Science.gov

Sample records for abnormal vascular function

  1. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage. PMID:26275663

  2. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  3. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA. PMID:24048981

  4. Abnormality on Liver Function Test

    PubMed Central

    2013-01-01

    Children with abnormal liver function can often be seen in outpatient clinics or inpatients wards. Most of them have respiratory disease, or gastroenteritis by virus infection, accompanying fever. Occasionally, hepatitis by the viruses causing systemic infection may occur, and screening tests are required. In patients with jaundice, the tests for differential diagnosis and appropriate treatment are important. In the case of a child with hepatitis B virus infection vertically from a hepatitis B surface antigen positive mother, the importance of the recognition of immune clearance can't be overstressed, for the decision of time to begin treatment. Early diagnosis changes the fate of a child with Wilson disease. So, screening test for the disease should not be omitted. Non-alcoholic fatty liver disease, which is mainly discovered in obese children, is a new strong candidate triggering abnormal liver function. Muscular dystrophy is a representative disease mimicking liver dysfunction. Although muscular dystrophy is a progressive disorder, and early diagnosis can't change the fate of patients, it will be better to avoid parent's blame for delayed diagnosis. PMID:24511518

  5. Ultrasonographic diagnosis of unusual portal vascular abnormalities in two cats.

    PubMed

    McConnell, J F; Sparkes, A H; Ladlow, J; Doust, R; Davies, S

    2006-06-01

    Two cases of ascites secondary to portal vascular abnormalities associated with portal hypertension are described. In the first case a five-month-old cat was presented with recurrent ascites and investigations showed that the underlying cause was a hepatic arteriovenous fistula. Ultrasonography showed direct communication of the coeliac artery and right branch of the portal vein. There was also hepatofugal flow in the main portal vein consistent with portal hypertension. The ultrasonographic features were similar to those seen in dogs with hepatic arteriovenous fistulae. In the second case, ascites, portal hypertension and an intraluminal mass in the main portal vein was diagnosed in a 16-year-old cat that had been presented with hyperthyroidism and hepatomegaly. Acquired portosystemic collaterals involving the left renal vein were present. Additional diagnostic investigations were not permitted. Ultrasonography was useful in both cases to document portal hypertension and the underlying cause. PMID:16761986

  6. Plasma concentrations of endothelin in patients with abnormal vascular reactivity

    SciTech Connect

    Predel, H.G.; Meyer-Lehnert, H.; Baecker, A.; Stelkens, H.; Kramer, H.J. )

    1990-01-01

    We measured circulating concentrations of endothelin in healthy subjects and in patients with abnormal vascular reactivity. Endothelin concentrations were determined by radioimmunoassay after extraction of plasma using Sep-Pak C-18 cartridges in healthy subjects, in patients with diabetes mellitus type I, in patients with mild to moderate essential hypertension and in non-dialyzed patients with stable chronic renal failure. Plasma concentrations were similar in healthy controls, in diabetics and in hypertensive patients averaging 5.0{plus minus}0.6 pg/ml, 4.7{plus minus}0.2 pg/ml and 6.5{plus minus}1.0 pg/ml, respectively. In contrast, plasma concentrations of endothelin were markedly elevated in patients with chronic renal failure averaging 16.6{plus minus}2.9 pg/ml. No correlations were observed between serum creatinine concentrations ranging from 124 to 850 {mu}mol/l or blood pressure and plasma concentrations of endothelin. Bicycle ergometric exercise in six healthy subjects and an acute modest i.v. saline load of 1,000 ml of 0.45% NaCl administered within 60 min in six patients with mild essential hypertension did not affect plasma concentrations of endothelin.

  7. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models.

    PubMed

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-10-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell-pericyte interactions, and in the epithelial-mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  8. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  9. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  10. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  11. Focal 123I-FP-CIT SPECT Abnormality in Midbrain Vascular Parkinsonism

    PubMed Central

    Solla, Paolo; Cannas, Antonino; Arca, Roberta; Fonti, Davide; Orofino, Gianni; Marrosu, Francesco

    2015-01-01

    Cerebrovascular diseases are considered among possible causes of acute/subacute parkinsonism, representing up to 22% of secondary movement disorders. In cases of suspected vascular parkinsonism (VP), dopamine transporter SPECT has been highly recommended to exclude nigrostriatal dopaminergic degeneration. We report the case of a hemiparkinsonism related to a left midbrain infarct with focal lateralized putaminal abnormalities at 123I-FP-CIT SPECT imaging. The asymmetric uptake at dopamine transporter SPECT was different to findings commonly observed in typical PD pattern, because the ipsilateral striatum, in opposite to idiopathic PD, showed normal tracer binding. However, this selective parkinsonism after infarction of the midbrain was responsive to levodopa. In conclusion, we retain that there is a need of more functional imaging studies in VP addressed to a more consistent classification of its different clinical forms and to a better understanding of the adequate pharmacological management. PMID:26550502

  12. Evaluation of abnormal liver function tests.

    PubMed

    Agrawal, Swastik; Dhiman, Radha K; Limdi, Jimmy K

    2016-04-01

    Incidentally detected abnormality in liver function tests is a common situation encountered by physicians across all disciplines. Many of these patients do not have primary liver disease as most of the commonly performed markers are not specific for the liver and are affected by myriad factors unrelated to liver disease. Also, many of these tests like liver enzyme levels do not measure the function of the liver, but are markers of liver injury, which is broadly of two types: hepatocellular and cholestatic. A combination of a careful history and clinical examination along with interpretation of pattern of liver test abnormalities can often identify type and aetiology of liver disease, allowing for a targeted investigation approach. Severity of liver injury is best assessed by composite scores like the Model for End Stage Liver Disease rather than any single parameter. In this review, we discuss the interpretation of the routinely performed liver tests along with the indications and utility of quantitative tests. PMID:26842972

  13. Perceived functional impact of abnormal facial appearance.

    PubMed

    Rankin, Marlene; Borah, Gregory L

    2003-06-01

    Functional facial deformities are usually described as those that impair respiration, eating, hearing, or speech. Yet facial scars and cutaneous deformities have a significant negative effect on social functionality that has been poorly documented in the scientific literature. Insurance companies are declining payments for reconstructive surgical procedures for facial deformities caused by congenital disabilities and after cancer or trauma operations that do not affect mechanical facial activity. The purpose of this study was to establish a large, sample-based evaluation of the perceived social functioning, interpersonal characteristics, and employability indices for a range of facial appearances (normal and abnormal). Adult volunteer evaluators (n = 210) provided their subjective perceptions based on facial physical appearance, and an analysis of the consequences of facial deformity on parameters of preferential treatment was performed. A two-group comparative research design rated the differences among 10 examples of digitally altered facial photographs of actual patients among various age and ethnic groups with "normal" and "abnormal" congenital deformities or posttrauma scars. Photographs of adult patients with observable congenital and posttraumatic deformities (abnormal) were digitally retouched to eliminate the stigmatic defects (normal). The normal and abnormal photographs of identical patients were evaluated by the large sample study group on nine parameters of social functioning, such as honesty, employability, attractiveness, and effectiveness, using a visual analogue rating scale. Patients with abnormal facial characteristics were rated as significantly less honest (p = 0.007), less employable (p = 0.001), less trustworthy (p = 0.01), less optimistic (p = 0.001), less effective (p = 0.02), less capable (p = 0.002), less intelligent (p = 0.03), less popular (p = 0.001), and less attractive (p = 0.001) than were the same patients with normal facial

  14. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats.

    PubMed

    Chen, Shiu-Jen; Li, Shaio-Yun; Shih, Chih-Chin; Liao, Mei-Huei; Wu, Chin-Chen

    2010-05-01

    Calcium plays an important role in determining vascular smooth muscle tone. Norepinephrine (NE)-induced vascular contraction contains two components: 1) Ca2+ release from the sarcoplasmic reticulum as the fast phase and 2) Ca2+ influx via a voltage-dependent calcium channel as the slow phase. This study used functional isometric tension recording to evaluate mediators contributing to abnormal NE-induced Ca2+ handling and reactivity in isolated thoracic aortas from septic rats. Sepsis was induced by cecal ligation and puncture (CLP), and thoracic aortas were removed at 18 h after CLP. Our results showed that rats that received CLP for 18 h manifested severe hypotension and vascular hyporeactivity to NE in vivo. This vascular hyporeactivity to NE was also observed in the aorta obtained from CLP-induced sepsis rat. Both the fast and slow phases of NE-induced contraction were reduced in aortas from sepsis rats. To clarify what possible mediators contribute to the abnormal Ca2+ handling in aortas from sepsis animals, inhibitors of Ca2+ channel and release were used. Inhibition by 2-aminoethoxy-diphenyl borane, ryanodine, and cyclopiazonic acid of the NE-induced contraction in Ca2+-free solution was greater in the aorta from sepsis rats and inhibitions of cyclopiazonic acid and ryanodine, but not of 2-aminoethoxy-diphenyl borane, were attenuated by NOS inhibitor N[omega]-nitro-l-arginine methyl ester. In addition, the attenuation of NE-induced contraction by nifedipine in the aorta was also greater in the CLP group. Our results suggest that abnormal NE-induced Ca2+ handling associated with vascular hyporeactivity in the CLP-induced sepsis is caused by a major decrease in sarcoplasmic reticulum function and a minor impairment of voltage-dependent Ca2+ channels on membrane to Ca2+ handling, at least, in the aorta, and this could be attributed to an overproduction of NO in sepsis. PMID:19749606

  15. Vascular Function in Alzheimer's Disease and Vascular Dementia.

    PubMed

    Tachibana, Hisatsugu; Washida, Kazuo; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2016-08-01

    We investigated vascular functioning in patients with a clinical and radiological diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) and examined a possible relationship between vascular function and cognitive status. Twenty-seven patients with AD, 23 patients with VaD, and 26 healthy control patients underwent measurements of flow-mediated dilation (FMD), ankle-brachial index (ABI), cardioankle vascular index (CAVI), and intima-media thickness (IMT). The FMD was significantly lower in patients with AD or VaD compared to controls. There were no significant differences in ABI, CAVI, or IMT among the 3 groups. A significant correlation was found between Mini-Mental State Examination (MMSE) scores and FMD. Furthermore, a multiple regression analysis revealed that FMD was significantly predicted by MMSE scores. These results suggest that endothelial involvement plays a role in AD pathogenesis, and FMD may be more sensitive than other surrogate methods (ABI, CAVI, and IMT) for detecting early-stage atherosclerosis and/or cognitive decline. PMID:27284205

  16. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-01

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. PMID:26645582

  17. Major and minor arterial malformations in patients with cutaneous vascular abnormalities.

    PubMed

    Pascual-Castroviejo, Ignacio; Pascual-Pascual, Samuel I; Viaño, Juan; López-Gutierrez, Juan C; Palencia, Rafael

    2010-05-01

    The association of persistent embryonic arteries and the absence of 1 carotid or vertebral arteries with facial or neck hemangioma or vascular malformation have been frequently described. The abnormalities can involve major or minor vessels. Of 22 patients of our series with this neurocutaneous syndrome, 20 had the origin of both anterior cerebral arteries from the same internal carotid artery. Thirteen patients showed absence or hypoplasia of 1 carotid artery and 10 of 1 vertebral artery; 10 showed persistence of the trigeminal artery; 3 had persistent proatlantal artery; 6 showed the absence of the posterior communicating artery; and 4 had hypoplastic posterior cerebral artery. Other less frequent abnormalities were found in 7 patients. Intellectual level of most patients was either borderline or below normal. Abnormalities in the vascularization and perfusion of the frontal lobes may contribute to the borderline or lower mental level of these patients. PMID:19808986

  18. Abnormalities associated with progressive aortic vascular dysfunction in chronic kidney disease

    PubMed Central

    Ameer, Omar Z.; Boyd, Rochelle; Butlin, Mark; Avolio, Alberto P.; Phillips, Jacqueline K.

    2015-01-01

    Increased stiffness of large arteries in chronic kidney disease (CKD) has significant clinical implications. This study investigates the temporal development of thoracic aortic dysfunction in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Animals aged 12 and 18 weeks were studied alongside age-matched Lewis controls (total n = 94). LPK rodents had elevated systolic blood pressure, left ventricular hypertrophy and progressively higher plasma creatinine and urea. Relative to Lewis controls, LPK exhibited reduced maximum aortic vasoconstriction (Rmax) to noradrenaline at 12 and 18 weeks, and to K+ (12 weeks). Sensitivity to noradrenaline was greater in 18-week-old LPK vs. age matched Lewis (effective concentration 50%: 24 × 10−9 ± 78 × 10−10 vs. 19 × 10−8 ± 49 × 10−9, P < 0.05). Endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation was diminished in LPK, declining with age (12 vs. 18 weeks Rmax: 80 ± 8% vs. 57 ± 9% and 92 ± 6% vs. 70 ± 9%, P < 0.05, respectively) in parallel with the decline in renal function. L-Arginine restored endothelial function in LPK, and L-NAME blunted acetylcholine relaxation in all groups. Impaired nitric oxide synthase (NOS) activity was recovered with L-Arginine plus L-NAME in 12, but not 18-week-old LPK. Aortic calcification was increased in LPK rats, as was collagen I/III, fibronectin and NADPH-oxidase subunit p47 (phox) mRNAs. Overall, our observations indicate that the vascular abnormalities associated with CKD are progressive in nature, being characterized by impaired vascular contraction and relaxation responses, concurrent with the development of endothelial dysfunction, which is likely driven by evolving deficits in NO signaling. PMID:26042042

  19. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time. PMID:25571442

  20. Abnormalities of endothelial function in patients with predialysis renal failure

    PubMed Central

    Thambyrajah, J; Landray, M; McGlynn, F; Jones, H; Wheeler, D; Townend, J

    2000-01-01

    BACKGROUND—Endothelial dysfunction plays an important role in the development of atherosclerotic vascular disease, which is the leading cause of mortality in patients with chronic renal failure.
OBJECTIVE—To examine the relation between predialysis renal failure and endothelial function.
DESIGN—Two groups were studied: 80 patients with non-diabetic chronic renal failure and 26 healthy controls, with similar age and sex distributions. Two indices of endothelial function were assessed: high resolution ultrasonography to measure flow mediated endothelium dependent dilatation of the brachial artery following reactive hyperaemia, and plasma concentration of von Willebrand factor. Endothelium independent dilatation was also assessed following sublingual glyceryl trinitrate. The patients were divided into those with and without overt atherosclerotic vascular disease.
RESULTS—Although patients with chronic renal failure had significantly impaired endothelium dependent dilatation compared with controls (median (interquartile range), 2.6% (0.7% to 4.8%) v 6.5% (4.8% to 8.3%); p < 0.001) and increased von Willebrand factor (254 (207 to 294) v 106 (87 to 138) iu/dl; p < 0.001), there was no difference between renal failure patients with and without atherosclerotic vascular disease. Within the chronic renal failure group, endothelium dependent dilatation and von Willebrand factor were similar in patients in the upper and lower quartiles of glomerular filtration rate (2.7% (0.7% to 6.7%) v 2.8% (1.1% to 5.0%); and 255 (205 to 291) v 254 (209 to 292) iu/dl, respectively). Endothelium independent dilatation did not differ between the renal failure or control groups and was also similar in patients with renal failure irrespective of the degree of renal failure or the presence of atherosclerotic vascular disease.
CONCLUSIONS—Endothelial function is abnormal in chronic renal failure, even in patients with mild renal insufficiency and those without

  1. In vitro assessment of mouse fetal abdominal aortic vascular function

    PubMed Central

    Dilworth, Mark R.; Greenwood, Susan L.; Sibley, Colin P.; Wareing, Mark

    2014-01-01

    Fetal growth restriction (FGR) affects 3–8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function. PMID:25056105

  2. Testosterone and Vascular Function in Aging

    PubMed Central

    Lopes, Rhéure A. M.; Neves, Karla B.; Carneiro, Fernando S.; Tostes, Rita C.

    2012-01-01

    Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed. PMID:22514541

  3. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye.

    PubMed

    Jia, Yali; Bailey, Steven T; Hwang, Thomas S; McClintic, Scott M; Gao, Simon S; Pennesi, Mark E; Flaxel, Christina J; Lauer, Andreas K; Wilson, David J; Hornegger, Joachim; Fujimoto, James G; Huang, David

    2015-05-01

    Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities. PMID:25897021

  4. Functional Neuroimaging Abnormalities in Psychosis Spectrum Youth

    PubMed Central

    Wolf, Daniel H.; Satterthwaite, Theodore D.; Calkins, Monica E.; Ruparel, Kosha; Elliott, Mark A.; Hopson, Ryan D.; Jackson, Chad; Prabhakaran, Karthik; Bilker, Warren B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.

    2015-01-01

    Importance The continuum view of the psychosis spectrum (PS) implies that in population-based samples, PS symptoms should be associated with neural abnormalities similar to those found in help-seeking clinical-risk individuals and in schizophrenia. Functional neuroimaging has not previously been applied in large population-based PS samples, and can help understand the neural architecture of psychosis more broadly, and identify brain phenotypes beyond symptomatology that are associated with the extended psychosis phenotype. Objective To examine the categorical and dimensional relationships of PS symptoms to prefrontal hypoactivation during working memory and to amygdala hyperactivation during threat emotion processing. Design The Philadelphia Neurodevelopmental Cohort (PNC) is a genotyped prospectively accrued population-based sample of nearly 10,000 youths, who received a structured psychiatric evaluation and a computerized neurocognitive battery. A subsample of 1,445 subjects underwent neuroimaging including functional magnetic resonance imaging (fMRI) tasks examined here. Setting The PNC is a collaboration between The Children’s Hospital of Philadelphia and the Hospital of the University of Pennsylvania. Participants Youths ages 11–22 years identified through structured interview as having psychosis-spectrum features (PS, n=260), and typically developing comparison subjects without significant psychopathology (TD, n=220). Main Outcomes and Measures Two fMRI paradigms were utilized, a fractal n-back working memory task probing executive system function, and an emotion identification task probing amygdala responses to threatening faces. Results In the n-back task, PS showed reduced activation in executive control circuitry, which correlated with cognitive deficits. During emotion identification, PS demonstrated elevated amygdala responses to threatening facial expressions, which correlated with positive symptom severity. Conclusions and Relevance The pattern of

  5. Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD)

    PubMed Central

    O'Neill, Kalisha D.; Chen, Xianming; Moorthi, Ranjani N.; Gattone, Vincent H.; Allen, Matthew R.; Moe, Sharon M.

    2013-01-01

    Patients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses. Expression of these vascular miRNAs miR-125b, miR-145, and miR-155 was decreased in the thoracic aorta in CKD rats compared to normal rats, with concordant changes in target genes of RUNX2, angiotensin II type I receptor (AT1R), and myocardin. Furthermore, the expression of miR-155 was negatively correlated with the quantity of calcification in the aorta, a process known to be preceded by vascular de-differentiation in these animals. We then examined the mechanisms of miRNA regulation in primary VSMC and found decreased expression of miR-125b, 145, and 155 in VSMC from rats with CKD compared to normal littermates but no alteration in DROSHA or DICER, indicating that the low levels of expression is not due to altered intracellular processing. Finally, overexpression of miR-155 in VSMC from CKD rats inhibited AT1R expression and decreased cellular proliferation supporting a direct effect of miR-155 on VSMC. In conclusion, we have found ex vivo and in vitro evidence for decreased expression of these vascular miRNA in CKD, suggesting that alterations in miRNAs may lead to the synthetic state of VSMC found in CKD. The decreased levels in the circulation may reflect decreased vascular release but more studies are needed to confirm this relationship. PMID:23717629

  6. Diacylglycerol Kinase Inhibition and Vascular Function.

    PubMed

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  7. Poldip2 sustains vascular structure and function

    PubMed Central

    Sutliff, Roy L.; Hilenski, Lula L.; Amanso, Angélica M.; Parastatidis, Ioannis; Dikalova, Anna E.; Hansen, Laura; Datla, Srinivasa Raju; Long, James S.; El-Ali, Alexander M.; Joseph, Giji; Gleason, Rudolph L.; Taylor, W. Robert; Hart, C. Michael; Griendling, Kathy K.; Lassègue, Bernard

    2013-01-01

    Objective Based on previous evidence that polymerase delta interacting protein 2 (Poldip2) increases NADPH oxidase 4 (Nox4) activity in vascular smooth muscle cells (VSMC), we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species (ROS) production and alter vascular function. Approach and Results Because homozygous Poldip2 deletion is lethal, Poldip2+/− mice were employed. Poldip2 mRNA and protein levels were reduced by about 50% in Poldip2+/− aorta, with no change in p22phox, Nox1, Nox2 and Nox4 mRNAs. NADPH oxidase activity was also inhibited in Poldip2+/− tissue. Isolated aortas from Poldip2+/− mice demonstrated impaired phenylephrine and potassium chloride-induced contractions, increased stiffness and reduced compliance, associated with disruption of elastic lamellae and excessive extracellular matrix deposition. Collagen I secretion was elevated in cultured VSMC from Poldip2+/− mice and restored by H2O2 supplementation, suggesting that this novel function of Poldip2 is mediated by reactive oxygen species. Furthermore, Poldip2+/− mice were protected against aortic dilatation in a model of experimental aneurysm, an effect consistent with increased collagen secretion. Conclusions Poldip2 knockdown reduces H2O2 production in vivo, leading to increases in extracellular matrix, greater vascular stiffness and impaired agonist-mediated contraction. Thus, unaltered expression of Poldip2 is necessary for vascular integrity and function. PMID:23825363

  8. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  9. Executive function abnormalities in pathological gamblers

    PubMed Central

    2008-01-01

    Background Pathological gambling (PG) is an impulse control disorder characterized by persistent and maladaptive gambling behaviors with disruptive consequences for familial, occupational and social functions. The pathophysiology of PG is still unclear, but it is hypothesized that it might include environmental factors coupled with a genetic vulnerability and dysfunctions of different neurotransmitters and selected brain areas. Our study aimed to evaluate a group of patients suffering from PG by means of some neuropsychological tests in order to explore the brain areas related to the disorder. Methods Twenty outpatients (15 men, 5 women), with a diagnosis of PG according to DSM-IV criteria, were included in the study and evaluated with a battery of neuropsychological tests: the Wisconsin Card Sorting Test (WCST), the Wechsler Memory Scale revised (WMS-R) and the Verbal Associative Fluency Test (FAS). The results obtained in the patients were compared with normative values of matched healthy control subjects. Results The PG patients showed alterations at the WCST only, in particular they had a great difficulty in finding alternative methods of problem-solving and showed a decrease, rather than an increase, in efficiency, as they progressed through the consecutive phases of the test. The mean scores of the other tests were within the normal range. Conclusion Our findings showed that patients affected by PG, in spite of normal intellectual, linguistic and visual-spatial abilities, had abnormalities emerging from the WCST, in particular they could not learn from their mistakes and look for alternative solutions. Our results would seem to confirm an altered functioning of the prefrontal areas which might provoke a sort of cognitive "rigidity" that might predispose to the development of impulsive and/or compulsive behaviors, such as those typical of PG. PMID:18371193

  10. Novel application of a multiscale entropy index as a sensitive tool for detecting subtle vascular abnormalities in the aged and diabetic.

