Science.gov

Sample records for abnormal vascular function

  1. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage.

  2. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  3. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA. PMID:24048981

  4. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  5. Pulmonary vascular development goes awry in congenital lung abnormalities.

    PubMed

    Kool, Heleen; Mous, Daphne; Tibboel, Dick; de Klein, Annelies; Rottier, Robbert J

    2014-12-01

    Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease. PMID:25424472

  6. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia.

    PubMed

    Mourani, Peter M; Abman, Steven H

    2015-12-01

    Despite advances in the care of preterm infants, these infants remain at risk bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, showing that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities. Several epidemiologic studies have delineated the incidence of PH in preterm infants and the impact on outcomes. These studies have also highlighted gaps in the understanding of PVD in BPD. PMID:26593082

  7. Plasma concentrations of endothelin in patients with abnormal vascular reactivity

    SciTech Connect

    Predel, H.G.; Meyer-Lehnert, H.; Baecker, A.; Stelkens, H.; Kramer, H.J. )

    1990-01-01

    We measured circulating concentrations of endothelin in healthy subjects and in patients with abnormal vascular reactivity. Endothelin concentrations were determined by radioimmunoassay after extraction of plasma using Sep-Pak C-18 cartridges in healthy subjects, in patients with diabetes mellitus type I, in patients with mild to moderate essential hypertension and in non-dialyzed patients with stable chronic renal failure. Plasma concentrations were similar in healthy controls, in diabetics and in hypertensive patients averaging 5.0{plus minus}0.6 pg/ml, 4.7{plus minus}0.2 pg/ml and 6.5{plus minus}1.0 pg/ml, respectively. In contrast, plasma concentrations of endothelin were markedly elevated in patients with chronic renal failure averaging 16.6{plus minus}2.9 pg/ml. No correlations were observed between serum creatinine concentrations ranging from 124 to 850 {mu}mol/l or blood pressure and plasma concentrations of endothelin. Bicycle ergometric exercise in six healthy subjects and an acute modest i.v. saline load of 1,000 ml of 0.45% NaCl administered within 60 min in six patients with mild essential hypertension did not affect plasma concentrations of endothelin.

  8. Vascular nitric oxide: formation and function

    PubMed Central

    Jin, Richard C; Loscalzo, Joseph

    2010-01-01

    Nitric oxide (NO) is a structurally simple, highly versatile molecule that was originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to its vasorelaxing effects, NO is now recognized as a key determinant of vascular health, exerting antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-lived molecule exerts its inhibitory effect on vascular smooth muscle cells and platelets largely through cyclic guanosine monophosphate-dependent mechanisms, resulting in a multitude of molecular effects by which platelet activation and aggregation are prevented. The biosynthesis of NO occurs via the catalytic activity of NO synthase, an oxidoreductase found in many cell types. NO insufficiency can be attributed to limited substrate/cofactor availability as well as interactions with reactive oxygen species. Impaired NO bioavailability represents the central feature of endothelial dysfunction, a common abnormality found in many vascular diseases. In this review, we present an overview of NO synthesis and biochemistry, discuss the mechanisms of action of NO in regulating platelet and endothelial function, and review the effects of vascular disease states on NO bioavailability. PMID:21572574

  9. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  10. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    PubMed Central

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities. PMID

  11. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  12. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  13. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-01

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. PMID:26645582

  14. Abnormalities associated with progressive aortic vascular dysfunction in chronic kidney disease

    PubMed Central

    Ameer, Omar Z.; Boyd, Rochelle; Butlin, Mark; Avolio, Alberto P.; Phillips, Jacqueline K.

    2015-01-01

    Increased stiffness of large arteries in chronic kidney disease (CKD) has significant clinical implications. This study investigates the temporal development of thoracic aortic dysfunction in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Animals aged 12 and 18 weeks were studied alongside age-matched Lewis controls (total n = 94). LPK rodents had elevated systolic blood pressure, left ventricular hypertrophy and progressively higher plasma creatinine and urea. Relative to Lewis controls, LPK exhibited reduced maximum aortic vasoconstriction (Rmax) to noradrenaline at 12 and 18 weeks, and to K+ (12 weeks). Sensitivity to noradrenaline was greater in 18-week-old LPK vs. age matched Lewis (effective concentration 50%: 24 × 10−9 ± 78 × 10−10 vs. 19 × 10−8 ± 49 × 10−9, P < 0.05). Endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation was diminished in LPK, declining with age (12 vs. 18 weeks Rmax: 80 ± 8% vs. 57 ± 9% and 92 ± 6% vs. 70 ± 9%, P < 0.05, respectively) in parallel with the decline in renal function. L-Arginine restored endothelial function in LPK, and L-NAME blunted acetylcholine relaxation in all groups. Impaired nitric oxide synthase (NOS) activity was recovered with L-Arginine plus L-NAME in 12, but not 18-week-old LPK. Aortic calcification was increased in LPK rats, as was collagen I/III, fibronectin and NADPH-oxidase subunit p47 (phox) mRNAs. Overall, our observations indicate that the vascular abnormalities associated with CKD are progressive in nature, being characterized by impaired vascular contraction and relaxation responses, concurrent with the development of endothelial dysfunction, which is likely driven by evolving deficits in NO signaling. PMID:26042042

  15. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.

  16. Mitochondria, endothelial cell function, and vascular diseases

    PubMed Central

    Tang, Xiaoqiang; Luo, Yu-Xuan; Chen, Hou-Zao; Liu, De-Pei

    2014-01-01

    Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction. PMID:24834056

  17. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye

    PubMed Central

    Jia, Yali; Bailey, Steven T.; Hwang, Thomas S.; McClintic, Scott M.; Pennesi, Mark E.; Flaxel, Christina J.; Lauer, Andreas K.; Wilson, David J.; Hornegger, Joachim; Fujimoto, James G.; Huang, David

    2015-01-01

    Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities. PMID:25897021

  18. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed. PMID:25724169

  19. Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD)

    PubMed Central

    O'Neill, Kalisha D.; Chen, Xianming; Moorthi, Ranjani N.; Gattone, Vincent H.; Allen, Matthew R.; Moe, Sharon M.

    2013-01-01

    Patients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses. Expression of these vascular miRNAs miR-125b, miR-145, and miR-155 was decreased in the thoracic aorta in CKD rats compared to normal rats, with concordant changes in target genes of RUNX2, angiotensin II type I receptor (AT1R), and myocardin. Furthermore, the expression of miR-155 was negatively correlated with the quantity of calcification in the aorta, a process known to be preceded by vascular de-differentiation in these animals. We then examined the mechanisms of miRNA regulation in primary VSMC and found decreased expression of miR-125b, 145, and 155 in VSMC from rats with CKD compared to normal littermates but no alteration in DROSHA or DICER, indicating that the low levels of expression is not due to altered intracellular processing. Finally, overexpression of miR-155 in VSMC from CKD rats inhibited AT1R expression and decreased cellular proliferation supporting a direct effect of miR-155 on VSMC. In conclusion, we have found ex vivo and in vitro evidence for decreased expression of these vascular miRNA in CKD, suggesting that alterations in miRNAs may lead to the synthetic state of VSMC found in CKD. The decreased levels in the circulation may reflect decreased vascular release but more studies are needed to confirm this relationship. PMID:23717629

  20. Diacylglycerol Kinase Inhibition and Vascular Function.

    PubMed

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  1. Pancytopenia in a Patient with Rendu-Osler-Weber Syndrome and Uncommon Vascular Abnormalities

    PubMed Central

    Gasbarrini, Antonio

    2016-01-01

    Rendu-Osler-Weber syndrome, or hereditary hemorrhagic teleangiectasia (HHT), is a rare autosomal dominant vascular disorder, characterized by multiple mucocutaneous teleangiectases with recurrent nasal and gastrointestinal bleedings and/or solid-organ arteriovenous shunts. We describe the first case to our knowledge of pancytopenia in a 53-year-old patient, with a known history of HHT and recurrent nasal and gastrointestinal bleedings, who was found to have a major splenic artery aneurysm and other uncommon vascular abnormalities. In the absence of other evident causes of pancytopenia, hypersplenism was diagnosed. The patient underwent coil embolization of the splenic artery aneurysm, followed by rapid and sustained increase of white blood cell and platelet count. Splenic artery aneurysms are extremely uncommon in HHT as only anecdotal cases have been reported to date. However, we believe that the aneurysm critically contributed to the progression of splenomegaly and the development of pancytopenia. PMID:27803822

  2. Exercise training improves vascular mitochondrial function.

    PubMed

    Park, Song-Young; Rossman, Matthew J; Gifford, Jayson R; Bharath, Leena P; Bauersachs, Johann; Richardson, Russell S; Abel, E Dale; Symons, J David; Riehle, Christian

    2016-04-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function.

  3. Exercise training improves vascular mitochondrial function.

    PubMed

    Park, Song-Young; Rossman, Matthew J; Gifford, Jayson R; Bharath, Leena P; Bauersachs, Johann; Richardson, Russell S; Abel, E Dale; Symons, J David; Riehle, Christian

    2016-04-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  4. Hemangiomas, angiosarcomas, and vascular malformations represent the signaling abnormalities of pathogenic angiogenesis.

    PubMed

    Arbiser, J L; Bonner, M Y; Berrios, R L

    2009-11-01

    Angiogenesis is a major factor in the development of benign, inflammatory, and malignant processes of the skin. Endothelial cells are the effector cells of angiogenesis, and understanding their response to growth factors and inhibitors is critical to understanding the pathogenesis and treatment of skin disease. Hemangiomas, benign tumors of endothelial cells, represent the most common tumor of childhood. In our previous studies, we have found that tumor vasculature in human solid tumors expresses similarities in signaling to that of hemangiomas, making the knowledge of signaling in hemangiomas widely applicable. These similarities include expression of reactive oxygen, NFkB and akt in tumor vasculature. Furthermore, we have studied malignant vascular tumors, including hemangioendothelioma and angiosarcoma and have shown distinct signaling abnormalities in these tumors. The incidence of these tumors is expected to rise due to environmental insults, such as radiation and lumpectomy for breast cancer, dietary and industrial carcinogens (hepatic angiosarcoma), and chronic ultraviolet exposure and potential Agent Orange exposure. I hypothesize that hemangiomas, angiosarcomas, and vascular malformations represent the extremes of signaling abnormalities seen in pathogenic angiogenesis. PMID:19925405

  5. Impaired Right Ventricular-Pulmonary Vascular Function in Myeloproliferative Neoplasms

    PubMed Central

    Roach, Emir C.; Park, Margaret M.; Tang, W.H. Wilson; Thomas, James D.; Asosingh, Kewal; Kalaycio, Matt; Erzurum, Serpil C.; Farha, Samar

    2014-01-01

    Background Increased bone marrow hemangioblast numbers, alterations in erythroid/myeloid lineages, increased reticulin, and greater circulating bone marrow progenitor cells are present in patients with pulmonary arterial hypertension (PAH). The data suggest that myeloid progenitors contribute to the pathogenesis of PAH, but there is little data on prevalence of pulmonary vascular disease among different forms of myeloid diseases. We hypothesized that there would be a higher prevalence of pulmonary vascular disease in myeloproliferative neoplasms that have high circulating progenitor cells, such as myelofibrosis and chronic myelogenous leukemia (CML), as compared to those with low circulating progenitors, as in aplastic anemia. Methods Patients with myelofibrosis, CML and aplastic anemia who underwent echocardiographic evaluation of cardiac function in preparation for bone marrow transplantation at the Cleveland Clinic between 1997–2012 were identified using electronic medical records for demographic data, blood cell counts, and pulmonary function tests. All echocardiograms were uniformly analyzed in a blinded fashion by an advanced sonographer and cardiologist for measures of right and left ventricular function and estimation of pulmonary vascular disease. Results Gender and race distribution between disease groups were similar. Myelofibrosis [N=19] and aplastic anemia [N=30] had increased right ventricle (RV) wall thickness compared to CML [N=82] [RV Thickness (cm): aplastic anemia 0.7 ± 0.1, CML 0.5 ± 0.1 and myelofibrosis 0.7 ± 0.1; p = 0.02]. Patients with myelofibrosis had higher levels of estimated RV systolic pressure as compared to the other groups [RVSP (mmHg): aplastic anemia 29.9 ± 1.5, CML 26.2 ± 1.1 and myelofibrosis 36.7 ± 3.7; p < 0.01]. Conclusion The findings suggest an important role for myeloid progenitors in maintenance of pulmonary-vascular health, in which abnormal myeloproliferative progenitors are associated with right ventricle

  6. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities.

    PubMed

    Kathuria, Sonam; Mahadevan, Nanjaian; Balakumar, Pitchai

    2013-02-01

    Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating

  7. Mechanisms of Microgravity Effect on Vascular Function

    NASA Technical Reports Server (NTRS)

    Purdy, Ralph E.

    1995-01-01

    The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.

  8. Mechanisms of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease.

    PubMed Central

    Dantzker, D R; Bower, J S

    1979-01-01

    We have examined the mechanisms of abnormal gas exchange in seven patients with chronic obliteration of the pulmonary vascular bed secondary to recurrent pulmonary emboli or idiopathic pulmonary hypertension. All of the patients had a widened alveolar-arterial oxygen gradient and four were significantly hypoxemic with arterial partial presssures of oxygen less than 80 torr. Using the technique of multiple inert gas elimination, we found that ventilation-perfusion (VA/Q) relationships were only minimally abnormal with a mean of 10% (range, 2--19%) of cardiac output perfusing abnormal units. These units consisted of shunt and units with VA/Q ratios less than 0.1. In addition, the dead space was found to be normal in each patient. There was no evidence for diffusion impairment, and the widened alveolar-arterial oxygen gradient was completely explained by VA/ inequality. Significant hypoxemia occurred only when VA/Q inequality was combined with a low mixed venous oxygen content. PMID:479367

  9. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests.

  10. The functions of TRPP2 in the vascular system

    PubMed Central

    Du, Juan; Fu, Jie; Xia, Xian-ming; Shen, Bing

    2016-01-01

    TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca2+ permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca2+ release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases. PMID:26725733

  11. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications.

    PubMed Central

    Jacobs, A

    1985-01-01

    The myelodysplastic syndromes represent a preleukaemic state in which a clonal abnormality of haemopoietic stem cell is characterised by a variety of phenotypic manifestations with varying degrees of ineffective haemopoiesis. This state probably develops as a sequence of events in which the earliest stages may be difficult to detect by conventional pathological techniques. The process is characterised by genetic changes leading to abnormal control of cell proliferation and differentiation. Expansion of an abnormal clone may be related to independence from normal growth factors, insensitivity to normal inhibitory factors, suppression of normal clonal growth, or changes in the immunological or nutritional condition of the host. The haematological picture is of peripheral blood cytopenias: a cellular bone marrow, and functional abnormalities of erythroid, myeloid, and megakaryocytic cells. In most cases marrow cells have an abnormal DNA content, often with disturbances of the cell cycle: an abnormal karyotype is common in premalignant clones. Growth abnormalities of erythroid or granulocyte-macrophage progenitors are common in marrow cultures, and lineage specific surface membrane markers indicate aberrations of differentiation. Progression of the disorder may occur through clonal expansion or through clonal evolution with a greater degree of malignancy. Current attempts to influence abnormal growth and differentiation have had only limited success. Clinical recognition of the syndrome depends on an acute awareness of the signs combined with the identification of clonal and functional abnormalities. PMID:2999194

  12. [Effect of alcohol on vascular function].

    PubMed

    Kudo, Risa; Yuui, Katsuya; Kasuda, Shogo; Hatake, Katsuhiko

    2015-06-01

    Vascular function is regulated by a balance of vasoconstriction and vasorelaxation. Disorder in this balance due to alcohol consumption causes various clinical conditions. In this review, we discuss the effects of acute and chronic ethanol consumption on vascular responses, including vasoconstriction, endothelium-dependent vasorelaxation, and nerve-mediated vasorelaxation. Acute ethanol administration induces vasoconstriction in ethanol-naive animals in vitro. Furthermore, ethanol can both potentiate and suppress agonist-induced Ca(2+)-dependent vasoconstriction. Moreover, ethanol augments Ca(2+)-independent vasoconstriction by increasing Ca2+ sensitivity. Endothelium-dependent relaxation is mediated by the nitric oxide (NO) pathway and the endothelium-derived hyperpolarizing factor (EDHF) pathway. Acute ethanol treatment inhibits both NO- and EDHF-mediated relaxation. Furthermore, acute ethanol ingestion can also potentiate and suppress calcitonin gene-related peptide (CGRP)-induced nerve-mediated relaxation. These opposing effects may be due to differences in species or vascular beds. Thus, acute ethanol treatment decreases vasorelaxation, thereby shifting the contraction-relaxation balance towards contraction. Combined, these effects are one mechanism by which acute heavy alcohol consumption causes circulatory disturbances such as vasospasms or ischemic heart disease. In contrast, chronic low-dose ethanol has no effect on vasoconstriction, whereas chronic high-dose ethanol increases vasoconstriction. Additionally, chronic ethanol intake has diminished, unchanged, and even increased effects on nerve-mediated relaxation; therefore, conclusions on these effects are not possible at present. Interestingly, chronic low-dose ethanol administration enhanced endothelium-dependent relaxation; however, higher doses inhibited these responses. Therefore, regular or light-to-moderate alcohol intake increases vasorelaxation and may suppress elevated blood pressure, whereas

  13. Motion-related vascular abnormalities at the craniocervical junction: illustrative case series and literature review.

    PubMed

    Ravindra, Vijay M; Neil, Jayson A; Mazur, Marcus D; Park, Min S; Couldwell, William T; Taussky, Philipp

    2015-04-01

    The craniocervical junction (CCJ) functions within a complicated regional anatomy necessary to protect and support vital neurovascular structures. In select instances, vascular pathology can be attributed to this complicated interplay of motion and structure found within this narrow space. The authors report 3 cases of complex vascular pathology related to motion at the CCJ and detail the management of these cases. Two cases involved posterior circulation vascular compression syndromes, and one case involved a vascular anomaly and its relation to aneurysm formation and rupture. The patient in Case 1 was a 66-year-old man with a history of syncopal episodes resulting from the bilateral vertebral artery becoming occluded when he rotated his head. Successful microsurgical decompression at the skull base resulted in patent bilateral vertebral artery V3 segments upon head movement in all directions. The patient in Case 2 was a 53-year-old woman who underwent elective resection of a right temporal meningioma and who experienced postoperative drowsiness, dysphagia, and mild right-arm ataxia. Subsequent MRI demonstrated bilateral posterior inferior cerebel-lar artery (PICA) strokes. Cerebral angiography showed a single PICA, of extradural origin, supplying both cerebellar hemispheres. The PICA exhibited dynamic extradural compression when the patient rotated her head; the bilateral PICA strokes were due to head rotation during surgical positioning. In Case 3, a 37-year-old woman found unconscious in her home had diffuse subarachnoid hemorrhage and evidence of a right PICA aneurysm. A right far-lateral craniectomy was performed for aneurysm clipping, and she was found to have a dissecting aneurysm with an associated PICA originating extradurally. There was a shearing phenomenon of the extradural PICA along the dura of the foramen magnum, and this microtraumatic stress imposed on the vessel resulted in a dissecting aneurysm. This series of complex and unusual cases

  14. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    PubMed

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients. PMID:27622368

  15. Reconciling abnormalities of brain network structure and function in schizophrenia.

    PubMed

    Fornito, Alex; Bullmore, Edward T

    2015-02-01

    Schizophrenia is widely regarded as a disorder of abnormal brain connectivity. Magnetic resonance imaging (MRI) suggests that patients show robust reductions of structural connectivity. However, corresponding changes in functional connectivity do not always follow, with increased functional connectivity being reported in many cases. Here, we consider different methodological and mechanistic accounts that might reconcile these apparently contradictory findings and argue that increased functional connectivity in schizophrenia likely represents a pathophysiological dysregulation of brain activity arising from abnormal neurodevelopmental wiring of structural connections linking putative hub regions of association cortex to other brain areas. Elucidating the pathophysiological significance of connectivity abnormalities in schizophrenia will be contingent on better understanding how network structure shapes and constrains function.

  16. Vascular and cognitive functions associated with cardiovascular disease in the elderly

    PubMed Central

    Cohen, Ronald A.; Poppas, Athena; Forman, Daniel E.; Hoth, Karin F.; Haley, Andreana P.; Gunstad, John; Jefferson, Angela L.; Tate, David F.; Paul, Robert H.; Sweet, Lawrence H.; Ono, Mokato; Jerskey, Beth A.; Gerhard-Herman, Marie

    2009-01-01

    This study examines the relationship between systemic vascular function, neurocognitive performance, and structural brain abnormalities on magnetic resonance imaging (MRI) among geriatric outpatients with treated, stable cardiovascular disease and no history of neurological illness (n = 88, ages 56–85 years). Vascular function was assessed by cardiac ejection fraction and output, sequential systolic and diastolic blood pressures, flow mediated brachial artery reactivity (BAR), and carotid intima media thickness (IMT). White matter hyperintensities (WMH) on MRI were quantified and examined relative to cognitive and vascular function. Principal component analysis revealed two primary vascular components: one associated with cardiac function, the other with atherosclerotic burden/endothelial dysfunction. Both factors were significantly associated with cognitive function and WMH volume. Reduced systolic variability and increased IMT were most strongly related to reduced attention, executive function, and information-processing speed. These findings suggest the possibility that systemic vascular indices may provide proxy measures of cerebrovascular dysfunction and reinforce the importance of achieving greater understanding of interaction between systemic vascular disease and brain dysfunction among elderly people with cardiovascular disease. PMID:18608677

  17. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  18. Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.

    ERIC Educational Resources Information Center

    Minshew, Nancy J.

    1996-01-01

    This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

  19. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  20. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  1. The Effects of Antidepressants “Fluoxetine and Imipramine” on Vascular Abnormalities and Toll Like Receptor-4 Expression in Diabetic and Non-Diabetic Rats Exposed to Chronic Stress

    PubMed Central

    Habib, Mohamed; Shaker, Safaa; El-Gayar, Nesreen; Aboul-Fotouh, Sawsan

    2015-01-01

    Several studies reveal that diabetes doubles the odds of comorbid depression with evidence of a pro-inflammatory state underlying its vascular complications. Indeed, little information is available about vascular effects of antidepressant drugs in diabetes. Method: We investigated the effect of chronic administration of fluoxetine “FLU” and imipramine “IMIP” on behavioral, metabolic and vascular abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS). Results: Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP in a comparable manner. Diabetic and non-diabetic rats exposed to CRS exhibited abnormalities in glucose homeostasis, lipid profile and vascular function, manifested by decreased endothelium-dependent relaxation, increased systolic blood pressure and histopathological atherosclerotic changes. Vascular and metabolic dysfunctions were associated with significant increase in aortic expression of TLR-4, and pro-inflammatory cytokines (TNF-α and IL-1ß). FLU ameliorated these metabolic, vascular and inflammatory abnormalities, while IMIP induced either no change or even worsening of some parameters. Conclusion: FLU has favorable effect over IMIP on metabolic, vascular and inflammatory aberrations associated with DM and CRS in Wistar rats, clarifying the preference of FLU over IMIP in management of comorbid depression in diabetic subjects. PMID:25826421

  2. [The general practitioner and abnormal liver function tests].

    PubMed

    Hallez, R

    1997-09-01

    In case of abnormal liver function tests, it's necessary to distinguish different situations, starting from this first data. We will successively consider: the high and moderate acute increases of aminotransferase, the chronic increases of aminotransferase, the isolated cholestase picture and the isolated increases of gamma GT or of bilirubine. We will finish with a partial survey about drug-induced liver diseases.

  3. Vascular precursors: origin, regulation and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this miniseries, we discuss the phenotype, origin, and specialized microenvironment (niche) of distinct populations of stem and progenitor cells that exhibit vascular potential. Their usefulness and effectiveness for clinical therapies are also described. We have learned a great deal about post...

  4. Assessing vascular endothelial function using frequency and rank order statistics

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Tsai; Hsu, Po-Chun; Sun, Cheuk-Kwan; Liu, An-Bang; Lin, Zong-Lin; Tang, Chieh-Ju; Lo, Men-Tzung

    2013-08-01

    Using frequency and rank order statistics (FROS), this study analyzed the fluctuations in arterial waveform amplitudes recorded from an air pressure sensing system before and after reactive hyperemia (RH) induction by temporary blood flow occlusion to evaluate the vascular endothelial function of aged and diabetic subjects. The modified probability-weighted distance (PWD) calculated from the FROS was compared with the dilatation index (DI) to evaluate its validity and sensitivity in the assessment of vascular endothelial function. The results showed that the PWD can provide a quantitative determination of the structural changes in the arterial pressure signals associated with regulation of vascular tone and blood pressure by intact vascular endothelium after the application of occlusion stress. Our study suggests that the use of FROS is a reliable noninvasive approach to the assessment of vascular endothelial degeneration in aging and diabetes.

  5. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  6. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy

    PubMed Central

    O’Muircheartaigh, Jonathan; Vollmar, Christian; Barker, Gareth J.; Kumari, Veena; Symms, Mark R.; Thompson, Pam; Duncan, John S.; Koepp, Matthias J.

    2012-01-01

    Juvenile myoclonic epilepsy is the most common idiopathic generalized epilepsy, characterized by frequent myoclonic jerks, generalized tonic-clonic seizures and, less commonly, absences. Neuropsychological and, less consistently, anatomical studies have indicated frontal lobe dysfunction in the disease. Given its presumed thalamo–cortical basis, we investigated thalamo–cortical structural connectivity, as measured by diffusion tensor imaging, in a cohort of 28 participants with juvenile myoclonic epilepsy and detected changes in an anterior thalamo–cortical bundle compared with healthy control subjects. We then investigated task-modulated functional connectivity from the anterior thalamic region identified using functional magnetic resonance imaging in a task consistently shown to be impaired in this group, phonemic verbal fluency. We demonstrate an alteration in task-modulated connectivity in a region of frontal cortex directly connected to the thalamus via the same anatomical bundle, and overlapping with the supplementary motor area. Further, we show that the degree of abnormal connectivity is related to disease severity in those with active seizures. By integrating methods examining structural and effective interregional connectivity, these results provide convincing evidence for abnormalities in a specific thalamo–cortical circuit, with reduced structural and task-induced functional connectivity, which may underlie the functional abnormalities in this idiopathic epilepsy. PMID:23250883

  7. Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy

    PubMed Central

    Ghosh, P; Bitsanis, D; Ghebremeskel, K; Crawford, M A; Poston, L

    2001-01-01

    Disturbances of the in utero environment are associated with an increased risk of cardiovascular disease in adulthood. In this study we have determined whether abnormal vascular function in the adult offspring of rats fed a high saturated fat diet in pregnancy is associated with altered plasma lipids or vascular fatty acid content. Female Sprague-Dawley rats were fed a breeding diet (4 % fat) or a diet high in saturated fat (20 % fat) for 10 days prior to and throughout pregnancy, and during weaning. Female offspring were then fed a maintenance diet (3 % fat) until 160 days of age. Endothelium-dependent relaxation induced by acetylcholine was blunted in isolated branches of the femoral artery from 160-day-old female offspring of dams fed the saturated fat diet when compared with female offspring of dams fed the breeding diet. These offspring exhibited elevated plasma triglyceride and reduced plasma high density lipoprotein cholesterol concentrations. The fatty acid composition of the aortas was abnormal, with a marked reduction in the content of arachidonic and docosahexaenoic acids. This study demonstrates that a high fat diet in pregnant rats produces abnormal vascular function, plasma lipid disturbances and altered vascular fatty acid content in their female offspring during adulthood. PMID:11410637

  8. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  9. A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology

    PubMed Central

    Sandoo, Aamer; Kitas, George D.

    2015-01-01

    The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research. PMID:25741637

  10. Abnormal fronto-striatal functional connectivity in Parkinson's disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Wang, Jiaojian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2016-02-01

    Parkinson's disease (PD) is characterized by the relatively selective depletion of dopamine in the striatum, which consequently leads to dysfunctions in cortico-striatal-thalamic-cortical circuitries. It has been shown that the most common cognitive deficits in PD patients are related to the fronto-striatal circuits. In PD, most previous functional connectivity studies have been performed using seed-based methods to identify the brain regions that are abnormally connected to one or more seeds, but these cannot be used to quantify the interactions between one region and all other regions in a particular network. Functional connectivity degree, which is a measurement that can be used to quantify the functional or structural connectivity of a complex brain network, was adopted in this study to assess the interactions of the fronto-striatal network. Compared to healthy controls, PD patients had significantly decreased total functional connectivity degree for the left putamen and the right globus pallidum in fronto-striatal networks. Additionally, negative correlations between the fronto-pallial functional connectivity degree (i.e., the right globus pallidum with the left middle frontal gyrus, and with the right triangular part of inferior frontal gyrus) and disease duration were observed in PD patients. The results of this study demonstrate that fronto-striatal functional connectivity is abnormal in patients with PD and indicate that these deficits might be the result of motor and cognitive dysfunctions in PD patients. PMID:26724369

  11. Effect of ramipril therapy on abnormal left atrial appendage function.

    PubMed

    Asker, M; Timucin, O B; Asker, S; Karadag, M F

    2011-01-01

    This study investigated whether ramipril treatment has a beneficial effect on left atrial appendage (LAA) function in patients with systemic hypertension in sinus rhythm. Patients with untreated systemic hypertension and normal left ventricular systolic function in sinus rhythm (n = 20; six males/14 females; age 35 - 69 years, mean ± SD 52.8 ± 8.9 years) were evaluated using transthoracic and transoesophageal echocardiography at baseline and after 6 months of treatment with 5 mg/day ramipril. Mean systolic and diastolic blood pressures decreased significantly after ramipril therapy. Baseline LAA emptying velocity was below the age-related reference value for this parameter, indicating abnormal LAA function. There were significant increases in the LAA filling and emptying velocities after ramipril treatment. It is concluded that the decrease in blood pressure and haemodynamic improvements brought about by ramipril therapy resulted in improved LAA function in hypertensive patients with normal left ventricular systolic function in sinus rhythm.

  12. Macrophages in Vascular Inflammation: Origins and Functions.

    PubMed

    Decano, Julius L; Mattson, Peter C; Aikawa, Masanori

    2016-06-01

    Macrophages influence various processes of cardiovascular inflammation. Whether they are of embryonic or post-natal hematopoietic origin, their balance in differential activation may direct the course of inflammation. Accelerated macrophage activation and accumulation through a pro-inflammatory signaling pathway may result in extensive tissue damage, adverse repair, and worsened clinical outcomes. Attenuation of such a mechanism and/or promotion of the anti-inflammatory macrophage activation may lead to early resolution of inflammation. Elucidating multiple novel mechanisms of monocyte and macrophage activation leads to a better understanding of their roles in vascular inflammation. In turn, this begets better therapeutic target identification and biomarker discovery. Combined with increasingly sensitive and specific imaging techniques, we continue to push back early detection and monitoring to provide us with a greater window for disease modification. The potential success of cytokine-targeted therapy will be solid proof of the inflammatory hypothesis of atherothrombosis. PMID:27125207

  13. Systemic vascular function is associated with muscular power in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  14. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.

    PubMed

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae; Melero-Martin, Juan M; Khademhosseini, Ali

    2012-05-23

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  15. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation.

    PubMed

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals' capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects.

  16. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation

    PubMed Central

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals’ capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  17. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation.

    PubMed

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals' capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  18. Abnormal thallium kinetics in postoperative coarctation of the aorta: evidence for diffuse hypertension-induced vascular pathology

    SciTech Connect

    Kimball, B.P.; Shurvell, B.L.; Mildenberger, R.R.; Houle, S.; McLaughlin, P.R.

    1986-03-01

    After operative correction of congenital coarctation of the aorta, patients continue to have excess cardiovascular mortality, including manifestations of ischemic heart disease. Previous morphologic studies support the concept of direct hypertensive vascular injury in these patients. To determine whether abnormalities of myocardial perfusion were present in an asymptomatic group of patients with coarctation repair, 18 men and 9 women with a mean age of 26 years (range 19 to 41) were studied between 2 and 25 years after operative correction. Stress electrocardiography and quantitative thallium imaging by a circumferential profile technique were used. These patients were compared with a normal group, statistically defined as having a less than 1% prevalence of significant obstructive coronary artery disease. The postoperative coarctation group demonstrated a reduction in global thallium redistribution in each view analyzed. As compared with findings in the control subjects, thallium washout in the anterior view (41.9 versus 48.6%, p = 0.02) and left anterior oblique projection (40.5 versus 48.2%, p = 0.007) was significantly diminished. Although the postoperative coarctation group had a lower thallium redistribution rate in the lateral view (41.4 versus 46.3%, p = 0.09) this difference did not reach statistical significance because of the intrinsic variability of this projection. Plots of the median percent thallium washout revealed independence from circumferential profile angle, indicating global abnormalities in perfusion. No correlation between clinical variables and thallium kinetics could be established, suggesting marked individual variability in the development of this vascular lesion. The observation of abnormal thallium kinetics in patients with coarctation repair may have consequences for long-term follow-up and therapy.

  19. Functional Integration of Acute Myeloid Leukemia into the Vascular Niche

    PubMed Central

    Leon, Ronald P.; Masri, Azzah Al; Clark, Hilary A.; Asbaghi, Steven A.; Tyner, Jeffrey W.; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L.; Hromas, Robert A.; Scott, Edward W.; Fleming, William H.

    2014-01-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here, we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the up-regulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost 4-fold reduction in proliferative activity compared to non-vascular associated AML. Primary AML cells can be induced to down regulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally-defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. Taken together, these novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for acute myeloid leukemia. PMID:24637335

  20. Mineralocorticoid Receptors Modulate Vascular Endothelial Function in Human Obesity

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Segal, Mark S.; Christou, Demetra D.

    2015-01-01

    Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk for cardiovascular disease. Mineralocorticoid receptors (MR) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MR modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (Eplerenone; 100 mg/day) for 1 month in a balanced, randomized, double-blind, placebo-controlled, crossover study to 22 older adults (10 men, 55–79 years) varying widely in adiposity (body mass index: 20–45 kg/m2) but who were free from overt cardiovascular disease. We evaluated vascular endothelial function (brachial artery flow-mediated dilation [FMD] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39±0.67 vs. 6.23±0.73 %, P=0.7, placebo vs. Eplerenone). However, individual improvements in FMD in response to Eplerenone were associated with higher total body fat (body mass index: r=0.45, P=0.02 and DXA-derived % body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005, visceral: r=0.67, P=0.002 and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with Eplerenone were related with higher baseline fasting glucose (r=0.53, P=0.01). MR influence vascular endothelial function in an adiposity-dependent manner in healthy older adults. PMID:23786536

  1. Structural and Functional Coronary Artery Abnormalities in Patients With Vasospastic Angina Pectoris.

    PubMed

    Ong, Peter; Aziz, Ahmed; Hansen, Henrik Steen; Prescott, Eva; Athanasiadis, Anastasios; Sechtem, Udo

    2015-01-01

    Coronary spasm is involved in many clinical scenarios, such as stable angina, acute coronary syndrome, sudden cardiac death, non-ischemic cardiomyopathy, arrhythmia and syncope. In recent years, imaging tools such as computerized tomographic angiography, intravascular ultrasound or optical coherence tomography have been applied to study the coronary pathology in patients with vasospastic angina. Patients with vasospastic angina represent a heterogeneous cohort of patients with regard to the extent of concomitant coronary atherosclerosis. They share the common pathophysiological phenomenon of vascular smooth muscle hyperreactivity leading to spasm caused by various factors that may also overlap. Focal coronary spasm is related to epicardial atherosclerosis and in the presence of obstructive coronary artery disease it may be useful to treat the lesion to prevent further spasm. The aim of this article is to review structural and functional coronary artery abnormalities in patients with vasospastic angina.

  2. Abnormal Pulmonary Function in Adults with Sickle Cell Anemia

    PubMed Central

    Klings, Elizabeth S.; Wyszynski, Diego F.; Nolan, Vikki G.; Steinberg, Martin H.

