pathfinding at P5. We observed disrupted fasciculation of parallel fibers in the P5 null cerebellum. Further, P5 null mice showed reduced neuron density in the dentate gyrus granule cell layer, increased proliferation of granule cell precursors in the hilus, and defective axonal extension and misorientation of somata and processes of inhibitory neurons in the dentate gyrus and CA1. Thus, Scn1b is critical for neuronal proliferation, migration, and pathfinding during the critical postnatal period of brain development. We propose that defective neuronal proliferation, migration, and pathfinding in response to Scn1b deletion may contribute to the development of hyperexcitability. PMID:23277545

  2. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes

    PubMed Central

    Morris, Jodie L.; Bridson, Tahnee L.; Alim, Md Abdul; Rush, Catherine M.; Rudd, Donna M.; Govan, Brenda L.; Ketheesan, Natkunam

    2016-01-01

    ABSTRACT The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  3. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes.

    PubMed

    Morris, Jodie L; Bridson, Tahnee L; Alim, Md Abdul; Rush, Catherine M; Rudd, Donna M; Govan, Brenda L; Ketheesan, Natkunam

    2016-01-01

    The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  4. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  5. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  6. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice.

    PubMed

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-05-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure. PMID:24326400

  7. Forebrain-Specific CRF Overproduction During Development is Sufficient to Induce Enduring Anxiety and Startle Abnormalities in Adult Mice

    PubMed Central

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-01-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure. PMID:24326400

  8. A review on the vascular features of the hyperimmunoglobulin E syndrome

    PubMed Central

    Yavuz, H; Chee, R

    2010-01-01

    Autosomal recessive, autosomal dominant and the sporadic forms of hyperimmunoglobulin E syndrome (HIES) are multi-system disorders. Although HIES patients may present with cold abscesses, the vascular features of HIES are not well recognized. The objective of this review is to characterize the nature and spectrum of vascular abnormalities in HIES patients. Vascular abnormalities in HIES patients were reviewed with Medline and Google Scholar-based searches. In brief, the searches combined terms related to HIES with the terms related to vasculature. Furthermore, reference lists from the original studies and review papers identified were screened. There were vascular abnormalities in 25 patients with HIES. These abnormalities were identified as aneurysms (coronary, aortic, carotid and cerebral), pseudoaneurysms, congenital patent ductus venosus, superior vena cava syndrome, vasculitides, vascular ectasia, thrombosis and others. They may be congenital or acquired, in the veins and arteries, affecting both sexes. These abnormalities can be seen in all subtypes of HIES. They could be also fatal in children and adults. Limited pathological investigations revealed the presence of vasculitis. Three of the patients were found to have overlap diseases. In this review, the spectrum of vascular abnormalities in HIES are documented and discussed in detail for the first time. They highlight a previously under-recognized and potentially devastating complication of these disorders. These vascular abnormalities constitute one of the major clinical characteristics in HIES. The presence of hypereosinophilia, vasculitis and defective angiogenesis in HIES may contribute to the formation of vascular abnormalities in HIES. PMID:19912258

  9. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development

    PubMed Central

    Kumar, Manish; Camlin, Nicole J.; Holt, Janet E.; Teixeira, Jose M.; McLaughlin, Eileen A.; Tanwar, Pradeep S.

    2016-01-01

    All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1ex3cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1ex3cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth. PMID:27265527

  10. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development.

    PubMed

    Kumar, Manish; Camlin, Nicole J; Holt, Janet E; Teixeira, Jose M; McLaughlin, Eileen A; Tanwar, Pradeep S

    2016-01-01

    All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1(ex3)cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1(ex3)cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth. PMID:27265527

  11. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies.

    PubMed

    Ottewell, P D; Coleman, R E; Holen, I

    2006-03-01

    Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone. PMID:16319986

  12. Abnormal pituitary development and function in three siblings of a Jamaican family: A new syndrome involving the Pit-1 gene

    SciTech Connect

    Sanchez, J.C.; Schiavi, A.; Parks, J.