    PubMed

    Wu, Hsien-Tsai; Lo, Men-Tzung; Chen, Guan-Hong; Sun, Cheuk-Kwan; Chen, Jian-Jung

    2013-01-01

    Although previous studies have shown the successful use of pressure-induced reactive hyperemia as a tool for the assessment of endothelial function, its sensitivity remains questionable. This study aims to investigate the feasibility and sensitivity of a novel multiscale entropy index (MEI) in detecting subtle vascular abnormalities in healthy and diabetic subjects. Basic anthropometric and hemodynamic parameters, serum lipid profiles, and glycosylated hemoglobin levels were recorded. Arterial pulse wave signals were acquired from the wrist with an air pressure sensing system (APSS), followed by MEI and dilatation index (DI) analyses. MEI succeeded in detecting significant differences among the four groups of subjects: healthy young individuals, healthy middle-aged or elderly individuals, well-controlled diabetic individuals, and poorly controlled diabetic individuals. A reduction in multiscale entropy reflected age- and diabetes-related vascular changes and may serve as a more sensitive indicator of subtle vascular abnormalities compared with DI in the setting of diabetes. PMID:23509600

  11. Novel Application of a Multiscale Entropy Index as a Sensitive Tool for Detecting Subtle Vascular Abnormalities in the Aged and Diabetic

    PubMed Central

    Wu, Hsien-Tsai; Lo, Men-Tzung; Chen, Guan-Hong; Sun, Cheuk-Kwan; Chen, Jian-Jung

    2013-01-01

    Although previous studies have shown the successful use of pressure-induced reactive hyperemia as a tool for the assessment of endothelial function, its sensitivity remains questionable. This study aims to investigate the feasibility and sensitivity of a novel multiscale entropy index (MEI) in detecting subtle vascular abnormalities in healthy and diabetic subjects. Basic anthropometric and hemodynamic parameters, serum lipid profiles, and glycosylated hemoglobin levels were recorded. Arterial pulse wave signals were acquired from the wrist with an air pressure sensing system (APSS), followed by MEI and dilatation index (DI) analyses. MEI succeeded in detecting significant differences among the four groups of subjects: healthy young individuals, healthy middle-aged or elderly individuals, well-controlled diabetic individuals, and poorly controlled diabetic individuals. A reduction in multiscale entropy reflected age- and diabetes-related vascular changes and may serve as a more sensitive indicator of subtle vascular abnormalities compared with DI in the setting of diabetes. PMID:23509600

  12. Exercise training improves vascular mitochondrial function.

    PubMed

    Park, Song-Young; Rossman, Matthew J; Gifford, Jayson R; Bharath, Leena P; Bauersachs, Johann; Richardson, Russell S; Abel, E Dale; Symons, J David; Riehle, Christian

    2016-04-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  13. Influence of vascular function and pulsatile hemodynamics on cardiac function.

    PubMed

    Bell, Vanessa; Mitchell, Gary F

    2015-09-01

    Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling. PMID:26164466

  14. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  15. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID

  16. Hemangiomas, angiosarcomas, and vascular malformations represent the signaling abnormalities of pathogenic angiogenesis.

    PubMed

    Arbiser, J L; Bonner, M Y; Berrios, R L

    2009-11-01

    Angiogenesis is a major factor in the development of benign, inflammatory, and malignant processes of the skin. Endothelial cells are the effector cells of angiogenesis, and understanding their response to growth factors and inhibitors is critical to understanding the pathogenesis and treatment of skin disease. Hemangiomas, benign tumors of endothelial cells, represent the most common tumor of childhood. In our previous studies, we have found that tumor vasculature in human solid tumors expresses similarities in signaling to that of hemangiomas, making the knowledge of signaling in hemangiomas widely applicable. These similarities include expression of reactive oxygen, NFkB and akt in tumor vasculature. Furthermore, we have studied malignant vascular tumors, including hemangioendothelioma and angiosarcoma and have shown distinct signaling abnormalities in these tumors. The incidence of these tumors is expected to rise due to environmental insults, such as radiation and lumpectomy for breast cancer, dietary and industrial carcinogens (hepatic angiosarcoma), and chronic ultraviolet exposure and potential Agent Orange exposure. I hypothesize that hemangiomas, angiosarcomas, and vascular malformations represent the extremes of signaling abnormalities seen in pathogenic angiogenesis. PMID:19925405

  17. Impaired Right Ventricular-Pulmonary Vascular Function in Myeloproliferative Neoplasms

    PubMed Central

    Roach, Emir C.; Park, Margaret M.; Tang, W.H. Wilson; Thomas, James D.; Asosingh, Kewal; Kalaycio, Matt; Erzurum, Serpil C.; Farha, Samar

    2014-01-01

    Background Increased bone marrow hemangioblast numbers, alterations in erythroid/myeloid lineages, increased reticulin, and greater circulating bone marrow progenitor cells are present in patients with pulmonary arterial hypertension (PAH). The data suggest that myeloid progenitors contribute to the pathogenesis of PAH, but there is little data on prevalence of pulmonary vascular disease among different forms of myeloid diseases. We hypothesized that there would be a higher prevalence of pulmonary vascular disease in myeloproliferative neoplasms that have high circulating progenitor cells, such as myelofibrosis and chronic myelogenous leukemia (CML), as compared to those with low circulating progenitors, as in aplastic anemia. Methods Patients with myelofibrosis, CML and aplastic anemia who underwent echocardiographic evaluation of cardiac function in preparation for bone marrow transplantation at the Cleveland Clinic between 1997–2012 were identified using electronic medical records for demographic data, blood cell counts, and pulmonary function tests. All echocardiograms were uniformly analyzed in a blinded fashion by an advanced sonographer and cardiologist for measures of right and left ventricular function and estimation of pulmonary vascular disease. Results Gender and race distribution between disease groups were similar. Myelofibrosis [N=19] and aplastic anemia [N=30] had increased right ventricle (RV) wall thickness compared to CML [N=82] [RV Thickness (cm): aplastic anemia 0.7 ± 0.1, CML 0.5 ± 0.1 and myelofibrosis 0.7 ± 0.1; p = 0.02]. Patients with myelofibrosis had higher levels of estimated RV systolic pressure as compared to the other groups [RVSP (mmHg): aplastic anemia 29.9 ± 1.5, CML 26.2 ± 1.1 and myelofibrosis 36.7 ± 3.7; p < 0.01]. Conclusion The findings suggest an important role for myeloid progenitors in maintenance of pulmonary-vascular health, in which abnormal myeloproliferative progenitors are associated with right ventricle

  18. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities.

    PubMed

    Kathuria, Sonam; Mahadevan, Nanjaian; Balakumar, Pitchai

    2013-02-01

    Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating

  19. Mechanisms of Microgravity Effect on Vascular Function

    NASA Technical Reports Server (NTRS)

    Purdy, Ralph E.

    1995-01-01

    The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.

  20. Abnormalities in Hippocampal Functioning with Persistent Pain

    PubMed Central

    Mutso, Amelia A.; Radzicki, Daniel; Baliki, Marwan N.; Huang, Lejian; Banisadr, Ghazal; Centeno, Maria Virginia; Radulovic, Jelena; Martina, Marco; Miller, Richard J.; Apkarian, A. Vania

    2012-01-01

    Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish to contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice in comparison to sham animals exhibited hippocampal 1) reduced extracellular signal-regulated kinase (ERK) expression and phosphorylation, 2) decreased neurogenesis and 3) altered short-term synaptic plasticity. In order to relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared to controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients. PMID:22539837

  1. Retinal Vascular Abnormalities in NEMO-Deficient Mice: An Animal Model for Incontinentia Pigmenti

    PubMed Central

    Oster, Stephen F.; McLeod, D. Scott; Otsuji, T.; Goldberg, Morton F.; Lutty, Gerard A.

    2016-01-01

    The majority of patients with incontinentia pigmenti (IP) have a mutation in the nuclear factor-kappa-β essential modulator (NEMO) gene, and mice with a targeted deletion of NEMO exhibit skin pathology remarkably similar to the human disease. This study characterizes the retinal vascular abnormalities of NEMO-deficient mice, and compares this phenotype to known features of human IP. Nineteen heterozygous NEMO-deficient female mice, ages ranging from post-natal day 8 (P-8) through 6.5 months of life, were studied. Eyes were sectioned and stained either whole or as retinal flat mounts after incubation for enzyme histochemical demonstration of ADPase, which labels the vasculature. With maturation, retinal arteriolar abnormalities became evident at 3 months of age. Global assessment of the retinal vasculature with ADPase staining showed increased arteriolar tortuosity. Microscopic examination of sections of ADPase-incubated retinas revealed arteriolar luminal narrowing due to endothelial cell hypertrophy and increased basement membrane deposition. Venous morphology was normal. This study characterized the histological retinal phenotype of heterozygous NEMO-deficient female mice. Most striking were retinal arteriolar abnormalities, including luminal narrowing, endothelial cell hypertrophy, and basement membrane thickening. Retinal flat mounts revealed arteriolar tortuosity without evidence of vaso-occlusion or neovascularization. PMID:19068214

  2. Image-Based Evaluation of Vascular Function and Hemodynamics

    PubMed Central

    Lee, Jongmin

    2013-01-01

    The noticeable characteristics of the blood vascular structure are the inconsistent viscosity of blood and the stiffness of the vascular wall. If we can control these two factors, we can solve more problems related to hemodynamics and vascular wall function. Understanding the properties of hemodynamics and vascular wall function may provide more information applicable to clinical practice for cardiovascular disease. The bedside techniques evaluating vascular function usually measure indirect parameters. In contrast, some medical imaging techniques provide clear and direct depictions of functional cardiovascular characteristics. In this review, image-based evaluation of hemodynamic and vascular wall functions is discussed from the perspective of blood flow velocity, flow volume, flow pattern, peripheral vascular resistance, intraluminal pressure, vascular wall stress, and wall stiffness. PMID:26587430

  3. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests. PMID:25937082

  4. The functions of TRPP2 in the vascular system

    PubMed Central

    Du, Juan; Fu, Jie; Xia, Xian-ming; Shen, Bing

    2016-01-01

    TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca2+ permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca2+ release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases. PMID:26725733

  5. The functions of TRPP2 in the vascular system.

    PubMed

    Du, Juan; Fu, Jie; Xia, Xian-ming; Shen, Bing

    2016-01-01

    TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca(2+) permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca(2+) release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases. PMID:26725733

  6. An unusual case of vascular abnormality mimicking a lateral meniscal cyst.

    PubMed

    Vergis, A; Maletius, W; Messner, K

    1995-10-01

    An unusual case of a vascular abnormality mimicking a lateral meniscal cyst is reported. The patient was a 31-year-old active sportsman who presented with intermittent pain over the lateral aspect of the left knee joint line, occurring only during activities involving twisting motions such as playing soccer. He did not experience local tenderness or swelling, clicking, locking, or giving way. The magnetic resonance imaging, which was done after a diagnostic arthroscopy with normal intra-articular findings, showed a cyst formation of approximately 4-mm diameter adjacent to the lateral meniscus periphery, but no meniscal tissue degeneration. Exactly at the preoperatively marked site of most intensive pain sensation during twisting motions, surgical exposure showed a venous-aneurysm-like tumor, which was removed. The operation resulted in complete relief of symptoms and undisturbed sporting activities including soccer. PMID:8534307

  7. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications.

    PubMed Central

    Jacobs, A

    1985-01-01

    The myelodysplastic syndromes represent a preleukaemic state in which a clonal abnormality of haemopoietic stem cell is characterised by a variety of phenotypic manifestations with varying degrees of ineffective haemopoiesis. This state probably develops as a sequence of events in which the earliest stages may be difficult to detect by conventional pathological techniques. The process is characterised by genetic changes leading to abnormal control of cell proliferation and differentiation. Expansion of an abnormal clone may be related to independence from normal growth factors, insensitivity to normal inhibitory factors, suppression of normal clonal growth, or changes in the immunological or nutritional condition of the host. The haematological picture is of peripheral blood cytopenias: a cellular bone marrow, and functional abnormalities of erythroid, myeloid, and megakaryocytic cells. In most cases marrow cells have an abnormal DNA content, often with disturbances of the cell cycle: an abnormal karyotype is common in premalignant clones. Growth abnormalities of erythroid or granulocyte-macrophage progenitors are common in marrow cultures, and lineage specific surface membrane markers indicate aberrations of differentiation. Progression of the disorder may occur through clonal expansion or through clonal evolution with a greater degree of malignancy. Current attempts to influence abnormal growth and differentiation have had only limited success. Clinical recognition of the syndrome depends on an acute awareness of the signs combined with the identification of clonal and functional abnormalities. PMID:2999194

  8. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype.

    PubMed

    Shroff, Rukshana; Speer, Thimoteus; Colin, Sophie; Charakida, Marietta; Zewinger, Stephen; Staels, Bart; Chinetti-Gbaguidi, Giulia; Hettrich, Inga; Rohrer, Lucia; O'Neill, Francis; McLoughlin, Eve; Long, David; Shanahan, Catherine M; Landmesser, Ulf; Fliser, Danilo; Deanfield, John E

    2014-11-01

    Endothelial dysfunction begins in early CKD and contributes to cardiovascular mortality. HDL is considered antiatherogenic, but may have adverse vascular effects in cardiovascular disease, diabetes, and inflammatory conditions. The effect of renal failure on HDL properties is unknown. We studied the endothelial effects of HDL isolated from 82 children with CKD stages 2-5 (HDL(CKD)), who were free of underlying inflammatory diseases, diabetes, or active infections. Compared with HDL from healthy children, HDL(CKD) strongly inhibited nitric oxide production, promoted superoxide production, and increased vascular cell adhesion molecule-1 expression in human aortic endothelial cells, and reduced cholesterol efflux from macrophages. The effects on endothelial cells correlated with CKD grade, with the most profound changes induced by HDL from patients on dialysis, and partial recovery observed with HDL isolated after kidney transplantation. Furthermore, the in vitro effects on endothelial cells associated with increased aortic pulse wave velocity, carotid intima-media thickness, and circulating markers of endothelial dysfunction in patients. Symmetric dimethylarginine levels were increased in serum and fractions of HDL from children with CKD. In a longitudinal follow-up of eight children undergoing kidney transplantation, HDL-induced production of endothelial nitric oxide, superoxide, and vascular cell adhesion molecule-1 in vitro improved significantly at 3 months after transplantation, but did not reach normal levels. These results suggest that in children with CKD without concomitant disease affecting HDL function, HDL dysfunction begins in early CKD, progressing as renal function declines, and is partially reversed after kidney transplantation. PMID:24854267

  9. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    PubMed

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients. PMID:27622368

  10. Abnormalities of pulmonary vascular dynamics and inflammation in early progressive systemic sclerosis

    SciTech Connect

    Furst, D.E.; Davis, J.A.; Clements, P.J.; Chopra, S.K.; Theofilopoulos, A.N.; Chia, D.

    1981-11-01

    Abnormalities of pulmonary function were studied in 10 patients with progressive systemic sclerosis (PSS) and 3 control subjects. All underwent 81M krypton lung scanning and total body gallium scanning. Immune complexes were measured by Raji cell radioimmunoassay and polyethylene glycol (PEG) assay. Perfusion scans were abnormal in 7 of 9 patients, and 5 of 9 showed a decrease in pulmonary perfusion after cold challenge. Increased gallium uptake was noted in the lungs of 6 of 9 patients. Krypton scans were normal in the control group. Elevated immune complexes were noted in 8 of 10 patients by the Raji assay and in 5 of 10 with the PEG assay. Efforts to separate patients with PSS into subgroups may lead to a better understanding of and advances in therapy for PSS.

  11. Vascular and cognitive functions associated with cardiovascular disease in the elderly

    PubMed Central

    Cohen, Ronald A.; Poppas, Athena; Forman, Daniel E.; Hoth, Karin F.; Haley, Andreana P.; Gunstad, John; Jefferson, Angela L.; Tate, David F.; Paul, Robert H.; Sweet, Lawrence H.; Ono, Mokato; Jerskey, Beth A.; Gerhard-Herman, Marie

    2009-01-01

    This study examines the relationship between systemic vascular function, neurocognitive performance, and structural brain abnormalities on magnetic resonance imaging (MRI) among geriatric outpatients with treated, stable cardiovascular disease and no history of neurological illness (n = 88, ages 56–85 years). Vascular function was assessed by cardiac ejection fraction and output, sequential systolic and diastolic blood pressures, flow mediated brachial artery reactivity (BAR), and carotid intima media thickness (IMT). White matter hyperintensities (WMH) on MRI were quantified and examined relative to cognitive and vascular function. Principal component analysis revealed two primary vascular components: one associated with cardiac function, the other with atherosclerotic burden/endothelial dysfunction. Both factors were significantly associated with cognitive function and WMH volume. Reduced systolic variability and increased IMT were most strongly related to reduced attention, executive function, and information-processing speed. These findings suggest the possibility that systemic vascular indices may provide proxy measures of cerebrovascular dysfunction and reinforce the importance of achieving greater understanding of interaction between systemic vascular disease and brain dysfunction among elderly people with cardiovascular disease. PMID:18608677

  12. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  13. Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

    PubMed Central

    Kawakami, Tomoko; Puri, Nitin; Sodhi, Komal; Bellner, Lars; Takahashi, Toru; Morita, Kiyoshi; Rezzani, Rita; Oury, Tim D.; Abraham, Nader G.

    2012-01-01

    Heme oxygenase (HO) system is one of the key regulators of cellular redox homeostasis which responds to oxidative stress (ROS) via HO-1 induction. However, recent reports have suggested an inhibitory effect of ROS on HO activity. In light of these conflicting reports, this study was designed to evaluate effects of chronic oxidative stress on HO system and its role in contributing towards patho-physiological abnormalities observed in extracellular superoxide dismutase (EC-SOD, SOD3) KO animals. Experiments were performed in WT and EC-SOD(−/−) mice treated with and without HO inducer, cobalt protoporphyrin (CoPP). EC-SOD(−/−) mice exhibited oxidative stress, renal histopathological abnormalities, elevated blood pressure, impaired endothelial function, reduced p-eNOS, p-AKT and increased HO-1 expression; although, HO activity was significantly (P < 0.05) attenuated along with attenuation of serum adiponectin and vascular epoxide levels (P < 0.05). CoPP, in EC-SOD(−/−) mice, enhanced HO activity (P < 0.05) and reversed aforementioned pathophysiological abnormalities along with restoration of vascular EET, p-eNOS, p-AKT and serum adiponectin levels in these animals. Taken together our results implicate a causative role of insufficient activation of heme-HO-adiponectin system in pathophysiological abnormalities observed in animal models of chronic oxidative stress such as EC-SOD(−/−) mice. PMID:22292113

  14. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  15. Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.

    ERIC Educational Resources Information Center

    Minshew, Nancy J.

    1996-01-01

    This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

  16. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. PMID:26500193

  17. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  18. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts

    PubMed Central

    Glynn, Jeremy J.

    2014-01-01

    The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs. PMID:24004404

  19. Vascular corrosion casting: analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents.

    PubMed

    Van Steenkiste, Christophe; Trachet, Bram; Casteleyn, Christophe; van Loo, Denis; Van Hoorebeke, Luc; Segers, Patrick; Geerts, Anja; Van Vlierberghe, Hans; Colle, Isabelle

    2010-11-01

    Vascular corrosion casting is an established method of anatomical preparation that has recently been revived and has proven to be an excellent tool for detailed three-dimensional (3D) morphological examination of normal and pathological microcirculation. In addition, the geometry provided by vascular casts can be further used to calculate wall shear stress (WSS) in a vascular bed using computational techniques. In the first part of this study, the microvascular morphological changes associated with portal hypertension (PHT) and cirrhosis in vascular casts are described. The second part of this study consists of a quantitative analysis of the WSS in the portal vein in casts of different animal models of PHT and cirrhosis using computational fluid dynamics (CFD). Microvascular changes in the splanchnic, hepatic and pulmonary territory of portal hypertensive and cirrhotic mice are described in detail with stereomicroscopic examination and scanning electron microscopy. To our knowledge, our results are the first to report the vascular changes in the common bile duct ligation cirrhotic model. Calculating WSS using CFD methods is a feasible technique in PHT and cirrhosis, enabling the differentiation between different animal models. First, a dimensional analysis was performed, followed by a CFD calculation describing the spatial and temporal WSS distributions in the portal vein. WSS was significantly different between sham/cirrhotic/pure PHT animals with the highest values in the latter. Up till now, no techniques have been developed to quantify WSS in the portal vein in laboratory animals. This study showed for the first time that vascular casting has an important role not only in the morphological evaluation of animal models of PHT and cirrhosis, but also in defining the biological response of the portal vein wall to hemodynamic changes. CFD in 3D geometries can be used to describe the spatial and temporal variations in WSS in the portal vein and to better understand

  20. Abnormalities of autonomic function in the Lambert Eaton myasthenic syndrome.

    PubMed Central

    Heath, J P; Ewing, D J; Cull, R E

    1988-01-01

    Two cases of Lambert Eaton syndrome unassociated with an underlying malignancy are described. Both had mild autonomic symptoms but markedly abnormal autonomic function tests. These results are suggestive of a widespread defect in cholinergic transmission in addition to that at the skeletal neuromuscular junction. Images PMID:3361337

  1. Vascular precursors: origin, regulation and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this miniseries, we discuss the phenotype, origin, and specialized microenvironment (niche) of distinct populations of stem and progenitor cells that exhibit vascular potential. Their usefulness and effectiveness for clinical therapies are also described. We have learned a great deal about post...