    2006-01-01

    Rationale: Pulmonary complications of sickle cell anemia (Hb-SS) commonly cause morbidity, yet few large studies of pulmonary function tests (PFTs) in this population have been reported. Objectives: PFTs (spirometry, lung volumes, and diffusion capacity for carbon monoxide [DLCO]) from 310 adults with Hb-SS were analyzed to determine the pattern of pulmonary dysfunction and their association with other systemic complications of sickle cell disease. Methods: Raw PFT data were compared with predicted values. Each subject was subclassified into one of five groups: obstructive physiology, restrictive physiology, mixed obstructive/restrictive physiology, isolated low DLCO, or normal. The association between laboratory data of patients with decreased DLCO or restrictive physiology and those of normal subjects was assessed by multivariate linear regression. Measurements and Main Results: Normal PFTs were present in only 31 of 310 (10%) patients. Overall, adults with Hb-SS were characterized by decreased total lung capacities (70.2 ± 14.7% predicted) and DlCO (64.5 ± 19.9%). The most common PFT patterns were restrictive physiology (74%) and isolated low DlCO (13%). Decreased DLCO was associated with thrombocytosis (p = 0.05), with hepatic dysfunction (elevated alanine aminotransferase; p = 0.07), and a trend toward renal dysfunction (elevated blood urea nitrogen and creatinine; p = 0.05 and 0.07, respectively). Conclusions: Pulmonary function is abnormal in 90% of adult patients with Hb-SS. Common abnormalities include restrictive physiology and decreased DLCO. Decreased DLCO may indicate more severe sickle vasculopathy characterized by impaired hepatic and renal function. PMID:16556694

  3. Engineering of human hepatic tissue with functional vascular networks.

    PubMed

    Takebe, Takanori; Koike, Naoto; Sekine, Keisuke; Fujiwara, Ryoji; Amiya, Takeru; Zheng, Yun-Wen; Taniguchi, Hideki

    2014-01-01

    Although absolute organ shortage highlights the needs of alternative organ sources for regenerative medicine, the generation of a three-dimensional (3D) and complex vital organ, such as well-vascularized liver, remains a challenge. To this end, tissue engineering holds great promise; however, this approach is significantly limited by the failure of early vascularization in vivo after implantation. Here, we established a stable 3D in vitro pre-vascularization platform to generate human hepatic tissue after implantation in vivo. Human fetal liver cells (hFLCs) were mixed with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (hMSCs) and were implanted into a collagen/fibronectin matrix composite that was used as a 3-D carrier. After a couple of days, the fluorescent HUVECs developed premature vascular networks in vitro, which were stabilized by hMSCs. The establishment of functional vessels inside the pre-vascularized constructs was proven using dextran infusion studies after implantation under a transparency cranial window. Furthermore, dynamic morphological changes during embryonic liver cell maturation were intravitaly quantified with high-resolution confocal microscope analysis. The engineered human hepatic tissue demonstrated multiple liver-specific features, both structural and functional. Our new techniques discussed here can be implemented in future clinical uses and industrial uses, such as drug testing. PMID:24451152

  4. Engineering of human hepatic tissue with functional vascular networks

    PubMed Central

    Takebe, Takanori; Koike, Naoto; Sekine, Keisuke; Fujiwara, Ryoji; Amiya, Takeru; Zheng, Yun-Wen; Taniguchi, Hideki

    2014-01-01

    Although absolute organ shortage highlights the needs of alternative organ sources for regenerative medicine, the generation of a three-dimensional (3D) and complex vital organ, such as well-vascularized liver, remains a challenge. To this end, tissue engineering holds great promise; however, this approach is significantly limited by the failure of early vascularization in vivo after implantation. Here, we established a stable 3D in vitro pre-vascularization platform to generate human hepatic tissue after implantation in vivo. Human fetal liver cells (hFLCs) were mixed with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (hMSCs) and were implanted into a collagen/fibronectin matrix composite that was used as a 3-D carrier. After a couple of days, the fluorescent HUVECs developed premature vascular networks in vitro, which were stabilized by hMSCs. The establishment of functional vessels inside the pre-vascularized constructs was proven using dextran infusion studies after implantation under a transparency cranial window. Furthermore, dynamic morphological changes during embryonic liver cell maturation were intravitaly quantified with high-resolution confocal microscope analysis. The engineered human hepatic tissue demonstrated multiple liver-specific features, both structural and functional. Our new techniques discussed here can be implemented in future clinical uses and industrial uses, such as drug testing. PMID:24451152

  5. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis.

  6. Engineering of human hepatic tissue with functional vascular networks.

    PubMed

    Takebe, Takanori; Koike, Naoto; Sekine, Keisuke; Fujiwara, Ryoji; Amiya, Takeru; Zheng, Yun-Wen; Taniguchi, Hideki

    2014-01-01

    Although absolute organ shortage highlights the needs of alternative organ sources for regenerative medicine, the generation of a three-dimensional (3D) and complex vital organ, such as well-vascularized liver, remains a challenge. To this end, tissue engineering holds great promise; however, this approach is significantly limited by the failure of early vascularization in vivo after implantation. Here, we established a stable 3D in vitro pre-vascularization platform to generate human hepatic tissue after implantation in vivo. Human fetal liver cells (hFLCs) were mixed with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (hMSCs) and were implanted into a collagen/fibronectin matrix composite that was used as a 3-D carrier. After a couple of days, the fluorescent HUVECs developed premature vascular networks in vitro, which were stabilized by hMSCs. The establishment of functional vessels inside the pre-vascularized constructs was proven using dextran infusion studies after implantation under a transparency cranial window. Furthermore, dynamic morphological changes during embryonic liver cell maturation were intravitaly quantified with high-resolution confocal microscope analysis. The engineered human hepatic tissue demonstrated multiple liver-specific features, both structural and functional. Our new techniques discussed here can be implemented in future clinical uses and industrial uses, such as drug testing.

  7. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone.

    PubMed

    Busija, David W; Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V

    2016-06-13

    Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.

  8. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone.

    PubMed

    Busija, David W; Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V

    2016-01-01

    Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016. PMID:27347901

  9. Potential benefits of exercise on blood pressure and vascular function.

    PubMed

    Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen

    2013-01-01

    Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function.

  10. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  11. Vascular Endothelial Function & Self-Reported Sleep

    PubMed Central

    Behl, Muskaan; Bliwise, Donald; Veledar, Emir; Cunningham, Lynn; Vazquez, Jennifer; Brigham, Kenneth; Quyyumi, Arshed

    2013-01-01

    Background We investigated the relationship between self-reported sleep characteristics and brachial artery flow-mediated dilation (FMD) in a community-based population. Prior studies document that sleep apnea may be related to endothelial dysfunction but disagree whether subjective reports of sleep may also reflect such associations. Methods In 684 subjects (32% male) between 37 and 60 years enrolled in the Emory-Georgia Tech Predictive Health Institute study, we measured reported sleep characteristics using the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI) along with cardiovascular risk factors. Endothelial function was assessed using brachial artery FMD. Multivariate analysis of covariance was used to adjust for various cardiovascular risk factors including age, race, gender, smoking, hypertension, diabetes, and body mass index. Results Lower brachial artery FMD values were correlated with higher ESS scores (p = 0.0275), even after adjustment for risk factors (p = 0.03). Total PSQI score was unrelated to brachial artery FMD. However, lower sleep quality (PSQI component 1) was associated with lower brachial artery FMD (multivariate p = 0.038), and participants who coughed or snored during sleep also had lower brachial artery FMD (6.24±3.42%) compared to those who did not (6.92±4.30%) (p = 0.056). This difference remained significant after adjustment for risk factors (p = 0.03). Conclusion In a community-based population, our analysis indicates a significant association between sleepiness and snoring assessed by questionnaires and endothelial function. Simple subjective reports about individuals’ sleep may be highly revealing indicators of endothelial function impairment and thus important indicators of cardiovascular disease risk. PMID:23842206

  12. Vascular Tree Reconstruction by Minimizing A Physiological Functional Cost

    PubMed Central

    Jiang, Yifeng; Zhuang, Zhenwu; Sinusas, Albert J.; Papademetris, Xenophon

    2011-01-01

    The reconstruction of complete vascular trees from medical images has many important applications. Although vessel detection has been extensively investigated, little work has been done on how connect the results to reconstruct the full trees. In this paper, we propose a novel theoretical framework for automatic vessel connection, where the automation is achieved by leveraging constraints from the physiological properties of the vascular trees. In particular, a physiological functional cost for the whole vascular tree is derived and an efficient algorithm is developed to minimize it. The method is generic and can be applied to different vessel detection/segmentation results, e.g. the classic rigid detection method as adopted in this paper. We demonstrate the effectiveness of this method on both 2D and 3D data. PMID:21755061

  13. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury

    PubMed Central

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K.; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  14. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  15. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.

  16. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; McCarron, David A.

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  17. Functional interactions as a survival strategy against abnormal aggregation

    PubMed Central

    Laura, Masino; Giuseppe, Nicastro; Lesley, Calder; Michele, Vendruscolo; Annalisa, Pastore

    2011-01-01

    Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the protein responsible for Spinocerebellar ataxia type 3, a polyglutamine expansion disease, represents one of such examples. Polyglutamine expansion is central for determining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated by its N-terminal Josephin domain. This work aims at identifying the regions that promote Josephin fibrillogenesis and rationalizing the mechanisms that protect Josephin and nonexpanded ataxin-3 from aberrant aggregation. Using different biophysical techniques, aggregation propensity predictions and rational design of amino acid substitutions, we show that Josephin has an intrinsic tendency to fibrillize under native conditions and that fibrillization is promoted by two solvent-exposed patches, which are also involved in recognition of natural substrates, such as ubiquitin. Indeed, designed mutations at these patches or substrate binding significantly reduce Josephin aggregation kinetics. Our results provide evidence that protein nonpathologic function can play an active role in preventing aberrant fibrillization and suggest the molecular mechanism whereby this occurs in ataxin-3.—Masino, L., Nicastro, G., Calder, L., Vendruscolo, M., Pastore, A. Functional interactions as a survival strategy against abnormal aggregation. PMID:20810784

  18. Oral nitrite therapy improves vascular function in diabetic mice

    PubMed Central

    Sindler, Amy L; Cox-York, Kimberly; Reese, Lauren; Bryan, Nathan S; Seals, Douglas R; Gentile, Christopher L

    2016-01-01

    Aim We tested the hypothesis that short-term oral sodium nitrite supplementation would improve vascular dysfunction in obese, diabetic mice. Methods and results Vascular function was determined in control mice and in db/db mice receiving drinking water with or without sodium nitrite (50 mg/L) for 5 weeks. Nitrite supplementation increased plasma nitrite concentrations in db/db mice (0.19±0.02 μM vs 0.80±0.26μM; p < 0.05). Db/db mice had lower endothelium-dependent dilation (EDD) in response to increasing doses of acetylcholine versus heterozygous control mice (71.2% ± 14.3% vs 93% ± 7.0%; p < 0.05), and sodium nitrite supplementation restored endothelium-dependent dilation to control levels (92.9% ± 2.3% vs 93% ± 7.0%; p < 0.05). The improvement in endothelial function was accompanied by a reduction in intrinsic stiffness, but not by alterations in plasma or vascular markers of inflammation. Conclusion These data suggest that sodium nitrite may be a novel therapy for treating diabetes-related vascular dysfunction; however, the mechanisms of improvement are unknown. PMID:25696116

  19. Bioelectric impact of pathological angiogenesis on vascular function

    PubMed Central

    Puro, Donald G.; Kohmoto, Ryohsuke; Fujita, Yasushi; Gardner, Thomas W.; Padovani-Claudio, Dolly A.

    2016-01-01

    Pathological angiogenesis, as seen in many inflammatory, immune, malignant, and ischemic disorders, remains an immense health burden despite new molecular therapies. It is likely that further therapeutic progress requires a better understanding of neovascular pathophysiology. Surprisingly, even though transmembrane voltage is well known to regulate vascular function, no previous bioelectric analysis of pathological angiogenesis has been reported. Using the perforated-patch technique to measure vascular voltages in human retinal neovascular specimens and rodent models of retinal neovascularization, we discovered that pathological neovessels generate extraordinarily high voltage. Electrophysiological experiments demonstrated that voltage from aberrantly located preretinal neovascular complexes is transmitted into the intraretinal vascular network. With extensive neovascularization, this voltage input is substantial and boosts the membrane potential of intraretinal blood vessels to a suprahyperpolarized level. Coincident with this suprahyperpolarization, the vasomotor response to hypoxia is fundamentally altered. Instead of the compensatory dilation observed in the normal retina, arterioles constrict in response to an oxygen deficiency. This anomalous vasoconstriction, which would potentiate hypoxia, raises the possibility that the bioelectric impact of neovascularization on vascular function is a previously unappreciated pathophysiological mechanism to sustain hypoxia-driven angiogenesis. PMID:27551068

  20. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    PubMed

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  1. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  2. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    SciTech Connect

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Tikka, Saara

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  3. Vascular dilatory functions of ovo-lactovegetarians compared with omnivores.

    PubMed

    Lin, C L; Fang, T C; Gueng, M K

    2001-09-01

    Vegetarians have lower blood pressure and lower cardiovascular mortality. Vegetarian diets may have lower cardiovascular risks through positive influence on endothelium-dependent relaxation and related functions. The objectives of this study were to assess the differences of vascular dilatory functions between middle-aged vegetarians and sex and age-matched omnivores before they develop any clinical manifestations of atherosclerosis. Twenty healthy vegetarians over the age of 50 and 20 healthy omnivores over the age of 50 were recruited for this study. Subjects with known risk factors for atherosclerosis such as hypertension, diabetes, obesity, hypercholesteremia, cigarette smoking, family history of vascular diseases, or taking any regular medication were excluded. Medical history, body weight, height, and duration of vegetarian diet were recorded. Baseline CBC, urinalysis and biochemical data such as fasting blood glucose, thyroid function, blood urea nitrogen, creatinine, serum electrolytes (sodium, potassium, chloride, calcium and magnesium), lipid profiles [total cholesterol, triglycerides, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol] were obtained after a 14 h fast. Blood pressures and heart rate were recorded in supine position. Vascular dilatory functions, both flow-mediated (endothelium-dependent) and nitroglycerin-induced (endothelium-independent), were evaluated by using a non-invasive ultrasonographic method. The results show that there were no significant differences in the baseline characteristic between the vegetarians and the omnivores. There were also no significant differences in serum glucose, lipid profiles and thyroid function between these two groups. However, vasodilatation responses (both flow-mediated and nitroglycerin-induced) were significantly better in the vegetarian group and the degree of vasodilatation appeared to be correlated with years on vegetarian diets. Our findings suggest that

  4. Short-term Physical Inactivity Impairs Vascular Function

    PubMed Central

    Nosova, Emily V.; Yen, Priscilla; Chong, Karen C.; Alley, Hugh F.; Stock, Eveline O.; Quinn, Alex; Hellmann, Jason; Conte, Michael S.; Owens, Christopher D.; Spite, Matthew; Grenon, S. Marlene

    2014-01-01

    Introduction Sedentarism, also termed physical inactivity, is an independent risk factor for cardiovascular diseases. Mechanisms thought to be involved include insulin resistance, dyslipidemia, hypertension, and increased inflammation. It is unknown whether changes in vascular and endothelial function also contribute to this excess risk. We hypothesized that short-term exposure to inactivity would lead to endothelial dysfunction, arterial stiffening and increased vascular inflammation. Methods Five healthy subjects (4 males and 1 female) underwent 5 days of bed rest (BR) to simulate inactivity. Measurements of vascular function [flow-mediated vasodilation (FMD) to evaluate endothelial function; applanation tonometry to assess arterial resistance], inflammation and metabolism were made before BR, daily during BR and after 2 recovery days. Subjects maintained an isocaloric diet throughout. Results Bed rest led to significant decreases in brachial artery and femoral artery FMD [Brachial: 11 ± 3% pre-BR vs. 9 ± 2% end-BR, P=0.04; Femoral: 4 ± 1% vs. 2 ± 1%, P=0.04]. The central augmentation index increased with BR [−4 ± 9% vs. 5 ± 11%, P=0.03]. Diastolic blood pressure (DBP) increased [58 ± 7 mmHg vs. 62 ± 7 mmHg, P=0.02], while neither systolic blood pressure nor heart rate changed. 15-HETE, an arachidonic acid metabolite, increased but the other inflammatory and metabolic biomarkers were unchanged. Conclusions Our findings show that acute exposure to sedentarism results in decreased endothelial function, arterial stiffening, increased DBP, and an increase in 15-HETE. We speculate that inactivity promotes a vascular “deconditioning” state characterized by impaired endothelial function, leading to arterial stiffness and increased arterial tone. Although physiologically significant, the underlying mechanisms and clinical relevance of these findings need to be further explored. PMID:24630521

  5. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets

    SciTech Connect

    Dalal, K.B.; Ebbe, S.; Mazoyer, E.; Carpenter, D.; Yee, T. )

    1990-02-01

    This study was designed to elucidate changes in rabbit platelet lipids induced by a cholesterol rich diet and to explore the possible correlation of these lipid changes with platelet abnormalities. Pronounced biochemical alterations were observed when serum cholesterol levels of 700-1000 mg% were reached. Hypercholesterolemic (HC) platelets contained 37% more neutral lipids and 16% less phospholipids than the controls. Lysolecithin, cholesterol esters and phosphatidylinositol (PI) levels were increased in HC platelets, and the levels of phosphatidylcholine (PC) were decreased. The cholesterol/phospholipid molar ratio of lipidemic platelets increased from 0.55 +/- 0.011 to 0.89 +/- 0.016 (P less than 0.01) in eight weeks. HC platelets had 90% more arachidonic acid (AA) in the PI than normal platelets. No significant changes in AA of PC were observed. Platelet function was monitored by the uptake and release of (14C)serotonin in platelet rich plasma (PRP), using varying concentrations of collagen as an aggregating agent. The uptake of (14C)serotonin in HC and normal platelets ranged from 78-94%. The percent of (14C)serotonin released from normal and HC platelets was proportional to the concentration of collagen. However, lipidemic platelets were hyperreactive to low concentrations of collagen. Incorporation of 50 microM acetylsalicylic acid into the aggregating medium suppressed the release of (14C)serotonin in normal PRP by more than 90%, but had only a partial effect on lipidemic PRP.

  6. Nitrites derived from Foneiculum vulgare (fennel) seeds promotes vascular functions.

    PubMed

    Swaminathan, Akila; Sridhara, Sree Rama Chaitanya; Sinha, Swaraj; Nagarajan, Shunmugam; Balaguru, Uma Maheswari; Siamwala, Jamila H; Rajendran, Saranya; Saran, Uttara; Chatterjee, Suvro

    2012-12-01

    Recent evidence has demonstrated that nitrites play an important role in the cardiovascular system. Fennel (Foneiculum vulgare) seeds are often used as mouth fresheners after a meal in both the Indian sub-continent and around the world. The present study aims to quantify the nitrite and nitrates in fennel seeds as well as elucidating the effect of fennel derived-nitrites on vascular functions. Results from our study show that fennel seeds contain significantly higher amount of nitrites when compared to other commonly used post-meal seeds. Furthermore our study confirmed the functional effects of fennel derived-nitrites using in vitro and ex vivo models that describe the promotion of angiogenesis, cell migration, and vasorelaxation. We also showed that chewing fennel seeds enhanced nitrite content of saliva. Thus our study indicates the potential role of fennel derived-nitrites on the vascular system.

  7. Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine

    2008-01-01

    Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.

  8. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed Central

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-01-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  9. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-12-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection. PMID:27625829

  10. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-12-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  11. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  12. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  13. Vascular function in children with repaired tetralogy of Fallot.

    PubMed

    de Groot, Patricia C E; Thijssen, Dick; Binkhorst, Matthijs; Green, Daniel J; Schokking, Michiel; Hopman, Maria T E

    2010-09-15

    We compared the endothelial function and vascular wall characteristics of 11 children with tetralogy of Fallot (TOF) (age 13 +/- 3 years) with the characteristics of 17 age-matched peers (12 +/- 2 years). Echocardiographic Doppler measurements were performed under standardized conditions to assess (1) the carotid and femoral artery diameter and intima-media thickness, (2) brachial artery endothelial function using flow-mediated dilation, and (3) central and peripheral compliance using pulsewave velocity. In addition, the physical activity level was assessed using a validated questionnaire. We found that the physical activity level of the children with TOF was lower than that of the controls, but the difference did not reach statistical significance (4.5 vs 5.9 h/wk, p = 0.087). A significantly larger femoral artery intima-media thickness was observed in those with TOF, and the carotid and brachial artery diameter and intima-media thickness were comparable between groups. The children with TOF demonstrated a significantly lower brachial artery flow-mediated dilation than that of the controls. The central and peripheral compliance did not differ between the 2 groups. In conclusion, children with TOF demonstrated an impaired brachial artery endothelial function and increased intima-media thickness of the femoral artery compared to their healthy peers. In conclusion, our findings have, therefore, indicated that children with TOF, already at a young age, have changes in vascular function and structure.

  14. Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

  15. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  16. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level. PMID:26285588

  17. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level.

  18. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function.

    PubMed

    Gruber, Robert; Elias, Peter M; Crumrine, Debra; Lin, Tzu-Kai; Brandner, Johanna M; Hachem, Jean-Pierre; Presland, Richard B; Fleckman, Philip; Janecke, Andreas R; Sandilands, Aileen; McLean, W H Irwin; Fritsch, Peter O; Mildner, Michael; Tschachler, Erwin; Schmuth, Matthias

    2011-05-01

    Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.

  19. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  20. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  1. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments.

    PubMed

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  2. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments

    PubMed Central

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  3. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments.

    PubMed

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  4. Structural and Functional Vascular Alterations and Incident Hypertension in Normotensive Adults

    PubMed Central

    Peralta, Carmen A.; Adeney, Kathryn L.; Shlipak, Michael G.; Jacobs, David; Duprez, Daniel; Bluemke, David; Polak, Joseph; Psaty, Bruce; Kestenbaum, Bryan R.

    2010-01-01

    Vascular abnormalities may exist before clinical hypertension. Using Poisson regression, the authors studied the association of coronary artery calcium (CAC), common carotid intima-media thickness (CIMT), aortic distensibility, and large and small arterial elasticity with incident hypertension among 2,512 normotensive US adults free of cardiovascular disease. Incidence rate ratios for incident hypertension (blood pressure ≥140/90 mm Hg or new antihypertensive medication) were calculated. Increased CAC was associated with incident hypertension in demographics-adjusted models (incidence rate ratio (IRR) = 1.35, 95% confidence interval (CI): 1.04, 1.75; IRR = 1.35, 95% CI: 1.02, 1.78; and IRR = 1.59, 95% CI: 1.12, 2.25 for CAC scores of 30–99, 100–399, and ≥400, respectively) but was attenuated after further adjustment. Increased common CIMT was associated with incident hypertension (IRR = 1.77, 95% CI: 1.28, 2.46 for quintile 4; IRR = 1.80, 95% CI: 1.28, 2.53 for quintile 5). Participants with the lowest, compared with the highest, aortic distensibility had an increased risk of hypertension (IRR = 1.75, 95% CI: 1.10, 2.79), as did those with the lowest large arterial elasticity (IRR = 1.49, 95% CI: 1.11, 1.99). Lower small arterial elasticity was incrementally associated with incident hypertension starting at quintile 2 (IRR = 2.01, 95% CI: 1.39, 2.91; IRR = 2.47, 95% CI: 1.71, 3.57; IRR = 2.73, 95% CI: 1.88, 3.95; and IRR = 2.85, 95% CI: 1.95, 4.16). Structural and functional vascular abnormalities are independent predictors of incident hypertension. These findings are important for understanding the pathogenesis of hypertension. PMID:19951938

  5. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    PubMed Central

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  6. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome.

    PubMed

    Vootla, Vamshidhar R; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  7. Implicit function theorem as a realization of the Lagrange principle. Abnormal points

    SciTech Connect

    Arutyunov, A V

    2000-02-28

    A smooth non-linear map is studied in a neighbourhood of an abnormal (degenerate) point. Inverse function and implicit function theorems are proved. The proof is based on the examination of a family of constrained extremal problems; second-order necessary conditions, which make sense also in the abnormal case, are used in the process. If the point under consideration is normal, then these conditions turn into the classical ones.

  8. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis.

    PubMed

    Pieringer, Herwig; Brummaier, Tobias; Piringer, Bettina; Auer-Hackenberg, Lorenz; Hartl, Andreas; Puchner, Rudolf; Pohanka, Erich; Schmid, Michael

    2016-03-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  9. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

    PubMed Central

    2016-01-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  10. Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology).

    PubMed

    Shimokawa, Hiroaki; Satoh, Kimio

    2015-05-01

    Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

  11. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction.

  12. Abnormal Red Cell Structure and Function in Neuroacanthocytosis

    PubMed Central

    Cluitmans, Judith C. A.; Tomelleri, Carlo; Yapici, Zuhal; Dinkla, Sip; Bovee-Geurts, Petra; Chokkalingam, Venkatachalam; De Franceschi, Lucia; Brock, Roland; Bosman, Giel J. G. C. M.

    2015-01-01

    Background Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation. Objective The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration. Methods We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members. Results We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients’ cells, however, are more fragile, as observed in a spleen-mimicking device. Conclusion These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis. PMID:25933379

  13. Development of Abnormal Hemispheric Vascular Networks Mimicking Cerebral Proliferative Angiopathy in a Child Originally Diagnosed with Deep-Seated Arteriovenous Fistula.

    PubMed

    Sakata, Hiroyuki; Fujimura, Miki; Sato, Kenichi; Niizuma, Kuniyasu; Endo, Hidenori; Tominaga, Teiji

    2016-10-01

    Cerebral proliferative angiopathy (CPA), which is characterized by diffuse vascular abnormalities with intermingled normal brain parenchyma, is a rare clinical entity distinct from classical cerebral arteriovenous malformations. Its pathology at initial state and subsequent course of progression has totally been undetermined. We herein presented a case of a child who was initially diagnosed with deep-seated arteriovenous fistula (AVF), and ultimately developed symptomatic CPA-like vascular lesion over a long period of clinical follow-up. A 7-month-old boy was incidentally found to have an AVF in the right basal ganglia and conservatively followed up. Serial magnetic resonance angiograms revealed the gradual proliferation and enlargement of pial and medullary vessels surrounding the AVF. Seven years later, he had a transient ischemic attack followed by intraventricular hemorrhage. A catheter angiogram showed a diffuse large vascular malformation composed of 2 distinct structures, including AVF in the right basal ganglia and the surrounding proliferated pial and medullary arteries in the right hemisphere. Single-photon emission computed tomography with N-isopropyl[123I]-p-iodoamphetamine revealed apparent hemodynamic compromise on the right hemisphere. Targeted embolization of the pseudoaneurysm originating from the right A1 perforator was performed to prevent rebleeding without complications. The patient had no further cerebrovascular events. Perinidal hypoperfusion induced by a deep-seated AVF could be one of the underlying pathologies of progressive angiogenic activity. This is the first case showing the development of abnormal hemispheric vascular networks mimicking CPA, which offers insight into the pathogenesis of this new entity.

  14. Functional abnormalities of experimental autogenous vein graft neoendothelium.

    PubMed Central

    Cross, K S; el-Sanadiki, M N; Murray, J J; Mikat, E M; McCann, R L; Hagen, P O

    1988-01-01

    When a vein is grafted into the arterial circulation, the endothelium of the graft is damaged. Regeneration of an intact neoendothelium occurs, but the functional properties of this surface have not been clarified. In this study, the functional integrity of the neoendothelium of veins grafted into the carotid artery of the rabbit was assessed through the use of acetylcholine and histamine to stimulate the production of the important endothelium-derived relaxing factor (EDRF). Control veins, precontracted with norepinephrine [10(-5) M], relaxed after exposure to acetylcholine [( 10(-7) M], 42.4% +/- 6.4%, p = 0.008) and histamine [( 10(-6) M], 30.6% +/- 4.3%, p = 0.03). This relaxation response was abolished after mechanical removal of the endothelium. By contrast, neither acetylcholine nor histamine caused an endothelium-dependent relaxation in the vein grafts, even though scanning electron microscopy demonstrated the presence of a morphologically intact endothelium. However, addition of stabilized EDRF purified from cultured endothelial cells induced relaxation of the vein grafts (35.8% +/- 3.6%, p = 0.002). These data indicate that vein graft endothelium is unable to produce EDRF in response to exposure to acetylcholine or histamine. The inability to produce this potent smooth muscle cell relaxing factor and anti-aggregatory substance may be a predisposition to vein graft failure. Images Figs. 4A-C. Fig. 4. (Continued) Fig. 4. (Continued) Figs. 5A-C. Fig. 5. (Continued) Fig. 5. (Continued) Fig. 6. PMID:3263843

  15. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.

  16. Abnormal tracheal smooth muscle function in the CF mouse

    PubMed Central

    Wallace, Helen L; Southern, Kevin W; Connell, Marilyn G; Wray, Susan; Burdyga, Theodor

    2013-01-01

    Increased airway smooth muscle (ASM) contractility is thought to underlie symptoms of airway hyperresponsiveness (AHR). In the cystic fibrosis (CF) airway, ASM anomalies have been reported, but have not been fully characterized and the underlying mechanisms are largely unknown. We examined ASM in an adult CF mouse tracheal ring preparation, and determined whether changes in contractility were associated with altered ASM morphology. We looked for inherent changes in the cellular pathways involved in contractility, and characterized trachea morphology in the adult trachea and in an embryonic lung culture model during development. Results showed that that there was a reduction in tracheal caliber in CF mice as indicated by a reduction in the number of cartilage rings; proximal cross-sectional areas of cftr−/− tracheas and luminal areas were significantly smaller, but there was no difference in the area or distribution of smooth muscle. Morphological differences observed in adult trachea were not evident in the embryonic lung at 11.5 days gestation or after 72 h in culture. Functional data showed a significant reduction in the amplitude and duration of contraction in response to carbachol (CCh) in Ca-free conditions. The reduction in contraction was agonist specific, and occurred throughout the length of the trachea. These data show that there is a loss in the contractile capacity of the CF mouse trachea due to downregulation of the pathway specific to acetylcholine (ACh) activation. This reduction in contraction is not associated with changes in the area or distribution of ASM. PMID:24400140

  17. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  18. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes

    PubMed Central

    Biessels, G. J.; de Valk, H.; Algra, A.; Rutten, G. E. H. M.; van der Grond, J.; Kappelle, L. J.

    2007-01-01

    Aims/hypothesis The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. Methods The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesions (WML), cortical and subcortical atrophy, and infarcts. Data on glucose metabolism, vascular risk factors and micro- and macrovascular disease were collected. Results Patients with type 2 diabetes had more cortical (p < 0.001) and subcortical (p < 0.01) atrophy and deep WML (p = 0.02) than the control group and their cognitive performance was worse. In multivariate regression analyses within the type 2 diabetes group, hypertension (p < 0.05) and a history of vascular events (p < 0.01) were associated with worse cognitive performance, while statin use was associated (p < 0.05) with better performance. Retinopathy and brain infarcts on MRI were associated with more severe cortical atrophy (both p < 0.01) and statin use with less atrophy (p < 0.05). Insulin level and brain infarcts were associated with more severe WML and statin use with less severe WML (all p < 0.05). Conclusions/interpretation Type 2 diabetes is associated with modest impairments in cognition, as well as atrophy and vascular lesions on MRI. This ‘diabetic encephalopathy’ is a multifactorial condition, for which atherosclerotic (macroangiopathic) vascular disease is an important determinant. Chronic hyperglycaemia, hyperinsulinaemia and hypertension may play additional roles. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0792-z) contains details of the Utrecht Diabetic Encephalopathy Study Group, which are available to

  19. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD).

    PubMed

    Baruth, Joshua M; Casanova, Manuel F; Sears, Lonnie; Sokhadze, Estate

    2010-06-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.

  20. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment—A Resting-State Functional Magnetic Resonance Imaging Study

    PubMed Central

    Wang, Yao; Sun, Yawen; Chen, Xue; Xu, Jianrong

    2015-01-01

    Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI) have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC) analysis and voxel-mirrored homotopic connectivity (VMHC) techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC) and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected) in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI. PMID:26376180

  1. Time-of-day variation in vascular function.

    PubMed

    Rodrigo, G C; Denniff, M

    2016-08-01

    What is the topic of this review? This report looks at the role of endothelial nitric oxide signalling in the time-of-day variation in vasoconstriction of resistance vessels. What advances does it highlight? It highlights a time-of-day variation in contraction of mesenteric arteries, characterized by a reduced contractile response to either phenylephrine or high K(+) and increased relaxation in response to acetylcholine during the active period. This time-of-day variation in contraction results from a difference in endothelial nitric oxide synthase (eNOS) signalling that correlates with levels of eNOS expression, which peak during the active period and may have far reaching physiological consequences beyond regulation of blood pressure. There is a strong time-of-day variation in the vasoconstriction in response to sympathetic stimulation that may contribute to the time-of-day variation in blood pressure, which is characterized by a dip in blood pressure during the individual's rest period when sympathetic activity is low. Vasoconstriction is known to be regulated tightly by nitric oxide signalling from the endothelial cells, so we have looked at the effect of time-of-day on levels of endothelial nitric oxide synthase (eNOS) and vascular contractility. Mesenteric arteries isolated from the nocturnal rat exhibit a time-of-day variation in their contractile response to α1 -adrenoreceptor and muscarinic activation, which is characterized by a reduced vasoconstriction in response to phenylephrine and enhanced vasodilatation in response to acetylcholine during the rat's active period at night. An increase in eNOS signalling during the active period is responsible for this time-of-day difference in response to phenylephrine and acetylcholine and correlates with the large increase in eNOS expression (mRNA and protein) during the active period, possibly driven by the presence of a functioning peripheral circadian clock. This increase in eNOS signalling may function to

  2. Liver Function Test Abnormalities in Patients with Inflammatory Bowel Diseases: A Hospital-based Survey

    PubMed Central

    Cappello, Maria; Randazzo, Claudia; Bravatà, Ivana; Licata, Anna; Peralta, Sergio; Craxì, Antonio; Almasio, Piero Luigi

    2014-01-01

    BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) are frequently associated with altered liver function tests (LFTs). The causal relationship between abnormal LFTs and IBD is unclear. The aim of our study was to evaluate the prevalence and etiology of LFTs abnormalities and their association with clinical variables in a cohort of IBD patients followed up in a single center. MATERIALS AND METHODS A retrospective review was undertaken of all consecutive IBD in- and outpatients routinely followed up at a single referral center. Clinical and demographic parameters were recorded. Subjects were excluded if they had a previous diagnosis of chronic liver disease. LFT abnormality was defined as an increase in aspartate aminotransferase, (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), or total bilirubin. RESULTS A cohort of 335 patients (179 males, mean age 46.0 ± 15.6 years) was analyzed. Abnormal LFTs were detected in 70 patients (20.9%). In most cases, the alterations were mild and spontaneously returned to normal values in about 60% of patients. Patients with abnormal LFTs were less frequently on treatment with aminosalicylates (22.8 vs. 36.6%, P = 0.04). The most frequent cause for transient abnormal LFTs was drug-induced cholestasis (34.1%), whereas fatty liver was the most frequent cause of persistent liver damage (65.4%). A cholestatic pattern was found in 60.0% of patients and was mainly related to older age, longer duration of disease, and hypertension. CONCLUSIONS The prevalence of LFT abnormalities is relatively high in IBD patients, but the development of severe liver injury is exceptional. Moreover, most alterations of LFTs are mild and spontaneously return to normal values. Drug-induced hepatotoxicity and fatty liver are the most relevant causes of abnormal LFTs in patients with IBD. PMID:24966712

  3. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study

    PubMed Central

    2013-01-01

    Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to

  4. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  5. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  6. Low yield of unselected testing in patients with acutely abnormal liver function tests

    PubMed Central

    Chadwick, Andrew

    2015-01-01

    Objectives To audit the diagnostic yield and cost implications of the use of a ‘liver screen’ for inpatients with abnormal liver function tests. Design We performed a retrospective audit of inpatients with abnormal liver function tests. We analysed all investigations ordered including biochemistry, immunology, virology and radiology. The final diagnosis was ascertained in each case, and the diagnostic yield and cost per positive diagnosis for each investigation were calculated. Setting St Thomas’ NHS Trust. Participants All inpatients investigated for abnormal liver function tests over a 12-month period. Main outcome measures We calculated the percentage of courses due to each diagnosis, the yield of each investigation and the cost per positive diagnosis for each investigation. Results A total of 308 patients were included, and a final diagnosis was made in 224 patients (73%) on the basis of both clinical data and investigations. There was considerable heterogeneity in the tests included in an acute liver screen. History and ultrasound yielded the most diagnoses (40% and 30%, respectively). The yield of autoimmune and metabolic screens was minimal. Conclusions Our results demonstrate the low yield of unselected testing in patients with abnormal liver function tests. A thorough history, ultrasound and testing for blood-borne viruses are the cornerstones of diagnosis. Specialist input should be sought before further testing. Prospective studies to evaluate the yield and cost-effectiveness of different testing strategies are needed. PMID:26770816

  7. Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function.

    PubMed

    Chistiakov, Dimitry A; Revin, Victor V; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-01-01

    The endothelium represents not only a simple cellular monolayer that lines the vascular tree in humans and other vertebrates. Depending on the location, the endothelium shows significant morphological and functional heterogeneity through differentiated expression of pro- and anticoagulant factors, presence and frequency of intercellular contacts, variable contractility, cell shape, and volume. Altogether, these properties are crucial for adjustment of the endothelial function and further maintenance of the adequate homeostasis in response in local microenvironmental changes. Endothelial cells (ECs) play a critical role in coordinated regulation of blood flow. This is achieved due to the capacity of ECs to create the active anti-thrombotic surface that supports blood fluidity and transfer of blood cells and biomolecules. However, in certain vascular regions that can occur in inflamed sites or in sites with high hydrodynamic shear stress, ECs could lost their anti-thrombotic properties and switch their normal quiescent phenotype towards the prothrombotic, proadhesion, and proinflammatory state. In such an athero-prone site, the proper endothelial function is impaired that increases risk for formation of the atherosclerotic plaque. The endothelial dysfunction not only precedes atherosclerosis but greatly contributes to atherogenesis in all disease stages. Healthy lifestyle and regular intake of correct antioxidant-rich diet such as fresh fruits, vegetables, olive oil, red wine, and tea have beneficial effects on endothelial function and could therefore reduce the cardiovascular risk. PMID:25723463

  8. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  9. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression.

    PubMed

    Cha, Jiook; Greenberg, Tsafrir; Song, Inkyung; Blair Simpson, Helen; Posner, Jonathan; Mujica-Parodi, Lilianne R

    2016-05-01

    Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression.

  10. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development.

    PubMed

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4',6'-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.

  11. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development

    PubMed Central

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma. PMID:26492318

  12. Tie1 controls angiopoietin function in vascular remodeling and inflammation.

    PubMed

    Korhonen, Emilia A; Lampinen, Anita; Giri, Hemant; Anisimov, Andrey; Kim, Minah; Allen, Breanna; Fang, Shentong; D'Amico, Gabriela; Sipilä, Tuomas J; Lohela, Marja; Strandin, Tomas; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M; Alitalo, Kari; Saharinen, Pipsa

    2016-09-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  13. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  14. Antenatal hypoxia and pulmonary vascular function and remodeling.

    PubMed

    Papamatheakis, Demosthenes G; Blood, Arlin B; Kim, Joon H; Wilson, Sean M

    2013-09-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.

  15. Uteroplacental circulation and fetal vascular function and development.

    PubMed

    Thornburg, Kent L; Louey, Samantha

    2013-09-01

    Although blood flow in the placental vasculature is governed by the same physiological forces of shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de novo during embryonic development but blood does not flow through the placenta until late in the first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation over the course of pregnancy, and is affected differently by mechanical and chemical regulators of vascular tone compared to other organs. The processes that match placental vascular growth and fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The subtle changes that cause the failure of the normally regulated vascular processes during pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic strategies to reverse detrimental placental perfusion patterns have yet to be investigated.