    1994-09-01

    In 1967 Mckusick et al. reported three siblings in Canada who had combine pituitary hormone deficiencies (CPHD). Since that report there have been several families with multiple affected members who share the common characteristics of autosomal recessive inheritance and clinical expression of pituitary deficiencies at an early age. We report here a CPHD family of Jamaican origin with three affected and two unaffected siblings. The affected siblings have evidence of severe growth failure, growth hormone deficiency, hypothyroidism and variable prolactin deficiency. Recently, in some families with CPHD a defect has been detected in the Pit-1 gene, which encodes a transcription factor involved in the differentiation of the pituitary and the production of growth hormone, TSH and prolactin. We are studying the Pit-1 gene in this family as a candidate gene that may explain the family phenotype. The Pit-1 gene has been analyzed in DNA extracted from blood. No gross deletion were detected in exons 2, 3, 4, 5 and 6 using exon-specific PCR assay developed in our laboratory. Exon 1 is also currently being analyzed. Single stand conformational polymorphism (SSCP) analysis, a screening technique for point mutations within genes, is being used to identify putative base pair changes in the Pit-1 gene. The exon findings will be confirmed using standard DNA sequencing procedures. If a Pit-1 gene is detected, this family would provide a novel presentation, since gonadotropin deficiency appears to be present. Alternatively, this family may represent a mutation on another yet unknown factor involved in normal pituitary development.

  13. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern

    PubMed Central

    Decker, Amanda R.; McNeill, Matthew S.; Lambert, Aaron M.; Overton, Jeffrey D.; Chen, Yu-Chia; Lorca, Ramón A.; Johnson, Nicolas A.; Brockerhoff, Susan E.; Mohapatra, Durga P.; MacArthur, Heather; Panula, Pertti; Masino, Mark A.; Runnels, Loren W.; Cornell, Robert A.

    2014-01-01

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation. PMID:24291744

  14. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate.

    PubMed Central

    Moore, R W; Rudy, T A; Lin, T M; Ko, K; Peterson, R E

    2001-01-01

    Several members of the phthalate ester family have antiandrogenic properties, yet little is known about how exposure to these ubiquitous environmental contaminants early in development may affect sexual development. We conducted experiments to determine effects of in utero and lactational exposure to the most prevalent phthalate ester, di(2-ethylhexyl) phthalate (DEHP), on male reproductive system development and sexual behavior. Sprague-Dawley rats were dosed with corn oil or DEHP (0, 375, 750, or 1,500 mg/kg/day, per os) from gestation day 3 through postnatal day (PND) 21. Dose-related effects on male offspring included reduced anogenital distance, areola and nipple retention, undescended testes, and permanently incomplete preputial separation. Testis, epididymis, glans penis, ventral prostate, dorsolateral prostate, anterior prostate, and seminal vesicle weights were reduced at PND 21, 63, and/or 105-112. Additional dose-related effects included a high incidence of anterior prostate agenesis, a lower incidence of partial or complete ventral prostate agenesis, occasional dorsolateral prostate and seminal vesicle agenesis, reduced sperm counts, and testicular, epididymal, and penile malformations. Many DEHP-exposed males were sexually inactive in the presence of receptive control females, but sexual inactivity did not correlate with abnormal male reproductive organs. These results suggest that in utero and lactational DEHP exposure also inhibited sexually dimorphic central nervous system development. No major abnormalities were found in any of eight control litters, but DEHP caused severe male reproductive system toxicity in five of eight litters at 375 mg/kg/day, seven of eight litters at 750 mg/kg/day, and five of five litters at 1,500 mg/kg/day. These results demonstrate that the male reproductive system is far more sensitive to DEHP early in development than when animals are exposed as juveniles or adults. The effects of DEHP on male reproductive organs and