  2. Assessing vascular endothelial function using frequency and rank order statistics

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Tsai; Hsu, Po-Chun; Sun, Cheuk-Kwan; Liu, An-Bang; Lin, Zong-Lin; Tang, Chieh-Ju; Lo, Men-Tzung

    2013-08-01

    Using frequency and rank order statistics (FROS), this study analyzed the fluctuations in arterial waveform amplitudes recorded from an air pressure sensing system before and after reactive hyperemia (RH) induction by temporary blood flow occlusion to evaluate the vascular endothelial function of aged and diabetic subjects. The modified probability-weighted distance (PWD) calculated from the FROS was compared with the dilatation index (DI) to evaluate its validity and sensitivity in the assessment of vascular endothelial function. The results showed that the PWD can provide a quantitative determination of the structural changes in the arterial pressure signals associated with regulation of vascular tone and blood pressure by intact vascular endothelium after the application of occlusion stress. Our study suggests that the use of FROS is a reliable noninvasive approach to the assessment of vascular endothelial degeneration in aging and diabetes.

  3. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  4. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  5. Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in idiopathic interstitial pneumonias

    PubMed Central

    Parra, Edwin Roger; Kairalla, Ronaldo Adib; de Carvalho, Carlos Roberto Ribeiro; Capelozzi, Vera Luiza

    2007-01-01

    Background Vascular remodelling has recently been shown to be a promising pathogenetic indicator in idiopathic interstitial pneumonias (IIPs). Aim To validate the importance of the collagen/elastic system in vascular remodelling and to study the relationships between the collagen/elastic system, survival and the major histological patterns of IIPs. Methods Collagen/elastic system fibres were studied in 25 patients with acute interstitial pneumonia/diffuse alveolar damage, 22 with non‐specific interstitial pneumonia/non‐specific interstitial pneumonia and 55 with idiopathic pulmonary fibrosis/usual interstitial pneumonia. The Picrosirius polarisation method and Weigert's resorcin–fuchsin histochemistry and morphometric analysis were used to evaluate the amount of vascular collagen/elastic system fibres and their association with the histological pattern of IIPs. The association between vascular remodelling and the degree of parenchymal fibrosis in usual interstitial pneumonia (UIP) was also considered. Results The vascular measurement of collagen/elastic fibres was significantly higher in UIP than in the lungs of controls, and in those with diffuse alveolar damage and those with non‐specific interstitial pneumonia. In addition, the increment of collagen/elastic fibres in UIP varied according to the degree and activity of the parenchymal fibrosis. The most important predictors of survival in UIP were vascular remodelling classification and vascular collagen deposition. Conclusion A progressive vascular fibroelastosis occurs in IIP histological patterns, probably indicating evolutionarily adapted responses to parenchymal injury. The vascular remodelling classification and the increase in vascular collagen were related to survival in IIP and possibly play a role in its pathogenesis. Further studies are needed to determine whether this relationship is causal or consequential. PMID:17251318

  6. Exercise and Vascular Function – How Much is too Much?

    PubMed Central

    Durand, Matthew J.; Gutterman, David D.

    2015-01-01

    Exercise is a powerful therapy for preventing the onset and slowing the progression of cardiovascular disease. Increased shear stress during exercise improves vascular homeostasis by both decreasing reactive oxygen species and increasing nitric oxide bioavailability in the endothelium. While these observations are well accepted as they apply to individuals at risk for cardiovascular disease, less is known about how exercise, especially intense exercise, affects vascular function in healthy individuals. This review highlights examples of how vascular function can paradoxically be impaired in otherwise healthy individuals by extreme levels of exercise, with a focus on the causative role that reactive oxygen species play in this impairment. PMID:24873760

  7. ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK

    PubMed Central

    Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand

    2014-01-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291

  8. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  9. A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology

    PubMed Central

    Sandoo, Aamer; Kitas, George D.

    2015-01-01

    The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research. PMID:25741637

  10. Abnormal fronto-striatal functional connectivity in Parkinson's disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Wang, Jiaojian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2016-02-01

    Parkinson's disease (PD) is characterized by the relatively selective depletion of dopamine in the striatum, which consequently leads to dysfunctions in cortico-striatal-thalamic-cortical circuitries. It has been shown that the most common cognitive deficits in PD patients are related to the fronto-striatal circuits. In PD, most previous functional connectivity studies have been performed using seed-based methods to identify the brain regions that are abnormally connected to one or more seeds, but these cannot be used to quantify the interactions between one region and all other regions in a particular network. Functional connectivity degree, which is a measurement that can be used to quantify the functional or structural connectivity of a complex brain network, was adopted in this study to assess the interactions of the fronto-striatal network. Compared to healthy controls, PD patients had significantly decreased total functional connectivity degree for the left putamen and the right globus pallidum in fronto-striatal networks. Additionally, negative correlations between the fronto-pallial functional connectivity degree (i.e., the right globus pallidum with the left middle frontal gyrus, and with the right triangular part of inferior frontal gyrus) and disease duration were observed in PD patients. The results of this study demonstrate that fronto-striatal functional connectivity is abnormal in patients with PD and indicate that these deficits might be the result of motor and cognitive dysfunctions in PD patients. PMID:26724369

  11. Abnormal thyroid function tests in children on ethionamide treatment.

    PubMed

    Thee, S; Zöllner, E W; Willemse, M; Hesseling, A C; Magdorf, K; Schaaf, H S

    2011-09-01

    Ethionamide (ETH) treatment may cause hypothyroidism. Clinical data, serum thyroid stimulating hormone (TSH) and free thyroxine (fT4) levels were retrospectively assessed in 137 children receiving anti-tuberculosis treatment including ETH. Abnormal thyroid function tests (TFTs) were recorded in 79 (58%) children: elevated serum TSH and suppressed fT4 (n = 30), isolated elevated serum TSH (n = 20), isolated low serum fT4 (n = 28) and isolated low TSH (n = 1). The risk for biochemical hypothyroidism was higher for children on regimens including para-aminosalicylic acid and in human immunodeficiency virus infected children. TFT abnormalities are frequent in children on ETH and are mainly due to primary hypothyroidism or euthyroid sick syndrome. PMID:21943844

  12. Associations between Kidney Function and Subclinical Cardiac Abnormalities in CKD

    PubMed Central

    Hsu, Chi-yuan; Li, Yongmei; Mishra, Rakesh K.; Keane, Martin; Rosas, Sylvia E.; Dries, Daniel; Xie, Dawei; Chen, Jing; He, Jiang; Anderson, Amanda; Go, Alan S.; Shlipak, Michael G.

    2012-01-01

    Heart failure is a common consequence of CKD, and it portends high risk for mortality. However, among patients without known heart failure, the associations of different stages of estimated GFR (eGFR) with changes in cardiac structure and function are not well described. Here, we performed a cross-sectional analysis to study these associations among 3487 participants of the Chronic Renal Insufficiency Cohort Study. We estimated GFR using cystatin C. The prevalence of left ventricular hypertrophy (LVH) assessed by echocardiography was 32%, 48%, 57%, and 75% for eGFR categories ≥60, 45–59, 30–44, and <30 ml/min per 1.73 m2, respectively. In fully adjusted multivariable analyses, subjects with eGFR levels of <30 ml/min per 1.73 m2 had twofold higher odds of LVH (OR=2.20, 95% CI=1.40–3.40; P<0.001) relative to subjects with eGFR≥60 ml/min per 1.73 m2. This reduction in kidney function also significantly associated with abnormal LV geometry but not diastolic or systolic dysfunction. An eGFR of 30–44 ml/min per 1.73 m2 also significantly associated with LVH and abnormal LV geometry compared with eGFR≥60 ml/min per 1.73 m2. In summary, in this large CKD cohort, reduced kidney function associated with abnormal cardiac structure. We did not detect significant associations between kidney function and systolic or diastolic function after adjusting for potential confounding variables. PMID:22935481

  13. The Adventitia: Essential Regulator of Vascular Wall Structure and Function

    PubMed Central

    Stenmark, Kurt R.; Yeager, Michael E.; El Kasmi, Karim C.; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V.; Li, Min; Riddle, Suzette R.; Frid, Maria G.

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is comprised of a variety of cells including fibroblasts, immunomodulatory cells (dendritic and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and re-programmed to then influence tone and structure of the vessel wall, to initiate and perpetuate chronic vascular inflammation, and to act to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the “outside-in.” PMID:23216413

  14. The adventitia: essential regulator of vascular wall structure and function.

    PubMed

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in. PMID:23216413

  15. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing. PMID:26830769

  16. Macrophages in Vascular Inflammation: Origins and Functions.

    PubMed

    Decano, Julius L; Mattson, Peter C; Aikawa, Masanori

    2016-06-01

    Macrophages influence various processes of cardiovascular inflammation. Whether they are of embryonic or post-natal hematopoietic origin, their balance in differential activation may direct the course of inflammation. Accelerated macrophage activation and accumulation through a pro-inflammatory signaling pathway may result in extensive tissue damage, adverse repair, and worsened clinical outcomes. Attenuation of such a mechanism and/or promotion of the anti-inflammatory macrophage activation may lead to early resolution of inflammation. Elucidating multiple novel mechanisms of monocyte and macrophage activation leads to a better understanding of their roles in vascular inflammation. In turn, this begets better therapeutic target identification and biomarker discovery. Combined with increasingly sensitive and specific imaging techniques, we continue to push back early detection and monitoring to provide us with a greater window for disease modification. The potential success of cytokine-targeted therapy will be solid proof of the inflammatory hypothesis of atherothrombosis. PMID:27125207

  17. Hindlimb unweighting affects rat vascular capacitance function

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Tamhidi, L.; Berkowitz, D. E.; Shoukas, A. A.

    2001-01-01

    Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by 20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.

  18. Abnormal subendocardial function in restrictive left ventricular disease.

    PubMed Central

    Henein, M Y; Gibson, D G

    1994-01-01

    OBJECTIVE--To study possible disturbances in left ventricular long axis function in patients with a restrictive filling pattern. DESIGN--Prospective examination of the left ventricular transverse and longitudinal axes, transmitral flow, and the apexcardiogram. SETTING--A tertiary referral centre for cardiac diseases. SUBJECTS--21 normal subjects, age (SD) 51(11); 30 patients of similar age with a restrictive left ventricular filling pattern, defined as short early diastolic deceleration time less than the lower 95% confidence limit of the normal value (120 ms). 20 patients had a normal and 10 had an increased left ventricular end diastolic cavity size. RESULTS--Mitral Doppler echocardiography: E wave velocity was high only in patients with a normal cavity size. A wave velocity was greatly reduced in the two groups (P < 0.001) so that the E/A ratio was abnormally high. The relative A wave amplitude on the apexcardiogram was greatly increased in the two groups: 46(15)% (mean (SD)) and 54(4)% v 15(5)%. Minor axis: Fractional shortening was reduced from 30(10)% to 17(7)% in patients with normal cavity size and to 13(4.2)% in those with a dilated cavity (P < 0.001), as was the posterior wall thickening fraction from 100(30)% to 42(20)% and 50(25)% respectively (P < 0.001). Total systolic epicardial motion was normal and isovolumic relaxation time was short in the two groups. Long axis: Left ventricular abnormalities included reduced total amplitude of motion and its component during atrial systole (P < 0.001 for the two groups at both sites). Peak long axis shortening and lengthening were decreased at both left ventricular sites (P < 0.001). The time intervals from q wave of the electrocardiogram and A2 (aortic valve closure) to the onset of shortening and lengthening respectively were increased (both P < 0.001). Right ventricular long axis function was similarly affected but to a lesser extent. CONCLUSION--Left ventricular long axis function is consistently abnormal in

  19. Anatomical and functional brain abnormalities in unmedicated major depressive disorder

    PubMed Central

    Yang, Xiao; Ma, Xiaojuan; Li, Mingli; Liu, Ye; Zhang, Jian; Huang, Bin; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2015-01-01

    Background Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). Patients and methods Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. Results Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. Conclusion Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo. PMID:26425096

  20. Systemic vascular function is associated with muscular power in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  1. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.

    PubMed

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae; Melero-Martin, Juan M; Khademhosseini, Ali

    2012-05-23

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:22907987

  2. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels

    PubMed Central

    Chen, Ying-Chieh; Lin, Ruei-Zeng; Qi, Hao; Yang, Yunzhi; Bae, Hojae

    2012-01-01

    The generation of functional, 3D vascular networks is a fundamental prerequisite for the development of many future tissue engineering-based therapies. Current approaches in vascular network bioengineering are largely carried out using natural hydrogels as embedding scaffolds. However, most natural hydrogels present a poor mechanical stability and a suboptimal durability, which are critical limitations that hamper their widespread applicability. The search for improved hydrogels has become a priority in tissue engineering research. Here, the suitability of a photopolymerizable gelatin methacrylate (GelMA) hydrogel to support human progenitor cell-based formation of vascular networks is demonstrated. Using GelMA as the embedding scaffold, it is shown that 3D constructs containing human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSCs) generate extensive capillary-like networks in vitro. These vascular structures contain distinct lumens that are formed by the fusion of ECFC intracellular vacuoles in a process of vascular morphogenesis. The process of vascular network formation is dependent on the presence of MSCs, which differentiate into perivascular cells occupying abluminal positions within the network. Importantly, it is shown that implantation of cell-laden GelMA hydrogels into immunodeficient mice results in a rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, it is shown that the degree of methacrylation of the GelMA can be used to modulate the cellular behavior and the extent of vascular network formation both in vitro and in vivo. These data suggest that GelMA hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:22907987

  3. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation.

    PubMed

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals' capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  4. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation

    PubMed Central

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals’ capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  5. Abnormal thallium kinetics in postoperative coarctation of the aorta: evidence for diffuse hypertension-induced vascular pathology

    SciTech Connect

    Kimball, B.P.; Shurvell, B.L.; Mildenberger, R.R.; Houle, S.; McLaughlin, P.R.

    1986-03-01

    After operative correction of congenital coarctation of the aorta, patients continue to have excess cardiovascular mortality, including manifestations of ischemic heart disease. Previous morphologic studies support the concept of direct hypertensive vascular injury in these patients. To determine whether abnormalities of myocardial perfusion were present in an asymptomatic group of patients with coarctation repair, 18 men and 9 women with a mean age of 26 years (range 19 to 41) were studied between 2 and 25 years after operative correction. Stress electrocardiography and quantitative thallium imaging by a circumferential profile technique were used. These patients were compared with a normal group, statistically defined as having a less than 1% prevalence of significant obstructive coronary artery disease. The postoperative coarctation group demonstrated a reduction in global thallium redistribution in each view analyzed. As compared with findings in the control subjects, thallium washout in the anterior view (41.9 versus 48.6%, p = 0.02) and left anterior oblique projection (40.5 versus 48.2%, p = 0.007) was significantly diminished. Although the postoperative coarctation group had a lower thallium redistribution rate in the lateral view (41.4 versus 46.3%, p = 0.09) this difference did not reach statistical significance because of the intrinsic variability of this projection. Plots of the median percent thallium washout revealed independence from circumferential profile angle, indicating global abnormalities in perfusion. No correlation between clinical variables and thallium kinetics could be established, suggesting marked individual variability in the development of this vascular lesion. The observation of abnormal thallium kinetics in patients with coarctation repair may have consequences for long-term follow-up and therapy.

  6. Mineralocorticoid Receptors Modulate Vascular Endothelial Function in Human Obesity

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Segal, Mark S.; Christou, Demetra D.

    2015-01-01

    Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk for cardiovascular disease. Mineralocorticoid receptors (MR) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MR modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (Eplerenone; 100 mg/day) for 1 month in a balanced, randomized, double-blind, placebo-controlled, crossover study to 22 older adults (10 men, 55–79 years) varying widely in adiposity (body mass index: 20–45 kg/m2) but who were free from overt cardiovascular disease. We evaluated vascular endothelial function (brachial artery flow-mediated dilation [FMD] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39±0.67 vs. 6.23±0.73 %, P=0.7, placebo vs. Eplerenone). However, individual improvements in FMD in response to Eplerenone were associated with higher total body fat (body mass index: r=0.45, P=0.02 and DXA-derived % body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005, visceral: r=0.67, P=0.002 and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with Eplerenone were related with higher baseline fasting glucose (r=0.53, P=0.01). MR influence vascular endothelial function in an adiposity-dependent manner in healthy older adults. PMID:23786536

  7. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  8. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  9. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone.

    PubMed

    Busija, David W; Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V

    2016-01-01

    Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016. PMID:27347901

  10. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  11. Functional imaging of tumor vascular network in small animal models

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Madar-Balakirski, Noa; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2011-07-01

    In current report we present synchronized in vivo imaging of tumor vascular network and tumor microenvironment obtained by combined use of Dynamic Light Scattering Imaging, Spectrally Enhanced Microscopy, and Fluorescence Intravital Microscopy. Dynamic Light Scattering Imaging is used for functional imaging of the vascular network and blood microcirculation. Spectrally Enhanced Microscopy provides information regarding blood vessel topography. Fluorescence Intravital Microscopy is used for imaging of tumor microvasculature and tumor microenvironment. These well known modalities have been comprehensively validated in the past and are widely used in various bio-medical applications. As shown here, their combined application has great potential for studies of vascular biology. This multi-modal non-invasive diagnostic technique expands our current capacity to investigate blood microcirculation and tumor angiogenesis in vivo, thereby contributing to the development of cancer research and treatment.

  12. Vascular Tree Reconstruction by Minimizing A Physiological Functional Cost

    PubMed Central

    Jiang, Yifeng; Zhuang, Zhenwu; Sinusas, Albert J.; Papademetris, Xenophon

    2011-01-01

    The reconstruction of complete vascular trees from medical images has many important applications. Although vessel detection has been extensively investigated, little work has been done on how connect the results to reconstruct the full trees. In this paper, we propose a novel theoretical framework for automatic vessel connection, where the automation is achieved by leveraging constraints from the physiological properties of the vascular trees. In particular, a physiological functional cost for the whole vascular tree is derived and an efficient algorithm is developed to minimize it. The method is generic and can be applied to different vessel detection/segmentation results, e.g. the classic rigid detection method as adopted in this paper. We demonstrate the effectiveness of this method on both 2D and 3D data. PMID:21755061

  13. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury

    PubMed Central

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K.; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  14. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury.

    PubMed

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  15. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  16. The plant vascular system: evolution, development and functions.

    PubMed

    Lucas, William J; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Ykä; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M; Patrick, John W; Sperry, John; Yoshida, Akiko; López-Millán, Ana-Flor; Grusak, Michael A; Kachroo, Pradeep

    2013-04-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry. PMID:23462277

  17. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; McCarron, David A.

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  18. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  19. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    SciTech Connect

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Tikka, Saara

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  20. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets

    SciTech Connect

    Dalal, K.B.; Ebbe, S.; Mazoyer, E.; Carpenter, D.; Yee, T. )

    1990-02-01

    This study was designed to elucidate changes in rabbit platelet lipids induced by a cholesterol rich diet and to explore the possible correlation of these lipid changes with platelet abnormalities. Pronounced biochemical alterations were observed when serum cholesterol levels of 700-1000 mg% were reached. Hypercholesterolemic (HC) platelets contained 37% more neutral lipids and 16% less phospholipids than the controls. Lysolecithin, cholesterol esters and phosphatidylinositol (PI) levels were increased in HC platelets, and the levels of phosphatidylcholine (PC) were decreased. The cholesterol/phospholipid molar ratio of lipidemic platelets increased from 0.55 +/- 0.011 to 0.89 +/- 0.016 (P less than 0.01) in eight weeks. HC platelets had 90% more arachidonic acid (AA) in the PI than normal platelets. No significant changes in AA of PC were observed. Platelet function was monitored by the uptake and release of (14C)serotonin in platelet rich plasma (PRP), using varying concentrations of collagen as an aggregating agent. The uptake of (14C)serotonin in HC and normal platelets ranged from 78-94%. The percent of (14C)serotonin released from normal and HC platelets was proportional to the concentration of collagen. However, lipidemic platelets were hyperreactive to low concentrations of collagen. Incorporation of 50 microM acetylsalicylic acid into the aggregating medium suppressed the release of (14C)serotonin in normal PRP by more than 90%, but had only a partial effect on lipidemic PRP.

  1. Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine

    2008-01-01

    Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.

  2. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease. PMID:18374611

  3. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  4. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed Central

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-01-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  5. Assessment of vascular function in systemic onset juvenile idiopathic arthritis.

    PubMed

    Sozeri, Betul; Atikan, Basak Yildiz; Ozdemir, Kadriye; Mir, Sevgi

    2016-07-01

    and disease duration (p = 0.003, r = 0.45). Vascular function is impaired in patients with sJIA at a very young age. Vascular dysfunction may be partly attributed to the effects of disease-related characteristics (inflammation, disease activity, and medications). PMID:27075461

  6. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  7. Is Abnormal Urine Protein/Osmolality Ratio Associated with Abnormal Renal Function in Patients Receiving Tenofovir Disoproxil Fumarate?

    PubMed Central

    Marcelin, Jasmine R.; Berg, Melody L.; Tan, Eugene M.; Amer, Hatem; Cummins, Nathan W.; Rizza, Stacey A.