  16. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding. PMID:12270009

  17. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding.

  18. Interference with PPARγ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension

    PubMed Central

    Halabi, Carmen M.; Beyer, Andreas M.; de Lange, Willem J.; Keen, Henry L.; Baumbach, Gary L.; Faraci, Frank M.; Sigmund, Curt D.

    2008-01-01

    Summary Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription factor playing a critical role in metabolism. Thiazolidinediones, high affinity PPARγ ligands used clinically to treat type-II diabetes, have been reported to lower blood pressure and provide other cardiovascular benefits. Some mutations in PPARγ cause type-II diabetes and severe hypertension. We tested the hypothesis that PPARγ in vascular muscle plays a role in the regulation of vascular tone and blood pressure. Transgenic mice expressing dominant negative mutations in PPARγ under the control of a smooth muscle-specific promoter exhibit a loss of responsiveness to nitric oxide and striking alterations in contractility in the aorta, hypertrophy and inward remodeling in the cerebral microcirculation, and systolic hypertension. These results identify PPARγ as pivotal in vascular muscle as a regulator of vascular structure, vascular function and blood pressure, potentially explaining some of the cardioprotective effects of thiazolidinediones. PMID:18316027

  19. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  20. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma.

  1. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma. PMID:27068508

  2. Abnormal peripheral circulation in type 2 diabetic patients with normal ankle-brachial index associates with coronary atherosclerosis, large artery stiffness, and peripheral vascular resistance.

    PubMed

    Tsuchiya, Masanobu; Suzuki, Eiji; Egawa, Katsuya; Nishio, Yoshihiko; Maegawa, Hiroshi; Morikawa, Shigehiro; Inubushi, Toshiro; Kashiwagi, Atsunori

    2005-12-01

    We tested the hypothesis that impaired peripheral circulation in diabetes arises from different aspects of vascular abnormalities even when accompanied by a normal ankle-brachial index (ABI>0.9). One hundred fourteen type 2 diabetic patients with normal ABI and 33 age-matched non-diabetic subjects consecutively admitted to our hospital were enrolled. The Agatston coronary artery calcium score (CACS), as a marker of coronary atherosclerosis, was obtained using electron-beam computed tomography. An automatic device was used to measure brachial-ankle pulse wave velocity (baPWV) as an index of arterial distensibility. Total flow volume and resistive index (RI), as a marker of peripheral vascular resistance, at the popliteal artery were evaluated using gated two-dimensional cine-mode phase-contrast magnetic resonance imaging. Diabetic patients had baPWV (P<0.001) and RI (P<0.001) higher than those in the non-diabetic subjects, indicating that those parameters are characteristically altered in diabetic patients. When diabetic patients were grouped into three subgroups according to their levels of total flow volume, those with the lowest range showed the highest log-transformed CACS (P<0.001), baPWV (P<0.001), and RI (P<0.001) among the groups. Total flow volume was negatively correlated with log-transformed CACS (P<0.001), baPWV (P<0.001), and RI (P<0.001). Waveform at the popliteal artery could be clearly separated into systolic and early and late diastolic blood flows, which were negatively correlated with log-transformed CACS (P<0.001), RI (P<0.001), and baPWV (P<0.001), respectively. These results suggest that impaired peripheral circulation in diabetes is attributable to coronary atherosclerosis, large artery stiffness, and peripheral vascular resistance even when ABI is normal.

  3. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  4. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.

  5. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  6. Abnormal interhemispheric resting state functional connectivity of the insula in heroin users under methadone maintenance treatment.

    PubMed

    Wang, Peng-Wei; Lin, Huang-Chi; Liu, Gin-Chung; Yang, Yi-Hsin Connie; Ko, Chih-Hung; Yen, Cheng-Fang

    2016-09-30

    Abnormal interhemispheric functional connectivity is attracting more and more attention in the field of substance use. This study aimed to examine 1) the differences in interhemispheric functional connections of the insula with the contralateral insula and other brain regions between heroin users under methadone maintenance treatment (MMT) and healthy controls, and 2) the association between heroin users' interhemispheric insular functional connectivity using resting functional magnetic resonance imaging (fMRI) and the results of urine heroin analysis. Sixty male right-handed persons, including 30 with heroin dependence under MMT and 30 healthy controls, were recruited to this study. Resting fMRI experiments and urine heroin analysis were performed. Compared with the controls, the heroin users had a significantly lower interhemispheric insular functional connectivity. They also exhibited lower functional connectivity between insula and contralateral inferior orbital frontal lobe. After controlling for age, educational level and methadone dosage, less deviation of the interhemispheric insula functional connectivity was significantly associated with a lower risk of a positive urine heroin analysis result. Our findings demonstrated that the heroin users under MMT had abnormal long-range and interhemispheric resting functional connections. Those with a less dysfunctional interhemispheric insula functional connectivity had a lower risk of a positive urine heroin test. PMID:27497215

  7. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients

    PubMed Central

    Gómez-Marcos, Manuel A.; Blázquez-Medela, Ana M.; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  8. Prevalence and Determinants of True Thyroid Dysfunction Among Pediatric Referrals for Abnormal Thyroid Function Tests

    PubMed Central

    Lahoti, Amit; Klein, Jason; Schumaker, Tiffany; Vuguin, Patricia; Frank, Graeme

    2016-01-01

    Background/Aims. Abnormalities in thyroid function tests (TFTs) are a common referral reason for pediatric endocrine evaluation. However, a sizable proportion of these laboratory abnormalities do not warrant therapy or endocrine follow-up. The objectives of this study were (a) to evaluate the prevalence of true thyroid dysfunction among pediatric endocrinology referrals for abnormal TFTs; (b) to identify the historical, clinical, and laboratory characteristics that predict decision to treat. Methods. This was a retrospective chart review of patients evaluated in pediatric endocrinology office during a weekly clinic designated for new referrals for abnormal TFTs in 2010. Results. A total of 230 patients were included in the study. Median age at referral was 12 years (range = 2-18); 56% were females. Routine screening was cited as the reason for performing TFTs by 33% patients. Majority was evaluated for hypothyroidism (n = 206). Elevated thyroid-stimulating hormone was the most common referral reason (n = 140). A total of 41 out of 206 patients were treated for hypothyroidism. Conclusions. Prevalence of hypothyroidism was 20%. Thyroid follow-up was not recommended for nearly one third of the patients. Among all the factors analyzed, an elevated thyroid-stimulating hormone level and antithyroglobulin antibodies strongly correlated with the decision to treat (P < .005). PMID:27336020

  9. Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD)

    PubMed Central

    Baruth, Joshua M.; Casanova, Manuel F.; Sears, Lonnie; Sokhadze, Estate

    2012-01-01

    It has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors. PMID:22563527

  10. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J

    2012-04-30

    Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening.

  11. Prevalence and Determinants of True Thyroid Dysfunction Among Pediatric Referrals for Abnormal Thyroid Function Tests.

    PubMed

    Lahoti, Amit; Klein, Jason; Schumaker, Tiffany; Vuguin, Patricia; Frank, Graeme

    2016-01-01

    Background/Aims. Abnormalities in thyroid function tests (TFTs) are a common referral reason for pediatric endocrine evaluation. However, a sizable proportion of these laboratory abnormalities do not warrant therapy or endocrine follow-up. The objectives of this study were (a) to evaluate the prevalence of true thyroid dysfunction among pediatric endocrinology referrals for abnormal TFTs; (b) to identify the historical, clinical, and laboratory characteristics that predict decision to treat. Methods. This was a retrospective chart review of patients evaluated in pediatric endocrinology office during a weekly clinic designated for new referrals for abnormal TFTs in 2010. Results. A total of 230 patients were included in the study. Median age at referral was 12 years (range = 2-18); 56% were females. Routine screening was cited as the reason for performing TFTs by 33% patients. Majority was evaluated for hypothyroidism (n = 206). Elevated thyroid-stimulating hormone was the most common referral reason (n = 140). A total of 41 out of 206 patients were treated for hypothyroidism. Conclusions. Prevalence of hypothyroidism was 20%. Thyroid follow-up was not recommended for nearly one third of the patients. Among all the factors analyzed, an elevated thyroid-stimulating hormone level and antithyroglobulin antibodies strongly correlated with the decision to treat (P < .005).

  12. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  13. Effect of lower limb preference on local muscular and vascular function.

    PubMed

    Fahs, Christopher A; Thiebaud, Robert S; Rossow, Lindy M; Loenneke, Jeremy P; Kim, Daeyeol; Abe, Takashi; Bemben, Michael G

    2014-01-01

    Unilateral physical training can enhance muscular size and function as well as vascular function in the trained limb. In non-athletes, the preferred arm for use during unilateral tasks may exhibit greater muscular strength compared to the non-preferred arm. It is unclear if lower limb preference affects lower limb vascular function or muscular endurance and power in recreationally active adults. To examine the effect of lower limb preference on quadriceps muscle size and function and on lower limb vascular function in middle-aged adults. Twenty (13 men, 7 women) recreationally-active middle-aged (55 ± 7 yrs) adults underwent measurements of quadriceps muscle thickness, strength, mean power, endurance, and arterial stiffness, calf venous compliance, and calf blood flow in the preferred and non-preferred lower limb. The preferred limb exhibited greater calf vascular conductance (31.6 ± 15.5 versus 25.8 ± 13.0 units flow/mmHg; p = 0.011) compared to the non-preferred limb. The interlimb difference in calf vascular conductance was negatively related to weekly aerobic activity (hrs/week) (r = -0.521; p = 0.019). Lower limb preference affects calf blood flow but not quadriceps muscle size or function. Studies involving unilateral lower limb testing procedures in middle-aged individuals should consider standardizing the testing to either the preferred or non-preferred limb rather than the right or left limb.

  14. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium

    PubMed Central

    Niaudet, Colin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M. Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  15. Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure overload in the rat.

    PubMed Central

    Isoyama, S; Ito, N; Kuroha, M; Takishima, T

    1989-01-01

    Using an experimental model of ascending aortic banding in the rat, we examined whether coronary circulation abnormalities in hypertrophied hearts are reversible after debanding. 4-wk banding produced significant increases in in vivo left ventricular (LV) pressure (194 +/- 13 vs. 114 +/- 9 mmHg in shamoperated controls) and LV dry wt/body wt (48 +/- 5% above controls). In isolated hearts perfused with Krebs-Henseleit buffer, coronary flow rate (CFR) was estimated under nonworking conditions. During maximal vasodilation after 1 min-ischemia, CFR at a coronary perfusion pressure (CPP) of 100 mmHg and CFR/myocardidial mass at CPPs of 100 and 150 mmHg decreased significantly (72 +/- 5%; 53 +/- 4 and 61 +/- 4% of controls). 1 or 4 wk after debanding, LV systolic pressures were similar to control values, and the degree of myocardial hypertrophy decreased to levels 23 +/- 6 (P less than 0.01) and 11 +/- 6% (P less than 0.01) above their control values, respectively. At 1 wk there was no significant increase in CFR/myocardial mass, compared to values in the banded group (67 +/- 8 vs. 53 +/- 4% of controls at 100 mmHg and 67 +/- 9 vs. 61 +/- 4% at 150 mmHg of CPP). At 4 wk, CFR and the ratio had increased toward normal. Thus, decreased coronary perfusion in hypertrophied hearts is completely reversible. Images PMID:2525568

  16. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  17. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8180341

  18. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats.

  19. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function After Hemorrhagic Shock.

    PubMed

    Deng, Xiyun; Cao, Yanna; Huby, Maria P; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A; Doursout, Marie-Francoise; Holcomb, John B; Wade, Charles E; Ko, Tien C

    2016-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared with normal individuals, plasma adiponectin levels decreased to 49% in HS patients before resuscitation (P < 0.05) and increased to 64% post-resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared with baseline (P < 0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.

  20. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  1. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  2. Abnormalities in personal space and parietal–frontal function in schizophrenia

    PubMed Central

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  3. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  4. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  5. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  6. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension

    PubMed Central

    Galambos, Csaba; Minic, Angela D.; Bush, Douglas; Nguyen, Dominique; Dodson, Blair; Seedorf, Gregory; Abman, Steven H.

    2016-01-01

    Background and Aims Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. Methods Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. Results The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. Conclusions We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and

  7. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  8. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function

    PubMed Central

    Liang, Mao-Shih; Koobatian, Maxwell T.; Lei, Pedro; Swartz, Daniel D.; Andreadis, Stelios T.

    2013-01-01

    We investigated the hypothesis that immobilizing TGF-β1 within fibrin hydrogels may act in synergy with cyclic mechanical stimulation to enhance the properties of vascular grafts. To this end, we engineered a fusion TGF-β1 protein that can covalently anchor to fibrin during polymerization upon the action of factor XIII. We also developed a 24-well based bioreactor in which vascular constructs can be mechanically stimulated by distending the silastic mandrel in the middle of each well. TGF-β1 was either conjugated to fibrin or supplied in the culture medium and the fibrin based constructs were cultured statically for a week followed by cyclic distention for another week. The tissues were examined for myogenic differentiation, vascular reactivity, mechanical properties and ECM content. Our results showed that some aspects of vascular function were differentially affected by growth factor presentation vs. pulsatile force application, while others were synergistically enhanced by both. Overall, this two-prong biomimetic approach improved ECM secretion, vascular reactivity and mechanical properties of vascular constructs. These findings may be applied in other tissue engineering applications such as cartilage, tendon or cardiac regeneration where growth factors TGF-β1 and mechano-stimulation play critical roles. PMID:23810080

  9. The relationship between white matter abnormalities and cognitive functions in new-onset juvenile myoclonic epilepsy.

    PubMed

    Ekmekci, Burcu; Bulut, Hacı Taner; Gümüştaş, Funda; Yıldırım, Adem; Kuştepe, Ali

    2016-09-01

    Diffusion tensor imaging (DTI) has revealed evidence of subcortical white matter abnormalities in the frontal area in juvenile myoclonic epilepsy (JME). Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) in the corticothalamic pathway have been detected in adult patients with JME. It has been demonstrated that, in adult patients with JME, frontal dysfunction is related to subcortical white matter damage and decreased volume in frontal cortical gray matter and the thalamus. Many studies have focused on adult patients. Twenty-four patients and 28 controls were evaluated. The group with JME had significantly worse results for the word fluency, trail-B, and Stroop tests that assessed executive functions. A significant decrease in FA values in the dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the right thalamus, the posterior cingulate, the corpus callosum anterior, the corona radiata, and the middle frontal white matter (MFWM) and an increase in ADC values in patients with JME were detected. The correlation between FA values in DLPFC and the letter fluency test results was positive, and the correlation with the Stroop and trail-B test results was negative. We found a negative correlation between SMA, anterior thalamus, and MFWM FA values and the trail-B test results and a positive correlation between the SMA, anterior thalamus, and MFWM FA values and the letter fluency test results. We detected white matter and gray matter abnormalities in patients with new-onset JME using DTI. In addition, we determined the relationship between cognitive deficit and microstructural abnormalities by evaluating the correlation between the neuropsychological test battery results and DTI parameters. We evaluated newly diagnosed patients with JME in our study. That leads us to believe that microstructural abnormalities exist from the very beginning of the disease and that they result from the genetic basis of the disease.

  10. Abnormal function of the corpus luteum in some ewes with phyto-oestrogenic infertility.

    PubMed

    Adams, N R; Hearnshaw, H; Oldham, C M

    1981-01-01

    Ewes with permanent phyto-estrogenic infertility show oestrus less regularly than normal ewes, and the present study examines the extent to which this results from abnormal ovarian function. Forty-nine affected ewes and 53 controls were run with rams fitted with marking crayons and harnesses, and crayon marks were recorded and laparoscopy performed at weekly intervals for 3 weeks. Fewer affected ewes showed oestrus accompanied by ovulation (28 v. 49, P less than 0.001), and four of these affected ewes had a second ovulation during the experiment. More of the ovulations observed in affected ewes were unaccompanied by behavioural oestrus than in controls (8 out of 38 v. 2 out of 50; P less than 0.05). Six affected ewes had no corpus luteum or oestrus, and five of these had adhesions over the genitalia. Hydrops uteri in five other affected ewes was accompanied by prolonged maintenance of the corpus luteum. Some other abnormalities were also observed. In a second study, plasma progesterone concentrations were measured twice daily in 12 affected ewes which were run with rams. Five ewes had oestrous cycles of abnormal duration (two of more than 23 days, two of 21 days, and one of 11 days), and these were accompanied by plasma progesterone patterns different from those of the ewes with an oestrous cycle duration of 16-18 days. It is concluded that the irregular oestrous cycles in affected ewes are due mainly to abnormal life span and progesterone secretion by the corpus luteum, which in turn largely result from changes in the uterus. PMID:7196218

  11. Functional changes are associated with tracheal structural abnormalities in patients with acromegaly

    PubMed Central

    Camilo, Gustavo Bittencourt; Guimarães, Fernando Silva; Mogami, Roberto; Faria, Alvaro Camilo Dias; Melo, Pedro Lopes

    2016-01-01

    Introduction Although impaired pulmonary function and respiratory sleep disorders are described as responsible for increased mortality in acromegalic patients, little is known about the tracheal abnormalities in this group of patients. Thus, the objectives of this study were to describe the tracheal structural abnormalities and correlate these changes with the respiratory function and clinical data of acromegalic patients. Material and methods This is a cross-sectional study that was carried out at two university hospitals. Twenty acromegalic patients underwent spirometry, forced oscillation technique, and computed tomography (CT) assessments. Dyspnea and daytime sleepiness were assessed using the Modified Medical Research Council (MMRC) scale and the Epworth Sleepiness Scale (ESS), respectively. Forty matched subjects served as controls. Results The acromegalic patients exhibited larger median ratios between forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity (FEF50%/FIF50%) (2.05 vs. 1.06, p = 0.0001) compared with healthy volunteers. In the CT analysis, acromegalic patients exhibited larger median differences between their cervical and thoracic tracheal diameters (Δ tracheal diameters) (3 vs. 1 mm; p = 0.003). An association was found between FEF50%/FIF50% and the following variables: mean resistance (Rm), cervical tracheal diameter, and Δ tracheal diameters. Rm also exhibited a negative correlation with cervical tracheal diameter. Neither the MMRC scale nor the ESS exhibited any significant correlation with large airway obstruction (LAO) indices or with the measured tracheal diameters. Conclusions Acromegalic patients have tracheal structural abnormalities which are associated with functional indicators of LAO but not with clinical data. PMID:26925121

  12. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    PubMed

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets.

  13. Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia.

    PubMed

    Liu, Xingyun; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Xu, Lixue; Xu, Yongjie; Yu, Chunshui

    2016-01-01

    Structural and functional alterations in the inferior parietal lobule (IPL) in schizophrenia have been frequently reported; however, the IPL connectivity changes in schizophrenia remain largely unknown. Based on heterogeneity of the IPL in structure, connection and function, we hypothesize that the resting-state functional connectivities (rsFCs) of the IPL subregions are differentially affected in schizophrenia. This study included 95 schizophrenia patients and 104 healthy controls. The IPL subregions were defined according to a previous in vivo connection-based parcellation study. We calculated the rsFC of each IPL subregion and compared them between the two groups while controlling for the effects of age, gender, and grey matter volume. Among the six subregions of the left IPL and the five subregions of the right IPL, only the bilateral PFm (a transition zone of the IPL) subregions exhibited abnormal rsFC in schizophrenia. Specifically, the left PFm showed increased rsFC with the bilateral lingual gyri in schizophrenia patients than in healthy controls. The right PFm exhibited increased rsFC with the right lingual gyrus and inferior occipital gyrus, and bilateral mid-cingulate and sensorimotor cortices in schizophrenia patients. These findings suggest a selective rsFC abnormality in the IPL subregions in schizophrenia, characterized by the increased rsFC between the PFm subregion of the IPL and the visual and sensorimotor areas. PMID:27354957

  14. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function.

    PubMed

    Imig, J D

    2016-01-01

    Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.

  15. Vascular ring (image)

    MedlinePlus

    Vascular ring is a term used to describe a number of abnormal formations of the aorta, the large artery ... the pulmonary artery. The abnormal vessel(s) forms a ring, which encircles and may press down on the ...

  16. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures

    PubMed Central

    Nunes, S. S.; Maijub, J. G.; Krishnan, L.; Ramakrishnan, V. M.; Clayton, L. R.; Williams, S. K.; Hoying, J. B.; Boyd, N. L.

    2013-01-01

    One of the major challenges in cell implantation therapies is to promote integration of the microcirculation between the implanted cells and the host. We used adipose-derived stromal vascular fraction (SVF) cells to vascularize a human liver cell (HepG2) implant. We hypothesized that the SVF cells would form a functional microcirculation via vascular assembly and inosculation with the host vasculature. Initially, we assessed the extent and character of neovasculatures formed by freshly isolated and cultured SVF cells and found that freshly isolated cells have a higher vascularization potential. Generation of a 3D implant containing fresh SVF and HepG2 cells formed a tissue in which HepG2 cells were entwined with a network of microvessels. Implanted HepG2 cells sequestered labeled LDL delivered by systemic intravascular injection only in SVF-vascularized implants demonstrating that SVF cell-derived vasculatures can effectively integrate with host vessels and interface with parenchymal cells to form a functional tissue mimic. PMID:23828203

  17. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  18. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  19. The bimodal regulation of vascular function by superoxide anion: role of endothelium.

    PubMed

    Demirci, Buket; McKeown, Pascal P; Dvm, Ulvi Bayraktutan

    2008-03-31

    Reactive oxygen species (ROS) are implicated in vascular homeostasis. This study investigated whether O(2) (*-), the foundationmolecule of all ROS, regulates vasomotor function. Hence, vascular reactivity was measured using rat thoracic aortas exposed to an O(2) (*-) generator (pyrogallol) which dose-dependently regulated both alpha-adrenergic agonist-mediated contractility to phenylephrine and endothelium-dependent relaxations to acetylcholine. Pyrogallol improved and attenuated responses to acetylcholine at its lower (10 nM - 1 microM) and higher (10 - 100 microM) concentrations, respectively while producing the inverse effects with phenylephrine. The endothelial inactivation by L-NAME abolished acetylcholine-induced vasodilatations but increased phenylephrine and KCl-induced vasoconstrictions regardless of the pyrogallol dose used. Relaxant responses to sodium nitroprusside, a nitric oxide donor, were not affected by pyrogallol. Other ROS i.e. peroxynitrite and H(2)O(2) that may be produced during experiments did not alter vascular functions. These findings suggest that the nature of O(2) (*-)-evoked vascular function is determined by its local concentration and the presence of a functional endothelium.

  20. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    PubMed

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  1. [Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].

    PubMed

    Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan

    2016-02-01

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function. PMID:27382755

  2. Does high-density lipoprotein protect vascular function in healthy pregnancy?

    PubMed

    Sulaiman, Wan N Wan; Caslake, Muriel J; Delles, Christian; Karlsson, Helen; Mulder, Monique T; Graham, Delyth; Freeman, Dilys J

    2016-04-01

    The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur.

  3. Abnormal pulmonary function and associated risk factors in children and adolescents with sickle cell anemia.

    PubMed

    Arteta, Manuel; Campbell, Andrew; Nouraie, Mehdi; Rana, Sohail; Onyekwere, Onyinye C; Ensing, Gregory; Sable, Craig; Dham, Niti; Darbari, Deepika; Luchtman-Jones, Lori; Kato, Gregory J; Gladwin, Mark T; Castro, Oswaldo L; Minniti, Caterina P; Gordeuk, Victor R

    2014-04-01

    Obstructive and restrictive pulmonary changes develop in children with sickle cell disease, but reports conflict as to the type of change that predominates. We prospectively performed spirometry, plethysmography, and lung diffusing capacity in 146 children aged 7 to 20 years with hemoglobin SS or Sβ(0)-thalassemia. Nineteen percent of the patients had obstructive physiology as defined according to guidelines of the American Thoracic Society. In addition, 9% had restrictive physiology and 11% had abnormal but not categorized physiology. Increasing age, patient-reported or family-reported history of asthma or wheezing, and higher lactate dehydrogenase concentration were independent predictors of obstruction as reflected in lower forced expiratory volume in the first second/forced vital capacity. In conclusion, abnormal pulmonary function, most often obstructive, is common in children with hemoglobin SS and Sβ(0)-thalassemia. Full pulmonary function testing should be performed in children with hemoglobin SS or Sβ(0)-thalassemia, especially with history of asthma or wheezing and accentuated elevations in hemolytic markers.

  4. Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia.

    PubMed

    Brunet, Eric; Sarfati, Yves; Hardy-Baylé, Marie-Christine; Decety, Jean

    2003-01-01

    Theory of mind (ToM), the specific ability to attribute thoughts and feelings to oneself and others is generally impaired in schizophrenia. Previous studies demonstrated a deficit of the attribution of intentions to others among patients having formal thought disorder. During nonverbal tasks, such a function requires both the visual perception of human figures and the understanding of their intentions. These processes are considered to involve the superior temporal sulcus and the medial prefrontal cortex, respectively. Are the functional patterns of activation associated with those processes abnormal in schizophrenia? Seven schizophrenic patients on medication performed a nonverbal attribution of intentions task as well as two matched physical logic tasks, with and without human figures, while H2O15 PET-scanning was performed. Data from the patients were compared to those of eight healthy controls matched for verbal IQ and sex. The experimental design allowed dissociating the effect of the perception of human figures from that of the attribution of intentions. During attribution of intentions, significant activations in the right prefrontal cortex were detected in the control subjects. Those activations were not found in the schizophrenic group. However, in both groups, the perception of human figure elicited bilateral activation of the occipitotemporal regions and of the posterior part of the superior temporal sulcus. Schizophrenic patients performing a nonverbal attribution of intentions task have an abnormal cerebral activity. PMID:12887982

  5. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S.

    2005-10-01

    Electrospun polymer nanofibres were originally developed for their durability and resistance to all forms of degradation and biodegradation. Some polymer nanofibres are biocompatible and biodegradable and therefore suitable for replacement of structurally or physiologically deficient tissues and organs in humans. Here, biocompatible polycaprolactone (PCL) nanofibre scaffolds modified with collagen types I and III were used for vascular tissue engineering. Coronary artery smooth muscle cells (SMCs) were grown on PCL nanofibres, modified PCL/collagen biocomposite nanofibres and collagen nanofibres. The results show that the modified PCL/collagen biocomposite nanofibre scaffolds provide required mechanical properties for regulation of normal cell function in vascular tissue engineering.

  6. Left Ventricular Diastolic Dysfunction in Ischemic Stroke: Functional and Vascular Outcomes

    PubMed Central

    Park, Hong-Kyun; Kim, Beom Joon; Yoon, Chang-Hwan; Yang, Mi Hwa; Han, Moon-Ku; Bae, Hee-Joon

    2016-01-01

    Background and Purpose Left ventricular (LV) diastolic dysfunction, developed in relation to myocardial dysfunction and remodeling, is documented in 15%-25% of the population. However, its role in functional recovery and recurrent vascular events after acute ischemic stroke has not been thoroughly investigated. Methods In this retrospective observational study, we identified 2,827 ischemic stroke cases with adequate echocardiographic evaluations to assess LV diastolic dysfunction within 1 month after the index stroke. The peak transmitral filling velocity/mean mitral annular velocity during early diastole (E/e’) was used to estimate LV diastolic dysfunction. We divided patients into 3 groups according to E/e’ as follows: <8, 8-15, and ≥15. Recurrent vascular events and functional recovery were prospectively collected at 3 months and 1 year. Results Among included patients, E/e’ was 10.6±6.4: E/e’ <8 in 993 (35%), 8-15 in 1,444 (51%), and ≥15 in 378 (13%) cases. Functional dependency or death (modified Rankin Scale score ≥2) and composite vascular events were documented in 1,298 (46%) and 187 (7%) patients, respectively, at 3 months. In multivariable analyses, ischemic stroke cases with E/e’ ≥15 had increased odds of functional dependence or death at 3 months (adjusted OR [95% CI]: 1.73 [1.27-2.35]) or 1 year (1.47 [1.06-2.06]) and vascular events within 1 year (1.65 [1.08-2.51]). Subgroups with normal ejection fraction or sinus rhythm exhibited a similar overall pattern and direction. Conclusions LV diastolic dysfunction was associated with poor functional outcomes and composite vascular events up to 1 year. PMID:27283279

  7. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    PubMed

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  8. Functional evidence of inverse agonism in vascular smooth muscle.

    PubMed Central

    Noguera, M. A.; Ivorra, M. D.; D'Ocon, P.

    1996-01-01

    1. In the present study, depletion of internal Ca2+ stores sensitive to noradrenaline (1 microM) in rat aorta, is the signal for the entry of extracellular Ca2+, not only to refill the stores but also, in our experimental conditions, to activate the contractile proteins. This induces an increase in the resting tone that constitutes, the first functional evidence of this Ca2+ entry. 2. The fact that methoxamine (100 microM) reproduces the same processes as noradrenaline but clonidine (1 microM) does not, indicates that alpha(1)-adrenoceptor activation is related to the increase in the resting tone observed after depletion of adrenoceptor-sensitive internal Ca2+-stores. 3. Benoxathian and WB 4101 (alpha(1A)- and alpha(1D)-adrenoceptor antagonists) selectively inhibit, in a concentration-dependent manner, this mechanical response observed in absence of the agonist, which suggests that these agents can act as inverse agonists and provide a functional model for studying this phenomenon. Since chloroethylclonidine (100 microM) has no effect on this response, the participation of alpha(1B)-adrenoceptors can be ruled out. 4. Contractile responses to noradrenaline (1 microM) in Ca2+-free medium were selectively blocked by chloroethylclonidine. This suggests that the response to noradrenaline in Ca2+-free medium mainly depends on the activation of the alpha(1B)-adrenoceptor subtype. PMID:8872369

  9. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    PubMed

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases. PMID:25868665

  10. Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk.

    PubMed

    Enkhmaa, Davaasambuu; Wall, Danielle; Mehta, Puja K; Stuart, Jennifer J; Rich-Edwards, Janet Wilson; Merz, C Noel Bairey; Shufelt, Chrisandra

    2016-03-01

    Preeclampsia affects ∼3%-7% of all pregnancies and is the third leading cause of maternal mortality globally. Growing evidence indicates that preeclampsia results from vascular dysfunction, which also increases the risk for future cardiovascular events. Until recently, preeclampsia was considered a disorder limited to pregnancy, which fully resolved with the delivery of the placenta; however, it is now clear that women with a history of preeclampsia have approximately double the risk of future cardiovascular events compared to women with normotensive pregnancies. The aims of this review were to describe the hemodynamic and vascular changes that occur in normal and preeclamptic pregnancies, to review noninvasive methods to test vascular function, and to discuss the associated increased cardiovascular disease risk related to preeclampsia. PMID:26779584

  11. Functional Modification of Fibrous PCL Scaffolds with Fusion Protein VEGF-HGFI Enhanced Cellularization and Vascularization.

    PubMed

    Zhao, Liqiang; Ma, Shaoyang; Pan, Yiwa; Zhang, Qiuying; Wang, Kai; Song, Dongmin; Wang, Xiangxiang; Feng, Guowei; Liu, Ruming; Xu, Haijin; Zhang, Jun; Qiao, Mingqiang; Kong, Deling

    2016-09-01

    The lack of efficient vascularization within frequently used poly(ε-caprolactone) (PCL) scaffolds has hindered their application in tissue engineering. Hydrophobin HGFI, an amphiphilic protein, can form a self-assembly layer on the surface of PCL scaffolds and convert their wettability. In this study, a fusion protein consisting of HGFI and vascular endothelial growth factor (VEGF) is prepared by Pichia pastoris expression system. Sodium dodecyl sulface-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting confirm that the VEGF-HGFI is successfully isolated and purified. Transmission electron microscope and water contact angle measurement demonstrate that VEGF-HGFI can form a self-assembly layer with about 25 nm in thickness on electrospun PCL fibers and increase their hydrophilicity. VEGF-HGFI modification can effectively enhance the adhesion, migration, and proliferation of human umbilical vein endothelial cells. Near-infrared fluorescence imaging shows that the VEGF-HGFI modification on PCL scaffolds can exist at least 21 d in vitro and at least 14 d in vivo. Bioluminescence imaging shows that VEGF-HGFI can effectively activate vascular endothelial growth factor receptor 2 receptors. Subcutaneous implantation in mice and rats reveal that cellularization and vascularization are significantly improved in VEGF-HGFI modified PCL scaffolds. These results suggest that VEGF-HGFI is a useful molecule for functional modification of scaffolds to enhance cellularization and vascularization in tissue engineering. PMID:27391702

  12. Clinical Correlates of Hachinski Ischemic Score and Vascular Factors in Cognitive Function of Elderly

    PubMed Central

    Kim, Youn Ho

    2014-01-01

    The aim of this study is to investigate the relationship between Hachinski ischemic score (HIS) and vascular factors as well as between HIS and the cognitive function in elderly community. Demographic characteristics, such as sex, age, education, history of drinking and smoking, family history of dementia and stroke, diabetes mellitus, hypertension, hyperlipidemia, cardiovascular disease, stroke, and dementia, were surveyed. Neurological examination was administered to every subject and HIS was checked by a neurologist. From a total of 392 participants aged 65 and over in a rural community, 348 completed the survey and were finally enrolled. Among the vascular factors, history of hypertension (P = 0.008), history of stroke (P < 0.001), family history of dementia (P = 0.01), and history of cardiac diseases (P = 0.012) showed a significant relationship with HIS. In the cognitive function tests, both Korean version of the Mini-Mental State Examination and the Clinical Dementia Rating (Global and Sum of Boxes) had a significant relationship with HIS. Our study suggested HIS may have an association with some vascular factors and cognitive scales in community dwelling elderly. In this study, the HIS seemed to contribute to the evaluation of the quantity of vascular factors and to the prediction of status of cognitive function. PMID:25247189

  13. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation.

    PubMed

    Nyberg, M; Gliemann, L; Hellsten, Y

    2015-12-01

    Regulation of skeletal muscle blood flow is a complex process, which involves an integration of multiple mechanisms and a number of vasoactive compounds. Overall, muscle blood flow is regulated through a balance between vasoconstrictor and vasodilator signals. In a healthy cardiovascular system, the increase in muscle blood flow required for oxygen supply during exercise is achieved through a substantial increase in vasodilators locally formed in the active muscle tissue that overcome the vasoconstrictor signals. Most of the vasodilator signals are mediated via endothelial cells, which lead to the formation of vasodilators such as nitric oxide (NO) and prostacyclin. In essential hypertension and type II diabetes, the endothelial function and regulation of vascular tone is impaired with consequent increases in peripheral vascular resistance and inadequate regulation of oxygen supply to the skeletal muscle, which can affect muscle function. Central aspects in the vascular impairments are alterations in the formation of prostacyclin, the bioavailability of NO and an increased formation of vasoconstrictors and reactive oxygen species (ROS). Regular physical activity effectively improves vascular function by enhancing vasodilator formation and reducing the levels of vasoconstrictors and ROS. PMID:26589119

  14. The effect of ozone inhalation on metabolic functioning of vascular endothelium and on ventilatory function

    SciTech Connect

    Gross, K.B.; White, H.J.; Sargent, N.E. )

    1991-06-15

    The primary purpose of this research was to determine the effect of ozone inhalation on pulmonary vascular endothelium. Male Fischer-344 rats were exposed to 0.5 or 0.7 ppm ozone, 20 hr/day for 7 days. Lungs were excised and perfused with Krebs medium containing (14C)serotonin or (14C)hippurylhistidylleucine (HHL). When compared to controls, the animals exposed to the lower ozone concentration showed no statistically significant changes in serotonin removal. In contrast, the higher ozone concentration resulted in a 32% decrease (p less than 0.0001) in serotonin removal, but had no effect on HHL. Rats similarly exposed to 0.7 ppm ozone but allowed to recover for 14 days in clean air showed no decrease in serotonin removal compared to their controls. Animals exposed sequentially to 0.5 ppm ozone for 7 days and then to 0.7 ppm for 7 days showed no alteration in serotonin metabolism, suggesting the development of tolerance initiated by the lower dose. After 7 days exposure to 0.7 ppm ozone, lung ventilatory function measurements revealed small though significant decreases in several parameters. Electron microscopic evaluation of lung capillary endothelium from animals exposed to the 0.7 ppm ozone showed no changes. Positive control animals exposed to greater than 95% oxygen, 20 hr/day for 2 days showed a 23% decrease in serotonin removal (p less than 0.03) and a 12% decrease in HHL removal (p less than 0.017). These studies indicate that inhalation of ozone can induce functional alterations in the lung endothelium, and that this effect occurs at a dosage of ozone that produces minimal ventilatory changes and no observable endothelial ultrastructural changes.

  15. Abnormal functional connectivity in focal hand dystonia: Mutual information analysis in EEG

    PubMed Central

    Jin, Seung-Hyun; Lin, Peter; Auh, Sungyoung; Hallett, Mark

    2011-01-01

    The aim of the present study was to investigate functional connectivity (FC) in focal hand dystonia (FHD) patients to understand the pathophysiology underlying their abnormality in movement. We recorded EEG from 58 electrodes in 15 FHD patients and 15 healthy volunteers during rest and a simple finger-tapping task that did not induce any dystonic symptoms. We investigated the mutual information (MI), which provides a quantitative measure of linear and nonlinear coupling, in the alpha, beta and gamma bands. Mean MI of all 58 channels and mean of the channels of interest (COIs) representative of regional FC over sensorimotor areas (C3, CP3, C4, CP4, FCz and Cz) were evaluated. For both groups, we found enhanced MI during the task compared to the rest condition specifically in the beta and gamma bands for mean MI of all channels, and in all bands for mean MI of COIs. Comparing the FHD patients to the healthy volunteers, for both rest and task, there was reduced MI in the beta band for both mean MI of all channels and mean MI of COIs. Regarding the properties of the connectivity in the beta band, we found that the majority of the MI differences were from linear connectivity. The abnormal beta band FC in FHD patients suggests deficient brain connectivity. PMID:21506166

  16. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues.