  15. Ultrasonographic assessment of abnormal pregnancy.

    PubMed

    England, G C

    1998-07-01

    Ultrasonographic imaging is widely used in small animal practice for the diagnosis of pregnancy and the determination of fetal number. Ultrasonography can also be used to monitor abnormal pregnancies, for example, conceptuses that are poorly developed for their gestational age (and therefore are likely to fail), and pregnancies in which there is embryonic resorption or fetal abortion. An ultrasound examination may reveal fetal abnormalities and therefore alter the management of the pregnant bitch or queen prior to parturition. There are, however, a number of ultrasonographic features of normal pregnancies that may mimic disease, and these must be recognized. PMID:9698618

  16. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  17. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Yun, Seung-Hwan; Lee, Seon-Woo; Koo, Hyun-Na; Kim, Gil-Hah

    2014-03-01

    The armyworm, Spodoptera litura (F.) is a polyphagous and important agricultural pest worldwide. In this study, we examined the effect of electron beam irradiation on developmental stages, reproduction, and DNA damage of S. litura. Eggs (0-24 h old), larvae (3rd instar), pupae (3 days old after pupation), and adults (24 h after emergence) were irradiated with electron beam irradiation of six levels between 30 and 250 Gy. When eggs were irradiated with 100 Gy, egg hatching was completely inhibited. When the larvae were irradiated, the larval period was significantly delayed, depending on the doses applied. At 150 Gy, the fecundity of adults that developed from irradiated pupae was entirely inhibited. However, electron beam irradiation did not induce the instantaneous death of S. litura adults. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males. We also conducted the comet assay immediately after irradiation and over the following 5 days period. Severe DNA fragmentation in S. litura cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. However, at more than 100 Gy, DNA damage was not fully recovered.

  18. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  19. The AMPLATZER Vascular Plug 4: Preliminary Experience

    SciTech Connect

    Ferro, Carlo; Rossi, Umberto G. Bovio, Giulio; Petrocelli, Francesco; Seitun, Sara

    2010-08-15

    The purpose of this communication is to describe our preliminary experience with the AMPLATZER Vascular Plug 4 (AVP 4) in peripheral vascular embolization. The AVP 4 was used for peripheral vascular embolization in five patients with renal pseudoaneurysm (n = 2), postsurgical peritoneal bleeding (n = 1), posttraumatic gluteal hemorrhage (n = 1), and intercostal pseudoaneurysm (n = 1). Occlusion time was recorded. Patients were followed up clinically and by imaging for 1 month after the procedure. All treated vessels or vascular abnormalities were successfully occluded within 3 min for low-flow circulation and over 8 min for high-flow circulation. At 1-month follow-up, all patients were symptom-free. All deployed devices remained in the original locations and desirable configurations. In conclusion, the AVP 4 seems to be safe and effective for occluding peripheral vessels and vascular abnormalities. Because of its compatibility with 0.038-in. catheters, it can be deployed through a diagnostic catheter following angiography without exchanging a sheath or guiding catheter. Compared with the previous generation of vascular plugs, the AVP 4 allows for faster procedure times and decreased exposure to radiation.

  20. Lewy Bodies, Vascular Risk Factors, and Subcortical Arteriosclerotic Leukoencephalopathy, but not Alzheimer Pathology, are Associated with Development of Psychosis in Alzheimer’s Disease

    PubMed Central

    Fischer, Corinne E.; Qian, Winnie; Schweizer, Tom A.; Millikin, Colleen P.; Ismail, Zahinoor; Smith, Eric E.; Lix, Lisa M.; Shelton, Paul; Munoz, David G.