    2016-01-01

    Background Risk factors for and optimal surveillance of renal dysfunction in patients on tenofovir disoproxil fumarate (TDF) remain unclear. We investigated whether a urine protein-osmolality (P/O) ratio would be associated with renal dysfunction in HIV-infected persons on TDF. Methods This retrospective, single-center study investigated the relationship between parameters of renal function (estimated glomerular filtration rate (eGFR) and P/O-ratio) and risk factors for development of kidney dysfunction. Subjects were HIV-infected adults receiving TDF with at least one urinalysis and serum creatinine performed between 2010 and 2013. Regression analyses were used to analyze risk factors associated with abnormal P/O-ratio and abnormal eGFR during TDF therapy. Results Patients were predominately male (81%); (65%) were Caucasian. Mean age was 45.1(±11.8) years; median [IQR] TDF duration was 3.3 years. [1.5–7.6]. Median CD4+ T cell count and HIV viral load were 451 cells/μL [267.5–721.5] and 62 copies/mL [0–40,150], respectively. Abnormal P/O-ratio was not associated with low eGFR. 68% of subjects had an abnormal P/O-ratio and 9% had low eGFR. Duration of TDF use, age, diabetes and hypertension were associated with renal dysfunction in this study. After adjustment for age, subjects on TDF > 5 years had almost a four-fold increased likelihood of having an abnormal P/O-ratio than subjects on TDF for < 1yr (OR 3.9; 95% CI 1.2–14.0; p = 0.024). Conclusion Abnormal P/O-ratio is common in HIV-infected patients on TDF but was not significantly associated with low eGFR, suggesting that abnormal P/O-ratio may be a very early biomarker of decreased renal function in HIV infected patients. PMID:26872144

  8. Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

  9. Melamine Impairs Renal and Vascular Function in Rats.

    PubMed

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  10. Melamine Impairs Renal and Vascular Function in Rats

    PubMed Central

    Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Wang, Yi-Xiang; Cheang, Wai San; Liu, Jian; Lu, Ye; Huang, Huihui; Xia, Yin; Chen, Zhen Yu; Mok, Chuen-Shing; Lau, Chau-Ming; Huang, Yu

    2016-01-01

    Melamine incident, linked to nephrotoxicity and kidney stone in infants previously exposed to melamine-contaminated milk products, was unprecedentedly grave in China in 2008 as little was known about the mechanistic process leading to renal dysfunction in affected children. This study investigates whether neonatal ingestion of melamine leads to renal and vascular dysfunction in adulthood; and whether ingestion of melamine in pregnant rats leads to renal dysfunction in their offspring. A combination of approaches employed includes functional studies in rat renal arteries, renal blood flow measurement by functional magnetic resonance imaging, assay for pro-inflammatory and fibrotic biomarkers, immunohistochemistry, and detection of plasma and renal melamine. We provide mechanistic evidence showing for the first time that melamine reduces renal blood flow and impairs renal and vascular function associated with overexpression of inflammatory markers, transforming growth factor-β1, bone morphogenic protein 4 and cyclooxygenase-2 in kidney and renal vasculature. Melamine also induces renal inflammation and fibrosis. More importantly, melamine causes nephropathies in offsprings from pregnant rat exposed to melamine during pregnancy, as well as in neonatal rat exposed to melamine afterbirth, thus supporting the clinical observations of kidney stone and acute renal failure in infants consuming melamine-contaminated milk products. PMID:27324576

  11. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level. PMID:26285588

  12. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities?

    PubMed

    Stagi, Stefano; Rigante, Donato; Lepri, Gemma; Matucci Cerinic, Marco; Falcini, Fernanda

    2016-07-01

    Twenty-five-hydroxyvitamin D (25(OH)-vitamin D) is crucial in the regulation of immunologic processes, but-although its deficiency has been reported in patients with different rheumatological disorders-no data are available for Kawasaki disease (KD). The goals of this study were to assess the serum levels of 25(OH)-vitamin D in children with KD and evaluate the relationship with the eventual occurrence of KD-related vascular abnormalities. We evaluated serum 25(OH)-vitamin D levels in 79 children with KD (21 females, 58 males, median age 4.9 years, range 1.4-7.5 years) in comparison with healthy sex-/age-matched controls. A significantly higher percentage of KD patients (98.7 %) were shown to have reduced 25(OH)-vitamin D levels (<30 ng/mL) in comparison with controls (78.6 %, p < 0.0001). Furthermore, KD patients had severely low levels of 25(OH)-vitamin D than controls (9.17 ± 4.94 vs 23.3 ± 10.6 ng/mL, p < 0.0001), especially the subgroup who developed coronary artery abnormalities (4.92 ± 1.36 vs 9.41 ± 4.95 ng/mL, p < 0.0001). In addition, serum 25(OH)-vitamin D levels correlated not only with erythrosedimentation rate (p < 0.0001), C-reactive protein (p < 0.0001), hemoglobin level at KD diagnosis (p < 0.0001) but also with both coronary artery aneurysms (p = 0.005) and non-aneurysmatic cardiovascular lesions (p < 0.05). Low serum concentrations of 25(OH)-vitamin D might have a contributive role in the development of coronary artery complications observed in children with KD. PMID:25994612

  13. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  14. Feasibility of US-CT image fusion to identify the sources of abnormal vascularization in posterior sacroiliac joints of ankylosing spondylitis patients

    PubMed Central

    Hu, Zhenlong; Zhu, Jiaan; Liu, Fang; Wang, Niansong; Xue, Qin

    2015-01-01

    Ultrasound (US) can be used to evaluate the inflammatory activity of the sacroiliac joints (SIJs) in ankylosing spondylitis (AS) patients, but to precisely locate the abnormal vascularization observed on color Doppler US (CDUS) was difficult. To address this issue, we performed US and computed tomography (CT) fusion imaging of SIJs with 84 inpatients and 30 controls, and then assessed the sources of abnormal vascularization in the posterior SIJs of AS patients based on the fused images. Several possible factors impacting the fusion process were considered including the lesion classes of SIJ, the skinfold thickness of the sacral region and the cross-sectional levels of the first, second and third posterior sacral foramina. Our data showed high image fusion success rates at the 3 levels in the AS group (97.0%, 87.5% and 79.8%, respectively) and the control group (96.7%, 86.7%, and 86.7%, respectively).The skinfold thickness was identified as the main factor affecting the success rates. The successfully fused images revealed significant differences in the distribution of abnormal vascularization between 3 levels, as detected via CDUS (P = 0.011), which suggested that inflammation occurred in distinct tissues at different levels of the SIJ (intraligamentous inflammation in Regions 1 and 2; intracapsular inflammation in Region 3). PMID:26669847

  15. Silymarin improves vascular function of aged ovariectomized rats.

    PubMed

    Demirci, Buket; Dost, Turhan; Gokalp, Filiz; Birincioglu, Mustafa

    2014-06-01

    Both aging and estrogen depletion lead to endothelial dysfunction, which is the main reason of many cardiovascular diseases. Previous reports have shown that cell protective effect of silymarin (SM) depends on its antioxidant and phytoestrogenic properties. We investigated the effect of SM on vascular stiffness of aged menopausal rats and the involvement of estrogenic activity in this effect. Isolated rat aortas were obtained from 22-month-old rats, after 18 months of ovariectomy (OVX) follow-up. Each ring was incubated in tissue bath either with SM (50 mg/L) and 17β-estradiol (10 μM, E2) or in the presence of SM/fulvestrant (50 mg/L, 10 μM). Endothelium-intact rings were precontracted with phenylephrine (0.001-30 μM) or high potassium (40 mM); endothelium-dependent/independent relaxant responses were obtained using acetylcholine (0.001-30 μM) and sodium nitroprusside (0.0001-3 μM), respectively. While phenylephrine sensitivity was significantly increased in OVX rats, relaxations were significantly less in aged OVX rats compared with young rats. In spite of the presence of estrogen antagonist, immediate SM treatment restored the endothelial function and vascular tone better than estrogen replacement. Additionally, as a complementary and alternative medicine, it does not cause estrogenic side effects when taken acutely. PMID:24123505

  16. Massage Therapy Restores Peripheral Vascular Function following Exertion

    PubMed Central

    Franklin, Nina C.; Ali, Mohamed M.; Robinson, Austin T.; Norkeviciute, Edita; Phillips, Shane A.

    2014-01-01

    Objective To determine if lower extremity exercise-induced muscle injury (EMI) reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after EMI. Design Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. Setting Clinical research center at an academic medical center and laboratory Participants Thirty-six sedentary young adults were randomly assigned to one of three groups: 1) EMI + MT (n=15; mean age ± standard error (SE): 26.6±0.3), 2) EMI only (n=10; mean age ± SE: 23.6±0.4), and 3) MT only (n=11; mean age ± SE: 25.5 ± 0.4). Intervention Participants were assigned to either EMI only (a single bout of bilateral, eccentric leg-press exercise), MT only (30-minute lower extremity massage using Swedish technique), or EMI + MT. Main outcome measures Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin-induced dilation was also assessed (NTG; 0.4 mg). Results Brachial FMD increased from baseline in the EMI + MT group and the MT only group (7.38±0.18 to 9.02±0.28%, p<0.05 and 7.77±0.25 to 10.20±0.22%, p < 0.05, respectively) at 90 minutes remaining elevated until 72 hrs. In the EMI only group FMD was reduced from baseline at 24 and 48 hrs (7.78±0.14 to 6.75±0.11%, p<0.05 and 6.53±0.11, p<0.05, respectively) returning to baseline after 72 hrs. Dilations to NTG were similar over time. Conclusions Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity EMI in sedentary young adults. PMID:24583315

  17. Abnormal fusiform activation during emotional-face encoding assessed with functional magnetic resonance imaging.

    PubMed

    Adleman, Nancy E; Kayser, Reilly R; Olsavsky, Aviva K; Bones, Brian L; Muhrer, Eli J; Fromm, Stephen J; Pine, Daniel S; Zarate, Carlos; Leibenluft, Ellen; Brotman, Melissa A

    2013-05-30

    This functional magnetic resonance imaging study shows that children and adults with bipolar disorder (BD), compared with healthy subjects, exhibit impaired memory for emotional faces and abnormal fusiform activation during encoding. Fusiform activation abnormalities in BD were correlated with mania severity and may therefore represent a trait and state BD biomarker. PMID:23541333

  18. Metabolic rate and vascular function are reduced in women with a family history of type 2 diabetes mellitus.

    PubMed

    Olive, Jennifer L; Ballard, Kevin D; Miller, James J; Milliner, Beth A

    2008-06-01

    Metabolic and vascular abnormalities have been found in individuals with type 2 diabetes mellitus (T2D). Family history is often associated with increased risk of the development of T2D. We sought to determine if young, sedentary, insulin-sensitive individuals with a family history of T2D (FH+) have a reduced resting energy expenditure (REE) and vascular endothelial function compared with individuals who have no family history of T2D (FH-). The REE was determined in 18 FH+ individuals and 15 FH- individuals using indirect open-circuit calorimetry. Vascular endothelial function was measured via flow-mediated dilation (FMD) of the brachial artery. C-reactive protein and interleukin-6 were also measured to look at vascular inflammation. Body composition was measured via bioelectrical impedance analysis to determine fat-free mass and fat mass for each individual. Insulin resistance was calculated using the homeostasis model assessment equation and fasting insulin and glucose concentrations. Subjects (n = 42) were approximately 26 years old and had normal fasting serum insulin or glucose concentrations. The REE normalized for body weight (kilocalories per day per kilogram body weight) was significantly reduced in the FH+ women compared with FH- women (P < .001) but not in the men. The FMD was significantly reduced (34.3%) in the FH+ group compared with the FH- in women (P = .002). However, no between-group difference in FMD was present in male subjects (P = .376). Young, healthy, insulin-sensitive women with a family history of T2D have reduced whole-body metabolic rate and vascular endothelial function compared with those with no family history of disease. These differences in whole-body metabolic rate and vascular endothelial function were not present in male subjects. PMID:18502267

  19. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments

    PubMed Central

    Zhou, Xia; Hu, Xiaopeng; Zhang, Chao; Wang, Haibao; Zhu, Xiaoqun; Xu, Liyan; Sun, Zhongwu; Yu, Yongqiang

    2016-01-01

    Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations

  20. Structural and Functional Vascular Alterations and Incident Hypertension in Normotensive Adults

    PubMed Central

    Peralta, Carmen A.; Adeney, Kathryn L.; Shlipak, Michael G.; Jacobs, David; Duprez, Daniel; Bluemke, David; Polak, Joseph; Psaty, Bruce; Kestenbaum, Bryan R.

    2010-01-01

    Vascular abnormalities may exist before clinical hypertension. Using Poisson regression, the authors studied the association of coronary artery calcium (CAC), common carotid intima-media thickness (CIMT), aortic distensibility, and large and small arterial elasticity with incident hypertension among 2,512 normotensive US adults free of cardiovascular disease. Incidence rate ratios for incident hypertension (blood pressure ≥140/90 mm Hg or new antihypertensive medication) were calculated. Increased CAC was associated with incident hypertension in demographics-adjusted models (incidence rate ratio (IRR) = 1.35, 95% confidence interval (CI): 1.04, 1.75; IRR = 1.35, 95% CI: 1.02, 1.78; and IRR = 1.59, 95% CI: 1.12, 2.25 for CAC scores of 30–99, 100–399, and ≥400, respectively) but was attenuated after further adjustment. Increased common CIMT was associated with incident hypertension (IRR = 1.77, 95% CI: 1.28, 2.46 for quintile 4; IRR = 1.80, 95% CI: 1.28, 2.53 for quintile 5). Participants with the lowest, compared with the highest, aortic distensibility had an increased risk of hypertension (IRR = 1.75, 95% CI: 1.10, 2.79), as did those with the lowest large arterial elasticity (IRR = 1.49, 95% CI: 1.11, 1.99). Lower small arterial elasticity was incrementally associated with incident hypertension starting at quintile 2 (IRR = 2.01, 95% CI: 1.39, 2.91; IRR = 2.47, 95% CI: 1.71, 3.57; IRR = 2.73, 95% CI: 1.88, 3.95; and IRR = 2.85, 95% CI: 1.95, 4.16). Structural and functional vascular abnormalities are independent predictors of incident hypertension. These findings are important for understanding the pathogenesis of hypertension. PMID:19951938

  1. ELIMINATION OF VITAMIN D RECEPTOR IN VASCULAR ENDOTHELIAL CELLS ALTERS VASCULAR FUNCTION

    PubMed Central

    Ni, Wei; Watts, Stephanie W.; Ng, Michael; Chen, Songcang; Glenn, Denis J.; Gardner, David G.

    2014-01-01

    Vitamin D deficiency has been associated with cardiovascular dysfunction. We evaluated the role of the vitamin D receptor (VDR) in vascular endothelial function, a marker of cardiovascular health, at baseline and in the presence of angiotensin II, using an endothelial-specific knockout of the murine VDR gene. In the absence of endothelial VDR, acetylcholine-induced aortic relaxation was significantly impaired (maximal relaxation, endothelial-specific VDR knockout =58% vs. control=73%, p<0.05). This was accompanied by a reduction in eNOS expression and phospho-vasodilator-stimulated phosphoprotein levels in aortae from the endothelial-specific VDR knockout vs. control mice. While blood pressure levels at baseline were comparable at 12 and 24 weeks of age, the endothelial VDR knockout mice demonstrated increased sensitivity to the hypertensive effects of angiotensin II compared to control mice (after 1-week infusion: knockout = 155±15 mmHg vs. control = 133±7 mmHg, p<0.01; after 2-week infusion: knockout = 164±9 mmHg vs. control = 152±13 mmHg, p<0.05). By the end of two weeks, angiotensin II infusion-induced, hypertrophy-sensitive myocardial gene expression was higher in endothelial-specific VDR knockout mice (fold change compared to saline-infused control mice, ANP: knockout mice = 3.12 vs. control= 1.7, p<0.05; BNP: knockout mice= 4.72 vs. control= 2.68, p<0.05). These results suggest that endothelial VDR plays an important role in endothelial cell function and blood pressure control and imply a potential role for VDR agonists in the management of cardiovascular disease associated with endothelial dysfunction. PMID:25201890

  2. Vascular endothelial function of patients with stable coronary artery disease

    PubMed Central

    Wang, Zhe; Yang, Xinchun; Cai, Jun; Shi, Hui; Zhong, Guangzhen; Chi, Hongjie

    2015-01-01

    Objectives: To evaluate vascular endothelial function and contributing factors in coronary heart disease (CHD) patients. Methods: One hundred twenty six CHD outpatients were randomly recruited. Reactive hyperemia index (RHI) <1.67 indicates endothelial dysfunction. Correlation between RHI and different biochemical parameters was evaluated. Results: RHI in patients receiving statins treatment was significantly higher than patients without statins treatment (P<0.05). RHI in patients with more than 3 risk factors for CHD was also markedly lower than that in patients with ≤2 risk factors (P<0.05). Patients with lesions at several branches of coronary artery had a markedly lower RHI when compared with those with coronary lesions at a single branch (P<0.05). For patients without statins treatment, RHI increased significantly after statins treatment for 1 month (P=0.01). In patients with endothelial dysfunction, FBG, HbA1C, hs-CRP and Hcy were significantly higher than those in patients with normal endothelial function (P<0.05 for all). Smokers with CHD had a remarkably lower RHI when compared with non-smokers (P<0.05). Conclusions: Smoking, FBG, HbA1C, Hcy and hs-CRP are significantly associated with endothelial dysfunction. Endothelial dysfunction is also related to the numbers of risk factors for CHD, degree of coronary lesions and statins. Statins treatment may significantly improve the endothelial function of CHD patients. PMID:26150839

  3. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    PubMed Central

    Vootla, Vamshidhar R.; Daniel, Myrta

    2015-01-01

    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome. PMID:26351414

  4. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis

    PubMed Central

    2016-01-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  5. Urinary Albumin Excretion and Vascular Function in Rheumatoid Arthritis.

    PubMed

    Pieringer, Herwig; Brummaier, Tobias; Piringer, Bettina; Auer-Hackenberg, Lorenz; Hartl, Andreas; Puchner, Rudolf; Pohanka, Erich; Schmid, Michael

    2016-03-01

    Rheumatoid arthritis (RA) is associated with significant cardiovascular (CV) morbidity and mortality. Increased urinary albumin excretion is a marker of CV risk. There are only few data on urinary albumin excretion in RA patients. Aim of the present study was to investigate urinary albumin excretion in RA patients and analyze, whether there is an association between urinary albumin excretion and vascular function as measured by the augmentation index (AIx). In a total of 341 participants (215 with RA, 126 without RA) urinary albumin-creatinine ratio (ACR) was determined and the AIx was measured. The Kolmogorov-Smirnov-test was used to cluster patient groups whose distributions of ACR can be considered to be equal. A crude analysis showed a median ACR of 6.6 mg/g in the RA group and 5.7 mg/g in patients without RA (P > 0.05). In order to account for diabetes (DM) we formed 4 distinct patient groups. Group 1: RA-/DM- (n = 74); group 2: RA+/DM- (n = 195); group 3: RA-/DM+ (n = 52); group 4: RA+/DM+ (n = 20). Clustering of these groups revealed two distinct patient groups: those without RA and DM, and those with either RA or DM or both. The latter group showed statistically significant higher ACR (median 8.1 mg/g) as the former (median 4.5 mg/g). We found no significant correlation between AIx and ACR. Urinary albumin excretion in patients with RA or DM or both is higher than in subjects without RA and DM. This can be seen as a sign of vascular alteration and increased CV risk in these patients. PMID:26955238

  6. Static and Functional Hemodynamic Profiles of Women with Abnormal Uterine Artery Doppler at 22–24 Weeks of Gestation

    PubMed Central

    Widnes, Christian

    2016-01-01

    Objective To compare cardiac function, systemic hemodynamics and preload reserve of women with increased (cases) and normal (controls) uterine artery (UtA) pulsatility index (PI) at 22–24 weeks of gestation. Materials and Methods A prospective cross-sectional study of 620 pregnant women. UtA blood flow velocities were measured using Doppler ultrasonography, and PI was calculated. Mean UtA PI ≥ 1.16 (90th percentile) was considered abnormal. Maternal hemodynamics was investigated at baseline and during passive leg raising (PLR) using impedance cardiography (ICG). Preload reserve was defined as percent increase in stroke volume (SV) 90 seconds after passive leg raising compared to baseline. Results Mean UtA PI was 1.49 among cases (n = 63) and 0.76 among controls (n = 557) (p < 0.0001). Eighteen (28.6%) cases and 53 (9.5%) controls developed pregnancy complications (p <0.0001). The mean arterial pressure and systemic vascular resistance were 83 mmHg and 1098.89±293.87 dyne s/cm5 among cases and 79 mmHg and 1023.95±213.83 dyne s/cm5 among controls (p = 0.007 and p = 0.012, respectively). Heart rate, SV and cardiac output were not different between the groups. Both cases and controls responded with a small (4–5%) increase in SV in response to PLR, but the cardiac output remained unchanged. The preload reserve was not significantly different between two groups. Conclusion Pregnant women with abnormal UtA PI had higher blood pressure and systemic vascular resistance, but similar functional hemodynamic profile at 22–24 weeks compared to controls. Further studies are needed to clarify whether functional hemodynamic assessment using ICG can be useful in predicting pregnancy complications. PMID:27308858

  7. Pheochromocytoma with Markedly Abnormal Liver Function Tests and Severe Leukocytosis

    PubMed Central

    Eun, Chai Ryoung; Ahn, Jae Hee; Seo, Ji A

    2014-01-01

    Pheochromocytoma is a rare neuroendocrine tumor arising from the medulla of the adrenal glands, which causes an overproduction of catecholamines. The common symptoms are headache, palpitations, and sweating; however, various other clinical manifestations might also be present. Accurate diagnosis of pheochromocytoma is important because surgical treatment is usually successful, and associated clinical problems are reversible if treated early. A 49-year-old man with a history of uncontrolled hypertension and diabetes mellitus presented with chest pain, fever, and sweating. His liver function tests and white blood cell counts were markedly increased and his echocardiography results suggested stress-induced cardiomyopathy. His abdominal computed tomography showed a 5×5-cm-sized tumor in the left adrenal gland, and laboratory tests confirmed catecholamine overproduction. After surgical resection of the left adrenal gland, his liver function tests and white blood cell counts normalized, and echocardiography showed normal cardiac function. Moreover, his previous antihypertensive regimen was deescalated, and his previously uncontrolled blood glucose levels normalized without medication. PMID:24741459

  8. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. PMID:26940821

  9. Grape polyphenols do not affect vascular function in healthy men.

    PubMed

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk. PMID:20702747

  10. Regulation of Vascular and Renal Function by Metabolite Receptors.

    PubMed

    Peti-Peterdi, János; Kishore, Bellamkonda K; Pluznick, Jennifer L

    2016-01-01

    To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and PMID:26667077

  11. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  12. Abnormal systolic and diastolic myocardial function in obese asymptomatic adolescents.