    PubMed

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu

    2015-05-01

    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  17. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature

    PubMed Central

    Di Nicola, Maura; Barteselli, Giulio; Dell'Arti, Laura; Ratiglia, Roberto; Viola, Francesco

    2015-01-01

    Deferoxamine mesylate (DFO) is the most commonly used iron-chelating agent to treat transfusion-related hemosiderosis. Despite the clear advantages for the use of DFO, numerous DFO-related systemic toxicities have been reported in the literature, as well as sight-threatening ocular toxicity involving the retinal pigment epithelium (RPE). The damage to the RPE can lead to visual field defects, color-vision defects, abnormal electrophysiological tests, and permanent visual deterioration. The purpose of this review is to provide an updated summary of the ocular findings, including both functional and structural abnormalities, in DFO-treated patients. In particular, we pay particular attention to analyzing results of multimodal technologies for retinal imaging, which help ophthalmologists in the early diagnosis and correct management of DFO retinopathy. Fundus autofluorescence, for example, is not only useful for screening patients at high-risk of DFO retinopathy, but is also a prerequisite for identify specific high-risk patterns of RPE changes that are relevant for the prognosis of the disease. In addition, optical coherence tomography may have a clinical usefulness in detecting extent and location of different retinal changes in DFO retinopathy. Finally, this review wants to underline the need for universally approved guidelines for screening and followup of this particular disease. PMID:26167477

  18. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  19. Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia.

    PubMed

    Kiang, Michael; Light, Gregory A; Prugh, Jocelyn; Coulson, Seana; Braff, David L; Kutas, Marta

    2007-07-01

    A hallmark of schizophrenia is impaired proverb interpretation, which could be due to: (1) aberrant activation of disorganized semantic associations, or (2) working memory (WM) deficits. We assessed 18 schizophrenia patients and 18 normal control participants on proverb interpretation, and evaluated these two hypotheses by examining within patients the correlations of proverb interpretation with disorganized symptoms and auditory WM, respectively. Secondarily, we also explored the relationships between proverb interpretation and a spectrum of cognitive functions including auditory sensory-memory encoding (as indexed by the mismatch negativity (MMN) event-related brain potential (ERP)); executive function; and social/occupational function. As expected, schizophrenia patients produced less accurate and less abstract descriptions of proverbs than did controls. These proverb interpretation difficulties in patients were not significantly correlated with disorganization or other symptom factors, but were significantly correlated (p < .05) with WM impairment, as well as with impairments in sensory-memory encoding, executive function, and social/occupational function. These results offer no support for disorganized associations in abnormal proverb interpretation in schizophrenia, but implicate WM deficits, perhaps as a part of a syndrome related to generalized frontal cortical dysfunction. PMID:17521483

  20. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  1. Abnormal GABAergic Function and Face Processing in Schizophrenia: A Pharmacologic-fMRI Study

    PubMed Central

    Tso, Ivy F.; Fang, Yu; Phan, K. Luan; Welsh, Robert C.; Taylor, Stephan F.

    2015-01-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli (“Do you like this face?”). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3 weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. PMID:26363970

  2. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.

    PubMed

    Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F

    2015-10-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. PMID:26363970

  3. Abnormal Functional Connectivity of Amygdala in Late-Onset Depression Was Associated with Cognitive Deficits

    PubMed Central

    Yue, Yingying; Yuan, Yonggui; Hou, Zhenghua; Jiang, Wenhao; Bai, Feng; Zhang, Zhijun

    2013-01-01

    Background Major depressive disorder (MDD) is associated with decreased function of cortico-limbic circuits, which play important roles in the pathogenesis of MDD. Abnormal functional connectivity (FC) with the amygdala, which is involved in cortico-limbic circuits, has also been observed in MDD. However, little is known about connectivity alterations in late-onset depression (LOD) or whether disrupted connectivity is correlated with cognitive impairment in LOD. Methods and Results A total of twenty-two LOD patients and twenty-two matched healthy controls (HC) underwent neuropsychological tests and resting state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) and FC with bilateral amygdala seeds were used to analyze blood oxygen level-dependent fMRI data between two groups. Compared with HC, LOD patients showed decreased ReHo in the right middle frontal gyrus and left superior frontal gyrus. In the LOD group, the left amygdala had decreased FC with the right middle frontal gyrus and the left superior frontal gyrus in the amygdala positive network, and it had increased FC with the right post-central gyrus in the amygdala negative network. However, significantly reduced FC with the right amygdala was observed in the right middle occipital gyrus in the amygdala negative network. Further correlative analyses revealed that decreased FC between the amygdala and the right middle occipital gyrus was negatively correlated with the verbal fluency test (VFT, r = −0.485, P = 0.022) and the digit span test (DST, r = −0.561, P = 0.007). Conclusions Our findings of reduced activity of the prefrontal gyrus and abnormal FC with the bilateral amygdala may be key markers of cognitive dysfunction in LOD patients. PMID:24040385

  4. Ductal Injection Does Not Increase the Islet Yield or Function after Cold Storage in a Vascular Perfusion Model

    PubMed Central

    Nakanishi, Wataru; Imura, Takehiro; Inagaki, Akiko; Nakamura, Yasuhiro; Sekiguchi, Satoshi; Fujimori, Keisei; Satomi, Susumu; Goto, Masafumi

    2012-01-01

    Several studies have reported that pancreatic ductal preservation greatly improved the islet yield and function after cold storage. However, these studies were devoid of appropriate controls, such as vascular perfusion, which is routinely performed to preserve organs in the clinical setting. In this study, we created a vascular perfusion model using inbred rats, and investigated the effect of ductal injection on the islet yield and function after cold storage. Rat pancreases after 10 h cold ischemia were classified as follows: without ductal/vascular perfusion; with ductal injection; with vascular perfusion; and with ductal/vascular perfusion. The islet yield, function, viability, release of inflammatory mediators, and pathological changes in the exocrine tissues were assessed in the Hanks' Balanced Salt Solution (HBSS) model. The islet yield was also assesed by introducing University of Wisconsin Solution (UWS) and Histidine-Tryptophan-Ketoglutarate solution (HTK), which are the standard clinical preservation solutions. In the HBSS model, ductal injection and vascular perfusion significantly improved the islet yield compared with the control group. However, ductal injection showed no additional effects on the islet yield, function, viability and suppressing the release of inflammatory mediators when vascular perfusion was performed. Although ductal injection significantly decreased the apoptosis of exocrine cells, no beneficial effect on vacuolation was observed. In contrast, vascular perfusion significantly suppressed vacuolation in the exocrine tissues. Likewise, in the UWS and HTK model, ductal injection and vascular perfusion improved the islet yield compared with the control group. Nevertheless, the combination group showed no additional effects. These data suggest that ductal injection has no additional effect on islet yield and function after cold storage in a vascular perfusion model. We propose that ductal injection can be an effective and simple

  5. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder

    PubMed Central

    Moises, H W; Wollschläger, D; Binder, H

    2015-01-01

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884

  6. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.

    PubMed

    Moises, H W; Wollschläger, D; Binder, H

    2015-08-11

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.

  7. Correlation of CT cerebral vascular territories with function. 3. Middle cerebral artery

    SciTech Connect

    Berman, S.A.; Hayman, L.A.; Hinck, V.C.

    1984-05-01

    Schematic displays are presented of the cerebral territories supplied by branches of the middle cerebral artery as they would appear on axial and coronal computed tomographic (CT) scan sections. Companion diagrams of regional cortical function and a discussion of the fiber tracts are provided to simplify correlation of clinical deficits with coronal and axial CT abnormalities.

  8. Abnormalities of Reproductive Function in Male Obesity Before and After Bariatric Surgery-A Comprehensive Review.

    PubMed

    Rosenblatt, Alberto; Faintuch, Joel; Cecconello, Ivan

    2015-07-01

    Young males represent one of the populations with the steepest increases in the incidence of obesity. They are also prone to significant derangements in sexual health and fertility. Despite a growing number of reports about female reproductive health, in the setting of bariatric surgery, males have received much less attention. In the current review of reproductive abnormalities in severe obese males before and after bariatric surgery, erectile function, hypothalamic-pituitary-gonadal axis status, sex hormones, semen quality, fertility and assisted reproductive techniques, along with analysis of adipokines, gut hormones, and environmental factors are addressed. Available evidence about weight loss benefits, both medical and surgical, are highlighted, along with perspectives for future investigations, which may be relevant for the patient, for the couple, and for the community alike.

  9. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    PubMed Central

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking. PMID:27757078

  10. Abnormalities in Parentally Rated Executive Function in Methamphetamine/Polysubstance Exposed Children

    PubMed Central

    Piper, Brian J.; Acevedo, Summer F.; Kolchugina, Galena K.; Butler, Robert W.; Corbett, Selena M.; Honeycutt, Elizabeth B.; Craytor, Michael J.; Raber, Jacob

    2011-01-01

    Methamphetamine/polysubstance abuse in women of childbearing age is a major concern because of the potential long-term detrimental effects on the brain function of the fetus following in utero exposure. A battery of established tests, including the Wechsler Abbreviated Scale of Intelligence, Conners’ Continuous Performance Test II, Behavioral Rating Inventory of Executive Function, the CMS Family Pictures and Dot Location tests, the Spatial Span test from the WISC-IV-Integrated, and a recently developed spatial learning and memory measure (Memory Island), was used to assess the effects of prenatal drug exposure on neurobehavioral performance. Participants were 7 to 9 year old children from similar socioeconomic backgrounds who either had (N = 31) or had not (N = 35) been exposed to methamphetamine/polysubstance during pregnancy. Compared to unexposed children, exposed children showed pronounced elevations (i.e. more problems) in parental ratings of executive function, including behavioral regulation and metacognition. Exposed children also exhibited subtle reductions in spatial performance in the Memory Island test. In contrast, IQ, Spatial Span, Family Pictures, Dot Location, and vigilance performance was unaffected by prenatal drug exposure history. Thus, children of women who reported using methamphetamine and other recreational drugs during pregnancy showed a selective profile of abnormalities in parentally rated executive function. PMID:21334365

  11. Abnormalities in parentally rated executive function in methamphetamine/polysubstance exposed children.

    PubMed

    Piper, Brian J; Acevedo, Summer F; Kolchugina, Galena K; Butler, Robert W; Corbett, Selena M; Honeycutt, Elizabeth B; Craytor, Michael J; Raber, Jacob

    2011-05-01

    Methamphetamine/polysubstance abuse in women of childbearing age is a major concern because of the potential long-term detrimental effects on the brain function of the fetus following in utero exposure. A battery of established tests, including the Wechsler Abbreviated Scale of Intelligence, Conners' Continuous Performance Test II, Behavioral Rating Inventory of Executive Function, the CMS Family Pictures and Dot Location tests, the Spatial Span test from the WISC-IV-Integrated, and a recently developed spatial learning and memory measure (Memory Island), was used to assess the effects of prenatal drug exposure on neurobehavioral performance. Participants were 7 to 9 year old children from similar socioeconomic backgrounds who either had (N=31) or had not (N=35) been exposed to methamphetamine/polysubstance during pregnancy. Compared to unexposed children, exposed children showed pronounced elevations (i.e. more problems) in parental ratings of executive function, including behavioral regulation and metacognition. Exposed children also exhibited subtle reductions in spatial performance in the Memory Island test. In contrast, IQ, Spatial Span, Family Pictures, Dot Location, and vigilance performance were unaffected by prenatal drug exposure history. Thus, children of women who reported using methamphetamine and other recreational drugs during pregnancy showed a selective profile of abnormalities in parentally rated executive function.

  12. Abnormal functional connectivity of the medial cortex in euthymic bipolar II disorder.

    PubMed

    Marchand, William R; Lee, James N; Johnson, Susanna; Gale, Phillip; Thatcher, John

    2014-06-01

    This project utilized functional MRI (fMRI) and a motor activation paradigm to investigate neural circuitry in euthymic bipolar II disorder. We hypothesized that circuitry involving the cortical midline structures (CMS) would demonstrate abnormal functional connectivity. Nineteen subjects with recurrent bipolar disorder and 18 controls were studied using fMRI and a motor activation paradigm. We used functional connectivity analyses to identify circuits with aberrant connectivity. We found increased functional connectivity among bipolar subjects compared to healthy controls in two CMS circuits. One circuit included the medial aspect of the left superior frontal gyrus and the dorsolateral region of the left superior frontal gyrus. The other included the medial aspect of the right superior frontal gyrus, the dorsolateral region of the left superior frontal gyrus and the right medial frontal gyrus and surrounding region. Our results indicate that CMS circuit dysfunction persists in the euthymic state and thus may represent trait pathology. Future studies should address whether these circuits contribute to relapse of illness. Our results also suggest the possibility that aberrations of superior frontal circuitry may impact default mode network and cognitive processes.

  13. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder.

    PubMed

    Bernstein, Gail A; Mueller, Bryon A; Schreiner, Melinda Westlund; Campbell, Sarah M; Regan, Emily K; Nelson, Peter M; Houri, Alaa K; Lee, Susanne S; Zagoloff, Alexandra D; Lim, Kelvin O; Yacoub, Essa S; Cullen, Kathryn R

    2016-01-30

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-min scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including parts of the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  14. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference.

    PubMed

    Melcher, Tobias; Falkai, Peter; Gruber, Oliver

    2008-11-01

    In the present article, we review functional neuroimaging studies on interference processing and performance monitoring in three groups of psychiatric disorders, (1) mood disorders, (2) schizophrenia, and (3) obsessive-compulsive disorder (OCD). Ad (1) Behavioral performance measures suggest an impaired interference resolution capability in symptomatic bipolar disorder patients. A series of neuroimaging analyses found alterations in the ACC-DLPFC system in mood disorder (unipolar depressed and bipolar) patients, putatively reflective of an abnormal interplay of monitoring and executive neurocognitive functions. Other studies of euthymic bipolar patients showed relatively decreased interference-related activation in rostroventral PFC which conceivably underlies defective inhibitory control. Ad (2) Behavioral Stroop studies revealed a specific performance pattern of schizophrenia patients (normal RT interference but increased error interference and RT facilitation) suggestive of a deficit in ignoring irrelevant (word) information. Moreover, reduced/absent behavioral post-error and post-conflict adaptation effects suggest alterations in performance monitoring and/or adjustment capability in these patients. Neuroimaging findings converge to suggest a disorder-related abnormal neurophysiology in ACC which consistently showed conflict- and error-related hypoactivation that, however, appeared to be modulated by different factors. Moreover, studies suggest a specific deficit in context processing in schizophrenia, evidently related to activation reduction in DLPFC. Ad (3) Behavioral findings provide evidence for impaired interference resolution in OCD. Neuroimaging results consistently showed conflict- and error-related ACC hyperactivation which--conforming OCD pathogenesis models--can be conclusively interpreted as reflecting overactive performance monitoring. Taken together, interference resolution and performance monitoring appeared to be fruitful concepts in the

  15. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    PubMed

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p < 0.001). This study demonstrates an abnormal pattern of brain activation in secondary motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  16. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  17. Exercise training improves vascular endothelial function in patients with type 1 diabetes.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Pleiner, Johannes; Wiesinger, Günther F; Sieder, Anna E; Quittan, Michael; Nuhr, Martin J; Francesconi, Claudia; Seit, Hans-Peter; Francesconi, Mario; Schmetterer, Leopold; Wolzt, Michael

    2002-10-01

    OBJECTIVE-Impaired endothelial function of resistance and conduit arteries can be detected in patients with type 1 diabetes. We studied whether a persistent improvement of endothelial function can be achieved by regular physical training. RESEARCH DESIGN AND METHODS-The study included 26 patients with type 1 diabetes of 20 +/- 10 years' duration and no overt angiopathy; 18 patients (42 +/- 10 years old) participated in a bicycle exercise training program, and 8 patients with type 1 diabetes (33 +/- 11 years old) served as control subjects. Vascular function of conduit arteries was assessed by flow-mediated and endothelium-independent dilation of the brachial artery and of resistance vessels by the response of ocular fundus pulsation amplitudes to intravenous N(G)-monomethyl-L-arginine (L-NMMA) at baseline, after 2 and 4 months of training, and 8 months after cessation of regular exercise. RESULTS-Training increased peak oxygen uptake (VO(2max)) by 13% after 2 months and by 27% after 4 months (P = 0.04). Flow-mediated dilation (FMD) of the brachial artery increased from 6.5 +/- 1.1 to 9.8 +/- 1.1% (P = 0.04) by training. L-NMMA administration decreased fundus pulsation amplitude (FPA) by 9.1 +/- 0.9% before training and by 13.4 +/- 1.5% after 4 months of training (P = 0.02). VO(2max), FMD, and FPA were unchanged in the control group. Vascular effects from training were abrogated 8 months after cessation of exercise. CONCLUSIONS-Our study demonstrates that aerobic exercise training can improve endothelial function in different vascular beds in patients with long-standing type 1 diabetes, who are at considerable risk for diabetic angiopathy. However, the beneficial effect on vascular function is not maintained in the absence of exercise.

  18. ECM-mimetic heparin glycosamioglycan-functionalized surface favors constructing functional vascular smooth muscle tissue in vitro.

    PubMed

    Zhang, Jimin; Wang, Jianing; Wei, Yongzhen; Gao, Cheng; Chen, Xuejiao; Kong, Wei; Kong, Deling; Zhao, Qiang

    2016-10-01

    Contractile vascular smooth muscle accounts for the normal physiological function of artery. Heparin, as a native glycosaminoglycan, has been well known for its important function in promoting or maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs). In this study, heparin-functionalized non-woven poly(ε-caprolactone) (PCL) mat was fabricated by a facile and efficient surface modification protocol, which enables the control of surface heparin density within a broad range. Surface heparization remarkably increased the hydrophilicity of PCL, and reduced platelet adhesion. MTT assay showed that VSMC proliferation was evidently inhibited on the heparin-functionalized PCL surface in a dose-dependent manner. Gene analysis confirmed that surface heparization also promoted the transition of VSMCs from synthetic phenotype to contractile one. Furthermore, with a proper surface density of heparin, it allowed VSMCs to grow in a certain rate, while exhibiting contractile phenotype. Culture of VSMCs on a modified PCL mat with moderate heparin density (PCL-Hep-20) for 2 days resulted in a confluent layer of contractile smooth muscle cells. These data suggest that the heparin-modified PCL scaffolds may be a promising candidate to generate functional vascular tissues in vitro. PMID:27351139

  19. Chronic Hindlimb Ischemia Impairs Functional Vasodilation and Vascular Reactivity in Mouse Feed Arteries

    PubMed Central

    Cardinal, Trevor R.; Struthers, Kyle R.; Kesler, Thomas J.; Yocum, Matthew D.; Kurjiaka, David T.; Hoying, James B.

    2011-01-01

    Vasodilation of lower leg arterioles is impaired in animal models of chronic peripheral ischemia. In addition to arterioles, feed arteries are a critical component of the vascular resistance network, accounting for as much as 50% of the pressure drop across the arterial circulation. Despite the critical importance of feed arteries in blood flow control, the impact of ischemia on feed artery vascular reactivity is unknown. At 14 days following unilateral resection of the femoral–saphenous artery–vein pair, functional vasodilation of the profunda femoris artery was severely impaired, 11 ± 9 versus 152 ± 22%. Although endothelial and smooth muscle-dependent vasodilation were both impaired in ischemic arteries compared to control arteries (Ach: 40 ± 14 versus 81 ± 11%, SNP: 43 ± 12 versus and 85 ± 11%), the responses to acetylcholine and sodium nitroprusside were similar, implicating impaired smooth muscle-dependent vasodilation. Conversely, vasoconstriction responses to norepinephrine were not different between ischemic and control arteries, −68 ± 3 versus −66 ± 3%, indicating that smooth muscle cells were functional following the ischemic insult. Finally, maximal dilation responses to acetylcholine, ex vivo, were significantly impaired in the ischemic artery compared to control, 71 ± 9 versus 97 ± 2%, despite a similar generation of myogenic tone to the same intravascular pressure (80 mmHg). These data indicate that ischemia impairs feed artery vasodilation by impairing the responsiveness of the vascular wall to vasodilating stimuli. Future studies to examine the mechanistic basis for the impact of ischemia on vascular reactivity or treatment strategies to improve vascular reactivity following ischemia could provide the foundation for an alternative therapeutic paradigm for peripheral arterial occlusive disease. PMID:22164145

  20. Neurological abnormalities and neurocognitive functions in healthy elder people: A structural equation modeling analysis

    PubMed Central

    2011-01-01

    Background/Aims Neurological abnormalities have been reported in normal aging population. However, most of them were limited to extrapyramidal signs and soft signs such as motor coordination and sensory integration have received much less attention. Very little is known about the relationship between neurological soft signs and neurocognitive function in healthy elder people. The current study aimed to examine the underlying relationships between neurological soft signs and neurocognition in a group of healthy elderly. Methods One hundred and eighty healthy elderly participated in the current study. Neurological soft signs were evaluated with the subscales of Cambridge Neurological Inventory. A set of neurocognitive tests was also administered to all the participants. Structural equation modeling was adopted to examine the underlying relationship between neurological soft signs and neurocognition. Results No significant differences were found between the male and female elder people in neurocognitive function performances and neurological soft signs. The model fitted well in the elderly and indicated the moderate associations between neurological soft signs and neurocognition, specifically verbal memory, visual memory and working memory. Conclusions The neurological soft signs are more or less statistically equivalent to capture the similar information done by conventional neurocognitive function tests in the elderly. The implication of these findings may serve as a potential neurological marker for the early detection of pathological aging diseases or related mental status such as mild cognitive impairment and Alzheimer's disease. PMID:21827719

  1. Engineering micropatterned surfaces to modulate the function of vascular stem cells

    SciTech Connect

    Li, Jennifer; Wu, Michelle; Chu, Julia; Sochol, Ryan; Patel, Shyam

    2014-02-21

    Highlights: • We examine vascular stem cell function on microgrooved and micropost patterned polymer substrates. • 10 μm microgrooved surfaces significantly lower VSC proliferation but do not modulate calcified matrix deposition. • Micropost surfaces significantly lower VSC proliferation and decrease calcified matrix deposition. - Abstract: Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10 μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.

  2. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility.

    PubMed

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; F Maitz, Manfred; Zhao, Anshan

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. PMID:27127049

  3. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility.

    PubMed

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; F Maitz, Manfred; Zhao, Anshan

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification.

  4. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity.

    PubMed

    Cao, Yihai

    2013-10-01

    White and brown adipose tissues are hypervascularized and the adipose vasculature displays phenotypic and functional plasticity to coordinate with metabolic demands of adipocytes. Blood vessels not only supply nutrients and oxygen to nourish adipocytes, they also serve as a cellular reservoir to provide adipose precursor and stem cells that control adipose tissue mass and function. Multiple signaling molecules modulate the complex interplay between the vascular system and the adipocytes. Understanding fundamental mechanisms by which angiogenesis and vasculatures modulate adipocyte functions may provide new therapeutic options for treatment of obesity and metabolic disorders by targeting the adipose vasculature.

  5. Vascular Function, Inflammation, and Variations in Cardiac Autonomic Responses to Particulate Matter Among Welders

    PubMed Central

    Cavallari, Jennifer M.; Eisen, Ellen A.; Chen, Jiu-Chiuan; Mittleman, Murray A.; Christiani, David C.

    2009-01-01

    Patients with health conditions associated with impaired vascular function and inflammation may be more susceptible to the adverse health effects of fine particulate (particulate matter with a mass median aerodynamic diameter of ≤2.5 μm (PM2.5)) exposure. In 2006, the authors conducted a panel study to investigate directly whether vascular function and inflammation (assessed by C-reactive protein) modify PM2.5-associated reductions in heart rate variability among 23 young male workers (mean age, 40 years) from Massachusetts. Concurrent 24-hour ambulatory electrocardiogram and personal PM2.5 exposure information was collected over a total of 36 person-days, including either or both welding and nonwelding days. Linear mixed models were used to examine the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to the moving PM2.5 averages in the preceding 1–4 hours. C-reactive protein levels and 3 measures of vascular function (augmentation index, mean arterial pressure, and pulse pressure) were determined at baseline. The authors observed an inverse association between the 1-hour PM2.5 and 5-minute SDNN. Greater SDNN declines were observed among those with C-reactive protein (Pinteraction < 0.001) and augmentation index (P = 0.06) values at or above the 75th percentile and pulse pressure values below the 75th percentile (P < 0.001). Systemic inflammation and poorer vascular function appear to aggravate particle-related declines in heart rate variability among workers. PMID:19153215

  6. Association of Fitness Level With Cardiovascular Risk and Vascular Function in Older Nonexercising Individuals.

    PubMed

    Oudegeest-Sander, Madelijn H; Thijssen, Dick H J; Smits, Paul; van Dijk, Arie P J; Olde Rikkert, Marcel G M; Hopman, Maria T E

    2015-07-01

    It is currently unknown whether differences in physical fitness in older, nonexercising individuals affect cardiovascular risk profile and vascular function. To examine this, 40 healthy older individuals (age 69 ± 4 years) who were classified as nonexercising for the past 5-10 years were allocated to a lower physical fitness (LF; VO2max 20.7 ± 2.4 mlO2/min/kg) or higher physical fitness group (HF; VO2max 29.1 ± 2.8 mlO2/ min/kg, p < .001). Cardiovascular risk profile was calculated using the Lifetime Risk Score (LRS). Vascular function was examined using the gold standard venous occlusion plethysmography to assess blood flow changes in response to intra-arterial infusion of acetylcholine, sodium nitroprusside, and L-NNMA. Daily life activity level of the HF group was higher compared with the LF group (p = .04). LRS was higher (p < .001) and blood flow ratio response to acetylcholine was lower (p = .04) in the LF group. This study shows that a higher physical fitness level is associated with better cardiovascular health and vascular function in nonexercising older individuals. PMID:25222970

  7. Impaired cardiac response to exercise in post-menopausal women: relationship with peripheral vascular function.

    PubMed

    Yoshioka, J; Node, K; Hasegawa, S; Paul, A K; Mu, X; Maruyama, K; Nakatani, D; Kitakaze, M; Hori, M; Nishimura, T

    2003-04-01

    Endothelial dysfunction has been demonstrated in post-menopausal women. To assess the relationship between peripheral vascular reserve and cardiac function during exercise in post-menopausal women, 91 subjects, who had no ischaemic findings on myocardial SPECT, were assigned to four groups: pre-menopausal women (n=13), post-menopausal women (n=33), younger men aged < or =50 years (n=10), and older men aged >50 years (n=35). First-pass radionuclide angiography was performed before and during bicycle exercise to calculate ejection fraction (EF) and peripheral vascular resistance (VR). There were no differences in haemodynamic variables among the groups at baseline. The per cent increase in EF=(exercise EF - resting EF)x100/resting EF, and the per cent decrease in VR=(resting VR - exercise VR)x100/resting VR were depressed in the post-menopausal women (0.4+/-2% and 35+/-3%, respectively) compared to the pre-menopausal women (10+/-3% and 47+/-3%, respectively; P<0.05 each). Although the age dependent impairment is thought to cause this depression, neither the per cent increase in EF nor the per cent decrease in VR in the older men was significantly different from that in the younger men. Post-menopausal women exhibited depressed cardiac function during exercise, which may be related to the impairment of peripheral vascular function after menopause. PMID:12673166

  8. Impaired cardiac response to exercise in post-menopausal women: relationship with peripheral vascular function.

    PubMed

    Yoshioka, J; Node, K; Hasegawa, S; Paul, A K; Mu, X; Maruyama, K; Nakatani, D; Kitakaze, M; Hori, M; Nishimura, T

    2003-04-01

    Endothelial dysfunction has been demonstrated in post-menopausal women. To assess the relationship between peripheral vascular reserve and cardiac function during exercise in post-menopausal women, 91 subjects, who had no ischaemic findings on myocardial SPECT, were assigned to four groups: pre-menopausal women (n=13), post-menopausal women (n=33), younger men aged < or =50 years (n=10), and older men aged >50 years (n=35). First-pass radionuclide angiography was performed before and during bicycle exercise to calculate ejection fraction (EF) and peripheral vascular resistance (VR). There were no differences in haemodynamic variables among the groups at baseline. The per cent increase in EF=(exercise EF - resting EF)x100/resting EF, and the per cent decrease in VR=(resting VR - exercise VR)x100/resting VR were depressed in the post-menopausal women (0.4+/-2% and 35+/-3%, respectively) compared to the pre-menopausal women (10+/-3% and 47+/-3%, respectively; P<0.05 each). Although the age dependent impairment is thought to cause this depression, neither the per cent increase in EF nor the per cent decrease in VR in the older men was significantly different from that in the younger men. Post-menopausal women exhibited depressed cardiac function during exercise, which may be related to the impairment of peripheral vascular function after menopause.

  9. Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke.

    PubMed

    Ruiz-Vera, Tania; Pruneda-Álvarez, Lucia G; Ochoa-Martínez, Ángeles C; Ramírez-GarcíaLuna, José L; Pierdant-Pérez, Mauricio; Gordillo-Moscoso, Antonio A; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N

    2015-09-01

    The use of solid fuels for cooking and heating is likely to be the largest source of indoor air pollution on a global scale; these fuels emit substantial amounts of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) when used in simple cooking stoves (such as open "three-stone" fires). Moreover, indoor air pollution from biomass fuels is considered an important risk factor for human health. The aim of this study was to evaluate the relationship between exposure to PAHs from wood smoke and vascular dysfunction; in a group of Mexican women that use biomass combustion as their main energy source inside their homes. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to PAHs and it was assessed using high performance liquid chromatography. The endothelium-dependent vasodilation was assessed through a vascular reactivity compression test performed with a pneumatic cuff under visualization of the brachial artery using high resolution ultrasonography (HRU). Assessment of the carotid intima-media thickness (CIMT) was used as an atherosclerosis biomarker (also assessed using HRU); and clinical parameters such as anthropometry, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, among others were also evaluated. The mean concentration of urinary 1-OHP found in exposed women was 0.46±0.32μmol/mol Cr (range: 0.086-1.23μmol/mol Cr). Moreover, vascular dysfunction (diminished endothelium dependent vasodilation) was found in 45% of the women participating in the study. Association between vascular function and 1-OHP levels was found to be significant through a logistic regression analysis (p=0.034; r(2)=0.1329). Furthermore, no association between CIMT and clinical parameters, urinary 1-OHP levels or vascular dysfunction was found. Therefore, with the information obtained in this study, we advocate for the need to implement programs to reduce the risk of exposure to PAHs in communities that use biomass fuels as a main

  10. Diastolic abnormalities in systemic sclerosis: evidence for associated defective cardiac functional reserve.

    PubMed Central

    Valentini, G; Vitale, D F; Giunta, A; Maione, S; Gerundo, G; Arnese, M; Tirri, E; Pelaggi, N; Giacummo, A; Tirri, G; Condorelli, M

    1996-01-01

    OBJECTIVE: To investigate the pattern of diastolic abnormalities in patients with systemic sclerosis (SSc) and the relationship between impaired ventricular filling and systolic function. METHODS: Twenty four patients with SSc underwent M-mode and two dimensional echocardiography using echo-Doppler and gated blood pool cardiac angiography, both at rest and after exercise. RESULTS: An impaired diastolic relaxation of the left ventricle was detected in 10 of the 24 patients with SSc. Left ventricular ejection fraction at rest in these 10 patients with impaired ventricular filling did not differ from that in the remaining 14 patients, but eight of the 10 failed to increase their ejection fraction during exercise, compared with two of the 14 with normal ventricular filling (p = 0.003). CONCLUSION: Impaired relaxation of the left ventricle is a recently described feature of scleroderma heart disease. Diastolic dysfunction in SSc could depend on myocardial fibrosis or myocardial ischaemia, or both. It was found to be associated with a defective cardiac functional reserve. However, its prognostic significance remains to be clarified. PMID:8774164

  11. Reward Abnormalities Among Women with Full and Subthreshold Bulimia Nervosa: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Bohon, Cara; Stice, Eric

    2010-01-01

    Objective To test the hypothesis that women with full and subthreshold bulimia nervosa show abnormal neural activation in response to food intake and anticipated food intake relative to healthy control women. Method Females with and without full/subthreshold bulimia nervosa recruited from the community (N = 26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless control solution. Results Women with bulimia nervosa showed trends for less activation than healthy controls in the right anterior insula in response to anticipated receipt of chocolate milkshake (versus tasteless solution) and in the left middle frontal gyrus, right posterior insula, right precentral gyrus, and right mid dorsal insula in response to consumptions of milkshake (versus tasteless solution). Discussion Bulimia nervosa may be related to potential hypo-functioning of the brain reward system, which may lead these individuals to binge eat to compensate for this reward deficit, though the hypo-responsivity might be a result of a history of binge eating highly palatable foods. PMID:21997421

  12. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

    PubMed

    Jiang, Li; Tam, Beatrice M; Ying, Guoxing; Wu, Sen; Hauswirth, William W; Frederick, Jeanne M; Moritz, Orson L; Baehr, Wolfgang

    2015-12-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3. PMID:26229057

  13. Cytoarchitectural and Functional Abnormalities of the Inferior Colliculus in Sudden Unexplained Perinatal Death

    PubMed Central

    Lavezzi, Anna M.; Pusiol, Teresa; Matturri, Luigi

    2015-01-01

    Abstract The inferior colliculus is a mesencephalic structure endowed with serotonergic fibers that plays an important role in the processing of acoustic information. The implication of the neuromodulator serotonin also in the aetiology of sudden unexplained fetal and infant death syndromes and the demonstration in these pathologies of developmental alterations of the superior olivary complex (SOC), a group of pontine nuclei likewise involved in hearing, prompted us to investigate whether the inferior colliculus may somehow contribute to the pathogenetic mechanism of unexplained perinatal death. Therefore, we performed in a wide set of fetuses and infants, aged from 33 gestational weeks to 7 postnatal months and died of both known and unknown cause, an in-depth anatomopathological analysis of the brainstem, particularly of the midbrain. Peculiar neuroanatomical and functional abnormalities of the inferior colliculus, such as hypoplasia/structural disarrangement and immunonegativity or poor positivity of serotonin, were exclusively found in sudden death victims, and not in controls. In addition, these alterations were frequently related to dysgenesis of connected structures, precisely the raphé nuclei and the superior olivary complex, and to nicotine absorption in pregnancy. We propose, on the basis of these results, the involvement of the inferior colliculus in more important functions than those related to hearing, as breathing and, more extensively, all the vital activities, and then in pathological conditions underlying a sudden death in vulnerable periods of the autonomic nervous system development, particularly associated to harmful risk factors as cigarette smoking. PMID:25674737

  14. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis

    PubMed Central

    Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  15. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  16. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.

    PubMed

    Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang

    2015-01-01

    Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness) are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented. PMID:26224491

  17. Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy

    PubMed Central

    Wang, Juan-Juan; Zhu, Meili; Le, Yun-Zheng

    2015-01-01

    Müller cells are macroglia and play many essential roles as supporting cells in the retina. To respond to pathological changes in diabetic retinopathy (DR), a major complication in the eye of diabetic patients, retinal Müller glia produce a high level of vascular endothelial growth factor (VEGF or VEGF-A). As VEGF is expressed by multiple retinal cell-types and Müller glia comprise only a small portion of cells in the retina, it has been a great challenge to reveal the function of VEGF or other globally expressed proteins produced by Müller cells. With the development of conditional gene targeting tools, it is now possible to dissect the function of Müller cell-derived VEGF in vivo. By using conditional gene targeting approach, we demonstrate that Müller glia are a major source of retinal VEGF in diabetic mice and Müller cell-derived VEGF plays a significant role in the alteration of protein expression and peroxynitration, which leads to retinal inflammation, neovascularization, vascular leakage, and vascular lesion, key pathological changes in DR. Therefore, Müller glia are a potential cellular target for the treatment of DR, a leading cause of blindness. PMID:26069721

  18. Degree of bioresorbable vascular scaffold expansion modulates loss of essential function

    PubMed Central

    Ferdous, Jahid; Kolachalama, Vijaya B.; Kolandaivelu, Kumaran; Shazly, Tarek

    2015-01-01

    Drug-eluting bioresorbable vascular scaffolds (BVSs) have the potential to restore lumen patency, enable recovery of the native vascular environment, and circumvent late complications associated with permanent endovascular devices. To ensure therapeutic effects persist for sufficient times prior to scaffold resorption and resultant functional loss, many factors dictating BVS performance must be identified, characterized and optimized. While some factors relate to BVS design and manufacturing, others depend on device deployment and intrinsic vascular properties. Importantly, these factors interact and cannot be considered in isolation. The objective of this study is to quantify the extent to which degree of radial expansion modulates BVS performance, specifically in the context of modifying device erosion kinetics and evolution of structural mechanics and local drug elution. We systematically varied degree of radial expansion in model BVS constructs composed of poly DL-lactide-glycolide and generated in-vitro metrics of device microstructure, degradation, erosion, mechanics and drug release. Experimental data permitted development of computational models that predicted transient concentrations of scaffold-derived soluble species and drug in the arterial wall, thus enabling speculation on the short- and long-term effects of differential expansion. We demonstrate degree of expansion significantly affects scaffold properties critical to functionality, underscoring its relevance in BVS design and optimization. PMID:26277377

  19. Segmental analysis of indocyanine green pharmacokinetics for the reliable diagnosis of functional vascular insufficiency

    NASA Astrophysics Data System (ADS)

    Kang, Yujung; Lee, Jungsul; An, Yuri; Jeon, Jongwook; Choi, Chulhee

    2011-03-01

    Accurate and reliable diagnosis of functional insufficiency of peripheral vasculature is essential since Raynaud phenomenon (RP), most common form of peripheral vascular insufficiency, is commonly associated with systemic vascular disorders. We have previously demonstrated that dynamic imaging of near-infrared fluorophore indocyanine green (ICG) can be a noninvasive and sensitive tool to measure tissue perfusion. In the present study, we demonstrated that combined analysis of multiple parameters, especially onset time and modified Tmax which means the time from onset of ICG fluorescence to Tmax, can be used as a reliable diagnostic tool for RP. To validate the method, we performed the conventional thermographic analysis combined with cold challenge and rewarming along with ICG dynamic imaging and segmental analysis. A case-control analysis demonstrated that segmental pattern of ICG dynamics in both hands was significantly different between normal and RP case, suggesting the possibility of clinical application of this novel method for the convenient and reliable diagnosis of RP.