    2016-01-01

    Background The neuropathological correlates of psychosis in Alzheimer’s disease (AD) is unclear, with some studies reporting a correlation between psychosis and increased AD pathology while others have found no association. Objective To determine the demographic, clinical, and neuropathological features associated with psychotic symptoms in clinically attributed and neuropathologically proven AD. Method We separately reviewed two overlapping groups of clinically diagnosed (cAD) AD patients with neuropathology data and neuropathologically definite (npAD) cases (regardless of clinical diagnosis) from the NACC database, and explored the relationships between psychosis and clinical variables, neuropathologic correlates, and vascular risk factors. Delusions and hallucinations, defined according to the NPI-Q, were analyzed separately. Results 1,073 subjects in the database fulfilled our criteria (890 cAD and 728 npAD patients). 34% of cAD and 37% of npAD had psychotic symptoms during their illness. Hallucinations were associated with greater cognitive and functional impairments on the MMSE and CDR, while delusional patients showed less impairment on CDR, consistent across cAD and npAD groups. Burden of AD pathology appears to relate to presence of psychotic symptoms in the clinical AD group, but this result is not confirmed in the neuropathologically confirmed group suggesting the findings in the clinical group were due to misdiagnosis of AD. Lewy body pathology, subcortical arteriosclerotic leukoencephalopathy, and vascular risk factors, including a history of hypertension and diabetes, were associated with the development of psychosis. Conclusions Vascular and Lewy body pathologies and vascular risk factors are important modifiers of the risk of psychosis in AD. PMID:26682680

  1. Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato.

    PubMed

    Liu, Dan-Dan; Dong, Qing-Long; Fang, Mou-Jing; Chen, Ke-Qin; Hao, Yu-Jin

    2012-12-15

    It has been well documented that FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) plays important regulatory roles in diverse developmental processes in model plant Arabidopsis thaliana. However, it is largely unknown how FIE genes function in economically important crops. In this study, MhFIE gene, which was previously isolated from apomictic tea crabapple (Malus hupehensis Redh. var. pingyiensis), was introduced into tomato. The hemizygous transgenic tomato lines produced curly leaves and decreased in seed germination. In addition, the co-suppression of the transgenic MhFIE and endogenous (SlFIE) genes occurred in homozygous transgenic tomatoes. As a result, FIE silencing brought about abnormal phenotypes during reproductive development in tomato, such as increased sepal and petal numbers in flower, a fused ovule and pistil and parthenocarpic fruit formation. A yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) demonstrated that MhFIE interacted with a tomato protein, EZ2 (SlEZ2). Its ectopic expression and SlFIE co-suppression notably influenced the expression of genes associated with leaf, flower, and fruit development. Therefore, together with other PcG proteins, FIE was involved in the regulation of vegetative and reproductive development by modulating the expression of related genes in plants. PMID:23000466

  2. Congenital anomalies and vascular birthmarks of the lower extremities.

    PubMed

    Laor, T; Burrows, P E

    1998-08-01

    MR imaging is an invaluable tool for the evaluation of congenital abnormalities and vascular birthmarks of the extremities in children. These abnormalities of the immature musculoskeletal system are often underestimated by radiography. MR imaging is useful for diagnosis, assisting in therapy, showing response to treatment, and determining prognosis. Localized and generalized abnormalities of the lower extremities and issues pertinent to their MR imaging are illustrated in this article. PMID:9654582

  3. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  4. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice

    PubMed Central

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E.; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J.; Gray, Calum D.; Hadoke, Patrick W. F.; Mitchell, Rod T.; O'Shaughnessy, Peter J.

    2016-01-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. PMID:27145015

  5. Continuous Taurocholic Acid Exposure Promotes Esophageal Squamous Cell Carcinoma Progression Due to Reduced Cell Loss Resulting from Enhanced Vascular Development

    PubMed Central

    Sato, Sho; Yamamoto, Hiroto; Mukaisho, Ken-ichi; Saito, Shota; Hattori, Takanori; Yamamoto, Gaku; Sugihara, Hiroyuki