    PubMed

    Batalli-Këpuska, Arbnora; Bajraktari, Gani; Zejnullahu, Murat; Azemi, Mehmedali; Shala, Mujë; Batalli, Arlind; Ibrahimi, Pranvera; Jashari, Fisnik; Henein, Michael Y

    2013-10-01

    Structural and functional cardiac changes are known in obese adults. We aimed to assess the relationship between body mass index (BMI) and cardiac function in overweight and obese asymptomatic adolescents. Ninety three healthy adolescents, aged 12.6 ± 1.2 years, received weight, height, BMI, waist, hips, waist/hips ratio assessment, hematology and biochemistry tests and an echocardiogram. Based on BMI, subjects were divided into: lean (L, n=32), overweight (Ov, n=33) and obese (Ob, n=32). Interventricular septal and LV posterior wall thickness were increased parallel to the BMI (L: 0.84 ± 0.1cm, Ov: 0.88 ± 0.1cm, Ob: 0.96 ± 0.1cm, p<0.001, and L: 0.78 ± 0.1cm, Ov: 0.8 ± 0.1cm, Ob: 0.94 ± 0.1cm, p<0.001, respectively) as were relative wall thickness (RWT) and mass index (LVMI) (L: 0.34 ± 0.05, Ov: 0.34 ± 0.05, Ob: 0.40 ± 0.04, p<0.001, and L: 47.7 ± 8.4 g/m(2), Ov: 51.9 ± 8.3g/m(2), Ob: 65.2 ± 13.3g/m(2), p=0<001, respectively). LV early diastolic (E') lateral and septal velocities (L: 15.3 ± 3.9 cm/s, Ov: 13.6 ± 4 cm/s, Ob: 10.5 ± 3.4 cm/s, p<0.001, and L: 12.2 ± 2.3 cm/s, Ov: 11.1 ± 2.4 cm/s, Ob: 9.8 ± 3.1cm/s, p=0.003, respectively), and systolic (S') velocities (L: 9.2 ± 1.4 cm/s, Ov: 9.3 ± 2.3 cm/s, Ob: 8.04 ± 1.5 cm/s, p=0.018, and L: 9.05 ± 2.3 cm/s, Ov: 9 ± 2.4 cm/s, Ob: 7.6 ± 1.1cm/s, p=0.014, respectively) were all reduced, only in obese adolescents. LV lateral E' (r=-0.44, p<0.001) and S' (r=-0.29, p=0.005) correlated with BMI. In asymptomatic adolescents, LV wall is thicker and diastolic function impaired and correlate with BMI. These findings demonstrate early cardiac functional disturbances which might explain the known obesity risk for cardiac disease. PMID:23416017

  13. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. PMID:26456104

  14. Vascular Endothelial Function and Blood Pressure Regulation in Afferent Autonomic Failure

    PubMed Central

    Jelani, Qurat-ul-ain; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-01-01

    BACKGROUND Familial dysautonomia (FD) is a rare hereditary disease characterized by loss of afferent autonomic neural fiber signaling and consequent profound impairment of arterial baroreflex function and blood pressure regulation. Whether vascular endothelial dysfunction contributes to defective vasomotor control in this form of afferent autonomic failure is not known. METHODS We assessed blood pressure response to orthostatic stress and vascular endothelial function with brachial artery reactivity testing in 34 FD subjects with afferent autonomic failure and 34 healthy control subjects. RESULTS Forty-four percent of the afferent autonomic failure subjects had uncontrolled hypertension at supine rest (median systolic blood pressure = 148mm Hg, interquartile range (IQR) = 144–155mm Hg; median diastolic blood pressure = 83mm Hg, IQR = 78–105mm Hg), and 88% had abnormal response to orthostatic stress (median decrease in systolic blood pressure after upright tilt = 48mm Hg, IQR = 29–61mm Hg). Flow-mediated brachial artery reactivity did not differ in subjects with afferent autonomic failure vs. healthy control subjects (median = 6.00%, IQR = 1.86–11.77%; vs. median = 6.27%, IQR = 4.65–9.34%; P = 0.75). In afferent autonomic failure subjects, brachial artery reactivity was not associated with resting blood pressure or the magnitude of orthostatic hypotension but was decreased in association with reduced glomerular filtration rate (r = 0.62; P < 0.001). CONCLUSIONS Brachial artery reactivity was preserved in subjects with afferent autonomic failure despite the presence of marked blood pressure dysregulation. Comorbid renal dysfunction was associated with reduced brachial artery reactivity. PMID:25128693

  15. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  16. Abnormal tracheal smooth muscle function in the CF mouse

    PubMed Central

    Wallace, Helen L; Southern, Kevin W; Connell, Marilyn G; Wray, Susan; Burdyga, Theodor

    2013-01-01

    Increased airway smooth muscle (ASM) contractility is thought to underlie symptoms of airway hyperresponsiveness (AHR). In the cystic fibrosis (CF) airway, ASM anomalies have been reported, but have not been fully characterized and the underlying mechanisms are largely unknown. We examined ASM in an adult CF mouse tracheal ring preparation, and determined whether changes in contractility were associated with altered ASM morphology. We looked for inherent changes in the cellular pathways involved in contractility, and characterized trachea morphology in the adult trachea and in an embryonic lung culture model during development. Results showed that that there was a reduction in tracheal caliber in CF mice as indicated by a reduction in the number of cartilage rings; proximal cross-sectional areas of cftr−/− tracheas and luminal areas were significantly smaller, but there was no difference in the area or distribution of smooth muscle. Morphological differences observed in adult trachea were not evident in the embryonic lung at 11.5 days gestation or after 72 h in culture. Functional data showed a significant reduction in the amplitude and duration of contraction in response to carbachol (CCh) in Ca-free conditions. The reduction in contraction was agonist specific, and occurred throughout the length of the trachea. These data show that there is a loss in the contractile capacity of the CF mouse trachea due to downregulation of the pathway specific to acetylcholine (ACh) activation. This reduction in contraction is not associated with changes in the area or distribution of ASM. PMID:24400140

  17. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  18. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  19. Time-of-day variation in vascular function.

    PubMed

    Rodrigo, G C; Denniff, M

    2016-08-01

    What is the topic of this review? This report looks at the role of endothelial nitric oxide signalling in the time-of-day variation in vasoconstriction of resistance vessels. What advances does it highlight? It highlights a time-of-day variation in contraction of mesenteric arteries, characterized by a reduced contractile response to either phenylephrine or high K(+) and increased relaxation in response to acetylcholine during the active period. This time-of-day variation in contraction results from a difference in endothelial nitric oxide synthase (eNOS) signalling that correlates with levels of eNOS expression, which peak during the active period and may have far reaching physiological consequences beyond regulation of blood pressure. There is a strong time-of-day variation in the vasoconstriction in response to sympathetic stimulation that may contribute to the time-of-day variation in blood pressure, which is characterized by a dip in blood pressure during the individual's rest period when sympathetic activity is low. Vasoconstriction is known to be regulated tightly by nitric oxide signalling from the endothelial cells, so we have looked at the effect of time-of-day on levels of endothelial nitric oxide synthase (eNOS) and vascular contractility. Mesenteric arteries isolated from the nocturnal rat exhibit a time-of-day variation in their contractile response to α1 -adrenoreceptor and muscarinic activation, which is characterized by a reduced vasoconstriction in response to phenylephrine and enhanced vasodilatation in response to acetylcholine during the rat's active period at night. An increase in eNOS signalling during the active period is responsible for this time-of-day difference in response to phenylephrine and acetylcholine and correlates with the large increase in eNOS expression (mRNA and protein) during the active period, possibly driven by the presence of a functioning peripheral circadian clock. This increase in eNOS signalling may function to

  20. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans

    PubMed Central

    Thum, Thomas; Schmitter, Kerstin; Fleissner, Felix; Wiebking, Volker; Dietrich, Bernd; Widder, Julian D.; Jazbutyte, Virginija; Hahner, Stefanie; Ertl, Georg; Bauersachs, Johann

    2011-01-01

    Aims Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans. Methods and results We characterized the effects of aldosterone and mineralocorticoid receptor (MR) blockade on EPC number and function as well as vascularization capacity and endothelial function. Treatment of human EPC with aldosterone induced translocation of the MR and impaired multiple cellular functions of EPC, such as differentiation, migration, and proliferation in vitro. Impaired EPC function was rescued by pharmacological blockade or genetic ablation of the MR. Aldosterone protein kinase A (PKA) dependently increased reactive oxygen species formation in EPC. Aldosterone infusion in mice impaired EPC function, EPC homing to vascular structures and vascularization capacity in a MR-dependent but blood pressure-independent manner. Endothelial progenitor cells from patients with primary hyperaldosteronism compared with controls of similar age displayed reduced migratory potential. Impaired EPC function was associated with endothelial dysfunction. MR blockade in patients with hyperaldosteronism improved EPC function and arterial stiffness. Conclusion Endothelial progenitor cells express a MR that mediates functional impairment by PKA-dependent increase of reactive oxygen species. Normalization of EPC function may represent a novel mechanism contributing to the beneficial effects of MR blockade in cardiovascular disease prevention and treatment. PMID:20926363

  1. Systemic Vascular Function Is Associated with Muscular Power in Older Adults

    PubMed Central

    Heffernan, Kevin S.; Chalé, Angela; Hau, Cynthia; Cloutier, Gregory J.; Phillips, Edward M.; Warner, Patrick; Nickerson, Heather; Reid, Kieran F.; Kuvin, Jeffrey T.; Fielding, Roger A.

    2012-01-01

    Age-associated loss of muscular strength and muscular power is a critical determinant of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measures of vascular endothelial function included brachial artery flow-mediated dilation (FMD) and the pulse wave amplitude reactive hyperemia index (PWA-RHI). Augmentation index (AIx) was taken as a measure of systemic vascular function related to arterial stiffness and wave reflection. Measures of muscular strength included one repetition maximum (1RM) for a bilateral leg press. Peak muscular power was measured during 5 repetitions performed as fast as possible for bilateral leg press at 40% 1RM. Muscular power was associated with brachial FMD (r = 0.43, P < 0.05), PWA-RHI (r = 0.42, P < 0.05), and AIx (r = −0.54, P < 0.05). Muscular strength was not associated with any measure of vascular function. In conclusion, systemic vascular function is associated with lower-limb muscular power but not muscular strength in older adults. Whether loss of muscular power with aging contributes to systemic vascular deconditioning or vascular dysfunction contributes to decrements in muscular power remains to be determined. PMID:22966457

  2. Liver Function Test Abnormalities in Patients with Inflammatory Bowel Diseases: A Hospital-based Survey

    PubMed Central

    Cappello, Maria; Randazzo, Claudia; Bravatà, Ivana; Licata, Anna; Peralta, Sergio; Craxì, Antonio; Almasio, Piero Luigi

    2014-01-01

    BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) are frequently associated with altered liver function tests (LFTs). The causal relationship between abnormal LFTs and IBD is unclear. The aim of our study was to evaluate the prevalence and etiology of LFTs abnormalities and their association with clinical variables in a cohort of IBD patients followed up in a single center. MATERIALS AND METHODS A retrospective review was undertaken of all consecutive IBD in- and outpatients routinely followed up at a single referral center. Clinical and demographic parameters were recorded. Subjects were excluded if they had a previous diagnosis of chronic liver disease. LFT abnormality was defined as an increase in aspartate aminotransferase, (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), or total bilirubin. RESULTS A cohort of 335 patients (179 males, mean age 46.0 ± 15.6 years) was analyzed. Abnormal LFTs were detected in 70 patients (20.9%). In most cases, the alterations were mild and spontaneously returned to normal values in about 60% of patients. Patients with abnormal LFTs were less frequently on treatment with aminosalicylates (22.8 vs. 36.6%, P = 0.04). The most frequent cause for transient abnormal LFTs was drug-induced cholestasis (34.1%), whereas fatty liver was the most frequent cause of persistent liver damage (65.4%). A cholestatic pattern was found in 60.0% of patients and was mainly related to older age, longer duration of disease, and hypertension. CONCLUSIONS The prevalence of LFT abnormalities is relatively high in IBD patients, but the development of severe liver injury is exceptional. Moreover, most alterations of LFTs are mild and spontaneously return to normal values. Drug-induced hepatotoxicity and fatty liver are the most relevant causes of abnormal LFTs in patients with IBD. PMID:24966712

  3. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  4. The plant vascular system: Evolution, development and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  5. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID

  6. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study

    PubMed Central

    2013-01-01

    Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to

  7. Peripheral artery disease is associated with severe impairment of vascular function.

    PubMed

    Kiani, Soroosh; Aasen, Jonathan G; Holbrook, Monika; Khemka, Abhishek; Sharmeen, Farhana; LeLeiko, Rebecca M; Tabit, Corey E; Farber, Alik; Eberhardt, Robert T; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2013-04-01

    Patients with peripheral artery disease (PAD) have higher cardiovascular event rates than patients with established coronary artery disease (CAD) and abnormal endothelial function predicts cardiovascular risk in PAD and CAD. We investigated the hypothesis that PAD is associated with a greater degree of impairment in vascular function than CAD. We used several non-invasive tests to evaluate endothelial function in 1320 men and women with combined PAD and CAD (n = 198), PAD alone (n = 179), CAD alone (n = 466), or controls aged > 45 years without CAD or PAD (n = 477). Patients with PAD had lower brachial artery flow-mediated dilation (5.1 ± 3.9% PAD and CAD, 5.9 ± 4.4% PAD alone) compared to patients with CAD alone (7.0 ± 4.5%) and no PAD or CAD (8.1 ± 5.1%, p < 0.0001). In multivariable models adjusting for clinical covariates and the presence of CAD, PAD remained associated with lower flow-mediated dilation (p < 0.0001). PAD was associated also with lower nitroglycerin-mediated dilation and reactive hyperemia. Patients with both PAD and CAD had a lower digital pulse amplitude tonometry (PAT) ratio in unadjusted models but not in adjusted models. Flow-mediated dilation was modestly associated with PAT ratio in patients with atherosclerotic disease (r = 0.23, p < 0.0001) but not among control participants (r = 0.008, p = 0.93). Our findings indicate that patients with PAD have greater impairment of vasodilator function and are consistent with the possibility that endothelial dysfunction may contribute to adverse cardiovascular prognosis in PAD. PMID:23509089

  8. Peripheral artery disease is associated with severe impairment of vascular function

    PubMed Central

    Kiani, Soroosh; Aasen, Jonathan G; Holbrook, Monika; Khemka, Abhishek; Sharmeen, Farhana; LeLeiko, Rebecca M; Tabit, Corey E; Farber, Alik; Eberhardt, Robert T; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Patients with peripheral artery disease (PAD) have higher cardiovascular event rates than patients with established coronary artery disease (CAD) and abnormal endothelial function predicts cardiovascular risk in PAD and CAD. We investigated the hypothesis that PAD is associated with a greater degree of impairment in vascular function than CAD. We used several non-invasive tests to evaluate endothelial function in 1320 men and women with combined PAD and CAD (n = 198), PAD alone (n = 179), CAD alone (n = 466), or controls aged > 45 years without CAD or PAD (n = 477). Patients with PAD had lower brachial artery flow-mediated dilation (5.1 ± 3.9% PAD and CAD, 5.9 ± 4.4% PAD alone) compared to patients with CAD alone (7.0 ± 4.5%) and no PAD or CAD (8.1 ± 5.1%, p < 0.0001). In multivariable models adjusting for clinical covariates and the presence of CAD, PAD remained associated with lower flow-mediated dilation (p < 0.0001). PAD was associated also with lower nitroglycerin-mediated dilation and reactive hyperemia. Patients with both PAD and CAD had a lower digital pulse amplitude tonometry (PAT) ratio in unadjusted models but not in adjusted models. Flow-mediated dilation was modestly associated with PAT ratio in patients with atherosclerotic disease (r = 0.23, p < 0.0001) but not among control participants (r = 0.008, p = 0.93). Our findings indicate that patients with PAD have greater impairment of vasodilator function and are consistent with the possibility that endothelial dysfunction may contribute to adverse cardiovascular prognosis in PAD. PMID:23509089

  9. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  10. Dual-mode imaging of cutaneous tissue oxygenation and vascular function.

    PubMed

    Xu, Ronald X; Huang, Kun; Qin, Ruogu; Huang, Jiwei; Xu, Jeff S; Ding, Liya; Gnyawali, Urmila S; Gordillo, Gayle M; Gnyawali, Surya C; Sen, Chandan K

    2010-01-01

    Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition, processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were tested in humans. PMID:21178967

  11. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  12. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development

    PubMed Central

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma. PMID:26492318

  13. Tie1 controls angiopoietin function in vascular remodeling and inflammation.

    PubMed

    Korhonen, Emilia A; Lampinen, Anita; Giri, Hemant; Anisimov, Andrey; Kim, Minah; Allen, Breanna; Fang, Shentong; D'Amico, Gabriela; Sipilä, Tuomas J; Lohela, Marja; Strandin, Tomas; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M; Alitalo, Kari; Saharinen, Pipsa

    2016-09-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  14. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  15. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  16. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression.

    PubMed

    Cha, Jiook; Greenberg, Tsafrir; Song, Inkyung; Blair Simpson, Helen; Posner, Jonathan; Mujica-Parodi, Lilianne R

    2016-05-01

    Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression. © 2016 Wiley Periodicals, Inc. PMID:26743454

  17. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding. PMID:12270009

  18. Right ventricular diastolic function in dialysis patients could be affected by vascular access.

    PubMed

    Di Lullo, Luca; Floccari, Fulvio; Polito, Pasquale

    2011-01-01

    Tricuspid annular plane excursion (TAPSE) measurement in echocardiography is a measure of heart diastolic distensibility: a low TAPSE indicates reduced ventricular distensibility leading to diastolic dysfunction. It is a good prognostic index for cardiac mortality risk in congestive heart failure patients, adding significant prognostic information to the NYHA clinical classification. Our study was designed to evaluate the effect of a single hemodialysis (HD) session on diastolic function and TAPSE, focusing on the effects of vascular access typology. Twenty chronically uremic patients (age 51 ± 10 years, dialytic age 24 ± 8 months), without overt heart disease, underwent conventional two-dimensional and Doppler echocardiography immediately before starting and 15 min after ending a mid-week HD session. Ten patients had distal radiocephalic arterovenous fistula (AVF), and 10 had permanent central venous catheters (CVC). The amount of fluid removed by HD was 2,706 ± 1,047 g/session. HD led to a reduction in TAPSE, left ventricle end-diastole volume, left ventricle end-systole volume, right ventricle end-diastole diameter, peak early transmitral flow velocity, and the ratio of early to late Doppler velocities of diastolic mitral flow. AVF patients showed greater right ventricle diameters versus CVC patients, while TAPSE appeared higher in the latter. Only the AVF patient group showed TAPSE values <15 mm. Our data confirm the effects of terminal uremia on right ventricle function (chamber dilation, impaired diastolic function), showing that these abnormalities are more frequent in AVF patients as opposed to CVC patients. It is reasonable to explain these clinical features as the effect of preload increase operated by AVF. PMID:21196771

  19. Interference with PPARγ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension

    PubMed Central

    Halabi, Carmen M.; Beyer, Andreas M.; de Lange, Willem J.; Keen, Henry L.; Baumbach, Gary L.; Faraci, Frank M.; Sigmund, Curt D.

    2008-01-01

    Summary Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription factor playing a critical role in metabolism. Thiazolidinediones, high affinity PPARγ ligands used clinically to treat type-II diabetes, have been reported to lower blood pressure and provide other cardiovascular benefits. Some mutations in PPARγ cause type-II diabetes and severe hypertension. We tested the hypothesis that PPARγ in vascular muscle plays a role in the regulation of vascular tone and blood pressure. Transgenic mice expressing dominant negative mutations in PPARγ under the control of a smooth muscle-specific promoter exhibit a loss of responsiveness to nitric oxide and striking alterations in contractility in the aorta, hypertrophy and inward remodeling in the cerebral microcirculation, and systolic hypertension. These results identify PPARγ as pivotal in vascular muscle as a regulator of vascular structure, vascular function and blood pressure, potentially explaining some of the cardioprotective effects of thiazolidinediones. PMID:18316027

  20. Rosiglitazone, a peroxisome proliferator-activated receptor γ stimulant, abrogates diabetes-evoked hypertension by rectifying abnormalities in vascular reactivity.

    PubMed

    El-Bassossy, Hany M; Abo-Warda, Shaymaa M; Fahmy, Ahmed

    2012-08-01

    In addition to insulin sensitization, rosiglitazone exhibits favourable circulatory effects. In the present study, we tested the hypothesis that rosiglitazone protects against hypertension and vascular derangements caused by diabetes. Diabetes was induced by a single bolus injection of streptozotocin (50 mg/kg, i.p.). After 2 weeks, rats were started on a treatment regimen of 5 mg/kg rosiglitazone daily for a period of 6 weeks. The control group consisted of rats treated with vehicle (distilled water) for the same period of time. After 6 weeks treatment, blood pressure (BP) was recorded and serum levels of glucose, advanced glycation end-products (AGE), triglycerides, total cholesterol and low-density lipoprotein-cholesterol (LDL-C) were determined. In in vitro experiments, concentration-response curves were constructed to phenylephrine (PE), KCl and acetylcholine (ACh) in thoracic aorta rings. In addition, ACh-induced nitric oxide (NO) generation and KCl-induced intracellular Ca accumulation were determined in the aorta. Compared with values in control rats, both diastolic and systolic BP were increased in diabetic rats. Rosiglitazone treatment of diabetic rats abolished the increase in diastolic BP and significantly reduced the increased systolic BP without affecting the development of hyperglycaemia. The possibility that changes in vascular reactivity and/or lipid profile contributed to the effects of rosiglitazone on BP in diabetic rats was investigated. In aortic rings from diabetic rats, contractile responses to KCl were increased, whereas the relaxant responses to ACh were decreased. In rings from diabetic rosiglitazone-treated rats, the exaggerated response to KCl and the impaired response to ACh were abolished. Furthermore, rosiglitazone abrogated impaired ACh-stimulated NO generation in aortas isolated from diabetic rats. Diabetes in rats was accompanied by elevated levels of triglycerides, total cholesterol, LDL-C and AGE. Rosiglitazone treatment

  1. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  2. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma. PMID:27068508

  3. Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology

    PubMed Central

    Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao

    2014-01-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  4. Creating perfused functional vascular channels using 3D bio-printing technology.

    PubMed

    Lee, Vivian K; Kim, Diana Y; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886

  5. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model.