  20. Extracellular functional noncoding nucleic acid bioaptamers and angiotropin RNP ribokines in vascularization and self-tolerance.

    PubMed

    Wissler, Josef H; Wissler, Joerg E; Logemann, Enno

    2008-08-01

    Endogenous extracellular and circulating functional small noncoding nucleic acids (ncNAs; <200 nucleotides) and complexes with proteins (ribonucleoproteins; RNPs) make up varying biolibraries of molecular imprints of cellular histories. They are nascently formed upon cellular activation by extrinsic (environmental) factors, including mitogens, cell-mediated immune memory reactions (Landsteiner-Chase-Lawrence transfer factors), and metabolic (hypoxia) and (physical) shear stress forces. Those factors are conventional models for epigenetic (non-Mendelian) vascular remodeling variations directed rather to proteinaceous gene expression and regulation than genomic DNA sequence changes. Structurally defined ncNAs are described as small hairpin nc-shRNA bioaptamers in interaction with proteins forming functional (Cu,Ca,Na,K)-metalloregulated complexes (CuRNP; angiotropins). As nonmitogenic angiomorphogen cytokines (ribokines), they may reprogram confluent quiescent (contact-inhibited) endothelial cell types to migratory, phagokinetically active phenotypes in the morphogenesis of tolerated neovascular patterns. Their functions in organized and mess-chaotic vascular patterns were investigated with regard to master gene, information, epigenetic, vascular, and tumor factors. Some ncNAs feature three-dimensional codes (3D episcripts) for distinct protein conformer phases. They are suggested as being specific recognition types, the estimated repertoires of which are superior in diversity and specificity to conventional immune (glyco-)proteins. For episcription of phenotype variations, they may address and integrate information flow on molecular shapes to protein-mediated nucleic acid processing and [post-]translational modification mechanisms in ncNA-, redox, and metalloregulated conformation phase pathway-locked loops (CPLL). Several vascular and cancer epigenetic regulator proteins are shown to be entangled by sharing helix-nucleating structural (proteomic) domains for

  1. Functional spectroscopy approach to the assessment of nitric oxide storage in vascular tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan; Feelisch, Martin

    2003-10-01

    Much attention has been devoted to the enzymatic production of nitric oxide (NO) by the endothelial layer lining blood vessel walls, which regulates among other things local vasodilatation and platelet adhesion. Considerably less attention, however, has been paid to the accumulation of NO-related products in the vascular wall itself. Such local storage of NO products could conceivably contribute to the local regulation of blood flow and provide additional anti-adhesive protection, if biochemically activated to regenerate NO. Since little is known about their chemical nature, concentrations, and possible role in vascular biology we sought to characterize those species basally resent in rat aorta. To this end we developed a functional form of optical spectroscopy that allows us not only to identify NO-stores in intact tissues but also to monitor their production and disappearance in real-time. The method is based on the ability of NO stores to reversibly release NO when illuminated with light of particular wavelengths, which can be detected as a robust relaxation of vascular smooth muscle (photorelaxation). Characterization of NO-stores is achieved through a careful assessment of photorelaxation action spectra, taking into account the light scattering properties of the tissue, and of depletion of the NO-stores induced by exposure to controlled levels of light. This functional form of optical spectroscopy is applied to rat aortic tissue where the results suggest that the NO photolytically released from tissue stores originated from a low-molecular-weight RSNO as well as from nitrite. The significance of these findings to vascular physiology and pathophysiology is discussed.

  2. Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.

    PubMed

    Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert

    2015-09-01

    Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women.

  3. Long-term Successful Weight Loss Improves Vascular Endothelial Function in Severely Obese Individuals

    PubMed Central

    Bigornia, Sherman J.; Mott, Melanie M.; Hess, Donald T.; Apovian, Caroline M.; McDonnell, Marie E.; Duess, Mai-Ann; Kluge, Matthew A.; Fiscale, Antonino J.; Vita, Joseph A.; Gokce, Noyan

    2010-01-01

    Obesity is associated with increased cardiovascular risk. Although short-term weight loss improves vascular endothelial function, longer term outcomes have not been widely investigated. We examined brachial artery endothelium-dependent vasodilation and metabolic parameters in 29 severely obese subjects who lost ≥10% body weight (age 45 ± 13 years; BMI 48 ± 9 kg/m2) at baseline and after 12 months of dietary and/or surgical intervention. We compared these parameters to 14 obese individuals (age 49 ± 11 years; BMI 39 ± 7 kg/m2) who failed to lose weight. For the entire group, mean brachial artery flow-mediated dilation (FMD) was impaired at 6.7 ± 4.1%. Following sustained weight loss, FMD increased significantly from 6.8 ± 4.2 to 10.0 ± 4.7%, but remained blunted in patients without weight decline from 6.5 ± 4.0 to 5.7 ± 4.1%, P = 0.013 by ANOVA. Endothelium-independent, nitroglycerin-mediated dilation (NMD) was unaltered. BMI fell by 13 ± 7 kg/m2 following successful weight intervention and was associated with reduced total and low-density lipoprotein cholesterol, glucose, hemoglobin A1c, and high-sensitivity C-reactive protein (CRP). Vascular improvement correlated most strongly with glucose levels (r = −0.51, P = 0.002) and was independent of weight change. In this cohort of severely obese subjects, sustained weight loss at 1 year improved vascular function and metabolic parameters. The findings suggest that reversal of endothelial dysfunction and restoration of arterial homeostasis could potentially reduce cardiovascular risk. The results also demonstrate that metabolic changes in association with weight loss are stronger determinants of vascular phenotype than degree of weight reduction. PMID:20057371

  4. Role of Vitamin C in the Function of the Vascular Endothelium

    PubMed Central

    Harrison, Fiona E.

    2013-01-01

    Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial

  5. Relationship of abnormal Tamm-Horsfall glycoprotein localization to renal morphology and function.

    PubMed

    Chambers, R; Groufsky, A; Hunt, J S; Lynn, K L; McGiven, A R

    1986-07-01

    Tamm-Horsfall glycoprotein (TH) distribution was studied using a biotin-avidin immunoperoxidase technique in renal biopsies from 166 consecutive patients and 8 normal kidneys. Tubulointerstitial damage was independently assessed and graded. In 109 patients TH antibodies were measured by ELISA and in 30 of these urinary TH and beta 2-microglobulin excretions were measured by radioimmunoassay. In 124 biopsies only distal tubular epithelium and casts were stained. Glomerular space (8) or interstitial (34) deposits were seen in 42 biopsies; 16/68 with glomerulonephritis, 4/14 with systemic vasculitis, 12/33 with chronic interstitial nephritis, 1/8 with acute interstitial nephritis, 9/43 with other nephropathies. There was no correlation between TH distribution and the degree of tubulointerstitial damage (p greater than 0.5), urinary TH excretion (p greater than 0.05), urinary beta 2-microglobulin excretion (p greater than 0.05), glomerular filtration rate, urinary concentrating ability, or the incidence of pyuria. TH antibodies did not correlate with TH distribution (p greater than 0.5) or the degree of tubulointerstitial damage. Abnormal TH distribution showed no statistical relationship to the degree of tubulointerstitial damage, changes in renal function or levels of TH antibodies.

  6. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    PubMed

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.

  7. Neonatal lupus manifests as isolated neutropenia and mildly abnormal liver functions.

    PubMed

    Kanagasegar, Sivalingam; Cimaz, Rolando; Kurien, Biji T; Brucato, Antonio; Scofield, R Hal

    2002-01-01

    Neonatal lupus is characterized by typical clinical features and the presence of maternal autoantibodies. Mothers can have systemic lupus erythematosus (SLE) or Sjögren's syndrome, but are commonly not affected with any clinical disease. The major clinical manifestations in the infants are cardiac, dermatological and hepatic with rare instances of hemolytic anemia, thrombocytopenia or neutropenia. We describe an infant born to a mother with anti-Ro and anti-La, who had neutropenia and mildly abnormal liver functions without other major clinical features of neonatal lupus such as cardiac or dermatological manifestations. Neutropenia improved as maternal antibody was metabolized. Antibodies from both the infant and mother bound intact neutrophils, and this binding was inhibited by 60 kDa Ro. These data imply neutropenia may be an isolated manifestation of neonatal lupus. We studied the anti-Ro antibodies of 2 other mothers who gave birth to infants with complete congenital heart block and neutropenia. Their sera also bound neutrophils. Because healthy infants do not commonly undergo complete blood counts, the incidence of neutropenia among infants of anti-Ro-positive mothers may be much higher than previously recognized. Furthermore, although other factors may contribute, these data suggest that anti-60 kDa Ro is directly involved in the pathogenesis of neutropenia.

  8. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  9. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  10. Analysis of functional abnormalities uncovered during preoperative evaluation of donor candidates for living-related liver transplantation.

    PubMed

    Morimoto, T; Awane, M; Tanaka, A; Ikai, I; Nakamura, Y; Yamamoto, Y; Takada, Y; Honda, K; Inamoto, T; Uemoto, S

    1995-02-01

    Functional abnormalities of the liver uncovered during preoperative routine evaluation were analyzed in 109 donor candidates for 100 cases of living-related liver transplantation (LRLT) performed during the period from June, 1990 to May, 1994 at the Second Department of Surgery, Kyoto University Hospital. High serum transaminase (GOT, GPT) levels were noted in 10 (9.2%) cases among 109 candidates, high alkaline phosphatase in 4 (3.7%), hyperbilirubinemia in 3 (2.8%), anemia in 3 and high choline esterase in 3 cases. Positive hepatitis C antibody (HCV) was also noted in 1 case. Fatty liver was detected in 10 (9.2%) cases, cholecystitis in 2 cases, 1 case each of cyst and calcification in the liver by diagnostic imaging (ultra sonograph and/or computed tomography). These abnormalities of the liver necessitated replacing the initial candidate with the other parent in 9 cases, including 1 case without any functional abnormality whose graft liver was too large to fit the recipient abdominal cavity. There were 14 cases of ABO blood type incompatible combination. Switching the initial candidate due to these abnormalities mentioned above resulted in incompatible combinations in 4 of these 14 cases. Although the advantages of the LRLT are the superior viability of the donor graft and the genetic histocompatibility between recipient and donor, to optimize the advantage of LRLT, all donor candidates should be strongly advised to make every effort preoperatively to improve their physical condition in preparation for the LRLT protocol, since many of these abnormalities are typically reversible.

  11. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  12. Effects of successive air and nitrox dives on human vascular function.

    PubMed

    Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko

    2012-06-01

    SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.

  13. External Volume Expansion Modulates Vascular Growth and Functional Maturation in a Swine Model.

    PubMed

    Kao, Huang-Kai; Hsu, Hsiang-Hao; Chuang, Wen-Yu; Chen, Sheng-Chih; Chen, Bin; Wu, Shinn-Chih; Guo, Lifei

    2016-01-01

    Despite increasing application of the pre-grafting expansion during autologous fat transplantation in breast reconstruction, little is known about its mechanism of action. To address that, ventral skins of miniature pigs were treated over a 10-day or 21-day period, with continuous suction at -50 mm Hg via a 7-cm diameter rubber-lined suction-cup device. Soft tissue thickness increased immediately after this external volume expansion (EVE) treatment, such increase completely disappeared by the next day. In the dermis and subcutaneous fat, the EVE treated groups showed significant increases in blood vessel density evident by CD31 staining as well as in vascular networks layered with smooth muscle cells when compared with the control group. This finding was corroborated by the increased percentage of endothelial cells present in the treatment groups. There was no significant difference in the percentages of proliferating basal keratinocytes or adipocytes, nor in epidermal thickness. Moreover, the EVE had no effect on proliferation or differentiation potential of adipose stem cells. Taken together, the major effects of EVE appeared to be vascular remodeling and maturation of functional blood vessels. This understanding may help clinicians optimize the vascularity of the recipient bed to further improve fat graft survival. PMID:27174509

  14. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function.

    PubMed

    Kather, Jakob Nikolas; Kroll, Jens

    2013-05-15

    The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.

  15. Matrix metalloproteinase-9 is essential for physiological Beta cell function and islet vascularization in adult mice.

    PubMed

    Christoffersson, Gustaf; Waldén, Tomas; Sandberg, Monica; Opdenakker, Ghislain; Carlsson, Per-Ola; Phillipson, Mia

    2015-04-01

    The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extracellular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose load in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP-9 function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.

  16. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  17. Incorporation of Bone Marrow Cells in Pancreatic Pseudoislets Improves Posttransplant Vascularization and Endocrine Function

    PubMed Central

    Wittig, Christine; Laschke, Matthias W.; Scheuer, Claudia; Menger, Michael D.

    2013-01-01

    Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation. PMID:23875013

  18. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective.

    PubMed

    Slewinski, Thomas L

    2011-07-01

    Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.

  19. Stretching exercises enhance vascular endothelial function and improve peripheral circulation in patients with acute myocardial infarction.

    PubMed

    Hotta, Kazuki; Kamiya, Kentaro; Shimizu, Ryosuke; Yokoyama, Misako; Nakamura-Ogura, Misao; Tabata, Minoru; Kamekawa, Daisuke; Akiyama, Ayako; Kato, Michitaka; Noda, Chiharu; Matsunaga, Atsuhiko; Masuda, Takashi

    2013-01-01

    The purpose of this study was to clarify the acute effects of a single session of stretching exercises on vascular endothelial function and peripheral circulation in patients with acute myocardial infarction. This study evaluated 32 patients (mean age, 66 ± 9 years) who received phase I cardiac rehabilitation after acute myocardial infarction. Five types of stretching exercises were performed on the floor: wrist dorsiflexion, close-legged trunk flexion, open-legged trunk flexion, open-legged lateral trunk bending, and cross-legged trunk flexion. Each exercise entailed a 30-second stretching followed by a 30-second relaxation, and was repeated twice. Low- and high-frequency components (LF and HF) of heart rate variability (LF, 0.04-0.15 Hz; HF, 0.15-0.40 Hz) were analyzed, and HF and LF/HF were used as indices of parasympathetic and sympathetic nervous activities, respectively. Reactive hyperemia peripheral arterial tonometry (RH-PAT) index was measured and used as a parameter for vascular endothelial function. Transcutaneous oxygen pressure (tcPO2) on the right foot and chest was also measured, and the Foot-tcPO2/Chest-tcPO2 ratio was used as a parameter for peripheral circulation. The HF, RH-PAT index, and Foot-tcPO2/Chest-tcPO2 ratio were significantly higher after the exercises than before (P < 0.05, P < 0.01, and P < 0.05, respectively). There was no significant difference in the LF/HF ratio measured before and after stretching exercises. These findings demonstrate that stretching exercises improve vascular endothelial function and peripheral circulation in patients with acute myocardial infarction.

  20. Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate ICAM-1 Expression and Promote Leukocyte Adhesion

    PubMed Central

    Caprio, Massimiliano; Newfell, Brenna G.; la Sala, Andrea; Baur, Wendy; Fabbri, Andrea; Rosano, Giuseppe; Mendelsohn, Michael E.; Jaffe, Iris Z.

    2008-01-01

    In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular EC express functional MR is not known. Here we show that human coronary artery and aortic EC express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human EC also express the enzyme 11-beta hydroxysteroid dehydrogenase-2(11βHSD2) and inhibition of 11βHSD2 in aortic EC enhances gene transactivation by cortisol, supporting that EC 11βHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule Intercellular Adhesion Molecule-1(ICAM1) gene and protein expression on human coronary artery EC, an effect inhibited by the MR antagonist spironolactone and by MR knock-down with siRNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human EC. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists. PMID:18467630

  1. Proton pump inhibitors and vascular function: A prospective cross-over pilot study

    PubMed Central

    Ghebremariam, Yohannes T.; Cooke, John P.; Khan, Fouzia; Thakker, Rahul N.; Chang, Peter; Shah, Nigam H.; Nead, Kevin T.; Leeper, Nicholas J.

    2015-01-01

    Background Proton pump inhibitors (PPIs) are commonly used drugs for the treatment of gastric reflux. Recent retrospective cohorts and large database studies have raised concern that the use of PPIs is associated with increased cardiovascular (CV) risk. However, there is no prospective clinical study evaluating whether the use of PPIs directly causes CV harm. Methods We conducted a controlled open-label cross-over pilot study among 21 adults aged 18 and older who are healthy (n = 11) or have established clinical cardiovascular disease (n = 10). Study subjects were assigned to receive a PPI (Prevacid; 30 mg) or a placebo pill once daily for 4 weeks. After a 2 week washout period, participants were crossed-over to receive the alternate treatment for the ensuing 4 weeks. Subjects underwent evaluation of vascular function (by the EndoPAT technique) and had plasma levels of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of endothelial function previously implicated in PPI-mediated risk) measured prior to and after each treatment interval. Results We observed a marginal inverse correlation between the EndoPAT score and plasma levels of ADMA (r = −0.364). Subjects experienced a greater worsening in plasma ADMA levels while on PPI than on placebo, and this trend was more pronounced amongst those subjects with a history of vascular disease. However, these trends did not reach statistical significance, and PPI use was also not associated with an impairment in flow mediated vasodilation during the course of this study. Conclusions In this open-label, cross-over pilot study conducted among healthy subjects and coronary disease patients, PPI use did not significantly influence vascular endothelial function. Larger, long-term and blinded trials are needed to mechanistically explain the correlation between PPI use and adverse clinical outcomes, which has recently been reported in retrospective cohort studies. PMID:25835348

  2. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  3. Neutrophils as sources of extracellular nucleotides: Functional consequences at the vascular interface

    PubMed Central

    Eltzschig, Holger K.; MacManus, Christopher F.; Colgan, Sean P.

    2009-01-01

    Nucleotide signaling is currently an area of intense investigation. Extracellular ATP liberated during hypoxia or inflammation can either signal directly to purinergic receptors or, following phosphohydrolytic metabolism, can activate surface adenosine (Ado) receptors. Given the association of polymorphonuclear leukocytes (PMN) with adenine nucleotide / nucleoside signaling in the inflammatory milieu, it was recently demonstrated that PMN actively release ATP via a connexin 43 (Cx43) hemichannel-dependent mechanism. Here we review the mechanisms of ATP release and subsequent functional implications of ATP metabolism at the interface between PMN and vascular endothelial cells during inflammation and in hypoxia. PMID:18436149

  4. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia.

    PubMed

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R; Ozelius, Laurie J; Ehrlich, Michelle E

    2015-12-20

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations. PMID:26376866

  5. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia.

    PubMed

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R; Ozelius, Laurie J; Ehrlich, Michelle E

    2015-12-20

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations.

  6. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

    PubMed Central

    Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-01-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein–coupled receptor–dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II–induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II–induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  7. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women.

    PubMed

    Akazawa, Nobuhiko; Choi, Youngju; Miyaki, Asako; Tanabe, Yoko; Sugawara, Jun; Ajisaka, Ryuichi; Maeda, Seiji

    2012-10-01

    Vascular endothelial function is declines with aging and is associated with an increased risk of cardiovascular disease. Lifestyle modification, particularly aerobic exercise and dietary adjustment, has a favorable effect on vascular aging. Curcumin is a major component of turmeric with known anti-inflammatory and anti-oxidative effects. We investigated the effects of curcumin ingestion and aerobic exercise training on flow-mediated dilation as an indicator endothelial function in postmenopausal women. A total of 32 postmenopausal women were assigned to 3 groups: control, exercise, and curcumin groups. The curcumin group ingested curcumin orally for 8 weeks. The exercise group underwent moderate aerobic exercise training for 8 weeks. Before and after each intervention, flow-mediated dilation was measured. No difference in baseline flow-mediated dilation or other key dependent variables were detected among the groups. Flow-mediated dilation increased significantly and equally in the curcumin and exercise groups, whereas no changes were observed in the control group. Our results indicated that curcumin ingestion and aerobic exercise training can increase flow-mediated dilation in postmenopausal women, suggesting that both can potentially improve the age-related decline in endothelial function.

  8. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure.

    PubMed

    Cantalupo, Anna; Zhang, Yi; Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-09-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein-coupled receptor-dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II-induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II-induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  9. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  10. Arterial structure and function in vascular ageing: are you as old as your arteries?

    PubMed

    Thijssen, Dick H J; Carter, Sophie E; Green, Daniel J

    2016-04-15

    Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans.

  11. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    PubMed Central

    Zanetti, Michela; Grillo, Andrea; Losurdo, Pasquale; Panizon, Emiliano; Mearelli, Filippo; Cattin, Luigi; Barazzoni, Rocco; Carretta, Renzo

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction. PMID:26301252

  12. AMP-ACTIVATED PROTEIN KINASE ACTIVATION AS A STRATEGY FOR PROTECTING VASCULAR ENDOTHELIAL FUNCTION

    PubMed Central

    Zou, Ming-Hui; Wu, Yong

    2010-01-01

    SUMMARY 1. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase involved in the regulation of cellular and organismal metabolism. AMPK has a heterotrimeric structure, consisting of a catalytic α-subunit and regulatory β- and γ-subunits, each of which has two or more isoforms that are differentially expressed in various tissues and that arise from distinct genes. The AMPK system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. In addition, AMPK is activated by physiological stimuli and oxidants. 2. The importance of AMPK in cardiovascular functions is best demonstrated by recent studies showing that widely used drugs, including statins, metformin and rosiglitazone, execute cardiovascular protective effects at least partly through the activation of AMPK. As a consequence, AMPK has been proposed as a candidate target for therapeutic intervention in the treatment of both Type 2 diabetes and metabolic syndrome owing to its central role in the regulation of energy balance; it may also have a role in weight control. 3. In the present brief review, we summarize the recent progress of AMPK signalling and regulation focusing on vascular endothelial cells. We further hypothesize that AMPK is a dual sensor for energy and redox status within a cell and AMPK may be a therapeutic target for protecting vascular endothelial function. PMID:18177481

  13. Immortalized functional endothelial progenitor cell lines from umbilical cord blood for vascular tissue engineering.

    PubMed

    Sobhan, Praveen K; Seervi, Mahendra; Joseph, Jeena; Varghese, Saneesh; Pillai, Prakash Rajappan; Sivaraman, Divya Mundackal; James, Jackson; George, Roshin Elizabeth; Elizabeth, K E; Santhoshkumar, T R; Pillai, M Radhakrishna

    2012-11-01

    Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial-cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell-biomaterial interactions, as well as a variety of tissue-engineering applications.

  14. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-06-01

    Platelet endothelial cell adhesion molecule (PECAM-1) is highly expressed in vascular cells such as endothelial cells (ECs) and blood-borne cells like platelets and leukocytes. In ECs, this molecule controls junctional and adhesive properties. In physiological conditions, PECAM-1 supports the endothelial barrier function. In inflammation that is observed in vessels affected by atherosclerosis, the function of PECAM-1 is impaired, an event that leads to increased adhesion of neutrophils and other leukocytes to ECs, decreased vascular integrity, and higher leukocyte transmigration to the intima media. PECAM-1 has six extracellular immunoglobulin (Ig)-like domains that support attraction and adhesion of leukocytes to ECs. The cytoplasmic tail of PECAM-1 contains two tyrosine residues (Tyr-663 and Tyr-686) that could be phosphorylated by Src family protein kinases is involved in the intracellular signaling. Actually, those tyrosines are the part of the immunoreceptor tyrosine-based inhibition motifs (ITIMs) that inhibit inflammation. However, in atherosclerosis, the PECAM-1-dependent immune suppression is disturbed. This in turn facilitates recruitment of leukocytes and supports proatherogenic inflammation. PMID:27079772

  15. The Development of Depressive Symptoms During Medical Internship Stress Predicts Worsening Vascular Function

    PubMed Central

    Fiedorowicz, Jess G.; Ellingrod, Vicki L.; Kaplan, Mariana J.; Sen, Srijan

    2015-01-01

    Objective We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease Methods We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Results Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4 cells/ml blood; p=0.01). Conclusion Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. PMID:26115588

  16. Immortalized Functional Endothelial Progenitor Cell Lines from Umbilical Cord Blood for Vascular Tissue Engineering

    PubMed Central

    Sobhan, Praveen K.; Seervi, Mahendra; Joseph, Jeena; Varghese, Saneesh; Pillai, Prakash Rajappan; Sivaraman, Divya Mundackal; James, Jackson; George, Roshin Elizabeth; Elizabeth, K.E.; Pillai, M. Radhakrishna

    2012-01-01

    Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial–cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell–biomaterial interactions, as well as a variety of tissue-engineering applications. PMID:22889128

  17. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  18. Exercise training improves vascular function in adolescents with type 2 diabetes.

    PubMed

    Naylor, Louise H; Davis, Elizabeth A; Kalic, Rachelle J; Paramalingam, Niru; Abraham, Mary B; Jones, Timothy W; Green, Daniel J

    2016-02-01

    The impact of exercise training on vascular health in adolescents with type 2 diabetes has not been previously studied. We hypothesized that exercise training would improve micro- and macrovascular health in adolescents with type 2 diabetes. Thirteen adolescents (13-21 years, 10F) with type 2 diabetes were recruited from Princess Margaret Hospital. Participants were randomized to receive either an exercise program along with standard clinical care (n = 8) or standard care alone (n = 5). Those in the intervention group received 12 weeks of gym-based, personalized, and supervised exercise training. Those in the control group were instructed to maintain usual activity levels. Assessments were conducted at baseline and following week 12. The exercise group was also studied 12 weeks following the conclusion of their program. Assessments consisted of conduit artery endothelial function (flow-mediated dilation, FMD) and microvascular function (cutaneous laser Doppler). Secondary outcomes included body composition (dual-energy X-ray absorptiometry, DXA), glycemic control (whole body insulin sensitivity, M) assessed using the euglycemic-hyperinsulinemic clamp protocol, cardiorespiratory fitness (V˙O2peak), and muscular strength (1RM). Exercise training increased FMD (P < 0.05), microvascular function (P < 0.05), total lean mass (P < 0.05), and muscle strength (P < 0.001). There were no changes in cardiorespiratory fitness, body weight, BMI, or M. In the control group, body weight (P < 0.01), BMI (P < 0.01), and total fat mass (P < 0.05) increased. At week 24, improvements in vascular function were reversed. This study indicates that exercise training can improve both conduit and microvascular endothelial function and health, independent of changes in insulin sensitivity in adolescents with type 2 diabetes.

  19. Exercise training improves vascular function in adolescents with type 2 diabetes.

    PubMed

    Naylor, Louise H; Davis, Elizabeth A; Kalic, Rachelle J; Paramalingam, Niru; Abraham, Mary B; Jones, Timothy W; Green, Daniel J

    2016-02-01

    The impact of exercise training on vascular health in adolescents with type 2 diabetes has not been previously studied. We hypothesized that exercise training would improve micro- and macrovascular health in adolescents with type 2 diabetes. Thirteen adolescents (13-21 years, 10F) with type 2 diabetes were recruited from Princess Margaret Hospital. Participants were randomized to receive either an exercise program along with standard clinical care (n = 8) or standard care alone (n = 5). Those in the intervention group received 12 weeks of gym-based, personalized, and supervised exercise training. Those in the control group were instructed to maintain usual activity levels. Assessments were conducted at baseline and following week 12. The exercise group was also studied 12 weeks following the conclusion of their program. Assessments consisted of conduit artery endothelial function (flow-mediated dilation, FMD) and microvascular function (cutaneous laser Doppler). Secondary outcomes included body composition (dual-energy X-ray absorptiometry, DXA), glycemic control (whole body insulin sensitivity, M) assessed using the euglycemic-hyperinsulinemic clamp protocol, cardiorespiratory fitness (V˙O2peak), and muscular strength (1RM). Exercise training increased FMD (P < 0.05), microvascular function (P < 0.05), total lean mass (P < 0.05), and muscle strength (P < 0.001). There were no changes in cardiorespiratory fitness, body weight, BMI, or M. In the control group, body weight (P < 0.01), BMI (P < 0.01), and total fat mass (P < 0.05) increased. At week 24, improvements in vascular function were reversed. This study indicates that exercise training can improve both conduit and microvascular endothelial function and health, independent of changes in insulin sensitivity in adolescents with type 2 diabetes. PMID:26887327

  20. Aldosterone receptor antagonism normalizes vascular function in liquorice-induced hypertension.

    PubMed

    Quaschning, T; Ruschitzka, F; Shaw, S; Lüscher, T F

    2001-02-01

    The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD2) provides mineralocorticoid receptor specificity for aldosterone by metabolizing glucocorticoids to their receptor-inactive 11-dehydro derivatives. The present study investigated the effects of the aldosterone receptor antagonists spironolactone and eplerenone on endothelial function in liquorice-induced hypertension. Glycyrrhizic acid (GA), a recognized inhibitor of 11beta-HSD2, was supplemented to the drinking water (3 g/L) of Wistar-Kyoto rats over a period of 21 days. From days 8 to 21, spironolactone (5.8+/-0.6 mg. kg(-1). d(-1)), eplerenone (182+/-13 mg. kg(-1). d(-1)), or placebo was added to the chow (n=7 animals per group). Endothelium-dependent or -independent vascular function was assessed as the relaxation of preconstricted aortic rings to acetylcholine or sodium nitroprusside, respectively. In addition, aortic endothelial nitric oxide synthase (eNOS) protein content, nitrate tissue levels, and endothelin-1 (ET-1) protein levels were determined. GA increased systolic blood pressure from 142+/-8 to 185+/-9 mm Hg (P<0.01). In the GA group, endothelium-dependent relaxation was impaired compared with that in controls (73+/-6% versus 99+/-5%), whereas endothelium-independent relaxation remained unchanged. In the aortas of 11beta-HSD2-deficient rats, eNOS protein content and nitrate tissue levels decreased (1114+/-128 versus 518+/-77 microgram/g protein, P<0.05). In contrast, aortic ET-1 protein levels were enhanced by GA (308+/-38 versus 497+/-47 pg/mg tissue, P<0.05). Both spironolactone and eplerenone normalized blood pressure in animals on GA (142+/-9 and 143+/-9 mm Hg, respectively, versus 189+/-8 mm Hg in the placebo group; P<0.01), restored endothelium-dependent relaxation (96+/-3% and 97+/-3%, respectively, P<0.01 versus placebo), blunted the decrease in vascular eNOS protein content and nitrate tissue levels, and normalized vascular ET-1 levels. This is the first study to demonstrate that

  1. Small-World Brain Network and Dynamic Functional Distribution in Patients with Subcortical Vascular Cognitive Impairment

    PubMed Central

    Yu, Yongqiang; Zhou, Xia; Wang, Haibao; Hu, Xiaopeng; Zhu, Xiaoqun; Xu, Liyan; Zhang, Chao; Sun, Zhongwu

    2015-01-01

    To investigate the topological properties of the functional connectivity and their relationships with cognition impairment in subcortical vascular cognitive impairment (SVCI) patients, resting-state fMRI and graph theory approaches were employed in 23 SVCI patients and 20 healthy controls. Functional connectivity between 90 brain regions was estimated using bivariate correlation analysis and thresholded to construct a set of undirected graphs. Moreover, all of them were subjected to a battery of cognitive assessment, and the correlations between graph metrics and cognitive performance were further analyzed. Our results are as follows: functional brain networks of both SVCI patients and controls showed small-world attributes over a range of thresholds(0.15≤sparsity≤0.40). However, global topological organization of the functional brain networks in SVCI was significantly disrupted, as indicated by reduced global and local efficiency, clustering coefficients and increased characteristic path lengths relative to normal subjects. The decreased activity areas in SVCI predominantly targeted in the frontal-temporal lobes, while subcortical regions showed increased topological properties, which are suspected to compensate for the inefficiency of the functional network. We also demonstrated that altered brain network properties in SVCI are closely correlated with general cognitive and praxis dysfunction. The disruption of whole-brain topological organization of the functional connectome provides insight into the functional changes in the human brain in SVCI. PMID:26132397

  2. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals. PMID:26280556

  3. Functional Vascular Study in Hypertensive Subjects with Type 2 Diabetes Using Losartan or Amlodipine

    PubMed Central

    Pozzobon, Cesar Romaro; Gismondi, Ronaldo A. O. C.; Bedirian, Ricardo; Ladeira, Marcia Cristina; Neves, Mario Fritsch; Oigman, Wille

    2014-01-01

    Background Antihypertensive drugs are used to control blood pressure (BP) and reduce macro- and microvascular complications in hypertensive patients with diabetes. Objectives The present study aimed to compare the functional vascular changes in hypertensive patients with type 2 diabetes mellitus after 6 weeks of treatment with amlodipine or losartan. Methods Patients with a previous diagnosis of hypertension and type 2 diabetes mellitus were randomly divided into 2 groups and evaluated after 6 weeks of treatment with amlodipine (5 mg/day) or losartan (100 mg/day). Patient evaluation included BP measurement, ambulatory BP monitoring, and assessment of vascular parameters using applanation tonometry, pulse wave velocity (PWV), and flow-mediated dilation (FMD) of the brachial artery. Results A total of 42 patients were evaluated (21 in each group), with a predominance of women (71%) in both groups. The mean age of the patients in both groups was similar (amlodipine group: 54.9 ± 4.5 years; losartan group: 54.0 ± 6.9 years), with no significant difference in the mean BP [amlodipine group: 145 ± 14 mmHg (systolic) and 84 ± 8 mmHg (diastolic); losartan group: 153 ± 19 mmHg (systolic) and 90 ± 9 mmHg (diastolic)]. The augmentation index (30% ± 9% and 36% ± 8%, p = 0.025) and augmentation pressure (16 ± 6 mmHg and 20 ± 8 mmHg, p = 0.045) were lower in the amlodipine group when compared with the losartan group. PWV and FMD were similar in both groups. Conclusions Hypertensive patients with type 2 diabetes mellitus treated with amlodipine exhibited an improved pattern of pulse wave reflection in comparison with those treated with losartan. However, the use of losartan may be associated with independent vascular reactivity to the pressor effect. PMID:25014057

  4. Nitric oxide and passive limb movement: a new approach to assess vascular function

    PubMed Central

    Trinity, Joel D; Groot, H Jonathan; Layec, Gwenael; Rossman, Matthew J; Ives, Stephen J; Runnels, Sean; Gmelch, Ben; Bledsoe, Amber; Richardson, Russell S

    2012-01-01

    Passive limb movement elicits a robust increase in limb blood flow (LBF) and limb vascular conductance (LVC), but the peripheral vascular mechanisms associated with this increase in LBF and LVC are unknown. This study sought to determine the contribution of nitric oxide (NO) to movement-induced LBF and LVC and document the potential for passive-limb movement to assess NO-mediated vasodilatation and therefore NO bioavailability. Six subjects underwent passive knee extension with and without nitric oxide synthase (NOS) inhibition via intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA). LBF was determined second-by-second by Doppler ultrasound, and central haemodynamics were measured by finger photoplethysmography. Although l-NMMA did not alter the immediate increase (initial ∼9 s) in LBF and LVC, NOS blockade attenuated the peak increase in LBF (control: 653 ± 81; l-NMMA: 399 ± 112 ml−1 min−1, P= 0.03) and LVC (control: 7.5 ± 0.8; l-NMMA: 4.1 ± 1.1 ml min−1 mmHg−1, P= 0.02) and dramatically reduced the overall vasodilatory and hyperaemic response (area under the curve) by nearly 80% (LBF: control: 270 ± 51; l-NMMA: 75 ± 32 ml, P= 0.001; LVC: control: 2.9 ± 0.5; l-NMMA: 0.8 ± 0.3 ml mmHg−1, P < 0.001). Passive movement in control and l-NMMA trials evoked similar increases in heart rate, stroke volume, cardiac output and a reduction in mean arterial pressure. As movement-induced increases in LBF and LVC are predominantly NO dependent, passive limb movement appears to have significant promise as a new approach to assess NO-mediated vascular function, an important predictor of cardiovascular disease risk. PMID:22310310

  5. Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation.

    PubMed

    Xue, Mingzhan; Weickert, Martin O; Qureshi, Sheharyar; Kandala, Ngianga-Bakwin; Anwar, Attia; Waldron, Molly; Shafie, Alaa; Messenger, David; Fowler, Mark; Jenkins, Gail; Rabbani, Naila; Thornalley, Paul J

    2016-08-01

    Risk of insulin resistance, impaired glycemic control, and cardiovascular disease is excessive in overweight and obese populations. We hypothesized that increasing expression of glyoxalase 1 (Glo1)-an enzyme that catalyzes the metabolism of reactive metabolite and glycating agent methylglyoxal-may improve metabolic and vascular health. Dietary bioactive compounds were screened for Glo1 inducer activity in a functional reporter assay, hits were confirmed in cell culture, and an optimized Glo1 inducer formulation was evaluated in a randomized, placebo-controlled crossover clinical trial in 29 overweight and obese subjects. We found trans-resveratrol (tRES) and hesperetin (HESP), at concentrations achieved clinically, synergized to increase Glo1 expression. In highly overweight subjects (BMI >27.5 kg/m(2)), tRES-HESP coformulation increased expression and activity of Glo1 (27%, P < 0.05) and decreased plasma methylglyoxal (-37%, P < 0.05) and total body methylglyoxal-protein glycation (-14%, P < 0.01). It decreased fasting and postprandial plasma glucose (-5%, P < 0.01, and -8%, P < 0.03, respectively), increased oral glucose insulin sensitivity index (42 mL ⋅ min(-1) ⋅ m(-2), P < 0.02), and improved arterial dilatation Δbrachial artery flow-mediated dilatation/Δdilation response to glyceryl nitrate (95% CI 0.13-2.11). In all subjects, it decreased vascular inflammation marker soluble intercellular adhesion molecule-1 (-10%, P < 0.01). In previous clinical evaluations, tRES and HESP individually were ineffective. tRES-HESP coformulation could be a suitable treatment for improved metabolic and vascular health in overweight and obese populations. PMID:27207552

  6. MicroRNA-147b Regulates Vascular Endothelial Barrier Function by Targeting ADAM15 Expression

    PubMed Central

    Chatterjee, Victor; Beard, Richard S.; Reynolds, Jason J.; Haines, Ricci; Guo, Mingzhang; Rubin, Matthew; Guido, Jenny; Wu, Mack H.; Yuan, Sarah Y.