    2014-01-01

    Background Refluxogenic effects of smoking and alcohol abuse may be related to the risk of esophageal squamous cell carcinoma (ESCC). The present study attempts to clarify the effects of continuous taurocholic acid (TCA) exposure, which is neither mutagenic nor genotoxic, on ESCC progression. Methods A squamous carcinoma cell line (ESCC-DR) was established from a tumor induced in a rat model of gastroduodenal reflux. ESCC-DR cells were incubated with 2 mM TCA for ≥2 months. The effects of continuous TCA exposure were evaluated in vitro on cell morphology, growth, and invasion and in vivo on xenograft tumor growth in nude mice. Moreover, the mean level of secreted transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) proteins in cell culture supernatants and mRNA synthesis of TGF-β1 and VEGF-A of ESCC cells were measured. The angiogenic potential was further examined by a migration assay using human umbilical vein endothelial cells (HUVECs). Results Continuous TCA exposure induced marked formation of filopodia in vitro. Expression levels of angiogenic factors were significantly higher in the cells treated with TCA than in control cells. Tumor xenografts derived from cells pre-exposed to TCA were larger and more vascularized than those derived from control cells. In addition, TCA exposure increased HUVEC migration. Conclusion Continuous TCA exposure enhanced ESCC progression due to reduced cell loss in vivo. Cell loss was inhibited by TCA-induced vascular endothelial cell migration, which was mediated by TGF-β1 and VEGF-A released from ESCC cells. PMID:24551170

  6. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

    PubMed

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J; Gray, Calum D; Hadoke, Patrick W F; Mitchell, Rod T; O'Shaughnessy, Peter J; Smith, Lee B

    2016-06-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. PMID:27145015

  7. NEW FRONTIER IN UNDERSTANDING THE MECHANISMS OF DEVELOPMENTAL ABNORMALITIES

    EPA Science Inventory

    Recent advancements in molecular developmental biology afford an opportunity to apply newly developed tools for understanding the mechanisms of both normal and abnormal development. lthough a number of agents have been identified as causing developmental abnormalities, knowledge ...

  8. Development of competencies for the use of bedside ultrasound for assessment and cannulation of hemodialysis vascular access.

    PubMed

    Marticorena, Rosa M; Mills, Linda; Sutherland, Kelly; McBride, Norma; Kumar, Latha; Bachynski, Jovina Concepcion; Rivers, Carol; Petershofer, Elizabeth J; Hunter, Joyce; Luscombe, Rick; Donnelly, Sandra

    2015-01-01

    Use of ultrasound for hemodialysis vascular access assessment and real-time cannulation requires specialized training. In order to obtain basic hand-eye coordination, theoretical sessions on ultrasound use, as well as practical sessions using phantom models are recommended prior to its use in the clinical setting with patients. New users of this technology need to consider that all competencies can be achieved with daily use of ultrasound at the bedside. It takes approximately 500 guided cannulations to achieve the highest level of competency described above. PMID:26964424

  9. Abnormalities of endothelial function in patients with predialysis renal failure

    PubMed Central

    Thambyrajah, J; Landray, M; McGlynn, F; Jones, H; Wheeler, D; Townend, J

    2000-01-01

    BACKGROUND—Endothelial dysfunction plays an important role in the development of atherosclerotic vascular disease, which is the leading cause of mortality in patients with chronic renal failure.
OBJECTIVE—To examine the relation between predialysis renal failure and endothelial function.
DESIGN—Two groups were studied: 80 patients with non-diabetic chronic renal failure and 26 healthy controls, with similar age and sex distributions. Two indices of endothelial function were assessed: high resolution ultrasonography to measure flow mediated endothelium dependent dilatation of the brachial artery following reactive hyperaemia, and plasma concentration of von Willebrand factor. Endothelium independent dilatation was also assessed following sublingual glyceryl trinitrate. The patients were divided into those with and without overt atherosclerotic vascular disease.
RESULTS—Although patients with chronic renal failure had significantly impaired endothelium dependent dilatation compared with controls (median (interquartile range), 2.6% (0.7% to 4.8%) v 6.5% (4.8% to 8.3%); p < 0.001) and increased von Willebrand factor (254 (207 to 294) v 106 (87 to 138) iu/dl; p < 0.001), there was no difference between renal failure patients with and without atherosclerotic vascular disease. Within the chronic renal failure group, endothelium dependent dilatation and von Willebrand factor were similar in patients in the upper and lower quartiles of glomerular filtration rate (2.7% (0.7% to 6.7%) v 2.8% (1.1% to 5.0%); and 255 (205 to 291) v 254 (209 to 292) iu/dl, respectively). Endothelium independent dilatation did not differ between the renal failure or control groups and was also similar in patients with renal failure irrespective of the degree of renal failure or the presence of atherosclerotic vascular disease.
CONCLUSIONS—Endothelial function is abnormal in chronic renal failure, even in patients with mild renal insufficiency and those without