    PubMed

    Roh, Jason D; Nelson, Gregory N; Brennan, Matthew P; Mirensky, Tamar L; Yi, Tai; Hazlett, Tyrone F; Tellides, George; Sinusas, Albert J; Pober, Jordan S; Saltzman, W M; Kyriakides, Themis R; Breuer, Christopher K

    2008-04-01

    The development of neotissue in tissue engineered vascular grafts remains poorly understood. Advances in mouse genetic models have been highly informative in the study of vascular biology, but have been inaccessible to vascular tissue engineers due to technical limitations on the use of mouse recipients. To this end, we have developed a method for constructing sub-1mm internal diameter (ID) biodegradable scaffolds utilizing a dual cylinder chamber molding system and a hybrid polyester sealant scaled for use in a mouse model. Scaffolds constructed from either polyglycolic acid or poly-l-lactic acid nonwoven felts demonstrated sufficient porosity, biomechanical profile, and biocompatibility to function as vascular grafts. The scaffolds implanted as either inferior vena cava or aortic interposition grafts in SCID/bg mice demonstrated excellent patency without evidence of thromboembolic complications or aneurysm formation. A foreign body immune response was observed with marked macrophage infiltration and giant cell formation by post-operative week 3. Organized vascular neotissue, consisting of endothelialization, medial generation, and collagen deposition, was evident within the internal lumen of the scaffolds by post-operative week 6. These results present the ability to create sub-1mm ID biodegradable tubular scaffolds that are functional as vascular grafts, and provide an experimental approach for the study of vascular tissue engineering using mouse models. PMID:18164056

  6. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients.

    PubMed

    Gómez-Marcos, Manuel A; Blázquez-Medela, Ana M; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  7. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients

    PubMed Central

    Gómez-Marcos, Manuel A.; Blázquez-Medela, Ana M.; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  8. Abnormal interhemispheric resting state functional connectivity of the insula in heroin users under methadone maintenance treatment.

    PubMed

    Wang, Peng-Wei; Lin, Huang-Chi; Liu, Gin-Chung; Yang, Yi-Hsin Connie; Ko, Chih-Hung; Yen, Cheng-Fang

    2016-09-30

    Abnormal interhemispheric functional connectivity is attracting more and more attention in the field of substance use. This study aimed to examine 1) the differences in interhemispheric functional connections of the insula with the contralateral insula and other brain regions between heroin users under methadone maintenance treatment (MMT) and healthy controls, and 2) the association between heroin users' interhemispheric insular functional connectivity using resting functional magnetic resonance imaging (fMRI) and the results of urine heroin analysis. Sixty male right-handed persons, including 30 with heroin dependence under MMT and 30 healthy controls, were recruited to this study. Resting fMRI experiments and urine heroin analysis were performed. Compared with the controls, the heroin users had a significantly lower interhemispheric insular functional connectivity. They also exhibited lower functional connectivity between insula and contralateral inferior orbital frontal lobe. After controlling for age, educational level and methadone dosage, less deviation of the interhemispheric insula functional connectivity was significantly associated with a lower risk of a positive urine heroin analysis result. Our findings demonstrated that the heroin users under MMT had abnormal long-range and interhemispheric resting functional connections. Those with a less dysfunctional interhemispheric insula functional connectivity had a lower risk of a positive urine heroin test. PMID:27497215

  9. Structural and Functional Small Fiber Abnormalities in the Neuropathic Postural Tachycardia Syndrome

    PubMed Central

    Gibbons, Christopher H.; Bonyhay, Istvan; Benson, Adam; Wang, Ningshan; Freeman, Roy

    2013-01-01

    Objective To define the neuropathology, clinical phenotype, autonomic physiology and differentiating features in individuals with neuropathic and non-neuropathic postural tachycardia syndrome (POTS). Methods Twenty-four subjects with POTS and 10 healthy control subjects had skin biopsy analysis of intra-epidermal nerve fiber density (IENFD), quantitative sensory testing (QST) and autonomic testing. Subjects completed quality of life, fatigue and disability questionnaires. Subjects were divided into neuropathic and non-neuropathic POTS, defined by abnormal IENFD and abnormal small fiber and sudomotor function. Results Nine of 24 subjects had neuropathic POTS and had significantly lower resting and tilted heart rates; reduced parasympathetic function; and lower phase 4 valsalva maneuver overshoot compared with those with non-neuropathic POTS (P<0.05). Neuropathic POTS subjects also had less anxiety and depression and greater overall self-perceived health-related quality of life scores than non-neuropathic POTS subjects. A sub-group of POTS patients (cholinergic POTS) had abnormal proximal sudomotor function and symptoms that suggest gastrointestinal and genitourinary parasympathetic nervous system dysfunction. Conclusions and Relevance POTS subtypes may be distinguished using small fiber and autonomic structural and functional criteria. Patients with non-neuropathic POTS have greater anxiety, greater depression and lower health-related quality of life scores compared to those with neuropathic POTS. These findings suggest different pathophysiological processes underlie the postural tachycardia in neuropathic and non-neuropathic POTS patients. The findings have implications for the therapeutic interventions to treat this disorder. PMID:24386408

  10. Vascular smooth muscle in hypertension.

    PubMed

    Winquist, R J; Webb, R C; Bohr, D F

    1982-06-01

    The cause of the elevated arterial pressure in most forms of hypertension is an increase in total peripheral resistance. This brief review is directed toward an assessment of recent investigations contributing information about the factors responsible for this increased vascular resistance. Structural abnormalities in the vasculature that characterize the hypertensive process are 1) changes in the vascular media, 2) rarefication of the resistance vessels, and 3) lesions of the intimal vascular surface. These abnormalities are mainly the result of an adaptive process and are secondary to the increase in wall stress and/or to pathological damage to cellular components in the vessel wall. Functional alterations in the vascular smooth muscle are described as changes in agonist-smooth muscle interaction or plasma membrane permeability. These types of changes appear to play a primary, initiating role in the elevation of vascular resistance of hypertension. These alterations are not the result of an increase in wall stress and they often precede the development of high blood pressure. The functional changes are initiated by abnormal function of neurogenic, humoral, and/or myogenic changes that alter vascular smooth muscle activity. PMID:6282652

  11. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable

  12. Prevalence and Determinants of True Thyroid Dysfunction Among Pediatric Referrals for Abnormal Thyroid Function Tests

    PubMed Central

    Lahoti, Amit; Klein, Jason; Schumaker, Tiffany; Vuguin, Patricia; Frank, Graeme

    2016-01-01

    Background/Aims. Abnormalities in thyroid function tests (TFTs) are a common referral reason for pediatric endocrine evaluation. However, a sizable proportion of these laboratory abnormalities do not warrant therapy or endocrine follow-up. The objectives of this study were (a) to evaluate the prevalence of true thyroid dysfunction among pediatric endocrinology referrals for abnormal TFTs; (b) to identify the historical, clinical, and laboratory characteristics that predict decision to treat. Methods. This was a retrospective chart review of patients evaluated in pediatric endocrinology office during a weekly clinic designated for new referrals for abnormal TFTs in 2010. Results. A total of 230 patients were included in the study. Median age at referral was 12 years (range = 2-18); 56% were females. Routine screening was cited as the reason for performing TFTs by 33% patients. Majority was evaluated for hypothyroidism (n = 206). Elevated thyroid-stimulating hormone was the most common referral reason (n = 140). A total of 41 out of 206 patients were treated for hypothyroidism. Conclusions. Prevalence of hypothyroidism was 20%. Thyroid follow-up was not recommended for nearly one third of the patients. Among all the factors analyzed, an elevated thyroid-stimulating hormone level and antithyroglobulin antibodies strongly correlated with the decision to treat (P < .005). PMID:27336020

  13. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium

    PubMed Central

    Niaudet, Colin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M. Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  14. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium.

    PubMed

    Niaudet, Colin; Hofmann, Jennifer J; Mäe, Maarja A; Jung, Bongnam; Gaengel, Konstantin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature. PMID:26394398

  15. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8180341

  16. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats. PMID:17442729

  17. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  18. Abnormalities in personal space and parietal–frontal function in schizophrenia

    PubMed Central

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  19. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  20. Limbic Metabolic Abnormalities in Remote Traumatic Brain Injury and Correlation With Psychiatric Morbidity and Social Functioning

    PubMed Central

    Capizzano, Arístides A.; Jorge, Ricardo E.; Robinson, Robert G.

    2013-01-01

    The aim of this study was to investigate limbic metabolic abnormalities in remote traumatic brain injury (TBI) and their psychiatric correlates. Twenty patients and 13 age-matched comparison subjects received complete psychiatric evaluation and brain MRI and MR spectroscopy at 3 Tesla. Patients had reduced NAA to creatine ratio in the left hippocampus relative to comparison subjects (mean=1.3 [SD=0.21] compared with mean=1.55 [SD=0.21]; F=10.73, df=1, 30, p=0.003), which correlated with the Social Functioning Examination scores (rs=−0.502, p=0.034). Furthermore, patients with mood disorders had reduced NAA to creatine ratio in the left cingulate relative to patients without mood disorders (1.47 compared with 1.68; F=3.393, df=3, 19, p=0.044). Remote TBI displays limbic metabolic abnormalities, which correlate to social outcome and psychiatric status. PMID:21037120

  1. Alcohol and cardiovascular disease--modulation of vascular cell function.

    PubMed

    Cahill, Paul A; Redmond, Eileen M

    2012-04-01

    Alcohol is a commonly used drug worldwide. Epidemiological studies have identified alcohol consumption as a factor that may either positively or negatively influence many diseases including cardiovascular disease, certain cancers and dementia. Often there seems to be a differential effect of various drinking patterns, with frequent moderate consumption of alcohol being salutary and binge drinking or chronic abuse being deleterious to one's health. A better understanding of the cellular and molecular mechanisms mediating the many effects of alcohol consumption is beginning to emerge, as well as a clearer picture as to whether these effects are due to the direct actions of alcohol itself, or caused in part by its metabolites, e.g., acetaldehyde, or by incidental components present in the alcoholic beverage (e.g., polyphenols in red wine). This review will discuss evidence to date as to how alcohol (ethanol) might affect atherosclerosis that underlies cardiovascular and cerebrovascular disease, and the putative mechanisms involved, focusing on vascular endothelial and smooth muscle cell effects. PMID:22606372

  2. Retrospective analysis of lung function abnormalities of Bhopal gas tragedy affected population

    PubMed Central

    De, Sajal

    2012-01-01

    Background & objectives: A large numbers of subjects were exposed to the aerosol of methyl isocyanate (MIC) during Bhopal gas disaster and lung was one of the most commonly affected organs. The aim of the present study was to analyze retrospectively the lung function abnormalities among the surviving MIC exposed population (gas victims) and to compare it with the non-MIC exposed (non gas exposed) population. Methods: The spirometry data of both gas victims and non gas exposed population who attended the Bhopal Memorial Hospital & Research Centre for evaluation of their respiratory complaints from August 2001 to December 2009, were retrospectively evaluated and compared. Results: A total 4782 gas victims and 1190 non gas exposed individuals performed spirometry during the study period. Among the gas victims, obstructive pattern was the commonest (50.8%) spirometric abnormality followed by restrictive pattern (13.3%). The increased relative risk of developing restrictive abnormality among gas victims was observed in 20-29 yr age group only (adjusted relative risk: 2.94, P<0.001). Male gas victims were more affected by severe airflow obstruction than females and the overall increased relative risk (1.33 to 1.45, P<0.001) of developing obstructive pattern among gas victims was observed. Interpretation & conclusions: The present study showed that the relative risk for pulmonary function abnormalities in gas victims was significantly more among those who were young at the time of disaster. Increased smoking habit among gas victims might have played an additive effect on predominance of obstructive pattern in spirometry. PMID:22446861

  3. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  4. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension

    PubMed Central

    Galambos, Csaba; Minic, Angela D.; Bush, Douglas; Nguyen, Dominique; Dodson, Blair; Seedorf, Gregory; Abman, Steven H.

    2016-01-01

    Background and Aims Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. Methods Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. Results The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. Conclusions We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and

  5. Maternal Hyperleptinemia Is Associated with Male Offspring’s Altered Vascular Function and Structure in Mice

    PubMed Central

    Pollock, Kelly E.; Talton, Omonseigho O.; Foote, Christopher A.; Reyes-Aldasoro, Constantino C.; Wu, Ho-Hsiang; Ji, Tieming; Martinez-Lemus, Luis A.; Schulz, Laura C.

    2016-01-01

    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies. PMID:27187080

  6. Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Peralta, Carmen A; Adeney, Kathryn L; Shlipak, Michael G; Jacobs, David; Duprez, Daniel; Bluemke, David; Polak, Joseph; Psaty, Bruce; Kestenbaum, Bryan R

    2010-01-01

    Vascular abnormalities may exist before clinical hypertension. Using Poisson regression, the authors studied the association of coronary artery calcium (CAC), common carotid intima-media thickness (CIMT), aortic distensibility, and large and small arterial elasticity with incident hypertension among 2,512 normotensive US adults free of cardiovascular disease. Incidence rate ratios for incident hypertension (blood pressure > or =140/90 mm Hg or new antihypertensive medication) were calculated. Increased CAC was associated with incident hypertension in demographics-adjusted models (incidence rate ratio (IRR) = 1.35, 95% confidence interval (CI): 1.04, 1.75; IRR = 1.35, 95% CI: 1.02, 1.78; and IRR = 1.59, 95% CI: 1.12, 2.25 for CAC scores of 30-99, 100-399, and > or =400, respectively) but was attenuated after further adjustment. Increased common CIMT was associated with incident hypertension (IRR = 1.77, 95% CI: 1.28, 2.46 for quintile 4; IRR = 1.80, 95% CI: 1.28, 2.53 for quintile 5). Participants with the lowest, compared with the highest, aortic distensibility had an increased risk of hypertension (IRR = 1.75, 95% CI: 1.10, 2.79), as did those with the lowest large arterial elasticity (IRR = 1.49, 95% CI: 1.11, 1.99). Lower small arterial elasticity was incrementally associated with incident hypertension starting at quintile 2 (IRR = 2.01, 95% CI: 1.39, 2.91; IRR = 2.47, 95% CI: 1.71, 3.57; IRR = 2.73, 95% CI: 1.88, 3.95; and IRR = 2.85, 95% CI: 1.95, 4.16). Structural and functional vascular abnormalities are independent predictors of incident hypertension. These findings are important for understanding the pathogenesis of hypertension. PMID:19951938

  7. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function

    PubMed Central

    Liang, Mao-Shih; Koobatian, Maxwell T.; Lei, Pedro; Swartz, Daniel D.; Andreadis, Stelios T.

    2013-01-01

    We investigated the hypothesis that immobilizing TGF-β1 within fibrin hydrogels may act in synergy with cyclic mechanical stimulation to enhance the properties of vascular grafts. To this end, we engineered a fusion TGF-β1 protein that can covalently anchor to fibrin during polymerization upon the action of factor XIII. We also developed a 24-well based bioreactor in which vascular constructs can be mechanically stimulated by distending the silastic mandrel in the middle of each well. TGF-β1 was either conjugated to fibrin or supplied in the culture medium and the fibrin based constructs were cultured statically for a week followed by cyclic distention for another week. The tissues were examined for myogenic differentiation, vascular reactivity, mechanical properties and ECM content. Our results showed that some aspects of vascular function were differentially affected by growth factor presentation vs. pulsatile force application, while others were synergistically enhanced by both. Overall, this two-prong biomimetic approach improved ECM secretion, vascular reactivity and mechanical properties of vascular constructs. These findings may be applied in other tissue engineering applications such as cartilage, tendon or cardiac regeneration where growth factors TGF-β1 and mechano-stimulation play critical roles. PMID:23810080

  8. Abnormal function of the corpus luteum in some ewes with phyto-oestrogenic infertility.

    PubMed

    Adams, N R; Hearnshaw, H; Oldham, C M

    1981-01-01

    Ewes with permanent phyto-estrogenic infertility show oestrus less regularly than normal ewes, and the present study examines the extent to which this results from abnormal ovarian function. Forty-nine affected ewes and 53 controls were run with rams fitted with marking crayons and harnesses, and crayon marks were recorded and laparoscopy performed at weekly intervals for 3 weeks. Fewer affected ewes showed oestrus accompanied by ovulation (28 v. 49, P less than 0.001), and four of these affected ewes had a second ovulation during the experiment. More of the ovulations observed in affected ewes were unaccompanied by behavioural oestrus than in controls (8 out of 38 v. 2 out of 50; P less than 0.05). Six affected ewes had no corpus luteum or oestrus, and five of these had adhesions over the genitalia. Hydrops uteri in five other affected ewes was accompanied by prolonged maintenance of the corpus luteum. Some other abnormalities were also observed. In a second study, plasma progesterone concentrations were measured twice daily in 12 affected ewes which were run with rams. Five ewes had oestrous cycles of abnormal duration (two of more than 23 days, two of 21 days, and one of 11 days), and these were accompanied by plasma progesterone patterns different from those of the ewes with an oestrous cycle duration of 16-18 days. It is concluded that the irregular oestrous cycles in affected ewes are due mainly to abnormal life span and progesterone secretion by the corpus luteum, which in turn largely result from changes in the uterus. PMID:7196218

  9. Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis

    PubMed Central

    Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul

    1998-01-01

    Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117

  10. [Progress in research on function and mechanism of cardiac vascular system of taurine].

    PubMed

    Hua, Hao-ming; Ito, Takashi; Qiu, Zhi-gang; Azuma, Junichi

    2005-05-01

    The function for cardiac vascular system of taurine is extensive, and the mechanism is complicated. Taurine protects the cells from the cell injury caused by ischemia etc. Through repressing apoptosis, prevents endothelial dysfunction caused by hyperglycemia, hypercholesterolemia, smoking and homocysteine; suppresses the proliferation and calcification in vascular smooth muscle cells, promotes metabolization and excretion of cholesterol in the animal models of hyperlipemia, and confers the resistance to an oxidant, hypochlorous acid, produced by neutrophil on cells, and taurine chrolamine to inhibit activation of NF-kappaB, which might be associated with anti-atherosclerotic effect. Taurine mainly acts inside the cell. However, taurine transport system becomes aberrant in pathological myocardial and vascular tissue. In addition, taurine improves cardiovascular function in fructose-induced hypertension and an iron-overload murine animal models. PMID:16075725

  11. Functional changes are associated with tracheal structural abnormalities in patients with acromegaly

    PubMed Central

    Camilo, Gustavo Bittencourt; Guimarães, Fernando Silva; Mogami, Roberto; Faria, Alvaro Camilo Dias; Melo, Pedro Lopes

    2016-01-01

    Introduction Although impaired pulmonary function and respiratory sleep disorders are described as responsible for increased mortality in acromegalic patients, little is known about the tracheal abnormalities in this group of patients. Thus, the objectives of this study were to describe the tracheal structural abnormalities and correlate these changes with the respiratory function and clinical data of acromegalic patients. Material and methods This is a cross-sectional study that was carried out at two university hospitals. Twenty acromegalic patients underwent spirometry, forced oscillation technique, and computed tomography (CT) assessments. Dyspnea and daytime sleepiness were assessed using the Modified Medical Research Council (MMRC) scale and the Epworth Sleepiness Scale (ESS), respectively. Forty matched subjects served as controls. Results The acromegalic patients exhibited larger median ratios between forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity (FEF50%/FIF50%) (2.05 vs. 1.06, p = 0.0001) compared with healthy volunteers. In the CT analysis, acromegalic patients exhibited larger median differences between their cervical and thoracic tracheal diameters (Δ tracheal diameters) (3 vs. 1 mm; p = 0.003). An association was found between FEF50%/FIF50% and the following variables: mean resistance (Rm), cervical tracheal diameter, and Δ tracheal diameters. Rm also exhibited a negative correlation with cervical tracheal diameter. Neither the MMRC scale nor the ESS exhibited any significant correlation with large airway obstruction (LAO) indices or with the measured tracheal diameters. Conclusions Acromegalic patients have tracheal structural abnormalities which are associated with functional indicators of LAO but not with clinical data. PMID:26925121

  12. ASSOCIATION BETWEEN WHITE MATTER MICROSTRUCTURE, EXECUTIVE FUNCTIONS AND PROCESSING SPEED IN OLDER ADULTS: THE IMPACT OF VASCULAR HEALTH

    PubMed Central

    Jacobs, Heidi I.L.; Leritz, Elizabeth C.; Williams, Victoria J.; Van Boxtel, Martin P.J.; van der Elst, Wim; Jolles, Jelle; Verhey, Frans R. J.; McGlinchey, Regina E.; Milberg, William P.; Salat, David H.

    2013-01-01

    Cerebral white matter damage is a commonly reported consequence of healthy aging, but is also associated with cognitive decline and dementia. The aetiology of this damage is unclear, however, individuals with hypertension have a greater burden of white matter signal abnormalities (WMSA) on MR imaging than those without hypertension. It is therefore possible that elevated blood pressure (BP) impacts white matter tissue structure which in turn has a negative impact on cognition. However, little information exists about whether vascular health indexed by BP mediates the relationship between cognition and white matter tissue structure. We used diffusion tensor imaging to examine the impact of vascular health on regional associations between white matter integrity and cognition in healthy older adults spanning the normotensive to moderate-severe hypertensive BP range (43–87 years; N=128). We examined how white matter structure was associated with performance on tests of two cognitive domains, executive functioning (EF) and processing speed (PS), and how patterns of regional associations were modified by BP and WMSA. Multiple linear regression and structural equation models demonstrated associations between tissue structure, EF and PS in frontal, temporal, parietal and occipital white matter regions. Radial diffusivity was more prominently associated with performance than axial diffusivity. BP only minimally influenced the relationship between white matter integrity, EF and PS. However, WMSA volume had a major impact on neurocognitive associations. This suggests that, although BP and WMSA are causally related, these differential metrics of vascular health may act via independent pathways to influence brain structure, EF and PS. PMID:21954054

  13. Association between white matter microstructure, executive functions, and processing speed in older adults: the impact of vascular health.