    2014-01-01

    A disintegrin and metalloproteinase15 (ADAM15) has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS). An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3′ UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression. PMID:25333931

  7. The GST T1 and CYP2E1 genotypes are possible factors causing vinyl chloride induced abnormal liver function.

    PubMed

    Huang, C Y; Huang, K L; Cheng, T J; Wang, J D; Hsieh, L L

    1997-01-01

    Vinyl chloride monomer (VCM) is hepatotoxic as well as carcinogenic in humans. There are reports that exposure to VCM seems to induce abnormal liver function, liver fibrosis, cirrhosis, portal hypertension, and angiosarcoma of the liver. In vivo, VCM is metabolized by cytochrome P450 2E1 (CYP2E1) to form the electrophilic metabolites, chloroethylene oxide (CEO) and chloroacetaldehyde (CAA), which may either cause cell damage or be further metabolized and detoxified by glutathione S-transferases (GSTs). This study investigated whether or not the genotypes CYP2E1, glutathione S-transferase theta (GST T1) and mu (GST M1) correlated with abnormal liver function found in vinyl chloride exposed workers. For this study, 251 workers from five polyvinyl chloride plants were enrolled. The workers were classified into two exposure groups (high and low) and the degree of exposure was determined based on their job titles and airborne VCM concentration. The activity of serum alanine aminotransferase (ALT) was used as the parameter of liver function. The genotypes CYP2E1, GST T1 and GST M1 were determined by polymerase chain reaction and restriction fragment length polymorphism on peripheral white blood cell DNA. Other potential risk factors were also ascertained and the confounding effect was adjusted accordingly. Stratified analyses were used to explore the correlation between the alteration of liver function and the genotypes CYP2E1, GST T1 and GST M1 among the workers exposed to different levels of VCM. The following results were obtained (1) at low VCM exposure, the odds ratio (OR) of positive GST T1 on abnormal ALT was 3.8 (95% CI 1.2-14.5) but the CYP2E1 genotype was not associated with abnormal ALT. (2) At high VCM exposure, a c2c2 CYP2E1 genotype was associated with increased OR on abnormal ALT (OR 5.4, 95% CI 0.7-35.1) and positive GST T1 was significantly associated with decreased OR on abnormal ALT (OR 0.3, 95% CI 0.1-0.9). (3) Multiple linear and logistic regression

  8. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues.

    PubMed

    Bourquin, Veronica; Nishikubo, Nobuyuki; Abe, Hisashi; Brumer, Harry; Denman, Stuart; Eklund, Marlin; Christiernin, Maria; Teeri, Tunla T; Sundberg, Björn; Mellerowicz, Ewa J

    2002-12-01

    Xyloglucan transglycosylases (XETs) have been implicated in many aspects of cell wall biosynthesis, but their function in vascular tissues, in general, and in the formation of secondary walls, in particular, is less well understood. Using an in situ XET activity assay in poplar stems, we have demonstrated XET activity in xylem and phloem fibers at the stage of secondary wall formation. Immunolocalization of fucosylated xylogucan with CCRC-M1 antibodies showed that levels of this species increased at the border between the primary and secondary wall layers at the time of secondary wall deposition. Furthermore, one of the most abundant XET isoforms in secondary vascular tissues (PttXET16A) was cloned and immunolocalized to fibers at the stage of secondary wall formation. Together, these data strongly suggest that XET has a previously unreported role in restructuring primary walls at the time when secondary wall layers are deposited, probably creating and reinforcing the connections between the primary and secondary wall layers. We also observed that xylogucan is incorporated at a high level in the inner layer of nacreous walls of mature sieve tube elements.

  9. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels.

    PubMed

    Secker, Genevieve A; Harvey, Natasha L

    2015-03-01

    Lymphatic vessels are an integral component of the cardiovascular system, serving important roles in fluid homeostasis, lipid absorption, and immune cell trafficking. Defining the mechanisms by which the lymphatic vasculature is constructed and remodeled into a functional vascular network not only provides answers to fascinating biological questions, but is fundamental to understanding how lymphatic vessel growth and development goes awry in human pathologies. While long recognized as dysfunctional in lymphedema and exploited as a route of tumor metastasis, recent work has highlighted important roles for lymphatic vessels in modulating immune responses, regulating salt-sensitive hypertension and important for lung inflation at birth. Substantial progress in our understanding of the signaling pathways important for development and morphogenesis of the lymphatic vasculature has been made in recent years. Here, we review advances in our knowledge of the best characterized of these signaling pathways, that involving the vascular endothelial growth factor (VEGF) family members VEGF-C and VEGF-D, together with their receptors VEGFR2 and VEGFR3. Recent work has defined multiple levels at which signal transduction by means of this key axis is regulated; these include control of ligand processing and bioavailability, modulation of receptor activation by interacting proteins, and regulation of receptor endocytosis and trafficking.

  10. Short-Term Exposure to Air Pollution and Digital Vascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Mittleman, Murray A.; Hamburg, Naomi M.

    2014-01-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1–7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. PMID:25100647

  11. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents.

    PubMed

    Yang, Zhilu; Yang, Ying; Xiong, Kaiqin; Li, Xiangyang; Qi, Pengkai; Tu, Qiufen; Jing, Fengjuan; Weng, Yajun; Wang, Jin; Huang, Nan

    2015-09-01

    The continuous release of nitric oxide (NO) by the native endothelium of blood vessels plays a substantial role in the cardiovascular physiology, as it influences important pathways of cardiovascular homeostasis, inhibits vascular smooth muscle cell (VSMC) proliferation, inhibits platelet activation and aggregation, and prevents atherosclerosis. In this study, a NO-catalytic bioactive coating that mimics this endothelium functionality was presented as a hemocompatible coating with potential to improve the biocompatibility of vascular stents. The NO-catalytic bioactive coating was obtained by covalent conjugation of 3,3-diselenodipropionic acid (SeDPA) with glutathione peroxidase (GPx)-like catalytic activity to generate NO from S-nitrosothiols (RSNOs) via specific catalytic reaction. The SeDPA was immobilized to an amine bearing plasma polymerized allylamine (PPAam) surface (SeDPA-PPAam). It showed long-term and continuous ability to catalytically decompose endogenous RSNO and generate NO. The generated NO remarkably increased the cGMP synthesis both in platelets and human umbilical artery smooth muscle cells (HUASMCs). The surface exhibited a remarkable suppression of collagen-induced platelet activation and aggregation. It suppressed the adhesion, proliferation and migration of HUASMCs. Additionally, it was found that the NO catalytic surface significantly enhanced human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and migration. The in vivo results indicated that the NO catalytic surface created a favorable microenvironment of competitive growth of HUVECs over HUASMCs for promoting re-endothelialization and reducing restenosis of stents in vivo.

  12. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease☆

    PubMed Central

    Chapple, Sarah J.; Cheng, Xinghua; Mann, Giovanni E.

    2013-01-01

    4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. PMID:24024167

  13. Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts.

    PubMed

    Kelm, Jens M; Emmert, Maximilian Y; Zürcher, Armin; Schmidt, Dörthe; Begus Nahrmann, Yvonne; Rudolph, Karl L; Weber, Benedikt; Brokopp, Chad E; Frauenfelder, Thomas; Leschka, Sebastian; Odermatt, Bernhard; Jenni, Rolf; Falk, Volkmar; Zünd, Gregor; Hoerstrup, Simon P

    2012-11-01

    Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (∼4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of in vitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may

  14. Abnormal liver function in workers exposed to low levels of ethylene dichloride and vinyl chloride monomer.

    PubMed

    Cheng, T J; Huang, M L; You, N C; Du, C L; Chau, T T

    1999-12-01

    We investigated whether exposure to ethylene dichloride (EDC) and vinyl chloride monomer (VCM) resulted in increased risk of liver damage. Epidemiological information, including occupational, medical, smoking, and drinking history, was obtained by interview from 251 male workers. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) were used as indicators of liver damage. Exposure to moderate or low levels of ECD and VCM resulted in a higher risk of developing abnormal ALT levels than did exposure to lower levels of the chemicals. Results were similar for AST. GGT was not associated with EDC or VCM exposure. Combined exposure to EDC and VCM showed a dose-response relationship in association with abnormal ALT levels. We concluded that relatively low concentrations of VCM and EDC cause liver damage.

  15. Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes.

    PubMed

    Mollah, Zia U A; Pai, Saparna; Moore, Craig; O'Sullivan, Brendan J; Harrison, Matthew J; Peng, Judy; Phillips, Karen; Prins, Johannes B; Cardinal, John; Thomas, Ranjeny

    2008-03-01

    Dendritic cell (DC) differentiation is abnormal in type 1 diabetes mellitus (T1DM). However, the nature of the relationship between this abnormality and disease pathogenesis is unknown. We studied the LPS response in monocytes and monocyte-derived DCs isolated from T1DM patients and from non-T1DM controls. In T1DM patients, late LPS-mediated nuclear DNA binding by RelA, p50, c-Rel, and RelB was impaired as compared with type 2 DM, rheumatoid arthritis, and healthy subjects, associated with impaired DC CD40 and MHC class I induction but normal cytokine production. In TIDM monocytes, RelA and RelB were constitutively activated, and the src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), a negative regulator of NF-kappaB, was overexpressed. Addition of sodium stibogluconate, a SHP-1 inhibitor, to DCs differentiating from monocyte precursors restored their capacity to respond to LPS in approximately 60% of patients. The monocyte and DC NF-kappaB response to LPS is thus a novel phenotypic and likely pathogenetic marker for human T1DM. SHP-1 is at least one NF-kappaB regulatory mechanism which might be induced as a result of abnormal inflammatory signaling responses in T1DM monocytes. PMID:18292540

  16. Associations Between Abnormal Rod-Mediated Dark Adaptation and Health and Functioning in Older Adults With Normal Macular Health

    PubMed Central

    Owsley, Cynthia; Huisingh, Carrie; Jackson, Gregory R.; Curcio, Christine A.; Szalai, Alexander J.; Dashti, Nassrin; Clark, Mark; Rookard, Kia; McCrory, Mark A.; Wright, Tyler T.; Callahan, Michael A.; Kline, Lanning B.; Witherspoon, C. Douglas; McGwin, Gerald

    2014-01-01

    Purpose. Delayed rod-mediated dark adaptation (DA) is characteristic of early age-related macular degeneration (AMD) and also can be observed in some older adults in normal macular health. We examine cross-sectional associations between rod-mediated DA and risk factors for AMD in older adults in normal macular health. Methods. The sample consisted of adults aged ≥60 years old in normal macular health per grading of fundus photos using an established disease classification system. Rod-mediated DA was measured psychophysically following a photobleach using a computer-automated dark adaptometer with targets centered at 5° on the inferior vertical meridian. The speed of DA was characterized by the rod-intercept value, with abnormal DA defined as rod-intercept ≥ 12.3 minutes. We assessed several health and functional characteristics that the literature has suggested increase AMD risk (e.g., smoking, alcohol use, inflammatory markers, apolipoproteins, low luminance visual acuity, chronic medical conditions, body mass, family history). Results. Among 381 participants (mean age, 68.5 years; SD, 5.5), 78% had normal and 22% had abnormal DA, with the prevalence of abnormal DA increasing with age. After age-adjustment, abnormal DA was associated with increased odds of elevated C-reactive protein (CRP), heavy use of or abstention from alcohol, high blood pressure, and drop in visual acuity under mesopic conditions. Conclusions. Despite having normal macular health according to accepted definitions of AMD presence, approximately one-quarter of older adults recruited from primary eye care clinics had abnormal DA, which was associated with known risk factors for AMD, including elevated CRP. PMID:24854857

  17. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells

    SciTech Connect

    Takahashi, Yoichiro; Watanabe, Hiroyuki; Murakami, Manabu; Ono, Kyoichi; Munehisa, Yoshiko; Koyama, Takashi; Nobori, Kiyoshi; Iijima, Toshihiko; Ito, Hiroshi

    2007-10-05

    We investigated the functional role of STIM1, a Ca{sup 2+} sensor in the endoplasmic reticulum (ER) that regulates store-operated Ca{sup 2+} entry (SOCE), in vascular smooth muscle cells (VSMCs). STIM1 was mainly localized at the ER and plasma membrane. The knockdown of STIM1 expression by small interfering (si) RNA drastically decreased SOCE. In contrast, an EF-hand mutant of STIM1, STIM1{sup E87A}, produced a marked increase in SOCE, which was abolished by co-transfection with siRNA to transient receptor potential canonical 1 (TRPC1). In addition, transfection with siRNA against STIM1 suppressed phosphorylation of cAMP-responsive element binding protein (CREB) and cell growth. These results suggest that STIM1 is an essential component of SOCE and that it is involved in VSMC proliferation.

  18. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  19. Role of olmesartan in combination therapy in blood pressure control and vascular function

    PubMed Central

    Ferrario, Carlos M; Smith, Ronald D

    2010-01-01

    Angiotensin receptor blockers have emerged as a first-line therapy in the management of hypertension and hypertension-related comorbidities. Since national and international guidelines have stressed the need to control blood pressure to <140/90 mmHg in uncomplicated hypertension and <130/80 mmHg in those with associated comorbidities such as diabetes or chronic kidney disease, these goal blood pressures can only be achieved through combination therapy. Of several drugs that can be effectively combined to attain the recommended blood pressure goals, fixed-dose combinations of angiotensin receptor blockers and the calcium channel blocker amlodipine provide additive antihypertensive effects associated with a safe profile and increased adherence to therapy. In this article, we review the evidence regarding the beneficial effects of renin–angiotensin system blockade with olmesartan medoxomil and amlodipine in terms of blood pressure control and improvement of vascular function and target organ damage. PMID:20859541

  20. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  1. [Monitoring by non-flowmeter vascular function tests following lumbar sympathectomy].

    PubMed

    Becker, F; Davinroy, M

    1985-01-01

    Postoperative follow up examinations were conducted using vascular functional explorations (V.F.E.) including thermometry, Doppler, irrigraphy, digital plethysmography and tread mill. Immediate and long-term effects of lumbar sympathectomy have to be distinguished: the majority of hemodynamic variations noted are not due exclusively to lumbar sympathectomy, except for the iatrogenic development of vasomotor inertia (R.H.T. indifferent or negative) and perhaps values with time of the digital flow curve. Results of V.F.E. after lumbar sympathectomy are discussed in relation to three modalities and taking into account the efficacy and extent of the sympathetic chain resection. The question is raised as to the usefulness of lumbar sympathectomy when the pretreatment V.F.E. findings show hemodynamic elements of the type that would be expected after lumbar sympathectomy.

  2. Digital vascular imaging and selective renin sampling in evaluation of vascular anatomy in renal transplant recipients.

    PubMed Central

    Khoury, G A; Irving, J D; Farrington, K; Varghese, Z; Persaud, J W; Sweny, P; Moorhead, J F; Fernando, O N

    1983-01-01

    Sixty-five renal transplant recipients underwent digital vascular imaging of the graft and simultaneous selective venous sampling for plasma renin activity. Renal artery stenosis was found in seven patients but did not appear to be functionally important. Diffuse intrarenal arterial attenuation was found in seven patients and was associated with impaired graft function and perfusion; it may indicate chronic rejection. Lower pole hypoperfusion was found in nine patients without impaired graft function or perfusion; its clinical relevance is uncertain. Aneurysmal dilatation of the main renal artery was found in two patients. Severe hypertension was common in patients with these three major abnormalities, but a causal association between the abnormality and hypertension could rarely be inferred. It may be the abnormalities on digital vascular imaging, especially diffuse intrarenal arterial attenuation and lower pole hypoperfusion, are secondary to severe hypertension. Digital vascular imaging with simultaneous selective venous sampling for plasma renin activity is useful in evaluating the vascular anatomy of the grafted kidney and in assessing any abnormality found. The combined procedure was well tolerated by all patients with no complications and no incidence of acute tubular dysfunction or proteinuria after the investigation. Images p1005-a PMID:6403169

  3. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults.

    PubMed

    Jokura, Hiroko; Watanabe, Isamu; Umeda, Mika; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    Epidemiological studies indicate that habitual coffee consumption lowers the risk of diabetes and cardiovascular diseases. Postprandial hyperglycemia is a direct and independent risk factor for cardiovascular diseases. We previously demonstrated that coffee polyphenol ingestion increased secretion of Glucagon-like peptide 1 (GLP-1), which has been shown to exhibit anti-diabetic and cardiovascular effects. We hypothesized coffee polyphenol consumption may improve postprandial hyperglycemia and vascular endothelial function by increasing GLP-1 release and/or reducing oxidative stress. To examine this hypothesis, we conducted a randomized, acute, crossover, intervention study in healthy male adults, measuring blood parameters and flow-mediated dilation (FMD) after ingestion of a meal with or without coffee polyphenol extract (CPE). Nineteen subjects consumed a test meal with either a placebo- or CPE-containing beverage. Blood biomarkers and FMD were measured at fasting and up to 180 minutes postprandially. The CPE beverage led to a significantly lower peak postprandial increase in blood glucose and diacron-reactive oxygen metabolite, and significantly higher postprandial FMD than the placebo beverage. Postprandial blood GLP-1 increase tended to be higher after ingestion of the CPE beverage, compared with placebo. Subclass analysis revealed that the CPE beverage significantly improved postprandial blood GLP-1 response and reduced blood glucose increase in the subjects with a lower insulinogenic index. Correlation analysis showed postprandial FMD was negatively associated with blood glucose increase after ingestion of the CPE beverage. In conclusion, these results suggest that coffee polyphenol consumption improves postprandial hyperglycemia and vascular endothelial function, which is associated with increased GLP-1 secretion and decreased oxidative stress in healthy humans.

  4. The Plant-Specific Dof Transcription Factors Family: New Players Involved in Vascular System Development and Functioning in Arabidopsis

    PubMed Central

    Le Hir, Rozenn; Bellini, Catherine

    2013-01-01

    In higher plants phloem and xylem are responsible for long-distance transport of water, nutrients, and signals that act systemically at short or long-distance to coordinate developmental processes. The formation of the plant vascular system is a complex process that integrates signaling events and gene regulation at transcriptional and posttranscriptional levels. Thanks to transcriptomic and proteomic analysis we start to better understand the mechanisms underlying the formation and the functioning of the vascular system. The role of the DNA-binding with one finger (Dof TFs), a group of plant-specific transcription factors, recently emerged as part of the transcriptional regulatory networks acting on the formation and functioning of the vascular tissues. More than half of the members of this TF family are expressed in the vascular system. In addition some of them have been proposed to be mobile proteins, suggesting a possible role in the control of short- or long-distance signaling as well. This review summarizes the current knowledge on Dof TFs family in Arabidopsis with a special focus on their role in vascular development and functioning. PMID:23755058

  5. Low-level X-radiation effects on functional vascular changes in Syrian hamster cheek pouch epithelium during hydrocarbon carcinogenesis

    SciTech Connect

    Lurie, A.G.; Coghill, J.E.; Rippey, R.M.

    1985-07-01

    Effects of repeated low-level X radiation on functional microvascular changes in hamster cheek pouch epithelium during and following carcinogenesis by 7,12-dimethylbenz(a)anthracene (DMBA) were studied. Hamsters were treated with either radiation, DMBA, radiation + DMBA, or no treatment. Animals were sacrificed at 3-week intervals from 0 to 39 weeks after treatments began. Pouch vascular volume and permeability changes were studied by fractional distributions of radiotracers and were analyzed by a variety of statistical methods which explored the vascular parameters, treatment types, elapsed time, presence of the carcinogen, and histopathologic changes. All treatments resulted in significant changes in vascular volume with time, while only DMBA treatments alone resulted in significant changes in vascular permeability with time. As in prior studies, there were significant vascular volume differences between DMBA and DMBA + radiation groups of tumor-bearing cheek pouches. Radiation significantly affected DMBA-associated vascular volume and permeability changes during carcinogenesis. Several possible explanations for the relationship of these changes to the enhancement of DMBA carcinogenesis are discussed.

  6. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  7. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function

    PubMed Central

    Chen, Chun-An; Wang, Tse-Yao; Varadharaj, Saradhadevi; Reyes, Levy A.; Hemann, Craig; Hassan Talukder, M. A.; Chen, Yeong-Renn; Druhan, Lawrence J.; Zweier, Jay L.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O2•−), which are key mediators of cellular signalling. In the presence of Ca2+/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from L-arginine (L-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH4) and L-Arg1–3. In the absence of BH4, NO synthesis is abrogated and instead O2•− is generated4–7. While NOS dysfunction occurs in diseases with redox stress, BH4 repletion only partly restores NOS activity and NOS-dependent vasodilation7. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation8,9. Under oxidative stress, S-glutathionylation occurs through thiol–disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione10,11. Cysteine residues are critical for the maintenance of eNOS function12,13; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O2•− generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O2•− generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol

  8. Thyroid Function Status and Echocardiographic Abnormalities in Patients with Beta Thalassemia Major in Bahrain

    PubMed Central

    Garadah, Taysir S.; Mahdi, Najat A.; Jaradat, Ahmed M.; Hasan, Zuheir A.; Nagalla, Das S.

    2013-01-01

    Background: Thyroid gland dysfunction and echocardiographic cardiac abnormalities are well-documented in patients with transfusion dependent beta-thalassemia major (β-TM). Aim: This cross-sectional analytic study was conducted to investigate left ventricle (LV) diastolic and systolic function using pulsed Doppler (PD) and tissue Doppler (TD) echocardiography and correlate that with serum level thyroid stimulating hormone in patients with β-TM. Methods: The study was conducted on patients with β-TM (n = 110, age 15.9 ± 8.9 years) and compared with a control group (n = 109, age 15.8 ± 8.9 years). In all participants, echocardiographic indices of PD and TD were performed and blood samples were withdrawn for measuring the serum level of TSH, free T4, and ferritin. A linear regression analysis was performed on TSH level as the dependent variable and serum ferritin as independent. Stepwise multiple regression analysis was used to determine the odds ratio of different biochemical and echo variables on the risk of developing hypothyroidism. Results: Patients with β-TM compared with controls had thicker LV septal wall index (0.65 ± 0.26 vs. 0.44 ± 0.21 cm/M2, P < 0.001), posterior wall index (0.65 ± 0.23 vs. 0.43 ± 0.21 cm/m2, P < 0.01) and larger LVEDD index (4.35 ± 0.69 vs.3.88 ± 0.153 mm/m2, P < 0.001). In addition, β-TM patients had higher transmitral E wave velocity (E) (70.81 ± 10.13 vs. 57.53 ± 10.13 cm/s, P = 0.02) and E/A ratio (1.54 ± 0.18 vs. 1.23 ± 0.17, P < 0.01) and shorter deceleration time (DT) (170.53 ± 13.3 vs. 210.50 ± 19.20 m sec, P < 0.01). Furthermore, the ratio of transmitral E wave velocity to the tissue Doppler E wave at the basal septal mitral annulus (E/Em) was significantly higher in the β-TM group (19.68 ± 2.81 vs. 13.86 ± 1.41, P < 0.05). The tissue Doppler systolic wave (Sm) velocity and the early diastolic wave (Em) were significantly lower in the β-TM group compared with controls with Sm, 4.82 ± 1.2 vs. 6.22 ± 2.1 mm

  9. Heat acclimation improves cutaneous vascular function and sweating in trained cyclists

    PubMed Central

    Lorenzo, Santiago

    2010-01-01

    The aim of this study was to explore heat acclimation effects on cutaneous vascular responses and sweating to local ACh infusions and local heating. We also sought to examine whether heat acclimation altered maximal skin blood flow. ACh (1, 10, and 100 mM) was infused in 20 highly trained cyclists via microdialysis before and after a 10-day heat acclimation program [two 45-min exercise bouts at 50% maximal O2 uptake (V̇o2max) in 40°C (n = 12)] or control conditions [two 45-min exercise bouts at 50% V̇o2max in 13°C (n = 8)]. Skin blood flow was monitored via laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC) was calculated as LDF ÷ mean arterial pressure. Sweat rate was measured by resistance hygrometry. Maximal brachial artery blood flow (forearm blood flow) was obtained by heating the contralateral forearm in a water spray device and measured by Doppler ultrasound. Heat acclimation increased %CVCmax responses to 1, 10, and 100 mM ACh (43.5 ± 3.4 vs. 52.6 ± 2.6% CVCmax, 67.7 ± 3.4 vs. 78.0 ± 3.0% CVCmax, and 81.0 ± 3.8 vs. 88.5 ± 1.1% CVCmax, respectively, all P < 0.05). Maximal forearm blood flow remained unchanged after heat acclimation (290.9 ± 12.7 vs. 269.9 ± 23.6 ml/min). The experimental group showed significant increases in sweating responses to 10 and 100 mM ACh (0.21 ± 0.03 vs. 0.31 ± 0.03 mg·cm−2·min−1 and 0.45 ± 0.05 vs. 0.67 ± 0.06 mg·cm−2·min−1, respectively, all P < 0.05), but not to 1 mM ACh (0.13 ± 0.02 vs. 0.18 ± 0.02 mg·cm−2·min−1, P = 0.147). No differences in any of the variables were found in the control group. Heat acclimation in highly trained subjects induced local adaptations within the skin microcirculation and sweat gland apparatus. Furthermore, maximal skin blood flow was not altered by heat acclimation, demonstrating that the observed changes were attributable to improvement in cutaneous vascular function and not to structural changes that limit maximal vasodilator capacity

  10. Isocyanate-functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications.

    PubMed

    Hadba, Ahmad R; Belcheva, Nadya; Jones, Fatima; Abuzaina, Ferass; Calabrese, Allison; Kapiamba, Mbiya; Skalla, Walter; Taylor, Jack L; Rodeheaver, George; Kennedy, John

    2011-10-01

    Biodegradable isocyanate-functional adhesives based on poly(ethylene glycol)-adipic acid esters were synthesized, characterized, and evaluated in vitro and in vivo. Two types of formulations, P2TT and P2MT, were developed by functionalization with 2,4-tolylene diisocyanate (TDI) or 4,4'-methylene-bis(phenyl isocyanate) (MDI), respectively, and branching with 1,1,1-trimethylolpropane (TMP). The biocompatibility of the synthesized adhesive formulations was evaluated as per ISO 10993. Cytotoxicity, systemic toxicity, pyrogenicity, genotoxicity (reverse mutation of Salmonella typhimurium and Escherichia coli), hemolysis, intracutaneous reactivity, and delayed-type hypersensitivity were evaluated. All formulations met the requirements of the conducted standard tests. The biological behavior and ability of the adhesive formulations to close an arteriotomy and withstand arterial pressure following partial approximation with a single suture were evaluated in a rat abdominal aorta model. Animals were evaluated at 1, 2, 3, and 4 weeks after surgery. Macroscopic and histopathologic evaluation of explanted arteries suggested that the P2TT formulation had better in vivo performance than the P2MT formulation. Additionally, the P2TT formulation resulted in less tissue reaction than P2MT formulation. To our knowledge, this is the first study demonstrating the potential of this new class of isocyanate-functional degradable adhesives for vascular applications.

  11. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis

    PubMed Central

    Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Purpose Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Methods Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Results Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Conclusion Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively

  12. EXPERIMENTAL NEPHRITIS IN THE FROG : IV. THE SIGNIFICANCE OF THE FUNCTIONAL RESPONSE TO VASCULAR AND TO PARENCHYMAL DISTURBANCES IN THE KIDNEY.

    PubMed

    Oliver, J

    1932-01-31

    A summary of our findings is briefly made. A functional examination of the kidneys did not allow any differentiation between the results of vascular and parenchymal damage. This was true, as is emphasized in the arrangement of Charts 1 and 2, in the case of both glomerular and tubular dysfunction for it is seen that the type of functional derangement is identical in the two types of damage. Anatomical examination of the kidneys on the other hand showed definite differences in the state of the kidneys in the two types of damage, whether the dysfunction was glomerular or tubular. Certain points should be emphasized here. First, the validity of these results is not dependent on any particular interpretation of the significance of the functional phenomena observed. Whatever the anatomical relations between the two circulations in the kidney, whether urea, salts, dyes or water is excreted by one mechanism or another, no matter what part "filtration" or "absorption" may play in the elaboration of the final urine, the fact remains that the status of the function of these kidneys was identical, no matter how its functional state came into being, when an anatomical examination showed their actual condition to be significantly different. The fact that vascular disturbances, if of sufficient duration may in turn produce parenchymal changes complicates the problem still further, for in lesions that spontaneously develop in the kidney the mixture of vascular and parenchymal disturbances is so intimate that the functional results become infinitely more difficult of interpretation. Our previous studies have shown that even in the controlled extravital experiment conditions and relations of functional and structural response may thus become exceedingly complex (2). These complications were purposely avoided in the present study, however, by making the period of vascular disturbance short. Also, and again for the purpose of simplification, the toxic agent which caused the

  13. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  14. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function

    PubMed Central

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-01-01

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H2S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro “hyperglycemia”) induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H2S. Replacement of H2S or overexpression of the H2S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H2S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H2S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE−/− mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H2S; replacement of H2S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H2S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H2S catabolism form a positive feed-forward cycle. H2S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  15. Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma.

    PubMed

    Liu, Chun-Hsiu; Su, Wei-Wen; Shie, Shian-Sen; Cheng, Shih-Tsung; Su, Cheng-Wen; Ho, Wang-Jing

    2016-03-01

    The aim of the study is to evaluate the relationship between Humphrey visual field progression and peripheral vascular endothelial function in patients with open-angle glaucoma (OAG), assessed by noninvasive endothelium-dependent flow-mediated vasodilation (FMD).Forty OAG patients, among which 22 had normal-tension glaucoma (NTG) and 18 had primary open-angle glaucoma (POAG) were enrolled. Each enrolled patient underwent a thorough ophthalmological examination including the Humphrey visual field test and measurement of FMD via high-resolution 2-dimensional ultrasonographic imaging of the brachial artery. Blood samples were evaluated for biochemistry and lipid profiles as well as levels of high-sensitivity C-reactive protein (hsCRP). The annual change of threshold sensitivity of the visual field in each test location were analyzed with pointwise linear regression. The correlation between long-term visual field progression and FMD was evaluated.A mean follow-up of 7.47 ± 1.84 years revealed a faster progression rate over the superior visual field in all 40 OAG patients (superior field -0.24 ± 0.67 dB/y, inferior field -0.10 ± 0.59 dB/y, P = 0.37). However, only the annual sensitivity change of the inferior peripheral field showed correlation with baseline FMD. There was no significant difference in the change slope of visual field between NTG and POAG patients.A correlation between baseline brachial artery FMD and visual field progression was observed in the inferior peripheral field in patients with NTG and POAG. This result suggests that peripheral vascular endothelial dysfunction may be related to glaucoma progression.

  16. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.

  17. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  18. Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma.

    PubMed

    Liu, Chun-Hsiu; Su, Wei-Wen; Shie, Shian-Sen; Cheng, Shih-Tsung; Su, Cheng-Wen; Ho, Wang-Jing

    2016-03-01

    The aim of the study is to evaluate the relationship between Humphrey visual field progression and peripheral vascular endothelial function in patients with open-angle glaucoma (OAG), assessed by noninvasive endothelium-dependent flow-mediated vasodilation (FMD).Forty OAG patients, among which 22 had normal-tension glaucoma (NTG) and 18 had primary open-angle glaucoma (POAG) were enrolled. Each enrolled patient underwent a thorough ophthalmological examination including the Humphrey visual field test and measurement of FMD via high-resolution 2-dimensional ultrasonographic imaging of the brachial artery. Blood samples were evaluated for biochemistry and lipid profiles as well as levels of high-sensitivity C-reactive protein (hsCRP). The annual change of threshold sensitivity of the visual field in each test location were analyzed with pointwise linear regression. The correlation between long-term visual field progression and FMD was evaluated.A mean follow-up of 7.47 ± 1.84 years revealed a faster progression rate over the superior visual field in all 40 OAG patients (superior field -0.24 ± 0.67 dB/y, inferior field -0.10 ± 0.59 dB/y, P = 0.37). However, only the annual sensitivity change of the inferior peripheral field showed correlation with baseline FMD. There was no significant difference in the change slope of visual field between NTG and POAG patients.A correlation between baseline brachial artery FMD and visual field progression was observed in the inferior peripheral field in patients with NTG and POAG. This result suggests that peripheral vascular endothelial dysfunction may be related to glaucoma progression. PMID:26962832

  19. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function

    PubMed Central

    Kleinhenz, Jennifer M.; Murphy, Tamara C.; Pokutta-Paskaleva, Anastassia P.; Gleason, Rudolph L.; Lyle, Alicia N.; Taylor, W. Robert; Blount, Mitsi A.; Cheng, Juan; Yang, Qinglin; Sutliff, Roy L.; Hart, C. Michael

    2015-01-01

    Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis. PMID:26451838

  20. Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function

    PubMed Central

    Lammers, Steven; Scott, Devon; Hunter, Kendall; Tan, Wei; Shandas, Robin; Stenmark, Kurt R.

    2012-01-01

    The relationship between cardiac function and the afterload against which the heart muscle must work to circulate blood throughout the pulmonary circulation is defined by a complex interaction between many coupled system parameters. These parameters range broadly and incorporate system effects originating primarily from three distinct locations: input power from the heart, hydraulic impedance from the large conduit pulmonary arteries, and hydraulic resistance from the more distal microcirculation. These organ systems are not independent, but rather, form a coupled system in which a change to any individual parameter affects all other system parameters. The result is a highly nonlinear system which requires not only detailed study of each specific component and the effect of disease on their specific function, but also requires study of the interconnected relationship between the microcirculation, the conduit arteries, and the heart in response to age and disease. Here, we investigate systems-level changes associated with pulmonary hypertensive disease progression in an effort to better understand this coupled relationship. PMID:23487595

  1. Liver Function Test Abnormalities in Depressed Patients Treated with Antidepressants: A Real-World Systematic Observational Study in Psychiatric Settings

    PubMed Central

    Verstuyft, Céline; Corruble, Emmanuelle; Perlemuter, Gabriel; Colle, Romain

    2016-01-01

    Background Concerning the risk of antidepressant induced liver injury, it is not clear whether psychiatrists perform a liver function test (LFT) and whether an increase in aminotransferase levels should contraindicate antidepressant treatment. Aim To evaluate LFT availability, the prevalence of LFT abnormalities and the probable cause of an altered LFT in patients with a major depressive episode (MDE) requiring an antidepressant drug. Methods We studied LFT evaluation in a real world psychiatric setting, in a sample of 321 consecutive patients with a current major depressive episode (MDE) requiring an antidepressant drug treatment, but without current alcohol or drug dependence or unstable medical disease. Results An LFT is performed in 36.1% (116/321) of depressed patients. One fifth of antidepressant-treated patients who had an LFT evaluation had abnormal results. The most frequent causes of LFT abnormalities were: NAFLD (nonalcoholic fatty liver disease) (7/321; 2.1%), acute alcohol consumption (4/321; 1.2%), antidepressant-induced liver injury (3/321; 0.9%), hepatitis C virus infection (2/321; 0.6%) and heart failure (1/321; 0.3%). The cause of LFT abnormalities was unknown in 32% of patients (8/25) due to the absence of etiological investigations. Conclusion These results demonstrate that an LFT is infrequently performed by psychiatrists in depressed patients requiring an antidepressant drug. Baseline LFT assessment and observations during the first six months of antidepressant treatment may be useful for detection of patients with pre-existing liver disease such as NAFLD, and early identification of cases of antidepressant-induced liver injury. An increase in aminotransferase levels may be related to an underlying liver disease, but does not contraindicate antidepressant treatment. PMID:27171561

  2. Respiratory symptoms in rheumatoid arthritis: relation to pulmonary abnormalities detected by high-resolution CT and pulmonary functional testing.

    PubMed

    Youssef, Amir A; Machaly, Shereen A; El-Dosoky, Mohammed E; El-Maghraby, Nermeen M

    2012-07-01

    Pulmonary disease is the most frequent and among the most severe extra-articular manifestation of rheumatoid arthritis (RA). However, this issue has not been sufficiently studied in Egyptian patients. The objectives of the present study are to investigate the prevalence and types of pulmonary involvement using high-resolution computed tomography scan (HRCT) and pulmonary function tests (PFT) and evaluate the association between respiratory symptoms and RA-lung disease in a group of Egyptian RA patients. Thirty-six RA patients were recruited; 34 females (94.4%) and 2 males (5.6%) with median age of 48.5 years, and none of them was smoker. Detailed medical and drug histories were obtained. PFT, plain X-ray of the chest, and HRCT were performed to all subjects involved. Nearly 64% of RA patients demonstrated abnormalities in PFT and 47% in HRCT. Mixed restrictive and obstructive pattern was the commonest. Nearly two-thirds of our patients reported one or more pulmonary symptom whether dyspnea, cough, wheezing, or phlegm. Dyspnea was the most frequent symptom. Respiratory symptoms were statistically more common in patients with lung disease. The advanced age, high radiological score, and severity of rheumatoid disease were found to be predictive of lung involvement. Among respiratory symptoms, dyspnea and cough were associated with any pulmonary abnormalities. When specific pulmonary abnormalities were considered, only dyspnea was identified as predictor for restriction. For obstructive abnormality, both cough and wheezing provided valid prediction. We conclude that pulmonary involvement is a common manifestation in Egyptian RA patients, and the pattern of involvement is generally consistent with other studies that were performed worldwide. Specific respiratory symptoms could be used as practical, easy, and cost-effective method, especially in older and with more severe RA patients, to discriminate patients in need of subsequent PFT and HRCT imaging.

  3. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis.

  4. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. PMID:25354028

  5. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    PubMed Central

    Cassandro, Ettore; Cassandro, Claudia; Sequino, Giuliano; Scarpa, Alfonso; Petrolo, Claudio; Chiarella, Giuseppe

    2015-01-01

    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests. PMID:26693371

  6. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  7. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    PubMed

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.

  8. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    SciTech Connect

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  9. Effect of sulodexide on vascular responses and liver mitochondrial function in diabetic rats.