  10. Spiral CT: vascular applications.

    PubMed

    Rankin, S C

    1998-08-01

    Recent technical advances in CT have renewed interest in the development of CT angiography (CTA). CT angiography is a minimally invasive method of visualising the vascular system and is becoming an alternative to conventional arteriography in some situations. Spiral technology allows a volume of data to be obtained on a single breath-hold with no respiratory misregistration. Fast machines with second or subsecond acquisition times mean the images are obtained while there are high circulating levels of contrast medium giving peak vascular opacification from a peripheral intravenous injection. Accurate timing will ensure either the arterial or venous phase is imaged. Multiple overlapping axial images can be obtained from the data set with no increase in radiation dose to the patient and from these scans computer generated multiplanar and 3D images are obtained which can be viewed from numerous angles. CT angiography can be performed more quickly, less invasively and at reduced cost compared to conventional angiography. PMID:9717621

  11. Plant Vascular Biology 2010

    SciTech Connect

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  12. Bacterial invasion of vascular cell types: vascular infectology and atherogenesis.

    PubMed

    Kozarov, Emil

    2012-01-01

    To portray the chronic inflammation in atherosclerosis, leukocytic cell types involved in the immune response to invading pathogens are often the focus. However, atherogenesis is a complex pathological deterioration of the arterial walls, where vascular cell types are participants with regards to deterioration and disease. Since other recent reviews have detailed the role of both the innate and adaptive immune response in atherosclerosis, herein we will summarize the latest developments regarding the association of bacteria with vascular cell types: infections as a risk factor for atherosclerosis; bacterial invasion of vascular cell types; the atherogenic sequelae of bacterial presence such as endothelial activation and blood clotting; and the identification of the species that are able to colonize this niche. The evidence of a polybacterial infectious component of the atheromatous lesions opens the doors for exploration of the new field of vascular infectology and for the study of atherosclerosis microbiome. PMID:22185451

  13. Update on Vascular Dementia.

    PubMed

    Khan, Ayesha; Kalaria, Raj N; Corbett, Anne; Ballard, Clive

    2016-09-01

    Vascular dementia (VaD) is a major contributor to the dementia syndrome and is described as having problems with reasoning, planning, judgment, and memory caused by impaired blood flow to the brain and damage to the blood vessels resulting from events such as stroke. There are a variety of etiologies that contribute to the development of vascular cognitive impairment and VaD, and these are often associated with other dementia-related pathologies such as Alzheimer disease. The diagnosis of VaD is difficult due to the number and types of lesions and their locations in the brain. Factors that increase the risk of vascular diseases such as stroke, high blood pressure, high cholesterol, and smoking also raise the risk of VaD. Therefore, controlling these risk factors can help lower the chances of developing VaD. This update describes the subtypes of VaD, with details of their complex presentation, associated pathological lesions, and issues with diagnosis, prevention, and treatment. PMID:27502303