    PubMed

    Jacobs, Heidi I L; Leritz, Elizabeth C; Williams, Victoria J; Van Boxtel, Martin P J; van der Elst, Wim; Jolles, Jelle; Verhey, Frans R J; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2013-01-01

    Cerebral white matter damage is not only a commonly reported consequence of healthy aging, but is also associated with cognitive decline and dementia. The aetiology of this damage is unclear; however, individuals with hypertension have a greater burden of white matter signal abnormalities (WMSA) on MR imaging than those without hypertension. It is therefore possible that elevated blood pressure (BP) impacts white matter tissue structure which in turn has a negative impact on cognition. However, little information exists about whether vascular health indexed by BP mediates the relationship between cognition and white matter tissue structure. We used diffusion tensor imaging to examine the impact of vascular health on regional associations between white matter integrity and cognition in healthy older adults spanning the normotensive to moderate-severe hypertensive BP range (43-87 years; N = 128). We examined how white matter structure was associated with performance on tests of two cognitive domains, executive functioning (EF) and processing speed (PS), and how patterns of regional associations were modified by BP and WMSA. Multiple linear regression and structural equation models demonstrated associations between tissue structure, EF and PS in frontal, temporal, parietal, and occipital white matter regions. Radial diffusivity was more prominently associated with performance than axial diffusivity. BP only minimally influenced the relationship between white matter integrity, EF and PS. However, WMSA volume had a major impact on neurocognitive associations. This suggests that, although BP and WMSA are causally related, these differential metrics of vascular health may act via independent pathways to influence brain structure, EF and PS. PMID:21954054

  14. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function.

    PubMed

    Imig, J D

    2016-01-01

    Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function. PMID:27451096

  15. Deficiency of Cardiolipin Synthase Causes Abnormal Mitochondrial Function and Morphology in Germ Cells of Caenorhabditis elegans*

    PubMed Central

    Sakamoto, Taro; Inoue, Takao; Otomo, Yukae; Yokomori, Nagaharu; Ohno, Motoki; Arai, Hiroyuki; Nakagawa, Yasuhito

    2012-01-01

    Cardiolipin (CL) is a major membrane phospholipid specifically localized in mitochondria. At the cellular level, CL has been shown to have a role in mitochondrial energy production, mitochondrial membrane dynamics, and the triggering of apoptosis. However, the in vivo role of CL in multicellular organisms is largely unknown. In this study, by analyzing deletion mutants of a CL synthase gene (crls-1) in Caenorhabditis elegans, we demonstrated that CL depletion selectively caused abnormal mitochondrial function and morphology in germ cells but not in somatic cell types such as muscle cells. crls-1 mutants reached adulthood but were sterile with reduced germ cell proliferation and impaired oogenesis. In the gonad of crls-1 mutants, mitochondrial membrane potential was significantly decreased, and the structure of the mitochondrial cristae was disrupted. Contrary to the abnormalities in the gonad, somatic tissues in crls-1 mutants appeared normal with respect to cell proliferation, mitochondrial function, and mitochondrial morphology. Increased susceptibility to CL depletion in germ cells was also observed in mutants of phosphatidylglycerophosphate synthase, an enzyme responsible for producing phosphatidylglycerol, a precursor phospholipid of CL. We propose that the contribution of CL to mitochondrial function and morphology is different among the cell types in C. elegans. PMID:22174409

  16. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures

    PubMed Central

    Nunes, S. S.; Maijub, J. G.; Krishnan, L.; Ramakrishnan, V. M.; Clayton, L. R.; Williams, S. K.; Hoying, J. B.; Boyd, N. L.

    2013-01-01

    One of the major challenges in cell implantation therapies is to promote integration of the microcirculation between the implanted cells and the host. We used adipose-derived stromal vascular fraction (SVF) cells to vascularize a human liver cell (HepG2) implant. We hypothesized that the SVF cells would form a functional microcirculation via vascular assembly and inosculation with the host vasculature. Initially, we assessed the extent and character of neovasculatures formed by freshly isolated and cultured SVF cells and found that freshly isolated cells have a higher vascularization potential. Generation of a 3D implant containing fresh SVF and HepG2 cells formed a tissue in which HepG2 cells were entwined with a network of microvessels. Implanted HepG2 cells sequestered labeled LDL delivered by systemic intravascular injection only in SVF-vascularized implants demonstrating that SVF cell-derived vasculatures can effectively integrate with host vessels and interface with parenchymal cells to form a functional tissue mimic. PMID:23828203

  17. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  18. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  19. Functional evaluation of an inherited abnormal fibrinogen: fibrinogen “Baltimore”

    PubMed Central

    Beck, Eugene A.; Shainoff, John R.; Vogel, Alfred; Jackson, Dudley P.

    1971-01-01

    The rate of clotting and the rate of development and degree of turbidity after addition of thrombin to plasma or purified fibrinogen from a patient with fibrinogen Baltimore was delayed when compared with normal, especially in the presence of low concentrations of thrombin. Optimal coagulation and development of translucent, rather than opaque, clots occurred at a lower pH with the abnormal fibrinogen than with normal. Development of turbidity during clotting of the abnormal plasma or fibrinogen was less than normal at each pH tested, but was maximal in both at approximately pH 6.4. The physical quality of clots formed from fibrinogen Baltimore was abnormal, as demonstrated by a decreased amplitude on thromboelastography. The morphologic appearance of fibrin strands formed from fibrinogen Baltimore by thrombin at pH 7.4 was abnormal when examined by phase contrast or electron microscopy, but those formed by thrombin at pH 6.4 or by thrombin and calcium chloride were similar to, though less compact, than normal fibrin. The periodicity of fibrin formed from fibrinogen Baltimore was similar to normal and was 231-233 Å. A study of the release of the fibrinopeptides from the patient's fibrinogen and its chromatographic subfractions verified the existence of both a normally behaving and a defective form of fibrinogen in the patient's plasma. The defective form differed from normal in three functionally different ways: (a) the rate of release of fibrinopeptides A and AP was slower than normal; (b) no visible clot formation accompanied either partial or complete release of the fibrinopeptides from the defective form in 0.3 M NaCl at pH 7.4; and (c) the defective component possessed a high proportion of phosphorylated, relative to nonphosphorylated, fibrinopeptide A, while the coagulable component contained very little of the phosphorylated peptide (AP). The high phosphate content of the defective component did not appear to be the cause of the abnormality, but may be the

  20. The role of mechanotransduction on vascular smooth muscle myocytes cytoskeleton and contractile function

    PubMed Central

    Ye, George J.C.; Nesmith, Alexander P.; Parker, Kevin Kit

    2016-01-01

    Smooth muscle exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular smooth muscle function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the vascular smooth muscle. PMID:25125187

  1. Does high-density lipoprotein protect vascular function in healthy pregnancy?

    PubMed

    Sulaiman, Wan N Wan; Caslake, Muriel J; Delles, Christian; Karlsson, Helen; Mulder, Monique T; Graham, Delyth; Freeman, Dilys J

    2016-04-01

    The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur. PMID:26888561

  2. [Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].

    PubMed

    Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan

    2016-02-01

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function. PMID:27382755

  3. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    SciTech Connect

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-19

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.

  4. A novel approach to the assessment of vascular endothelial function

    NASA Astrophysics Data System (ADS)

    Sathasivam, S.; Phababpha, S.; Sengmeuan, P.; Detchaporn, P.; Siddiqui, Z.; Kukongviriyapan, U.; Greenwald, S.

    2011-08-01

    Impaired endothelial function (EF) is associated with atherogenesis, and its quantitative assessment has prognostic value. Currently, methods based on assessing flow-mediated dilation (FMD) are technically difficult and expensive. We tested a novel way of assessing EF by measuring the time difference between pulses arriving at the middle fingers of each hand (f-fΔT), whilst FMD is induced in one arm. We compared f-fΔT with standard methods in healthy and diseased subjects. Our findings suggest that the proposed simple and inexpensive technique gives comparable results and has the potential to qualitatively assess EF in the clinical setting, although further work is required.

  5. Calcitonin gene-related peptide does not mediate the abnormal vascular reactivity observed in a rat model of acute Pseudomonas pneumonia.

    PubMed

    Fox, G A; Paterson, N A; McCormack, D G

    1996-06-01

    Abnormal systemic and pulmonary vascular reactivity has been demonstrated in numerous models of sepsis and pneumonia. Furthermore, the attenuated hypoxic pulmonary pressor response observed in these animals probably is responsible for the ventilation/perfusion (V/Q) mismatching and consequent arterial hypoxemia. We hypothesized that excess release of endogenous vasodilators such as calcitonin gene-related peptide (CGRP) in pneumonia was responsible for the diminished hypoxic pressor response. Using the CGRP receptor antagonist CGRP (8-37), we examined the role of CGRP in the attenuated hypoxic pulmonary response in a rat model of acute Pseudomonas pneumonia. Sixteen Sprague-Dawley rats were instrumented for chronic hemodynamic monitoring and subsequently randomized to either Pneumonia (n = 8), induced by the instillation of 0.2 ml broth containing 2 x 10(8) colony-forming units (CFU)/ml Pseudomonas aeruginosa into the right lower lobe, or Sham (n = 8) procedure. Hemodynamic measurements and the hypoxic (FiO2 = 0.08) pulmonary pressor response were recorded at baseline, 48 h after the pneumonia or sham procedure and after the administration of 250 micrograms CGRP (8-37) (post-CGRP(8-37)). The regional distribution of pulmonary blood flow was determined by the injection of radioactive microspheres. Forty-eight hours after the instillation of Pseudomonas, Pneumonia animals had significantly increased cardiac output (CO) as compared with Sham (193 +/- 7 vs. 154 +/- 7 ml/min, p < 0.05), slightly decreased mean arterial pressure (MAP 109 +/- 4 vs. 118 +/- 3 mm Hg, p = NS), and reduced total systemic vascular resistance (TSVR 0.57 +/- 0.03 vs. 0.78 +/- 0.05 mm Hg.min.ml-1, p < 0.05). Pneumonia animals were further characterized by increased mean pulmonary artery pressure (MPAP) as compared with Sham (24 +/- 2 vs. 20 +/- 1 mm Hg, p < 0.05) animals, and an increased alveolar-arterial (A-a) oxygen gradient (31 +/- 3 vs. 20 +/- 4 mm Hg, p < 0.05). The administration of CGRP

  6. Enhanced biocompatibility of CD47-functionalized vascular stents.

    PubMed

    Slee, Joshua B; Alferiev, Ivan S; Nagaswami, Chandrasekaran; Weisel, John W; Levy, Robert J; Fishbein, Ilia; Stachelek, Stanley J

    2016-05-01

    The effectiveness of endovascular stents is hindered by in-stent restenosis (ISR), a secondary re-obstruction of treated arteries due to unresolved inflammation and activation of smooth muscle cells in the arterial wall. We previously demonstrated that immobilized CD47, a ubiquitously expressed transmembrane protein with an established role in immune evasion, can confer biocompatibility when appended to polymeric surfaces. In present studies, we test the hypothesis that CD47 immobilized onto metallic surfaces of stents can effectively inhibit the inflammatory response thus mitigating ISR. Recombinant CD47 (recCD47) or a peptide sequence corresponding to the Ig domain of CD47 (pepCD47), were attached to the surfaces of both 316L-grade stainless steel foils and stents using bisphosphonate coordination chemistry and thiol-based conjugation reactions to assess the anti-inflammatory properties of CD47-functionalized surfaces. Initial in vitro and ex vivo analysis demonstrated that both recCD47 and pepCD47 significantly reduced inflammatory cell attachment to steel surfaces without impeding on endothelial cell retention and expansion. Using a rat carotid stent model, we showed that pepCD47-functionalized stents prevented fibrin and platelet thrombus deposition, inhibited inflammatory cell attachment, and reduced restenosis by 30%. It is concluded that CD47-modified stent surfaces mitigate platelet and inflammatory cell attachment, thereby disrupting ISR pathophysiology. PMID:26914699

  7. Left Ventricular Diastolic Dysfunction in Ischemic Stroke: Functional and Vascular Outcomes

    PubMed Central

    Park, Hong-Kyun; Kim, Beom Joon; Yoon, Chang-Hwan; Yang, Mi Hwa; Han, Moon-Ku; Bae, Hee-Joon

    2016-01-01

    Background and Purpose Left ventricular (LV) diastolic dysfunction, developed in relation to myocardial dysfunction and remodeling, is documented in 15%-25% of the population. However, its role in functional recovery and recurrent vascular events after acute ischemic stroke has not been thoroughly investigated. Methods In this retrospective observational study, we identified 2,827 ischemic stroke cases with adequate echocardiographic evaluations to assess LV diastolic dysfunction within 1 month after the index stroke. The peak transmitral filling velocity/mean mitral annular velocity during early diastole (E/e’) was used to estimate LV diastolic dysfunction. We divided patients into 3 groups according to E/e’ as follows: <8, 8-15, and ≥15. Recurrent vascular events and functional recovery were prospectively collected at 3 months and 1 year. Results Among included patients, E/e’ was 10.6±6.4: E/e’ <8 in 993 (35%), 8-15 in 1,444 (51%), and ≥15 in 378 (13%) cases. Functional dependency or death (modified Rankin Scale score ≥2) and composite vascular events were documented in 1,298 (46%) and 187 (7%) patients, respectively, at 3 months. In multivariable analyses, ischemic stroke cases with E/e’ ≥15 had increased odds of functional dependence or death at 3 months (adjusted OR [95% CI]: 1.73 [1.27-2.35]) or 1 year (1.47 [1.06-2.06]) and vascular events within 1 year (1.65 [1.08-2.51]). Subgroups with normal ejection fraction or sinus rhythm exhibited a similar overall pattern and direction. Conclusions LV diastolic dysfunction was associated with poor functional outcomes and composite vascular events up to 1 year. PMID:27283279

  8. Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk.

    PubMed

    Enkhmaa, Davaasambuu; Wall, Danielle; Mehta, Puja K; Stuart, Jennifer J; Rich-Edwards, Janet Wilson; Merz, C Noel Bairey; Shufelt, Chrisandra

    2016-03-01

    Preeclampsia affects ∼3%-7% of all pregnancies and is the third leading cause of maternal mortality globally. Growing evidence indicates that preeclampsia results from vascular dysfunction, which also increases the risk for future cardiovascular events. Until recently, preeclampsia was considered a disorder limited to pregnancy, which fully resolved with the delivery of the placenta; however, it is now clear that women with a history of preeclampsia have approximately double the risk of future cardiovascular events compared to women with normotensive pregnancies. The aims of this review were to describe the hemodynamic and vascular changes that occur in normal and preeclamptic pregnancies, to review noninvasive methods to test vascular function, and to discuss the associated increased cardiovascular disease risk related to preeclampsia. PMID:26779584

  9. Effects of short-term endurance exercise training on vascular function in young males.

    PubMed

    Currie, Katharine D; Thomas, Scott G; Goodman, Jack M

    2009-09-01

    We investigated effects of 6 days of endurance exercise training [cycling at 65% of peak oxygen consumption (VO(2peak)) for 2 h a day on six consecutive days] on vascular function in young males. Measures of VO(2peak), arterial stiffness, calf vascular conductance and heart rate variability were obtained pre- and post-training. Indices of arterial stiffness were obtained by applanation tonometry to determine aortic augmentation index normalized to a heart rate of 75 bpm (AI(x) at 75 bpm), and central and peripheral pulse wave velocity (CPWV, PPWV). Resting and maximal calf vascular conductances were calculated from concurrent measures of blood pressure and calf blood flow using venous occlusion strain-gauge plethysmography. Time and frequency domain measures of heart rate variability were obtained from recording R-R intervals during supine and standing conditions. Both CPWV (5.9 +/- 0.8 vs. 5.4 +/- 0.8 m/s) and PPWV (9.7 +/- 0.8 vs. 8.9 +/- 1.3 m/s) were reduced following the training program. No significant changes were observed in AI(x) at 75 bpm, vascular conductance, heart rate variability or VO(2peak). These data indicate that changes in arterial stiffness independent of changes in heart rate variability or vascular conductance can be achieved in healthy young males following only 6 days of intense endurance exercise. PMID:19554346

  10. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study.

    PubMed

    Mark, P B; Boyle, S; Zimmerli, L U; McQuarrie, E P; Delles, C; Freel, E M

    2014-02-01

    Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV). We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass. Subjects with PA had significantly lower aortic distensibility and higher PWV compared with EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including ageing. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular ageing. As expected, aortic distensibility and PWV were closely correlated. These results demonstrate that PA patients display increased arterial stiffness compared with EH, independent of vascular ageing. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study. PMID:23884211

  11. [Complex assessment of vasomotor function of vascular endothelium in patients with hypertension].

    PubMed

    Gel'tser, B I; Savchenko, S V; Kotel'nikov, V N; Plotnikova, I V

    2004-01-01

    Vasomotor function of vascular endothelium was studied in 62 patients with grade 1-2 hypertension with moderate and high added risk. Methods included study of brachial and middle cerebral artery endothelium dependent and independent vasodilation/vasoconstriction, measurement of plasma levels of nitric oxide metabolites (NO(n)-), endothelin-1, and antithrombin, as well as registration of their changes during vasomotor tests with calculation of integral indexes. Most patients with hypertension differed from controls by preponderance of vasoconstrictor over vasodilator reactions both in peripheral and cerebral vascular bed. At the same time patients with hypertension had pronounced dissociation between vasomotor responses of cerebral and peripheral vessels compared with subjects with normal blood pressure (p<0.05). Besides lowered basal level of NO(n)- and high concentration of endothelin-1 patients with hypertension were characterized by hyperreactivity of nitricoxidergic system, augmented lability of endothelin producing system, and impaired athrombogenecity of vascular endothelium. Complex assessment of vasomotor function of vascular endothelium by sequential vasoactive tests characterizes functional and metabolic activity of cerebral and peripheral vessels and can be used for improvement of risk stratification and monitoring of efficacy of treatment of patients with hypertension. PMID:15111971

  12. Clinical Correlates of Hachinski Ischemic Score and Vascular Factors in Cognitive Function of Elderly

    PubMed Central

    Kim, Youn Ho

    2014-01-01

    The aim of this study is to investigate the relationship between Hachinski ischemic score (HIS) and vascular factors as well as between HIS and the cognitive function in elderly community. Demographic characteristics, such as sex, age, education, history of drinking and smoking, family history of dementia and stroke, diabetes mellitus, hypertension, hyperlipidemia, cardiovascular disease, stroke, and dementia, were surveyed. Neurological examination was administered to every subject and HIS was checked by a neurologist. From a total of 392 participants aged 65 and over in a rural community, 348 completed the survey and were finally enrolled. Among the vascular factors, history of hypertension (P = 0.008), history of stroke (P < 0.001), family history of dementia (P = 0.01), and history of cardiac diseases (P = 0.012) showed a significant relationship with HIS. In the cognitive function tests, both Korean version of the Mini-Mental State Examination and the Clinical Dementia Rating (Global and Sum of Boxes) had a significant relationship with HIS. Our study suggested HIS may have an association with some vascular factors and cognitive scales in community dwelling elderly. In this study, the HIS seemed to contribute to the evaluation of the quantity of vascular factors and to the prediction of status of cognitive function. PMID:25247189

  13. The effect of ozone inhalation on metabolic functioning of vascular endothelium and on ventilatory function

    SciTech Connect

    Gross, K.B.; White, H.J.; Sargent, N.E. )

    1991-06-15

    The primary purpose of this research was to determine the effect of ozone inhalation on pulmonary vascular endothelium. Male Fischer-344 rats were exposed to 0.5 or 0.7 ppm ozone, 20 hr/day for 7 days. Lungs were excised and perfused with Krebs medium containing (14C)serotonin or (14C)hippurylhistidylleucine (HHL). When compared to controls, the animals exposed to the lower ozone concentration showed no statistically significant changes in serotonin removal. In contrast, the higher ozone concentration resulted in a 32% decrease (p less than 0.0001) in serotonin removal, but had no effect on HHL. Rats similarly exposed to 0.7 ppm ozone but allowed to recover for 14 days in clean air showed no decrease in serotonin removal compared to their controls. Animals exposed sequentially to 0.5 ppm ozone for 7 days and then to 0.7 ppm for 7 days showed no alteration in serotonin metabolism, suggesting the development of tolerance initiated by the lower dose. After 7 days exposure to 0.7 ppm ozone, lung ventilatory function measurements revealed small though significant decreases in several parameters. Electron microscopic evaluation of lung capillary endothelium from animals exposed to the 0.7 ppm ozone showed no changes. Positive control animals exposed to greater than 95% oxygen, 20 hr/day for 2 days showed a 23% decrease in serotonin removal (p less than 0.03) and a 12% decrease in HHL removal (p less than 0.017). These studies indicate that inhalation of ozone can induce functional alterations in the lung endothelium, and that this effect occurs at a dosage of ozone that produces minimal ventilatory changes and no observable endothelial ultrastructural changes.

  14. Impaired renal function impacts negatively on vascular stiffness in patients with coronary artery disease

    PubMed Central

    2013-01-01

    Background Chronic kidney disease (CKD) and coronary artery disease (CAD) are independently associated with increased vascular stiffness. We examined whether renal function contributes to vascular stiffness independently of CAD status. Methods We studied 160 patients with CAD and 169 subjects without CAD. The 4-variable MDRD formula was used to estimate glomerular filtration rate (eGFR); impaired renal function was defined as eGFR <60 mL/min. Carotid-femoral pulse wave velocity (PWV) was measured with the SphygmoCor® device. Circulating biomarkers were assessed in plasma using xMAP® multiplexing technology. Results Patients with CAD and impaired renal function had greater PWV compared to those with CAD and normal renal function (10.2 [9.1;11.2] vs 7.3 [6.9;7.7] m/s; P < 0.001). In all patients, PWV was a function of eGFR (β = −0.293; P < 0.001) even after adjustment for age, sex, systolic blood pressure, body mass index and presence or absence of CAD. Patients with CAD and impaired renal function had higher levels of adhesion and inflammatory molecules including E-selectin and osteopontin (all P < 0.05) compared to those with CAD alone, but had similar levels of markers of oxidative stress. Conclusions Renal function is a determinant of vascular stiffness even in patients with severe atherosclerotic disease. This was paralleled by differences in markers of cell adhesion and inflammation. Increased vascular stiffness may therefore be linked to inflammatory remodeling of the vasculature in people with impaired renal function, irrespective of concomitant atherosclerotic disease. PMID:23937620

  15. Global functional connectivity abnormalities in children with Fetal Alcohol Spectrum Disorders (FASD)

    PubMed Central

    Wozniak, Jeffrey R.; Mueller, Bryon A.; Bell, Christopher J.; Muetzel, Ryan L.; Hoecker, Heather L.; Boys, Christopher J.; Lim, Kelvin O.