    PubMed

    Dobiaš, L; Petrová, M; Vojtko, R; Uličná, O; Vančová, O; Kristová, V

    2015-01-01

    This study investigates the effects of long-term treatment with sulodexide (SLX) on norepinephrine (NE)-induced contractions, acetylcholine(Ach)-induced relaxations, acute cyclooxygenase blockade by diclofenac (DIC) in isolated femoral arteries (FA) and the parameters of oxidative phosporylation in liver mitochondria. 15-weeks old Wistar rats were divided into four groups: control (C; injected with saline solution), treated control (C+SLX), diabetic (DM) and treated diabetic (DM+SLX). Diabetes was induced with a single i.v. dose of streptozotocin (STZ) 45 mg.kg(-1). SLX was administered i.p., at dose 100 IU.kg(-1) daily for 5 weeks. Vascular responses of isolated femoral arteries were measured using Mulvany-Halpern myograph. Respiratory function of the mitochondria was determined using voltamperometric method on oxygraph Gilson. In diabetic rats the amplitude of maximal response to NE was elevated. DIC pretreatment decreased the amplitudes of NE-induced contractions in all groups of rats. SLX treatment decreased sensitivity of FA to NE and caused higher relaxatory responses to Ach in C and DM. Oxygen consumption and phosphorylation rates ([QO(2)(S(3))], [QO(2)(S(4))] and (OPR)) and respiratory control ratio (RCR) were decreased in the mitochondria of DM rats. Mitochondria of C rats were not affected with SLX treatment. Administration of SLX in DM rats was associated with increase of RCR, other parameters were not affected. Our findings suggest that SLX treatment might be associated with vasculoprotective effects during diabetes and improvement of mitochondrial function.

  10. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries

    PubMed Central

    Clearwater, Michael J.; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T. Grant

    2012-01-01

    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis ‘Hort16A’) exhibiting a pre-harvest ‘shrivel’ disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (Da) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high Da. Phloem flows were required for growth, with gradual recovery after a step increase in Da. Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to Da-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined. PMID:22155631

  11. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries.

    PubMed

    Clearwater, Michael J; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T Grant

    2012-03-01

    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis 'Hort16A') exhibiting a pre-harvest 'shrivel' disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (D(a)) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high D(a). Phloem flows were required for growth, with gradual recovery after a step increase in D(a). Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to D(a)-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined.

  12. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  13. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas.

    PubMed

    Brooks, Joseph L; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-06-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG.

  14. Influence of Vascular Variant of the Posterior Cerebral Artery (PCA) on Cerebral Blood Flow, Vascular Response to CO2 and Static Functional Connectivity

    PubMed Central

    Emmert, Kirsten; Zöller, Daniela; Preti, Maria Giulia; Van De Ville, Dimitri; Giannakopoulos, Panteleimon; Haller, Sven

    2016-01-01

    Introduction The fetal origin of the posterior cerebral artery (fPCA) is a frequent vascular variant in 11–29% of the population. For the fPCA, blood flow in the PCA originates from the anterior instead of the posterior circulation. We tested whether this blood supply variant impacts the cerebral blood flow assessed by arterial spin labeling (ASL), cerebrovascular reserve as well as resting-state static functional connectivity (sFC) in the sense of a systematic confound. Methods The study included 385 healthy, elderly subjects (mean age: 74.18 years [range: 68.9–90.4]; 243 female). Participants were classified into normal vascular supply (n = 296, 76.88%), right fetal origin (n = 23, 5.97%), left fetal origin (n = 16, 4.16%), bilateral fetal origin (n = 4, 1.04%), and intermediate (n = 46, 11.95%, excluded from further analysis) groups. ASL-derived relative cerebral blood flow (relCBF) maps and cerebrovascular reserve (CVR) maps derived from a CO2 challenge with blocks of 7% CO2 were compared. Additionally, sFC between 90 regions of interest (ROIs) was compared between the groups. Results CVR was significantly reduced in subjects with ipsilateral fPCA, most prominently in the temporal lobe. ASL yielded a non-significant trend towards reduced relCBF in bilateral posterior watershed areas. In contrast, conventional atlas-based sFC did not differ between groups. Conclusions In conclusion, fPCA presence may bias the assessment of cerebrovascular reserve by reducing the response to CO2. In contrast, its effect on ASL-assessed baseline perfusion was marginal. Moreover, fPCA presence did not systematically impact resting-state sFC. Taken together, this data implies that perfusion variables should take into account the vascularization patterns. PMID:27532633

  15. [The specific features of the vestibular function in the patients presenting with sensorineural hearing loss of vascular genesis].

    PubMed

    Kirichenko, I M; Popadyuk, V I; Tuzhilina, K V

    2016-01-01

    The authors consider the specific features of the vestibular function in the patients with sensorineural hearing loss of vascular genesis. The study included 60 patients at the age from 28 to 75 years presenting with sensorineural impairment of hearing of vascular genesis. All of them were examined with the use of the extended otoneurological method. The data obtained were compared with the structural changes and hemodynamic characteristics of vertebral arteries (VA) and internal carotid arteries (ICA) and with the results of magnetic resonance imaging (MRI) of the brain.

  16. Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure.

    PubMed

    Mueller, Katelee Barrett; Bender, Shawn B; Hong, Kwangseok; Yang, Yan; Aronovitz, Mark; Jaisser, Frederic; Hill, Michael A; Jaffe, Iris Z

    2015-11-01

    Arteriolar vasoreactivity tightly regulates tissue-specific blood flow and contributes to systemic blood pressure (BP) but becomes dysfunctional in the setting of cardiovascular disease. The mineralocorticoid receptor (MR) is known to regulate BP via the kidney and by vasoconstriction in smooth muscle cells. Although endothelial cells (EC) express MR, the contribution of EC-MR to BP and resistance vessel function remains unclear. To address this, we created a mouse with MR specifically deleted from EC (EC-MR knockout [EC-MR-KO]) but with intact leukocyte MR expression and normal renal MR function. Telemetric BP studies reveal no difference between male EC-MR-KO mice and MR-intact littermates in systolic, diastolic, circadian, or salt-sensitive BP or in the hypertensive responses to aldosterone±salt or angiotensin II±l-nitroarginine methyl ester. Vessel myography demonstrated normal vasorelaxation in mesenteric and coronary arterioles from EC-MR-KO mice. After exposure to angiotensin II-induced hypertension, impaired endothelial-dependent relaxation was prevented in EC-MR-KO mice in mesenteric vessels but not in coronary vessels. Mesenteric vessels from angiotensin II-exposed EC-MR-KO mice showed increased maximum responsiveness to acetylcholine when compared with MR-intact vessels, a difference that is lost with indomethacin+l-nitroarginine methyl ester pretreatment. These data support that EC-MR plays a role in regulating endothelial function in hypertension. Although there was no effect of EC-MR deletion on mesenteric vasoconstriction, coronary arterioles from EC-MR-KO mice showed decreased constriction to endothelin-1 and thromboxane agonist at baseline and also after exposure to hypertension. These data support that EC-MR participates in regulation of vasomotor function in a vascular bed-specific manner that is also modulated by risk factors, such as hypertension.

  17. Physiologically Modeled Pulse Dynamics to Improve Function in In Vitro-Endothelialized Small-Diameter Vascular Grafts.

    PubMed

    Uzarski, Joseph S; Cores, Jhon; McFetridge, Peter S

    2015-11-01

    The lack of a functional endothelium on small-diameter vascular grafts leads to intimal hyperplasia and thrombotic occlusion. Shear stress conditioning through controlled hydrodynamics within in vitro perfusion bioreactors has shown promise as a mechanism to drive endothelial cell (EC) phenotype from an activated, pro-inflammatory wound state toward a quiescent functional state that inhibits responses that lead to occlusive failure. As part of an overall design strategy to engineer functional vascular grafts, we present a novel two-phase shear conditioning approach to improve graft endothelialization. Axial rotation was first used to seed uniform EC monolayers onto the lumenal surface of decellularized scaffolds derived from the human umbilical vein. Using computer-controlled perfusion circuits, a flow-ramping paradigm was applied to adapt endothelia to arterial levels of fluid shear stress and pressure without graft denudation. The effects of constant pulse frequencies (CF) on EC quiescence were then compared with pulse frequencies modeled from temporal fluctuations in blood flow observed in vivo, termed physiologically modeled pulse dynamics (PMPD). Constructs exposed to PMPD for 72 h expressed a more functional transcriptional profile, lower metabolic activity (39.8% ± 8.4% vs. 62.5% ± 11.5% reduction, p = 0.012), and higher nitric oxide production (80.42 ± 23.93 vs. 48.75 ± 6.93 nmol/10(5) cells, p = 0.028) than those exposed to CF. By manipulating in vitro flow conditions to mimic natural physiology, endothelialized vascular grafts can be stimulated to express a nonactivated phenotype that would better inhibit peripheral cell adhesion and smooth muscle cell hyperplasia, conditions that typically lead to occlusive failure. Development of robust, functional endothelia on vascular grafts by modulation of environmental conditions within perfusion bioreactors may ultimately improve clinical outcomes in vascular bypass grafting. PMID:25996580

  18. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome.

    PubMed

    Jeong, Han Saem; Hong, Soon Jun; Lee, Tae-Bum; Kwon, Ji-Wung; Jeong, Jong Tae; Joo, Hyung Joon; Park, Jae Hyoung; Ahn, Chul-Min; Yu, Cheol Woong; Lim, Do-Sun

    2014-10-01

    Black raspberry (Rubus occidentalis) has been known for its anti-inflammatory and anti-oxidant effects. However, short-term effects of black raspberry on lipid profiles and vascular endothelial function have not been investigated in patients with metabolic syndrome. Patients with metabolic syndrome (n = 77) were prospectively randomized into a group with black raspberry (n = 39, 750 mg/day) and a placebo group (n = 38) during a 12-week follow-up. Lipid profiles, brachial artery flow-mediated dilatation (baFMD), and inflammatory cytokines such as IL-6, TNF-α, C-reactive protein, adiponectin, sICAM-1, and sVCAM-1 were measured at the baseline and at the 12-week follow-up. Decreases from the baseline in the total cholesterol level (-22.8 ± 30.4 mg/dL vs. -1.9 ± 31.8 mg/dL, p < 0.05, respectively) and total cholesterol/HDL ratio (-0.31 ± 0.64 vs. 0.07 ± 0.58, p < 0.05, respectively) were significantly greater in the group with black raspberry than in the placebo group. Increases in baFMD at the 12-week follow-up were significantly greater in the group with black raspberry than in the placebo group (0.33 ± 0.44 mm vs. 0.10 ± 0.35 mm, p < 0.05, respectively). Decreases from the baseline in IL-6 (-0.4 ± 1.5 pg/mL vs. -0.1 ± 1.0 pg/mL, p < 0.05, respectively) and TNF-α (-2.9 ± 4.7 pg/mL vs. 0.1 ± 3.6 pg/mL, p < 0.05, respectively) were significantly greater in the group with black raspberry. The use of black raspberry significantly decreased serum total cholesterol level and inflammatory cytokines, thereby improving vascular endothelial function in patients with metabolic syndrome during the 12-week follow-up.

  19. Pioglitazone treatment increases COX-2-derived prostacyclin production and reduces oxidative stress in hypertensive rats: role in vascular function

    PubMed Central

    Hernanz, Raquel; Martín, Ángela; Pérez-Girón, Jose V; Palacios, Roberto; Briones, Ana M; Miguel, Marta; Salaices, Mercedes; Alonso, María J

    2012-01-01

    BACKGROUND AND PURPOSE PPARγ agonists, glitazones, have cardioprotective and anti-inflammatory actions associated with gene transcription interference. In this study, we determined whether chronic treatment of adult spontaneously hypertensive rats (SHR) with pioglitazone alters BP and vascular structure and function, and the possible mechanisms involved. EXPERIMENTAL APPROACH Mesenteric resistance arteries from untreated or pioglitazone-treated (2.5 mg·kg−1·day−1, 28 days) SHR and normotensive [Wistar Kyoto (WKY)] rats were used. Vascular structure was studied by pressure myography, vascular function by wire myography, protein expression by Western blot and immunohistochemistry, mRNA levels by RT-PCR, prostanoid levels by commercial kits and reactive oxygen species (ROS) production by dihydroethidium-emitted fluorescence. KEY RESULTS In SHR, pioglitazone did not modify either BP or vascular structural and mechanical alterations or phenylephrine-induced contraction, but it increased vascular COX-2 levels, prostacyclin (PGI2) production and the inhibitory effects of NS 398, SQ 29,548 and tranylcypromine on phenylephrine responses. The contractile phase of the iloprost response, which was reduced by SQ 29,548, was greater in pioglitazone-treated and pioglitazone-untreated SHR than WKY. In addition, pioglitazone abolished the increased vascular ROS production, NOX-1 levels and the inhibitory effect of apocynin and allopurinol on phenylephrine contraction, whereas it did not modify eNOS expression but restored the potentiating effect of N-nitro-L-arginine methyl ester on phenylephrine responses. CONCLUSIONS AND IMPLICATIONS Although pioglitazone did not reduce BP in SHR, it increased COX-2-derived PGI2 production, reduced oxidative stress, and increased NO bioavailability, which are all involved in vasoconstrictor responses in resistance arteries. These effects would contribute to the cardioprotective effect of glitazones reported in several pathologies. PMID

  20. Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants (<1 kg).

    PubMed

    Redline, Raymond W; Minich, Nori; Taylor, H Gerry; Hack, Maureen

    2007-01-01

    Extremely low birth weight (ELBW) infants (<1 kg) have high rates of neurodisability. Although previous studies have implicated placental lesions in adverse short-term neurologic outcomes in this population, none have assessed their effects in these children once they reach school age. We conducted a secondary analysis of placental pathology in a cohort study of inborn singleton ELBW infants born between 1992 and 1995 and evaluated for cerebral palsy (CP) and abnormal neurocognitive testing at 8 years of age (N = 129). The neurocognitive tests were the Kaufman Assessment Battery for Children (K-ABC) and 6 subtests of the NEPSY: A Developmental Neuropsychological Assessment. We found that placental lesions associated with maternal vascular underperfusion (increased syncytial knots and acute atherosis) were risk factors for CP, while villous edema was associated with low scores on both neurocognitive tests. Histologic chorioamnionitis (HCA) was not predictive of outcome in the population as a whole, but a severe fetal vascular response was associated with a lower NEPSY score in the subpopulation with HCA (N = 69). Placentas with increased syncytial knots, villous edema, and those with neither finding constituted nonoverlapping subgroups with distinct pathologic and perinatal characteristics. Among infants with villous edema (N = 25), those with neurologic impairment had lower gestational ages and more severe degrees of HCA. However, by logistic regression these other factors were not independent risk factors for abnormal neurocognitive testing, and only HCA with a severe fetal vascular response decreased the association of villous edema with low test scores for NEPSY, but not K-ABC.

  1. Microbial community structure and function during abnormal curve development of substrate-induced respiration measurements.

    PubMed

    Bartling, Johanna; Kotzerke, Anja; Mai, Maike; Esperschütz, Jürgen; Buegger, Franz; Schloter, Michael; Wilke, Berndt-Michael

    2009-12-01

    Soil respiration measurements are an established method to test the abundance, activity and vitality of the soil microorganisms. However, abnormal progressions of soil respiration curves impede a clear interpretation of the data. The aim of this study was to investigate the changes in the microbial structure during the formation of phenomena like double peaks and terraces by analysis of the PLFA composition (phospholipid fatty acid composition). Moreover, 13C labeled glucose was used as substrate; therefore it was possible to measure delta13C values both within the PLFA fraction as well as within the carbon dioxide evolved during respiration. As contaminants trinitrotoluene, cycloheximide, and hexadecane were used. The results showed that the appearance of double peaks was mainly related to the growth of fungi with the marker 18:2delta9,12 due to a toxic effect of trinitrotoluene and cycloheximide. In contrast, the phenomenon of terrace formation was related to the utilization of hexadecane as a carbon source mainly by bacteria.

  2. [The effects of DNA methylation on the homeostasis in vascular diseases].

    PubMed

    Xiaoying, Chen; Huadan, Ye; Qingxiao, Hong; Annan, Zhou; Linlin, Tang; Shiwei, Duan

    2015-03-01

    Homeostasis is fundamental to maintain normal physiological functions in our body. Internal and external physical, chemical and biologial changes can cause dysregulation of vascular homeostasis, which is closely associated with the homeostasis of oxygen supply, blood transportation and lipid metabolism. Subsequent epigenetic modifications are able to lead to abnormal structures and function of vessels. DNA methylation has been shown to play a vital role in the development of vascular diseases. In addition, 5-hydroxymethylcytosine (5hmC) and N(6)-methyladenine (m(6)A), as new epigenetic modifications, provide additional clues for vascular diseases. In this review, we summarize the effects of DNA methylation on the homeostasis dysregulation in the vascular diseases.

  3. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.

    PubMed

    Chen, Yunhui; Juhás, Michal; Greenshaw, Andrew J; Hu, Qiang; Meng, Xin; Cui, Hongsheng; Ding, Yongzhuo; Kang, Lu; Zhang, Yubo; Wang, Yuhua; Cui, Guangcheng; Li, Ping

    2016-06-01

    Altered brain activities in the cortico-striato-thalamocortical (CSTC) circuitry are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, whether the underlying changes occur only within this circuitry or in large-scale networks is still not thoroughly understood. This study performed voxel-based functional connectivity analysis on resting-state functional magnetic resonance imaging (fMRI) data from thirty OCD patients and thirty healthy controls to investigate whole-brain intrinsic functional connectivity patterns in OCD. Relative to the healthy controls, OCD patients showed decreased functional connectivity within the CSTC circuitry but increased functional connectivity in other brain regions. Furthermore, decreased left caudate nucleus-thalamus connectivity within the CSTC circuitry was positively correlated with the illness duration of OCD. This study provides additional evidence that CSTC circuitry may play an essential role and alteration of large-scale brain networks may be involved in the pathophysiology of OCD. PMID:27143323

  4. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men.

    PubMed

    Esser, Diederik; Mars, Monica; Oosterink, Els; Stalmach, Angelique; Müller, Michael; Afman, Lydia A

    2014-03-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We investigated whether consumption of regular dark chocolate also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has additional benefits. In a randomized double-blind crossover study, the effects of acute and of 4 wk daily consumption of high flavanol chocolate (HFC) and normal flavanol chocolate (NFC) on FMD, augmentation index (AIX), leukocyte count, plasma cytokines, and leukocyte cell surface molecules in overweight men (age 45-70 yr) were investigated. Sensory profiles and motivation scores to eat chocolate were also collected. Findings showed that a 4 wk chocolate intake increased FMD by 1%, which was paralleled by a decreased AIX of 1%, decreased leukocyte cell count, decreased plasma sICAM1 and sICAM3, and decreased leukocyte adhesion marker expression (P<0.05 for time effect), with no difference between HFC and NFC consumption. Flavanol enrichment did affect taste and negatively affected motivation to consume chocolate. This study provides new insights on how chocolate affects endothelial health by demonstrating that chocolate consumption, besides improving vascular function, also lowers the adherence capacity of leukocytes in the circulation.

  5. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques

    PubMed Central

    Silvola, Johanna M. U.; Virtanen, Helena; Siitonen, Riikka; Hellberg, Sanna; Liljenbäck, Heidi; Metsälä, Olli; Ståhle, Mia; Saanijoki, Tiina; Käkelä, Meeri; Hakovirta, Harri; Ylä-Herttuala, Seppo; Saukko, Pekka; Jauhiainen, Matti; Veres, Tibor Z.; Jalkanen, Sirpa; Knuuti, Juhani; Saraste, Antti; Roivainen, Anne

    2016-01-01

    Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis. PMID:27731409

  6. Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces.

    PubMed

    Freyberg, M A; Kaiser, D; Graf, R; Friedl, P

    2001-10-01

    The fas system is present in atherosclerotic lesions. However, its role in the initiation and progression is still unclear. Here we show that in endothelial cells (EC) the expression of the fas receptor is regulated by flow conditions. The EC of the vascular system are regularly exposed to a range of hemodynamic forces with great impact on cellular structures and functions. Recently it was reported that in endothelial cells the lack of hemodynamic forces as well as irregular flow conditions trigger apoptosis by induction of a mechanosensitive autocrine loop of thrombospondin-1 and the alpha(V)beta(3) integrin/integrin-associated protein complex. Here we show that EC cultivated under regular laminar flow conditions are devoid of the fas-receptor whereas cultivation under static conditions as well as under turbulence leads to its expression. Stimulation of the fas-receptor by its ligand increases the amount of apoptotic cells by twofold; the increase can be prevented by blocking the fas-receptor. The availability of the expressed fas receptor for stimulation by its ligand hints at a role as a tool for progression of atherosclerosis. PMID:11483857

  7. Non-invasive functional imaging of Cerebral Blood Volume with Vascular-Space-Occupancy (VASO) MRI

    PubMed Central

    Lu, Hanzhang; Hua, Jun; van Zijl, Peter C.M.

    2013-01-01

    Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can directly probe vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of Blood-Oxygenation-Level-Dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called Vascular-Space-Occupancy (VASO) MRI and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish these two compartments within a voxel and uses blood-nulling inversion recovery sequence to yield an MR signal proportional to 1-CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable to several other fMRI methods such as BOLD or Arterial-Spin-Labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, CBF, and CSF. Sensitivity of the VASO technique remains to be the primary disadvantage when compared to BOLD, but this technique is increasingly demonstrating utility in neuroscientific and clinical applications. PMID:23355392

  8. Nitinol-based Nanotubular and Nanowell Coatings for the Modulation of Human Vascular Cell Functions

    NASA Astrophysics Data System (ADS)

    Lee, Phin Peng

    Current approaches to reducing restenosis do not balance the reduction of vascular smooth muscle cell proliferation with the increase in the healing of the endothelium. Here, I present my study on the synthesis and characterization of a nanotubular coating on Nitinol substrates. I found that the coating demonstrated 'pro-healing' properties by increasing primary human aortic endothelial cell spreading, migration and collagen and elastin production. Certain cellular functions such as collagen and elastin production were also found to be affected by changes in nanotube diameter. The coating also reduced the proliferation and mRNA expression of collagen I and MMP2 for primary human aortic smooth muscle cells. I will also demonstrate the synthesis of a nanowell coating on Nitinol stents as well as an additional poly(lactic-co-glycolic acid) coating on top of the nanowells that has the potential for controlling drug release. These findings demonstrate the potential for the coatings to aid in the prevention of restenosis and sets up future explorations of ex vivo and in vivo studies.

  9. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men.

    PubMed

    Esser, Diederik; Mars, Monica; Oosterink, Els; Stalmach, Angelique; Müller, Michael; Afman, Lydia A

    2014-03-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We investigated whether consumption of regular dark chocolate also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has additional benefits. In a randomized double-blind crossover study, the effects of acute and of 4 wk daily consumption of high flavanol chocolate (HFC) and normal flavanol chocolate (NFC) on FMD, augmentation index (AIX), leukocyte count, plasma cytokines, and leukocyte cell surface molecules in overweight men (age 45-70 yr) were investigated. Sensory profiles and motivation scores to eat chocolate were also collected. Findings showed that a 4 wk chocolate intake increased FMD by 1%, which was paralleled by a decreased AIX of 1%, decreased leukocyte cell count, decreased plasma sICAM1 and sICAM3, and decreased leukocyte adhesion marker expression (P<0.05 for time effect), with no difference between HFC and NFC consumption. Flavanol enrichment did affect taste and negatively affected motivation to consume chocolate. This study provides new insights on how chocolate affects endothelial health by demonstrating that chocolate consumption, besides improving vascular function, also lowers the adherence capacity of leukocytes in the circulation. PMID:24302679

  10. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling.

    PubMed

    Su, Judy Y; Vo, Anhkiet C

    2007-03-22

    The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2. 2-AG ether effects were completely abolished by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A), and partially blocked by (-)-1.3-dimethoxy-2-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918). In contrast, abn-CBD effects were completely abolished by O-1918, and only partially blocked by AM251, and SR141716A. Both 2-AG ether and abn-CBD effects were partially blocked by pertussis toxin, an inhibitor of Gi/o proteins. PD98059, an inhibitor of mitogen activated protein kinase kinase (MEK), completely abolished the relaxation, but only partially blocked the increased phosphorylation of ERK1/2 by 2-AG ether. In contrast, abn-CBD-induced relaxation was partially blocked and the increased phosphorylation of ERK1/2 was abolished by PD98059. These findings suggest that 2-AG ether and abn-CBD-induced vascular smooth muscle relaxation are mediated by the cannabinoid CB1 receptor, and the abn-CBD receptor, respectively, and are modulated by cross-talk between the receptors. These responses occur mainly by coupling to pertussis toxin sensitive G proteins, but also, in part independent of these G proteins, which have been classically thought to initiate MEK/ERK1/2 signaling to relax vascular smooth muscle.

  11. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function. PMID:26922413

  12. Degranulation and abnormal bactericidal function of granulocytes procured by reversible adhesion to nylon wool.

    PubMed

    Klock, J C; Bainton, D F

    1976-07-01

    Granylocyte bactericidal capacity, chemotaxis, hexose monophosphate shung activity (before and after phagocytic stimulus), and quantitative nitroblue tetrazolium reduction and enzyme content were examined in cells obtained by filtration leukaphresis (FL) and continuous-flow centrifugation (CFC). A decrease in the bactericidal efficiency of FL-produced cells compared to that of both normal and CFC-procured granulocytes was found; the decrease was 17% with a cell-to-bacteria ratio of 5:1, and 55% with a 1:1 ratio. Moreover, FL-acquired cells were often vacuolated and consistently contained less acid phosphatase and beta-glucuronidase than did normal granulocytes. When normal cells were incubated for 1-2 hr with nylon wool, 30% of the total acid phosphatase and beta-glucuronidase was released, with no evidence of cell death, thus suggesting degranulation. Similar results were obtained with glass, cotton, or polysulfone plastic fibers. Electron microscopic and peroxidase cytochemical studies of the adherence of normal granulocytes to nylon fibers were also carried out. After 30 min of incubation, cell-to-fiber attachment and cellular aggregation had occurred, although the cells per se appeared normal. After 60 and 120 min, other changes became apparent: (1) a decrease in the amount of cytoplasmic granules; (2) large, intracytoplasmic vaculoles; and (3) extracellular peroxidase on fiber surfaces. We conclude that granulocytes obtained by adherence to nylon fibers show both morphological and biochemical evidence of degranulation and diminished bactericidal capacity, and that these abnormalities may be causally related to decreased granulocyte survival in transfusion recipients.

  13. Synergistic Effects of Matrix Nanotopography and Stiffness on Vascular Smooth Muscle Cell Function

    PubMed Central

    Chaterji, Somali; Kim, Peter; Choe, Seung H.; Tsui, Jonathan H.; Lam, Christoffer H.; Ho, Derek S.

    2014-01-01

    Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such

  14. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function.

    PubMed

    Chaterji, Somali; Kim, Peter; Choe, Seung H; Tsui, Jonathan H; Lam, Christoffer H; Ho, Derek S; Baker, Aaron B; Kim, Deok-Ho

    2014-08-01

    Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such

  15. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  16. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  17. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  18. Pulmonary function abnormalities and asthma are prevalent in children with sickle cell disease and are associated with acute chest syndrome.

    PubMed

    Intzes, Stefanos; Kalpatthi, Ram V; Short, Robert; Imran, Hamayun

    2013-11-01

    Pulmonary diseases form major sources of morbidity and mortality in children with sickle cell disease (SCD). The objective of the study was to determine the prevalence of lung function abnormalities and asthma and their association with acute chest syndrome (ACS) in children with SCD. This was a cross-sectional retrospective study of 127 children with SCD; we collected information regarding ACS and asthma and pulmonary function test (PFT) data. Based on PFT results, the patients were assigned to one pattern of lung function [normal, obstructive lung disease (OLD), restrictive lung disease (RLD)]. Statistical analyses included Pearson correlation, prevalence odds ratio (POR), cross-tabulation, and multiple binary logistic regression. OLD was noted in 35% and RLD in 23% of the patients, with the remainder exhibiting a normal PFT pattern. Forty-six percent of patients had asthma, 64% of whom had a history of ACS. OLD (r = .244, P = .008, POR = 2.8) and asthma (r = .395, P < .001, POR = 5.4) were significantly associated with a history of ACS. There was a negative correlation between having normal PFT data and a history of ACS (r = -.289, P = .002, POR = .3). Asthma and pulmonary function abnormalities are prevalent in children with SCD, with OLD being more common than RLD. There is an association between asthma, OLD, and ACS, however causality cannot be proven due to the study design. We stress the importance of actively investigating for a clinical diagnosis of asthma in all patients with SCD and suggest that PFT data may help detect patients at lower risk for ACS.

  19. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Li, Chao; Ma, Xiaofen; Dong, Mengshi; Yin, Yi; Hua, Kelei; Li, Meng; Li, Changhong; Zhan, Wenfeng; Li, Cheng; Jiang, Guihua

    2016-01-01

    Objective Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI). Resting-state functional magnetic resonance imaging (fMRI) is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs) algorithm. Methods In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left inferior parietal lobule. Conclusion The present study added information to limited studies on functional specialization and provided evidence for hyperarousal hypothesis in PI. PMID:27366068

  20. Differential Effects of Hormone Therapy on Serotonin, Vascular Function and Mood in the KEEPS

    PubMed Central

    Raz, Limor; Hunter, Larry; Dowling, N. Maritza; Wharton, Whitney; Gleason, Carey; Jayachandran, Muthuvel; Anderson, Layne; Asthana, Sanjay; Miller, Virginia

    2016-01-01

    Background Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. Methods The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemia index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. Results Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility associated with elevations in platelet 5-HT only in the oCEE group (r = −0.5, p = 0.02). Conclusions Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β- estradiol in platelets and the brain. PMID:26652904

  1. Abnormal functional connectivity density in patients with ischemic white matter lesions

    PubMed Central

    Ding, Ju-Rong; Ding, Xin; Hua, Bo; Xiong, Xingzhong; Wang, Qingsong; Chen, Huafu

    2016-01-01

    Abstract White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective. PMID:27603353

  2. Abnormal functional connectivity density in patients with ischemic white matter lesions: An observational study.

    PubMed

    Ding, Ju-Rong; Ding, Xin; Hua, Bo; Xiong, Xingzhong; Wang, Qingsong; Chen, Huafu

    2016-09-01

    White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective. PMID:27603353

  3. Study of the Structure, Oxygen-Transporting Functions, and Ionic Composition of Erythrocytes at Vascular Diseases

    PubMed Central

    Revin, Viktor V.; Gromova, Natalia V.; Revina, Elvira S.; Mel'nikova, Natalya A.; Balykova, Larisa A.; Solomadin, Ilia N.; Tychkov, Alexander Yu.; Revina, Nadezhda V.; Gromova, Oksana Yu.; Anashkina, Irina V.; Yakushkin, Viktor A.

    2015-01-01

    The present paper explores the role of erythrocytes in the pathogenesis of vascular diseases. The state of erythrocytes, their ionic composition and structure, and properties of erythrocytes hemoglobin were studied by using laser interference microscopy, Raman scattering spectroscopy, and capillary electrophoresis. In patients suffering from vascular disorders we identified statistically significant changes in the shape of erythrocytes, their ionic composition, and redistribution of hemoglobin throughout cells. PMID:26601112

  4. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function.

    PubMed

    Mafort, Thiago Thomaz; Rufino, Rogério; Costa, Cláudia Henrique; Lopes, Agnaldo José

    2016-01-01

    Obesity is currently one of the major epidemics of this millennium and affects individuals throughout the world. It causes multiple systemic complications, some of which result in severe impairment of organs and tissues. These complications involve mechanical changes caused by the accumulation of adipose tissue and the numerous cytokines produced by adipocytes. Obesity also significantly interferes with respiratory function by decreasing lung volume, particularly the expiratory reserve volume and functional residual capacity. Because of the ineffectiveness of the respiratory muscles, strength and resistance may be reduced. All these factors lead to inspiratory overload, which increases respiratory effort, oxygen consumption, and respiratory energy expenditure. It is noteworthy that patterns of body fat distribution significantly influence the function of the respiratory system, likely via the direct mechanical effect of fat accumulation in the chest and abdominal regions. Weight loss caused by various types of treatment, including low-calorie diet, intragastric balloon, and bariatric surgery, significantly improves lung function and metabolic syndrome and reduces body mass index. Despite advances in the knowledge of pulmonary and systemic complications associated with obesity, longitudinal randomized studies are needed to assess the impact of weight loss on metabolic syndrome and lung function. PMID:27408717

  5. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    PubMed Central

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-01-01

    Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease. PMID:27729629

  6. Influence of maternal nutritional status on vascular function in the offspring.

    PubMed

    Poston, Lucilla

    2011-05-01

    Suboptimal maternal nutritional status has been implicated in the development of cardiovascular risk in the child. Initially inferred from studies of low-birthweight children, investigations in cohorts of women subjected to famine provide direct evidence for an independent influence of the mother's diet on the cardiovascular health of her child. Animal studies from rodents and sheep have shown associations between maternal undernutrition and raised blood pressure, as well as abnormalities in resistance artery function, particularly in endothelium-dependent responses. Early life exposure to the influences of maternal over nutritional states, e.g. obesity and excessive gestational weight gain, has also been associated with markers of cardiovascular risk in man, and animal models have shown raised blood pressure and endothelial dysfunction in offspring of diet-induced obese dams. Increased sympathetic tone is commonly associated with hypertension in animal models of both under nutritional and over nutritional states. This and several other similarities may indicate commonality of mechanism and could reflect supranormal nutritional status in postnatal life in both conditions.

  7. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  8. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  9. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  10. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-02-16

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system.

  11. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  12. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  13. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  14. Developmental Abnormalities of Neuronal Structure and Function in Prenatal Mice Lacking the Prader-Willi Syndrome Gene Necdin

    PubMed Central

    Pagliardini, Silvia; Ren, Jun; Wevrick, Rachel; Greer, John J.

    2005-01-01

    Necdin (Ndn) is one of a cluster of genes deleted in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Ndntm2Stw mutant mice die shortly after birth because of abnormal respiratory rhythmogenesis generated by a key medullary nucleus, the pre-Bötzinger complex (preBötC). Here, we address two fundamental issues relevant to its pathogenesis. First, we performed a detailed anatomical study of the developing medulla to determine whether there were defects within the preBötC or synaptic inputs that regulate respiratory rhythmogenesis. Second, in vitro studies determined if the unstable respiratory rhythm in Ndntm2Stw mice could be normalized by neuromodulators. Anatomical defects in Ndntm2Stw mice included defasciculation and irregular projections of axonal tracts, aberrant neuronal migration, and a major defect in the cytoarchitecture of the cuneate/gracile nuclei, including dystrophic axons. Exogenous application of neuromodulators alleviated the long periods of slow respiratory rhythms and apnea, but some instability of rhythmogenesis persisted. We conclude that deficiencies in the neuromodulatory drive necessary for preBötC function contribute to respiratory dysfunction of Ndntm2Stw mice. These abnormalities are part of a more widespread deficit in neuronal migration and the extension, arborization, and fasciculation of axons during early stages of central nervous system development that may account for respiratory, sensory, motor, and behavioral problems associated with PWS. PMID:15972963

  15. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  16. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population

    PubMed Central

    Tong, Zhimin; Shen, Huanxi; Yang, Dandan; Zhang, Feng; Bai, Ying; Li, Qian; Shi, Jian; Zhang, Hengdong; Zhu, Baoli

    2016-01-01

    Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m3 DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population. PMID:27463724

  17. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population.

    PubMed

    Tong, Zhimin; Shen, Huanxi; Yang, Dandan; Zhang, Feng; Bai, Ying; Li, Qian; Shi, Jian; Zhang, Hengdong; Zhu, Baoli

    2016-01-01

    Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m³ DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population. PMID:27463724

  18. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI

    PubMed Central

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-01-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus. PMID:20068582

  19. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI.

    PubMed

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-04-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus.

  20. Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics

    PubMed Central

    Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R.

    2016-01-01

    The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time. PMID:27730180

  1. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    PubMed

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD. PMID:26887382

  2. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function

    PubMed Central

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  3. Changes in vascular plant functional types drive carbon cycling in peatlands

    NASA Astrophysics Data System (ADS)

    Zeh, Lilli; Bragazza, Luca; Erhagen, Björn; Limpens, Juul; Kalbitz, Karsten

    2016-04-01

    Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic changes. Therefore, a sound understanding of the impact of vegetation dynamics on C cycling will help to better predict the response of peatlands to environmental changes. Here, we aimed to assess the role of plant functional types (PFTs) in affecting peat decomposition in relation to climate warming. To this aim, we selected two peatlands at different altitude (i.e. 1300 and 1700 m asl) on the south-eastern Alps of Italy. The two sites represent a contrast in temperature, overall vascular plant biomass and relative ericoids abundance, with the highest biomass and ericoids occurrence at the low latitude. Within the sites we selected 20 plots of similar microtopographical position and general vegetation type (hummocks). All plots contained both graminoids and ericoids and had a 100% cover of Sphagnum mosses. The plots were subjected to four treatments (control, and three clipping treatments) in which we selectively removed aboveground biomass of ericoids, graminoids or both to explore the contribution of the different PFTs for soil respiration (n=5) and peat chemistry. Peat chemical composition was determined by the analysis of C and N and their stable isotopes in association with pyrolysis GC/MS. Soil respiration was measured after clipping with a Licor system. Preliminary findings suggest that peat decomposition pathway and rate depend on plant species composition and particularly on differences in root activity between PFTs. Finally, this study underlines the importance of biotic drivers to predict the effects of future environmental changes on peatland C cycling.

  4. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms.