  14. Vascular hand-arm vibration syndrome--magnetic resonance angiography.

    PubMed

    Poole, C J M; Cleveland, T J

    2016-01-01

    The diagnosis of vascular hand-arm vibration syndrome (HAVS) requires consistent symptoms, photographic evidence of digital blanching and sufficient exposure to hand-transmitted vibration (HTV; A(8) > 2.5 m/s2). There is no reliable quantitative investigation for distinguishing HAVS from other causes of Raynaud's phenomenon and from normal individuals. Hypothenar and thenar hammer syndromes produce similar symptoms to HAVS but are difficult to diagnose clinically and may be confused with HAVS. Magnetic resonance angiography (MRA) is a safe and minimally invasive method of visualizing blood vessels. Three cases of vascular HAVS are described in which MRA revealed occlusions of the ulnar, radial and superficial palmar arteries. It is proposed that HTV was the cause of these occlusions, rather than blows to the hand unrelated to vibration, the assumed mechanism for the hammer syndromes. All three cases were advised not to expose their hands to HTV despite one of them being at Stockholm vascular stage 2 (early). MRA should be the investigation of choice for stage 2 vascular HAVS or vascular HAVS with unusual features or for a suspected hammer syndrome. The technique is however technically challenging and best done in specialist centres in collaboration with an occupational physician familiar with the examination of HAVS cases. Staging for HAVS should be developed to include anatomical arterial abnormalities as well as symptoms and signs of blanching. Workers with only one artery supplying a hand, or with only one palmar arch, may be at increased risk of progression and therefore should not be exposed to HTV irrespective of their Stockholm stage. PMID:26470947

  15. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  16. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  17. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  18. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling

    PubMed Central

    McDonald, Robert A.; Hata, Akiko; MacLean, Margaret R.; Morrell, Nicholas W.; Baker, Andrew H.

    2012-01-01

    Vascular remodelling is an integral pathological process central to a number of cardiovascular diseases. The complex interplay between distinct cell populations in the vessel wall following vascular injury leads to inflammation, cellular dysfunction, pro-growth signals in the smooth muscle cell (SMC) compartment, and the acquisition of a synthetic phenotype. Although the signals for vascular remodelling are diverse in different pathological contexts, SMC proliferation and migration are consistently observed. It is therefore critical to elucidate key mechanisms central to these processes. MicroRNAs (miRNAs) are small non-coding sequences of RNA that have the capacity to regulate many genes, pathways, and complex biological networks within cells, acting either alone or in concert with one another. In diseases such as cancer and cardiac disease, the role of miRNA in disease pathogenesis has been documented in detail. In contrast, despite a great deal of interest in miRNA, relatively few studies have directly assessed the role of miRNA in vascular remodelling. The potential for modulation of miRNA to achieve therapeutic benefits in this setting is attractive. Here, we focus on the role of miRNA in vascular inflammation and remodelling associated with acute vascular injury (vein graft disease, angioplasty restenosis, and in-stent restenosis) as well as in vascular remodelling associated with the development of pulmonary arterial hypertension. PMID:22065733

  19. Piezo1 integration of vascular architecture with physiological force

    PubMed Central

    Tumova, Sarka; Muraki, Katsuhiko; Bruns, Alexander; Ludlow, Melanie J; Sedo, Alicia; Hyman, Adam J; McKeown, Lynn; Young, Richard S; Yuldasheva, Nadira Y; Majeed, Yasser; Wilson, Lesley A; Rode, Baptiste; Bailey, Marc A; Kim, Hyejeong R; Fu, Zhaojun; Carter, Deborah AL; Bilton, Jan; Imrie, Helen; Ajuh, Paul; Dear, T Neil; Cubbon, Richard M; Kearney, Mark T; Prasad, Raj K; Evans, Paul C; Ainscough, Justin FX; Beech, David J

    2014-01-01

    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic1-5. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca2+-permeable non-selective cationic channels for detection of noxious mechanical impact6-8. Here we show Piezo1 (FAM38A) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. Importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx was protease activity and spatial organization of endothelial cells to the polarity of the applied force. The data suggest Piezo1 channels as pivotal integrators in vascular biology. PMID:25119035

  20. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  1. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  2. BMP signaling in vascular diseases.

    PubMed

    Cai, Jie; Pardali, Evangelia; Sánchez-Duffhues, Gonzalo; ten Dijke, Peter

    2012-07-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) family that signal via type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. BMPs are multifunctional regulators of development and tissue homeostasis and they were initially characterized as inducers of bone regeneration. Genetic studies in humans and mice showed that perturbations in BMP signaling lead to various diseases, such as skeletal diseases, vascular diseases and cancer. Mutations in BMP type II receptor and BMP type I receptor/activin receptor-like kinase 1 have been linked to pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia, respectively. BMPs have also been implicated in promoting vascular calcification and tumor angiogenesis. In this review we discuss the role of BMP signaling in vascular diseases and the value of BMP signaling as a vascular disease marker or a therapeutic target. PMID:22710160

  3. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  4. The European experience with vascular injuries.

    PubMed

    Fingerhut, Abe; Leppäniemi, Ari K; Androulakis, George A; Archodovassilis, F; Bouillon, Bertil; Cavina, Enrico; Chaloner, Eddie; Chiarugi, Massimo; Davidovic, Lazar; Delgado-Millan, Miguel Angel; Goris, Jan; Gunnlaugsson, Gunnar H; Jover, Jose Maria; Konstandoulakis, Manoussos M; Kurtoglu, Mehmet; Lepäntalo, Mauri; Llort-Pont, Carme; Meneu-Diaz, Juan Carlos; Moreno-Gonzales, Enrique; Navarro-Soto, Salvador; Panoussis, P; Ryan, James M; Salenius, Juha P; Seccia, Massimo; Takolander, Rabbe; Taviloglu, Korhan; Tiesenhausen, Kurt; Torfason, Bjarni; Uranüs, Selman

    2002-02-01

    The rich and diverse heritage of the management of vascular injuries in the 45 independent European countries prevents the authors from revealing a uniform picture of the European experience, but some trends are clearly emerging. In countries with a low incidence of penetrating trauma and increasing use of interventional vascular procedures, the proportion of iatrogenic vascular trauma exceeds 40% of all vascular injuries, whereas on other parts of the continent, armed conflicts are still a major cause of vascular trauma. National vascular registries, mostly in the Scandinavian countries, produce useful, nationwide data about vascular trauma and its management but suffer still from inadequate data collection. Despite a relatively low incidence of vascular trauma in most European countries, the results are satisfactory, probably in most cases because of active and early management by surgeons on call, whether with vascular training or not, treating all kinds of vascular surgical emergencies. In some countries, attempts at developing a trauma and emergency surgical specialty, including expertise in the management of vascular injuries, are on their way. PMID:11905944

  5. Cardiac and vascular changes with kidney transplantation

    PubMed Central

    Ali, A.; Macphee, I.; Kaski, J. C.; Banerjee, D.

    2016-01-01

    Cardiovascular event rates are high in patients with chronic kidney disease (CKD), increasing with deteriorating kidney function, highest in CKD patients on dialysis, and improve with kidney transplantation (KTx). The cardiovascular events in CKD patients such as myocardial infarction and heart failure are related to abnormalities of vascular and cardiac structure and function. Many studies have investigated the structural and functional abnormalities of the heart and blood vessels in CKD, and the changes that occur with KTx, but the evidence is often sparse and occasionally contradictory. We have reviewed the available evidence and identified areas where more research is required to improve the understanding and mechanisms of these changes. There is enough evidence demonstrating improvement of left ventricular hypertrophy, except in children, and sufficient evidence of improvement of left ventricular function, with KTx. There is reasonable evidence of improvement in vascular function and stiffness. However, the evidence for improvement of vascular structure and atherosclerosis is insufficient. Further studies are necessary to establish the changes in vascular structure, and to understand the mechanisms of vascular and cardiac changes, following KTx. PMID:26937071