    PubMed

    Chalubinski, Maciej; Wojdan, Katarzyna; Luczak, Emilia; Gorzelak, Paulina; Borowiec, Maciej; Gajewski, Adrian; Rudnicka, Karolina; Chmiela, Magdalena; Broncel, Marlena

    2015-10-01

    The vascular endothelium forms a barrier that controls flow of solutes and proteins and the entry of leukocytes into tissue. Injured tissue releases IL-33, which then alarms the immune system and attracts Th2 cells, thus increasing local concentration of IL-4. The aim of the study was to assess the influence of IL-33 and IL-4 on barrier functions of the human endothelium, expression of tight and adherent junction proteins, apoptosis and adhesive molecule surface expression in human endothelium in order to describe the mechanism of this effect. IL-33 and IL-4 decreased endothelial integrity and increased permeability. When added together, both cytokines lowered the endothelial integrity twice as much as used alone. This effect was accompanied by the down-regulation of occludin and VE-cadherin mRNA expression. Additionally, IL-4, but not IL-33, induced cell apoptosis. Both IL-33 and IL-4 showed the additive potency to down-regulate VE-cadherin mRNA expression. IL-33, unlike IL-4, increased the surface expression of ICAM-1, but not PECAM-1 in endothelial cells. Our results indicate that IL-33 may reversibly destabilize the endothelial barrier, thus accelerating the supply with immunomodulators and assisting leukocytes to reach wounded tissue. However, extended and less-controlled down-regulation of endothelial barrier, which may be a consequence of IL-33-initiated, but in fact IL-4-induced apoptosis of endothelial cells, may be deleterious and may eventually lead to the aggravation of inflammatory processes and the prolongation of tissue dysfunction. PMID:26231284

  5. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  6. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment.

    PubMed

    Tattersall, Ian W; Du, Jing; Cong, Zhuangzhuang; Cho, Bennet S; Klein, Alyssa M; Dieck, Chelsea L; Chaudhri, Reyhaan A; Cuervo, Henar; Herts, James H; Kitajewski, Jan

    2016-04-01

    Angiogenesis is regulated by complex interactions between endothelial cells and support cells of the vascular microenvironment, such as tissue myeloid cells and vascular mural cells. Multicellular interactions during angiogenesis are difficult to study in animals and challenging in a reductive setting. We incorporated stromal cells into an established bead-based capillary sprouting assay to develop assays that faithfully reproduce major steps of vessel sprouting and maturation. We observed that macrophages enhance angiogenesis, increasing the number and length of endothelial sprouts, a property we have dubbed "angiotrophism." We found that polarizing macrophages toward a pro-inflammatory profile further increased their angiotrophic stimulation of vessel sprouting, and this increase was dependent on macrophage Notch signaling. To study endothelial/pericyte interactions, we added vascular pericytes directly to the bead-bound endothelial monolayer. These pericytes formed close associations with the endothelial sprouts, causing increased sprout number and vessel caliber. We found that Jagged1 expression and Notch signaling are essential for the growth of both endothelial cells and pericytes and may function in their interaction. We observed that combining endothelial cells with both macrophages and pericytes in the same sprouting assay has multiplicative effects on sprouting. These results significantly improve bead-capillary sprouting assays and provide an enhanced method for modeling interactions between the endothelium and the vascular microenvironment. Achieving this in a reductive in vitro setting represents a significant step toward a better understanding of the cellular elements that contribute to the formation of mature vasculature.

  7. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking

    PubMed Central

    Zhong, Xuehua; Tao, Xiaorong; Stombaugh, Jesse; Leontis, Neocles; Ding, Biao

    2007-01-01

    Vascular entry is a decisive step for the initiation of long-distance movement of infectious and endogenous RNAs, silencing signals and developmental/defense signals in plants. However, the mechanisms remain poorly understood. We used Potato spindle tuber viroid (PSTVd) as a model to investigate the direct role of the RNA itself in vascular entry. We report here the identification of an RNA motif that is required for PSTVd to traffic from nonvascular into the vascular tissue phloem to initiate systemic infection. This motif consists of nucleotides U/C that form a water-inserted cis Watson–Crick/Watson–Crick base pair flanked by short helices that comprise canonical Watson–Crick/Watson–Crick base pairs. This tertiary structural model was inferred by comparison with X-ray crystal structures of similar motifs in rRNAs and is supported by combined mutagenesis and covariation analyses. Hydration pattern analysis suggests that water insertion induces a widened minor groove conducive to protein and/or RNA interactions. Our model and approaches have broad implications to investigate the RNA structural motifs in other RNAs for vascular entry and to study the basic principles of RNA structure–function relationships. PMID:17660743

  8. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction.

  9. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    SciTech Connect

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M. )

    1989-12-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 {plus minus} 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 {plus minus} 11.3%, 46.5 {plus minus} 12.0%, and 37.2 {plus minus} 11.0%, respectively. Stroke volume also increased from rest (54.6 {plus minus} 17.0 ml/beat) to the point of the anaerobic threshold (65.0 {plus minus} 21.2 ml/beat) and then decreased at peak exercise (52.4 {plus minus} 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease.

  10. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  11. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  12. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata.

  13. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata. PMID:27097408

  14. Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders

    PubMed Central

    Schumann, Cynthia M.; Bauman, Melissa D.; Amaral, David G.

    2010-01-01

    The amygdala, perhaps more than any other brain region, has been implicated in numerous neuropsychiatric and neurodevelopmental disorders. It is part of a system initially evolved to detect dangers in the environment and modulate subsequent responses, which can profoundly influence human behavior. If its threshold is set too low, normally benign aspects of the environment are perceived as dangers, interactions are limited, and anxiety may arise. If set too high, risk taking increases and inappropriate sociality may occur. Given that many neurodevelopmental disorders involve too little or too much anxiety or too little of too much social interaction, it is not surprising that the amygdala has been implicated in many of them. In this chapter, we begin by providing a brief overview of the phylogeny, ontogeny, and function of the amygdala and then appraise data from neurodevelopmental disorders which suggest amygdala dysregulation. We focus on neurodevelopmental disorders where there is evidence of amygdala dysregulation from postmortem studies, structural MRI analyses or functional MRI. However, the results are often disparate and it is not totally clear whether this is due to inherent heterogeneity or differences in methodology. Nonetheless, the amygdala is a common site for neuropathology in neurodevelopmental disorders and is therefore a potential target for therapeutics to alleviate associated symptoms. PMID:20950634

  15. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  16. Microstructural abnormalities of uncinate fasciculus as a function of impaired cognition in schizophrenia: A DTI study.

    PubMed

    Singh, Sadhana; Singh, Kavita; Trivedi, Richa; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-09-01

    Neuropsychological studies have reported that attention, memory, language, motor and emotion processing are impaired in schizophrenia. It is known that schizophrenia involves structural alterations in the white matter of brain that contribute to the pathophysiology of the disorder. Uncinate fasciculus (UNC), a bundle of white matter fibres, plays an important role in the pathology of this disorder and involved in cognitive functions such as memory, language and emotion processing. Therefore, the present study aimed to investigate microstructural changes in UNC fibre in schizophrenia patients relative to controls and its correlation with neuropsychological scores. Diffusion tensor imaging (DTI) and Hindi version of Penn Computerised Neuropsychological Battery test was performed in 14 schizophrenia patients and 14 controls. DTI measures [fractional anisotropy (FA) and mean diffusivity (MD)] from UNC fibre were calculated and a comparison was made between patients and controls. Pearson's correlation was performed between neuropsychological scores and DTI measures.Schizophrenia patients showed significantly reduced FA values in UNC fibre compared to controls. In schizophrenia patients, a positive correlation of attention, spatial memory, sensorimotor dexterity and emotion with FA was observed. These findings suggest that microstructural changes in UNC fibre may contribute to underlying dysfunction in the cognitive functions associated with schizophrenia. PMID:27581933

  17. Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with autism.

    PubMed

    Christakou, A; Murphy, C M; Chantiluke, K; Cubillo, A I; Smith, A B; Giampietro, V; Daly, E; Ecker, C; Robertson, D; Murphy, D G; Rubia, K

    2013-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato-thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto-striato-parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto-striato-cerebellar dysregulation in ASD.

  18. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    PubMed

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

  19. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. PMID:26559786

  20. [Vascular dementia].

    PubMed

    Peters, N; Dichgans, M

    2010-10-01

    Vascular dementia (VaD) constitutes the second most frequent cause of dementia following Alzheimer's disease (AD). In contrast to AD, VaD encompasses a variety of conditions and dementia mechanisms including multiple and strategic infarcts, widespread white matter lesions and hemorrhages. The diagnosis of VaD is based on the patient history, the clinical evaluation and neuroimaging. Treatment of VaD should account for the underlying vascular condition and is directed towards the control of vascular risk factors and stroke prevention. The need for early diagnosis and preventive treatment has promoted the concept of vascular cognitive impairment (VCI). Harmonization standards for the description and study of VCI have recently been published. A common and distinct subtype of VaD is subcortical ischemic vascular dementia (SIVD) which is related to cerebral small vessel disease. SIVD is clinically characterized by impairment of executive functions and processing speed with relatively preserved memory. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic variant of SIVD, represents an important differential diagnosis and may serve as a model of SIVD.

  1. The effect of acute administration of Vitamin D on micro vascular endothelial function in Caucasians and South Asian Indians

    PubMed Central

    Petrofsky, Jerrold; Alshammari, Faris; Khowailed, Iman Akef; Rodrigues, Sophia; Potnis, Pooja; Akerkar, Siddhesh; Shah, Jinal; Chung, Guyeon; Save, Rakhi

    2013-01-01

    Background Vitamin D is a modulator of the immune system. There is some limited evidence that it also increases local blood flow in response to stress. Material/Methods In the present study, we examined 20 age matched subjects; 10 whom were from India and 10 Caucasians from the United States. Subjects were administered 4000 IU of Vitamin D3 for 3 weeks at breakfast. The function of the endothelial cells was evaluated in 2 ways; first, the response to 4 minutes of vascular occlusion was measured with a laser Doppler flow meter and second, the blood flow response to local heat at 42°C for 6 minutes. Results The results of the experiments showed that, as reported previously, the endothelial function in people from India was less than their Caucasian counterparts. The blood flow response to heat was reduced after 3 weeks administration of vitamin D in both groups and the response to vascular occlusion in the Caucasian group. But there was only a 20% reduction in the blood flow response to heat in the Caucasian group and a 50% reduction in the group from India. Conclusions Thus acute doses of vitamin D may increase vascular tone and reduce blood flow to tissue during stressors. Dosages administered for a longer duration may have beneficial effects on endothelial function but this was not examined here. PMID:23917403

  2. PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis.

    PubMed

    Zhang, Hao; Wang, Zheng; Feng, Shou-Jie; Xu, Lei; Shi, He-Xian; Chen, Li-Li; Yuan, Guang-Da; Yan, Wei; Zhuang, Wei; Zhang, Yi-Qian; Zhang, Zhong-Ming; Dong, Hong-Yan

    2015-03-11

    Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF's effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size.

  3. Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends.

    PubMed

    Humeau-Heurtier, A; Guerreschi, E; Abraham, P; Mahé, G

    2013-03-01

    In clinical and research applications, the assessment of vascular function has become of major importance to evaluate and follow the evolution of cardiovascular pathologies, diabetes, hypertension, or foot ulcers. Therefore, the development of engineering methodologies able to monitor noninvasively blood vessel activities-such as endothelial function-is a significant and emerging challenge. Laser-based techniques have been used to respond-as much as possible-to these requirements. Among them, laser Doppler flowmetry (LDF) and laser Doppler imaging (LDI) were proposed a few decades ago. They provide interesting vascular information but possess drawbacks that prevent an easy use in some clinical situations. Recently, the laser speckle contrast imaging (LSCI) technique, a noninvasive camera-based tool, was commercialized and overcomes some of the LDF and LDI weaknesses. Our paper describes how-using engineering methodologies-LDF, LDI, and LSCI can meet the challenging clinician needs in assessing vascular function, with a special focus on the state of the art and future trends.

  4. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients.

    PubMed

    Houston, Mark; Hays, Laurie

    2014-07-01

    This blinded placebo-controlled crossover study evaluated the acute effects of an orally disintegrating lozenge that generates nitric oxide (NO) in the oral cavity on blood pressure (BP) response, endothelial function, and vascular compliance in unmedicated hypertensive patients. Thirty patients with clinical hypertension were recruited and enrolled in a blinded placebo-controlled clinical trial in an outpatient setting. Average baseline BP in 30 patients was 144±3/91±1 mm Hg. NO supplementation resulted in a significant decrease of 4 mm Hg in resting systolic BP (P<.003) and a significant decrease of 5 mm Hg in diastolic BP (P<.002) from baseline and placebo after 20 minutes. In addition, there was a further statistically significant reduction by 6 mm Hg in both systolic and diastolic pressure after 60 minutes (P<.0001 vs baseline). After a half hour of a single dose, there was a significant improvement in vascular compliance as measured by augmentation index and, after 4 hours, a statistically significant improvement in endothelial function as measured by the EndoPAT (Itamar Medical, Franklin, MA). A single administration of an oral active NO supplement appears to acutely lower BP, improve vascular compliance, and restore endothelial function in patients with hypertension. PMID:24962851

  5. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth.

  6. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth. PMID:24568877

  7. Dynamic testing of hypothalamic-pituitary function in abnormalities of ovulation.

    PubMed

    Jones, G E; Wentz, A C; Rosenwaks, Z; Shoemaker, J

    1977-12-01

    A review of 26 unusual patients indicates that a combined luteinizing hormone-releasing hormone (LRH)-clomiphene test in conjunction with an estrogen provocation test not only was helpful in identifying underlying pathophysiology of anovulation but also proved useful in the clinical management of the patients. Dynamic testing per se does not establish a diagnosis but, in conjunction with history and other laboratory findings, it does make possible further subdivisions of groups of patients who otherwise appear similar, both clinically and from routine laboratory evaluations. It, therefore, tends to pinpoint a lesion and establish the area in which further tests should be made. It is concluded that the value of such investigations will be more evident as gynecologic endocrinology moves into investigation of the supratentorial control of hypothalamic function and as hypothalamic LRH becomes available as a therapeutic agent.

  8. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome

    PubMed Central

    Zhang, Xuan; Dai, Rongxin; Li, Wenyan; Zhao, Hongyi; Zhang, Yongjie; Zhou, Lina; Du, Hongqiang; Luo, Guangjin; Wu, Junfeng; Niu, Linlin; An, Yunfei; Zhang, Zhiyong; Ding, Yuan; Song, Wenxia; Liu, Chaohong

    2016-01-01

    Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4+ T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4+ T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6+ Tfh cells, but the frequency of ICOS+ Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS+ Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS+ Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4+ naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6. PMID:27170596

  9. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  10. Abnormal affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study.

    PubMed

    Xiao, Lin; Bechara, Antoine; Gong, Qiyong; Huang, Xiaoqi; Li, Xiangrui; Xue, Gui; Wong, Savio; Lu, Zhong-Lin; Palmer, Paula; Wei, Yonglan; Jia, Yong; Johnson, C Anderson

    2013-06-01

    The goal of this study was to investigate the neural correlates of affective decision making, as measured by the Iowa Gambling Task (IGT), which are associated with adolescent binge drinking. Fourteen adolescent binge drinkers (16-18 years of age) and 14 age-matched adolescents who had never consumed alcohol--never drinkers--were recruited from local high schools in Chengdu, China. Questionnaires were used to assess academic performance, drinking experience, and urgency. Brain regions activated by the IGT performance were identified with functional magnetic resonance imaging. Results showed that, compared to never drinkers, binge drinkers performed worse on the IGT and showed higher activity in the subcomponents of the decision-making neural circuitry implicated in the execution of emotional and incentive-related behaviors, namely, the left amygdala and insula bilaterally. Moreover, measures of the severity of drinking problems in real life, as well as high urgency scores, were associated with increased activity within the insula, combined with decreased activity within the orbitofrontal cortex. These results suggest that hyperreactivity of a neural system implicated in the execution of emotional and incentive-related behaviors can be associated with socially undesirable behaviors, such as binge drinking, among adolescents. These findings have social implications because they potentially reveal underlying neural mechanisms for making poor decisions, which may increase an individual's risk and vulnerability for alcoholism.

  11. Abnormal gastric morphology and function in CCK-B/gastrin receptor-deficient mice.

    PubMed Central

    Rindi, G.; Langhans, N.; Rehfeld, J. F.; Beinborn, M.; Kopin, A. S.

    1998-01-01

    Mice lacking the cholecystokinin (CCK)-B/gastrin receptor have been generated by targeted gene disruption. The roles of this receptor in controlling gastric acid secretion and gastric mucosal growth have been assessed. The analysis of homozygous mutant mice vs. wild type included measurement of basal gastric pH, plasma gastrin concentrations as well as quantification of gastric mucosal cell types by immunohistochemistry. Mutant mice exhibited a marked increase in basal gastric pH (from 3.2 to 5.2) and about a 10-fold elevation in circulating carboxyamidated gastrin compared with wild-type controls. Histologic analysis revealed a decrease in both parietal and enterochromaffin-like (ECL) cells, thus explaining the reduction in acid output. Consistent with the elevation in circulating gastrin, antral gastrin cells were increased in number while somatostatin cells were decreased. These data support the importance of the CCK-B/gastrin receptor in maintaining the normal cellular composition and function of the gastric mucosa. Images Figure 1 Figure 2 Figure 3 PMID:10461365

  12. Abnormal pituitary-gonadal axis may be responsible for rat decreased testicular function under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tan, Xin; Zhu, Bao-an; Qi, Meng-di; Ding, Su-ling

    Space flight and simulated microgravity lead to suppression of mammalian spermatogenesis and decreased plasma testosterone level. In order to explain the mechanism behind the depression, we used rat tail-suspended model to simulate weightless conditions. To prevent cryptorchidism caused by tail-suspension, some experimental animals received inguinal canal ligation. The results showed that mass of testis decreased significantly and seminiferous tubules became atrophied in rats after tail-suspension. The levels of plasma testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in tail-suspended rats with or without inguinal canal ligation decreased significantly compared with controls, and an increased level of plasma estradiol (E) was revealed in tail-suspended rats. The results indicate that besides the direct influence of fluid shift upon testis under short-term simulated microgravity, the pituitary function is also disturbed as a result of either immobilization stress or weight loss during tail-suspension treatment, which is responsible to some extent for the decreased testosterone secretion level and the atrophia of testis. The conversion of testosterone into E under simulated microgravity is another possible cause for the decline of plasma testosterone.

  13. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine.

    PubMed

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Matos, Manuel E; Volek, Jeff S; Bruno, Richard S

    2011-11-01

    Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function. PMID:21940510

  14. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.

    PubMed

    Gupta, Prerak; Kumar, Manishekhar; Bhardwaj, Nandana; Kumar, Jadi Praveen; Krishnamurthy, C S; Nandi, Samit Kumar; Mandal, Biman B

    2016-06-29

    Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation. PMID:27269821

  15. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine.

    PubMed

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Matos, Manuel E; Volek, Jeff S; Bruno, Richard S

    2011-11-01

    Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function.

  16. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  17. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  18. Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    PubMed Central

    Cohen, Helen S.; Cox, Christopher; Springer, Gayle; Hoffman, Howard J.; Young, Mary A.; Margolick, Joseph B.; Plankey, Michael W.

    2012-01-01

    Background Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. Methods Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. Results No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. Conclusion These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions. PMID:22675462

  19. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    PubMed

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing.

  20. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  1. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  2. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    PubMed

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. PMID:26808221

  3. Unique functional abnormalities in youth with combined marijuana use and depression: an FMRI study.

    PubMed

    Ford, Kristen A; Wammes, Michael; Neufeld, Richard W; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform

  4. Unique Functional Abnormalities in Youth with Combined Marijuana Use and Depression: An fMRI Study

    PubMed Central

    Ford, Kristen A.; Wammes, Michael; Neufeld, Richard W.; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A.

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform

  5. Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics.

    PubMed

    McCrory, E; Frith, U; Brunswick, N; Price, C

    2000-09-01

    Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech. PMID:11054918

  6. Association of Abnormal Liver Function Parameters with HIV Serostatus and CD4 Count in Antiretroviral-Naive Rwandan Women

    PubMed Central

    Hoover, Donald R.; Shi, Qiuhu; Mutimura, Eugene; Rudakemwa, Emmanuel; Ndacyayisenga, Victorien; Gakindi, Léonard; Mulvihill, Michael; Sinayobye, Jean D'Amour; Musabeyezu, Emmanuel; Anastos, Kathryn

    2015-01-01

    Abstract We determined the associations of HIV infection/CD4 count with markers of hepatocellular damage [elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] and liver synthetic function (decreased albumin) in HIV-infected (HIV+) antiretroviral therapy (ART)-naive and uninfected (HIV−) Rwandan women. In 2005, 710 HIV+ ART-naive and 226 HIV− women enrolled in the Rwanda Women's Interassociation Study and Assessment. Liver enzymes were measured with abnormality defined as either AST or ALT ≥1.25 times the upper limit of normal. Low serum albumin level was defined as <3.5 g/dl. Multivariable logistic regression analysis identified independent predictors of elevated AST/ALT and low serum albumin. HIV− women had the lowest prevalence (6.6%) of abnormal AST/ALT, with the highest prevalence (16.4%) in HIV+ women with CD4 <200 cells/μl (p=0.01). The odds of having serum albumin <3.5 g/dl was 5.7-fold higher in HIV+ than HIV− women (OR=5.68, 95% CI: 3.32–9.71). The risk of low albumin decreased from low to high CD4 count, with OR=2.62, 95% CI: 1.66, 4.14 and OR=1.57, 95% CI: 1.01, 2.43 in HIV+ women with a CD4 count <200 and 200–350 cells/μl, respectively vs. HIV+ with CD4 >350 (p<0.001 and p<0.05 for all comparisons). Our findings suggest that HIV-associated liver damage may occur in ART-naive patients. Although liver abnormality prevalences in this cohort of HIV-infected Rwandan women are less than reported in developed countries, caution is needed for risk assessment measures to monitor and screen HIV-infected patients pre- and post-ART initiation in African clinical settings to curtail potential risks associated with HIV infection. PMID:25924728

  7. Abnormal Functional Specialization within Medial Prefrontal Cortex in High-Functioning Autism: A Multi-Voxel Similarity Analysis

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Meuwese, Julia D. I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in "decoding" mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males)…

  8. Endogenous heme oxygenase prevents impairment of cerebral vascular functions caused by seizures.

    PubMed

    Carratu, Pierluigi; Pourcyrous, Massroor; Fedinec, Alex; Leffler, Charles W; Parfenova, Helena

    2003-09-01

    In newborn pigs, the mechanism of seizure-induced cerebral hyperemia involves carbon monoxide (CO), the vasodilator product of heme catabolism by heme oxygenase (HO). We hypothesized that seizures cause cerebral vascular dysfunction when HO activity is inhibited. With the use of cranial window techniques, we examined cerebral vascular responses to endothelium-dependent (hypercapnia and bradykinin) and endothelium-independent (isoproterenol and sodium nitroprusside) dilators during the recovery from bicuculline-induced seizures in saline controls and in animals pretreated with a HO inhibitor, tin protoporphyrin (SnPP). SnPP (3 mg/kg iv) blocked dilation to heme and reduced the CO level in cortical periarachnoid cerebrospinal fluid, indicating HO inhibition in the cerebral microcirculation. In saline control piglets, seizures increased the CO level, which correlated with the time-dependent cerebral vasodilation; during the recovery (2 h after seizure induction), responses to all vasodilators were preserved. In SnPP-treated animals, cerebral vasodilation and the CO responses to seizures were greatly reduced, and cerebral vascular reactivity was severely impaired during the recovery. These findings suggest that HO in the cerebral microcirculation is rapidly activated during seizures and provides endogenous protection against seizure-induced vascular injury.

  9. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction.

  10. Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics.

    PubMed

    Nahrendorf, Matthias; Streif, Jörg U; Hiller, Karl-Heinz; Hu, Kai; Nordbeck, Peter; Ritter, Oliver; Sosnovik, David; Bauer, Lisa; Neubauer, Stefan; Jakob, Peter M; Ertl, Georg; Spindler, Matthias; Bauer, Wolfgang R

    2006-06-01

    A decrease in the supply of ATP from the creatine kinase (CK) system is thought to contribute to the evolution of heart failure. However, previous studies on mice with a combined knockout of the mitochondrial and cytosolic CK (CK(-/-)) have not revealed overt left ventricular dysfunction. The aim of this study was to employ novel MRI techniques to measure maximal myocardial velocity (V(max)) and myocardial perfusion and thus determine whether abnormalities in the myocardial phenotype existed in CK(-/-) mice, both at baseline and 4 wk after myocardial infarction (MI). As a result, myocardial hypertrophy was seen in all CK(-/-) mice, but ejection fraction (EF) remained normal. V(max), however, was significantly reduced in the CK(-/-) mice [wild-type, 2.32 +/- 0.09 vs. CK(-/-), 1.43 +/- 0.16 cm/s, P < 0.05; and wild-type MI, 1.53 +/- 0.11 vs. CK(-/-) MI, 1.26 +/- 0.11 cm/s, P = not significant (NS), P < 0.05 vs. baseline]. Myocardial perfusion was also lower in the CK(-/-) mice (wild-type, 6.68 +/- 0.27 vs. CK(-/-), 4.12 +/- 0.63 ml/g.min, P < 0.05; and wild-type MI, 3.97 +/- 0.65 vs. CK(-/-) MI, 3.71 +/- 0.57 ml/g.min, P = NS, P < 0.05 vs. baseline), paralleled by a significantly reduced capillary density (histology). In conclusion, myocardial function in transgenic mice may appear normal when only gross indexes of performance such as EF are assessed. However, the use of a combination of novel MRI techniques to measure myocardial perfusion and mechanics allowed the abnormalities in the CK(-/-) phenotype to be detected. The myocardium in CK-deficient mice is characterized by reduced perfusion and reduced maximal contraction velocity, suggesting that the myocardial hypertrophy seen in these mice cannot fully compensate for the absence of the CK system.

  11. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  12. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women

    PubMed Central

    Yasuda, Tomohiro; Fukumura, Kazuya; Tomaru, Takanobu; Nakajima, Toshiaki

    2016-01-01

    We examined the effect of elastic band training with blood flow restriction (BFR) on thigh muscle size and vascular function in older women. Older women were divided into three groups: low-intensity elastic band BFR training (BFR-Tr, n = 10), middleto high-intensity elastic band training (MH-Tr, n = 10), and no training (Ctrl, n = 10) groups. BFR-Tr and MH-Tr groups performed squat and knee extension exercises using elastic band, 2 days/week for 12 weeks. During BFR-Tr exercise session, subjects wore pressure cuffs around the most proximal region of both thighs. The following measurements were taken before (pre) and 3-5 days after (post) the final training session: MRI-measured muscle cross-sectional area (CSA) at mid-thigh, maximum voluntary isometric contraction (MVIC) of knee extension, central systolic blood pressure (c-SBP), central-augmentation index (c-AIx), cardio-ankle vascular index testing (CAVI), ankle-brachial pressure index (ABI). Quadriceps muscle CSA (6.9%) and knee extension MVIC (13.7%) were increased (p < 0.05) in the BFR-Tr group, but not in the MH-Tr and the Ctrl groups. Regarding c-SBP, c-AIx, CAVI and ABI, there were no changes between pre- and post- results among the three groups. Elastic band BFR training increases thigh muscle CSA as well as maximal muscle strength, but does not decrease vascular function in older women. PMID:27244884

  13. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

    PubMed

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J; Gray, Calum D; Hadoke, Patrick W F; Mitchell, Rod T; O'Shaughnessy, Peter J; Smith, Lee B

    2016-06-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship.

  14. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.

    PubMed Central

    Sabina, R L; Swain, J L; Olanow, C W; Bradley, W G; Fishbein, W N; DiMauro, S; Holmes, E W

    1984-01-01

    To assess the role of the purine nucleotide cycle in human skeletal muscle function, we evaluated 10 patients with AMP deaminase deficiency (myoadenylate deaminase deficiency; MDD). 4 MDD and 19 non-MDD controls participated in an exercise protocol. The latter group was composed of a patient cohort (n = 8) exhibiting a constellation of symptoms similar to those of the MDD patients, i.e., postexertional aches, cramps, and pains; as well as a cohort of normal, unconditioned volunteers (n = 11). The individuals with MDD fatigued after performing only 28% as much work as their non-MDD counterparts. Muscle biopsies were obtained from the four MDD patients and the eight non-MDD patients at rest and following exercise to the point of fatigue. Creatine phosphate content fell to a comparable extent in the MDD (69%) and non-MDD (52%) patients at the onset of fatigue. Following exercise the 34% decrease in ATP content of muscle from the non-MDD subjects was significantly greater than the 6% decrease in ATP noted in muscle from the MDD patients (P = 0.048). Only one of four MDD patients had a measurable drop in ATP compared with seven of eight non-MDD patients. At end-exercise the muscle content of inosine 5'-monophosphate (IMP), a product of AMP deaminase, was 13-fold greater in the non-MDD patients than that observed in the MDD group (P = 0.008). Adenosine content of muscle from the MDD patients increased 16-fold following exercise, while there was only a twofold increase in adenosine content of muscle from the non-MDD patients (P = 0.028). Those non-MDD patients in whom the decrease in ATP content following exercise was measurable exhibited a stoichiometric increase in IMP, and total purine content of the muscle did not change significantly. The one MDD patient in whom the decrease in ATP was measurable, did not exhibit a stoichiometric increase in IMP. Although the adenosine content increased 13-fold in this patient, only 48% of the ATP catabolized could be accounted for

  15. Association of digital vascular function with cardiovascular risk factors: a population study

    PubMed Central

    Kuznetsova, Tatiana; Van Vlierberghe, Eline; Knez, Judita; Szczesny, Gregory; Thijs, Lutgarde; Jozeau, Dominique; Balestra, Costantino; D'hooge, Jan; Staessen, Jan A

    2014-01-01

    Objectives Vasodilation of the peripheral arteries during reactive hyperaemia depends in part on release of nitric oxide from endothelial cells. Previous studies mainly employed a fingertip tonometric device to derive pulse wave amplitude (PWA) and PWA hyperaemic changes. An alternative approach is based on photoplethysmography (PPG). We sought to evaluate the correlates of digital PPG PWA hyperaemic responses as a measure of peripheral vascular function. Design The Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO) is a population-based cohort study. Setting Respondents were examined at one centre in northern Belgium. Participants For this analysis, our sample consisted of 311 former participants (53.5% women; mean age 52.6 years; 43.1% hypertensive), who were examined from January 2010 until March 2012 (response rate 85.1%). Primary outcome measures Using a fingertip PPG device, we measured digital PWA at baseline and at 30 s intervals for 4 min during reactive hyperaemia induced by a 5 min forearm cuff occlusion. We performed stepwise regression to identify correlates of the hyperaemic response ratio for each 30 s interval after cuff deflation. Results The maximal hyperaemic response was detected in the 30–60 s interval. The explained variance for the PPG PWA ratio ranged from 9.7% at 0–30 s interval to 22.5% at 60–90 s time interval. The hyperaemic response at each 30 s interval was significantly higher in women compared with men (p≤0.001). The PPG PWA changes at 0–90 s intervals decreased with current smoking (p≤0.0007) and at 0–240 s intervals decreased with higher body mass index (p≤0.035). These associations with sex, current smoking and body mass index were mutually independent. Conclusions Our study is the first to implement the new PPG technique to measure digital PWA hyperaemic changes in a general population. Hyperaemic response, as measured by PPG, is inversely associated with traditional

  16. γ-Tocopherol-rich supplementation additively improves vascular endothelial function during smoking cessation.

    PubMed

    Mah, Eunice; Pei, Ruisong; Guo, Yi; Ballard, Kevin D; Barker, Tyler; Rogers, Victoria E; Parker, Beth A; Taylor, Alan W; Traber, Maret G; Volek, Jeff S; Bruno, Richard S

    2013-12-01

    Oxidative stress and inflammation persist years after smoking cessation thereby limiting the restoration of vascular endothelial function (VEF). Although short-term smoking cessation improves VEF, no studies have examined co-therapy of antioxidants in combination with smoking cessation to improve VEF. We hypothesized that improvements in γ-tocopherol (γ-T) status during smoking cessation would improve VEF beyond that from smoking cessation alone by decreasing oxidative stress and proinflammatory responses. A randomized, double-blind, placebo-controlled study was conducted in otherwise healthy smokers (22 ± 1 years; mean ± SEM) who quit smoking for 7 days with placebo (n=14) or γ-T-rich supplementation (n=16; 500 mg γ-T/day). Brachial artery flow-mediated dilation (FMD), cotinine, and biomarkers of antioxidant status, oxidative stress, and inflammation were measured before and after 7 days of smoking cessation. Smoking cessation regardless of supplementation similarly decreased plasma cotinine, whereas γ-T-rich supplementation increased plasma γ-T by seven times and its urinary metabolite γ-carboxyethyl hydroxychroman by nine times (P<0.05). Smoking cessation with γ-T-rich supplementation increased FMD responses by 1.3% (P<0.05) beyond smoking cessation alone (4.1 ± 0.6% vs 2.8 ± 0.3%; mean ± SEM). Although plasma malondialdehyde decreased similarly in both groups (P<0.05), plasma oxidized LDL and urinary F2-isoprostanes were unaffected by smoking cessation or γ-T-rich supplementation. Plasma TNF-α and myeloperoxidase decreased (P<0.05) only in those receiving γ-T-rich supplements and these were inversely related to FMD (P<0.05; R=-0.46 and -0.37, respectively). These findings demonstrate that short-term γ-T-rich supplementation in combination with smoking cessation improved VEF beyond that from smoking cessation alone in young smokers, probably by decreasing the proinflammatory mediators TNF-α and myeloperoxidase.

  17. Leukocyte Subtype Counts and Its Association with Vascular Structure and Function in Adults with Intermediate Cardiovascular Risk. MARK Study

    PubMed Central

    Gomez-Sanchez, Leticia; García-Ortiz, Luis; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Agudo-Conde, Cristina; Rigo, Fernando; Ramos, Rafel; Martí, Ruth; Gomez-Marcos, Manuel A.

    2015-01-01

    Objectives We investigated the relationship between leukocyte subtype counts and vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central augmentation index and cardio-ankle vascular index by gender in intermediate cardiovascular risk patients. Methods This study analyzed 500 subjects who were included in the MARK study, aged 35 to 74 years (mean: 60.3±8.4), 45.6% women. Measurement: Brachial ankle Pulse Wave Velocity (ba-PWV) estimate by equation, Cardio-AnkleVascular Index (CAVI) using the VaSera device and Carotid ultrasound was used to measure carotid Intima Media Thickness (IMT). The Mobil-O-Graph was used to measure the Central Augmentation Index (CAIx). Results Total leukocyte, neutrophil and monocyte counts were positively correlated with IMT (p < 0.01) in men. Monocyte count was positively correlated with CAIx in women (p < 0.01). In a multiple linear regression analysis, the IMT mean maintained a positive association with the neutrophil count (β = 1.500, p = 0.007) in men. CAIx maintained a positive association with the monocyte count (β = 2.445, p = 0.022) in women. Conclusion The results of this study suggest that the relationship between subtype circulating leukocyte counts and vascular structure and function, although small, may be different by gender. In men, the neutrophil count was positively correlated with IMT and in women, the monocyte count with CAIx, in a large sample of intermediate-risk patients. These association were maintained after adjusting for age and other confounders. Trial Registration ClinicalTrials.gov NCT01428934 PMID:25885665

  18. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  19. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    PubMed

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.

  20. Dietary flavonoids and nitrate: effects on nitric oxide and vascular function.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Ward, Natalie; Considine, Michael J; Hodgson, Jonathan M

    2015-04-01

    Emerging evidence highlights dietary flavonoids and nitrate as candidates that may explain at least part of the cardioprotective effect of a fruit and vegetable diet. Nitric oxide plays a pivotal role in cardiovascular health. Components of a fruit and vegetable diet that are cardioprotective, in part through effects on nitric oxide status, could substantially reduce the cardiovascular risk profile of the general population with increased intake of such a diet. Epidemiological evidence suggests that dietary flavonoids and nitrate have a cardioprotective effect. Clinical trials with flavonoid- and nitrate-rich foods have shown benefits on measures of vascular health. While the molecular mechanisms by which flavonoids and nitrate are cardioprotective are not completely understood, recent evidence suggests both nonspecific and specific effects through nitric oxide pathways. This review presents an overview of nitric oxide and its key role in cardiovascular health and discusses the possible vascular benefits of flavonoids and nitrate, individually and in combination, through effects on nitric oxide status.

  1. Vascular Function, Cerebral Cortical Thickness, and Cognitive Performance in Middle-Aged Hispanic and Non-Hispanic Caucasian Adults

    PubMed Central

    Pasha, Evan; Kaur, Sonya S.; Gonzales, Mitzi M.; Machin, Daniel R.; Kasischke, Kennon; Tanaka, Hirofumi; Haley, Andreana P.

    2015-01-01

    Hispanics are at increased risk of acquiring cardiovascular risk factors that contribute to cognitive dysfunction. To compare indices of vascular health to measures of cerebral gray matter integrity, 60 middle-aged Hispanic and non-Hispanic Caucasian participants were matched across age, gender, years of education, and mental status. Arterial stiffness was characterized via β-stiffness index and carotid-femoral pulse-wave velocity, and magnetic resonance imaging estimated cortical thickness in a priori regions of interest known to be susceptible to vascular risk factors. Measures of arterial stiffness were significantly higher in Hispanics than in non-Hispanic Caucasians. Hispanics exhibited thinner left inferior frontal gyrus (LIFG) cortical thickness (p=0.04) with concurrently lower language (p=0.02), memory (p=0.03), and attention-executive functioning (p=0.02). These results suggest that compromised vascular health may occur simultaneously with cortical thinning of the LIFG as an early neuropathological alteration in Hispanics. PMID:25720950

  2. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229

  3. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants

    PubMed Central

    Savage, V. M.; Bentley, L. P.; Enquist, B. J.; Sperry, J. S.; Smith, D. D.; Reich, P. B.; von Allmen, E. I.

    2010-01-01

    Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species. PMID:21149696

  4. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants.

    PubMed

    Savage, V M; Bentley, L P; Enquist, B J; Sperry, J S; Smith, D D; Reich, P B; von Allmen, E I

    2010-12-28

    Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species.

  5. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    NASA Astrophysics Data System (ADS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-11-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has be