    2012-01-01

    Background Previous studies, including those employing Diffusion Tensor Imaging (DTI), have revealed significant disturbances in the white matter of individuals with Fetal Alcohol Spectrum Disorders (FASD). Both macrostructural and microstructural abnormalities have been observed across levels of FASD severity. Emerging evidence suggests that these white matter abnormalities are associated with functional deficits. This study used resting-state fMRI to evaluate the status of network functional connectivity in children with FASD compared to control subjects. Methods Participants included 24 children with FASD, ages 10–17, and 31 matched controls. Neurocognitive tests were administered including Wechsler Intelligence Scales, California Verbal Learning Test, and Behavior Rating Inventory of Executive Functioning. High resolution anatomical MRI data and six-minute resting-state fMRI data were collected. The resting-state fMRI data were subjected to a graph theory analysis and four global measures of cortical network connectivity were computed: characteristic path length, mean clustering coefficient, local efficiency, and global efficiency. Results Results revealed significantly altered network connectivity in those with FASD. The characteristic path length was 3.1% higher (p=.04, Cohen’s d=.47) and global efficiency was 1.9% lower (p=.04, d=.63) in children with FASD compared to controls, suggesting decreased network capacity that may have implications for integrative cognitive functioning. Global efficiency was significantly positively correlated with cortical thickness in frontal (r=.38, p=.005), temporal (r=.28, p=.043), and parietal (r=.36, p=.008) regions. No relationship between facial dysmorphology and functional connectivity was observed. Exploratory correlations suggested that global efficiency and characteristic path length are associated with capacity for immediate verbal memory on the CVLT (r=.41, p=.05 and r=.41, p=.01 respectively) among those with

  16. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature

    PubMed Central

    Di Nicola, Maura; Barteselli, Giulio; Dell'Arti, Laura; Ratiglia, Roberto; Viola, Francesco

    2015-01-01

    Deferoxamine mesylate (DFO) is the most commonly used iron-chelating agent to treat transfusion-related hemosiderosis. Despite the clear advantages for the use of DFO, numerous DFO-related systemic toxicities have been reported in the literature, as well as sight-threatening ocular toxicity involving the retinal pigment epithelium (RPE). The damage to the RPE can lead to visual field defects, color-vision defects, abnormal electrophysiological tests, and permanent visual deterioration. The purpose of this review is to provide an updated summary of the ocular findings, including both functional and structural abnormalities, in DFO-treated patients. In particular, we pay particular attention to analyzing results of multimodal technologies for retinal imaging, which help ophthalmologists in the early diagnosis and correct management of DFO retinopathy. Fundus autofluorescence, for example, is not only useful for screening patients at high-risk of DFO retinopathy, but is also a prerequisite for identify specific high-risk patterns of RPE changes that are relevant for the prognosis of the disease. In addition, optical coherence tomography may have a clinical usefulness in detecting extent and location of different retinal changes in DFO retinopathy. Finally, this review wants to underline the need for universally approved guidelines for screening and followup of this particular disease. PMID:26167477

  17. Abnormal Compartmentalization of Cartilage Matrix Components in Mice Lacking Collagen X: Implications for Function

    PubMed Central

    Kwan, Kin Ming; Pang, Michael K.M.; Zhou, Sheila; Cowan, Soot Keng; Kong, Richard Y.C.; Pfordte, Tim; Olsen, Bjorn R.; Sillence, David O.; Tam, Patrick P.L.; Cheah, Kathryn S.E.

    1997-01-01

    There are conflicting views on whether collagen X is a purely structural molecule, or regulates bone mineralization during endochondral ossification. Mutations in the human collagen α1(X) gene (COL10A1) in Schmid metaphyseal chondrodysplasia (SMCD) suggest a supportive role. But mouse collagen α1(X) gene (Col10a1) null mutants were previously reported to show no obvious phenotypic change. We have generated collagen X deficient mice, which shows that deficiency does have phenotypic consequences which partly resemble SMCD, such as abnormal trabecular bone architecture. In particular, the mutant mice develop coxa vara, a phenotypic change common in human SMCD. Other consequences of the mutation are reduction in thickness of growth plate resting zone and articular cartilage, altered bone content, and atypical distribution of matrix components within growth plate cartilage. We propose that collagen X plays a role in the normal distribution of matrix vesicles and proteoglycans within the growth plate matrix. Collagen X deficiency impacts on the supporting properties of the growth plate and the mineralization process, resulting in abnormal trabecular bone. This hypothesis would accommodate the previously conflicting views of the function of collagen X and of the molecular pathogenesis of SMCD. PMID:9015315

  18. Left-Hemispheric Microstructural Abnormalities in Children With High Functioning Autism Spectrum Disorder

    PubMed Central

    Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart

    2014-01-01

    Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103

  19. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  20. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis.

    PubMed

    Holtzer, Roee; Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R

    2016-03-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = -6.336, p < 0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = -0.355; p < 0.001) but faster gait velocity (estimate = 14.855; p < 0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  1. Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia.

    PubMed

    Kiang, Michael; Light, Gregory A; Prugh, Jocelyn; Coulson, Seana; Braff, David L; Kutas, Marta

    2007-07-01

    A hallmark of schizophrenia is impaired proverb interpretation, which could be due to: (1) aberrant activation of disorganized semantic associations, or (2) working memory (WM) deficits. We assessed 18 schizophrenia patients and 18 normal control participants on proverb interpretation, and evaluated these two hypotheses by examining within patients the correlations of proverb interpretation with disorganized symptoms and auditory WM, respectively. Secondarily, we also explored the relationships between proverb interpretation and a spectrum of cognitive functions including auditory sensory-memory encoding (as indexed by the mismatch negativity (MMN) event-related brain potential (ERP)); executive function; and social/occupational function. As expected, schizophrenia patients produced less accurate and less abstract descriptions of proverbs than did controls. These proverb interpretation difficulties in patients were not significantly correlated with disorganization or other symptom factors, but were significantly correlated (p < .05) with WM impairment, as well as with impairments in sensory-memory encoding, executive function, and social/occupational function. These results offer no support for disorganized associations in abnormal proverb interpretation in schizophrenia, but implicate WM deficits, perhaps as a part of a syndrome related to generalized frontal cortical dysfunction. PMID:17521483

  2. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  3. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    PubMed

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level. PMID:26311395

  4. Abnormal Functional Connectivity of Amygdala in Late-Onset Depression Was Associated with Cognitive Deficits

    PubMed Central

    Yue, Yingying; Yuan, Yonggui; Hou, Zhenghua; Jiang, Wenhao; Bai, Feng; Zhang, Zhijun

    2013-01-01

    Background Major depressive disorder (MDD) is associated with decreased function of cortico-limbic circuits, which play important roles in the pathogenesis of MDD. Abnormal functional connectivity (FC) with the amygdala, which is involved in cortico-limbic circuits, has also been observed in MDD. However, little is known about connectivity alterations in late-onset depression (LOD) or whether disrupted connectivity is correlated with cognitive impairment in LOD. Methods and Results A total of twenty-two LOD patients and twenty-two matched healthy controls (HC) underwent neuropsychological tests and resting state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) and FC with bilateral amygdala seeds were used to analyze blood oxygen level-dependent fMRI data between two groups. Compared with HC, LOD patients showed decreased ReHo in the right middle frontal gyrus and left superior frontal gyrus. In the LOD group, the left amygdala had decreased FC with the right middle frontal gyrus and the left superior frontal gyrus in the amygdala positive network, and it had increased FC with the right post-central gyrus in the amygdala negative network. However, significantly reduced FC with the right amygdala was observed in the right middle occipital gyrus in the amygdala negative network. Further correlative analyses revealed that decreased FC between the amygdala and the right middle occipital gyrus was negatively correlated with the verbal fluency test (VFT, r = −0.485, P = 0.022) and the digit span test (DST, r = −0.561, P = 0.007). Conclusions Our findings of reduced activity of the prefrontal gyrus and abnormal FC with the bilateral amygdala may be key markers of cognitive dysfunction in LOD patients. PMID:24040385

  5. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.

    PubMed

    Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F

    2015-10-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. PMID:26363970

  6. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    PubMed

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. PMID:26859310

  7. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder

    PubMed Central

    Moises, H W; Wollschläger, D; Binder, H

    2015-01-01

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884

  8. Correlation of CT cerebral vascular territories with function. 3. Middle cerebral artery

    SciTech Connect

    Berman, S.A.; Hayman, L.A.; Hinck, V.C.

    1984-05-01

    Schematic displays are presented of the cerebral territories supplied by branches of the middle cerebral artery as they would appear on axial and coronal computed tomographic (CT) scan sections. Companion diagrams of regional cortical function and a discussion of the fiber tracts are provided to simplify correlation of clinical deficits with coronal and axial CT abnormalities.

  9. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  10. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder.

    PubMed

    Bernstein, Gail A; Mueller, Bryon A; Schreiner, Melinda Westlund; Campbell, Sarah M; Regan, Emily K; Nelson, Peter M; Houri, Alaa K; Lee, Susanne S; Zagoloff, Alexandra D; Lim, Kelvin O; Yacoub, Essa S; Cullen, Kathryn R

    2016-01-30

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-min scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including parts of the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  11. Interleukin-17 as a novel predictor of vascular function in rheumatoid arthritis

    PubMed Central

    Marder, Wendy; Khalatbari, Shokoufeh; Myles, James D.; Hench, Rita; Yalavarthi, Srilakshmi; Lustig, Susan; Brook, Robert; Kaplan, Mariana J.

    2011-01-01

    Objectives Rheumatoid arthritis (RA) is associated with enhanced cardiovascular (CV) risk and subclinical vascular disease. The proinflammatory milieu has been linked to premature atherosclerosis and endothelial dysfunction in RA. While IL-17 is considered pathogenic in RA, its role in determining vascular dysfunction in this disease has not been systematically assessed. We analyzed candidate variables that could determine endothelial function in various vascular territories in a cohort of RA patients on biologic therapy, with minimal traditional CV risk factors and low disease activity score. Methods RA patients (n=51) on stable biologic therapy underwent measurement of conduit artery endothelial function by brachial artery flow-mediated dilatation (FMD); arterial compliance by pulse wave velocity (PWV) assessment; and endothelium-dependent microvascular testing with Endo-PAT2000 device to assess reactive hyperemia index (RHI). IL-17 was quantified by ELISA and disease activity was assessed by DAS-28. Results IL-17 and high sensitivity CRP were the main determinants of lower RHI in univariate (p=0.004, <0.001) and multivariate (p=0.004, <0.0001) analysis, respectively. Traditional and non-traditional CV risk variables determined PWV, with a significant positive association with IL-17 in univariate and multivariate analysis (p=0.02, 0.01, respectively). In contrast, conduit endothelial function was mainly determined by rheumatoid factor titers (p=0.003). Anti-CCP titers and disease activity did not determine vascular function. Conclusion In RA patients treated with biologics, IL-17 is a main predictor of microvascular function and arterial compliance. This study suggests IL-17 may play a significant role in development of endothelial dysfunction and CVD in RA. PMID:21727237

  12. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  13. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance.

    PubMed

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  14. ECM-mimetic heparin glycosamioglycan-functionalized surface favors constructing functional vascular smooth muscle tissue in vitro.

    PubMed

    Zhang, Jimin; Wang, Jianing; Wei, Yongzhen; Gao, Cheng; Chen, Xuejiao; Kong, Wei; Kong, Deling; Zhao, Qiang

    2016-10-01

    Contractile vascular smooth muscle accounts for the normal physiological function of artery. Heparin, as a native glycosaminoglycan, has been well known for its important function in promoting or maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs). In this study, heparin-functionalized non-woven poly(ε-caprolactone) (PCL) mat was fabricated by a facile and efficient surface modification protocol, which enables the control of surface heparin density within a broad range. Surface heparization remarkably increased the hydrophilicity of PCL, and reduced platelet adhesion. MTT assay showed that VSMC proliferation was evidently inhibited on the heparin-functionalized PCL surface in a dose-dependent manner. Gene analysis confirmed that surface heparization also promoted the transition of VSMCs from synthetic phenotype to contractile one. Furthermore, with a proper surface density of heparin, it allowed VSMCs to grow in a certain rate, while exhibiting contractile phenotype. Culture of VSMCs on a modified PCL mat with moderate heparin density (PCL-Hep-20) for 2 days resulted in a confluent layer of contractile smooth muscle cells. These data suggest that the heparin-modified PCL scaffolds may be a promising candidate to generate functional vascular tissues in vitro. PMID:27351139

  15. Engineering micropatterned surfaces to modulate the function of vascular stem cells

    SciTech Connect

    Li, Jennifer; Wu, Michelle; Chu, Julia; Sochol, Ryan; Patel, Shyam

    2014-02-21

    Highlights: • We examine vascular stem cell function on microgrooved and micropost patterned polymer substrates. • 10 μm microgrooved surfaces significantly lower VSC proliferation but do not modulate calcified matrix deposition. • Micropost surfaces significantly lower VSC proliferation and decrease calcified matrix deposition. - Abstract: Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10 μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.

  16. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility.

    PubMed

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; F Maitz, Manfred; Zhao, Anshan

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. PMID:27127049

  17. Thrombospondin-1 domain-containing peptide properdistatin improves vascular function in human melanoma xenografts.

    PubMed

    Gaustad, Jon-Vidar; Simonsen, Trude G; Andersen, Lise Mari K; Rofstad, Einar K

    2015-03-01

    Properdistatin is a novel peptide derived from the thrombospondin-1 domain of the plasma protein properdin. The purpose of this study was to investigate the effect of properdistatin treatment on the morphology and function of tumor vasculature. A-07 human melanoma xenografts grown in dorsal window chambers were used as preclinical model. Tumors were treated with 80 mg/kg/day properdistatin or vehicle for 4 days. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply time and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of 155 kDa tetramethylrhodamine isothiocyanate-labeled dextran had been administered intravenously. Properdistatin-treated tumors showed reduced density of small-diameter vessels, reduced blood supply time, and increased plasma velocities. In conclusion, properdistatin treatment inhibited angiogenesis and improved vascular function in A-07 tumors. PMID:24555949

  18. Abnormal hepatic function and splenomegaly on the newly diagnosed acute leukemia patients.

    PubMed

    Sharma Poudel, B; Karki, L

    2007-01-01

    To evaluate the liver function, splenomegaly and related factors in the newly diagnosed acute leukemia patients. One hundred of fifty eight acute leukemia patients admitted in our hospital from March 2003 to April 2006 were studied. The related factors such as peripheral WBC count, bone marrow blasts, peripheral blasts, sex, age, AML, ALL affecting the liver function and splenomegaly were evaluated. Sixty two (39.24%) patients presented with splenomegaly. Twelve (7.59%) patients presented with hepatomegaly. Serum ALT was elevated in 54 (34.17%) patients. Similarly, serum AST, GGT, ALP, and Direct bilirubin were elevated in 26 (16.45%), 32 (20.25%), 20 (12.65%), and 22 (13.92%) patients, respectively. Low serum albumin was found in 40 (25.31%) patients. PT was prolonged in 62 (39.24%) patients. Statistical study shows that there is a relation between high WBC counts and elevated serum ALT (P<0.05) and high WBC counts and splenomegaly (P<0.05). Acute leukemia patients with leukocytosis are more prone to develop abnormal liver function and splenomegaly. PMID:18340367

  19. White matter microstructure abnormalities and executive function in adolescents with prenatal cocaine exposure

    PubMed Central

    Lebel, Catherine; Warner, Tamara; Colby, John; Soderberg, Lindsay; Roussotte, Florence; Behnke, Marylou; Davis Eyler, Fonda; Sowell, Elizabeth R.

    2013-01-01

    Children with prenatal exposure to cocaine are at higher risk for negative behavioral function and attention difficulties, and have demonstrated brain diffusion abnormalities in frontal white matter regions. However, brain regions beyond frontal and callosal areas have not been investigated using diffusion tensor imaging (DTI). DTI data were collected on 42 youth aged 14–16 years; subjects were divided into three groups based on detailed exposure histories: those with prenatal exposure to cocaine but not alcohol (PCE, n=12), prenatal exposure to cocaine and alcohol (CAE, n=17), and controls (n=13). Tractography was performed and along-tract diffusion parameters were examined for group differences and correlations with executive function measures. In the right arcuate fasciculus and cingulum, the CAE group had higher fractional anisotropy (FA) and/or lower mean diffusivity (MD) than the other two groups. The PCE group demonstrated lower FA in the right arcuate and higher MD in the splenium of the corpus callosum than controls. Diffusion parameters in tracts with group differences correlated with measures of executive function. In conclusion, these diffusion differences in adolescents with prenatal cocaine exposure suggest localized, long-term structural brain alterations that may underlie attention and response inhibition difficulties. PMID:23769420

  20. Vascular Function, Inflammation, and Variations in Cardiac Autonomic Responses to Particulate Matter Among Welders

    PubMed Central

    Cavallari, Jennifer M.; Eisen, Ellen A.; Chen, Jiu-Chiuan; Mittleman, Murray A.; Christiani, David C.

    2009-01-01

    Patients with health conditions associated with impaired vascular function and inflammation may be more susceptible to the adverse health effects of fine particulate (particulate matter with a mass median aerodynamic diameter of ≤2.5 μm (PM2.5)) exposure. In 2006, the authors conducted a panel study to investigate directly whether vascular function and inflammation (assessed by C-reactive protein) modify PM2.5-associated reductions in heart rate variability among 23 young male workers (mean age, 40 years) from Massachusetts. Concurrent 24-hour ambulatory electrocardiogram and personal PM2.5 exposure information was collected over a total of 36 person-days, including either or both welding and nonwelding days. Linear mixed models were used to examine the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to the moving PM2.5 averages in the preceding 1–4 hours. C-reactive protein levels and 3 measures of vascular function (augmentation index, mean arterial pressure, and pulse pressure) were determined at baseline. The authors observed an inverse association between the 1-hour PM2.5 and 5-minute SDNN. Greater SDNN declines were observed among those with C-reactive protein (Pinteraction < 0.001) and augmentation index (P = 0.06) values at or above the 75th percentile and pulse pressure values below the 75th percentile (P < 0.001). Systemic inflammation and poorer vascular function appear to aggravate particle-related declines in heart rate variability among workers. PMID:19153215

  1. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  2. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S

    2016-02-01

    Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. PMID:26628673

  3. Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke.

    PubMed

    Ruiz-Vera, Tania; Pruneda-Álvarez, Lucia G; Ochoa-Martínez, Ángeles C; Ramírez-GarcíaLuna, José L; Pierdant-Pérez, Mauricio; Gordillo-Moscoso, Antonio A; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N

    2015-09-01

    The use of solid fuels for cooking and heating is likely to be the largest source of indoor air pollution on a global scale; these fuels emit substantial amounts of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) when used in simple cooking stoves (such as open "three-stone" fires). Moreover, indoor air pollution from biomass fuels is considered an important risk factor for human health. The aim of this study was to evaluate the relationship between exposure to PAHs from wood smoke and vascular dysfunction; in a group of Mexican women that use biomass combustion as their main energy source inside their homes. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to PAHs and it was assessed using high performance liquid chromatography. The endothelium-dependent vasodilation was assessed through a vascular reactivity compression test performed with a pneumatic cuff under visualization of the brachial artery using high resolution ultrasonography (HRU). Assessment of the carotid intima-media thickness (CIMT) was used as an atherosclerosis biomarker (also assessed using HRU); and clinical parameters such as anthropometry, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, among others were also evaluated. The mean concentration of urinary 1-OHP found in exposed women was 0.46±0.32μmol/mol Cr (range: 0.086-1.23μmol/mol Cr). Moreover, vascular dysfunction (diminished endothelium dependent vasodilation) was found in 45% of the women participating in the study. Association between vascular function and 1-OHP levels was found to be significant through a logistic regression analysis (p=0.034; r(2)=0.1329). Furthermore, no association between CIMT and clinical parameters, urinary 1-OHP levels or vascular dysfunction was found. Therefore, with the information obtained in this study, we advocate for the need to implement programs to reduce the risk of exposure to PAHs in communities that use biomass fuels as a main

  4. Diastolic abnormalities in systemic sclerosis: evidence for associated defective cardiac functional reserve.

    PubMed Central

    Valentini, G; Vitale, D F; Giunta, A; Maione, S; Gerundo, G; Arnese, M; Tirri, E; Pelaggi, N; Giacummo, A; Tirri, G; Condorelli, M

    1996-01-01

    OBJECTIVE: To investigate the pattern of diastolic abnormalities in patients with systemic sclerosis (SSc) and the relationship between impaired ventricular filling and systolic function. METHODS: Twenty four patients with SSc underwent M-mode and two dimensional echocardiography using echo-Doppler and gated blood pool cardiac angiography, both at rest and after exercise. RESULTS: An impaired diastolic relaxation of the left ventricle was detected in 10 of the 24 patients with SSc. Left ventricular ejection fraction at rest in these 10 patients with impaired ventricular filling did not differ from that in the remaining 14 patients, but eight of the 10 failed to increase their ejection fraction during exercise, compared with two of the 14 with normal ventricular filling (p = 0.003). CONCLUSION: Impaired relaxation of the left ventricle is a recently described feature of scleroderma heart disease. Diastolic dysfunction in SSc could depend on myocardial fibrosis or myocardial ischaemia, or both. It was found to be associated with a defective cardiac functional reserve. However, its prognostic significance remains to be clarified. PMID:8774164

  5. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

    PubMed

    Jiang, Li; Tam, Beatrice M; Ying, Guoxing; Wu, Sen; Hauswirth, William W; Frederick, Jeanne M; Moritz, Orson L; Baehr, Wolfgang

    2015-12-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3. PMID:26229057

  6. Cytoarchitectural and functional abnormalities of the inferior colliculus in sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna M; Pusiol, Teresa; Matturri, Luigi

    2015-02-01

    The inferior colliculus is a mesencephalic structure endowed with serotonergic fibers that plays an important role in the processing of acoustic information. The implication of the neuromodulator serotonin also in the aetiology of sudden unexplained fetal and infant death syndromes and the demonstration in these pathologies of developmental alterations of the superior olivary complex (SOC), a group of pontine nuclei likewise involved in hearing, prompted us to investigate whether the inferior colliculus may somehow contribute to the pathogenetic mechanism of unexplained perinatal death. Therefore, we performed in a wide set of fetuses and infants, aged from 33 gestational weeks to 7 postnatal months and died of both known and unknown cause, an in-depth anatomopathological analysis of the brainstem, particularly of the midbrain. Peculiar neuroanatomical and functional abnormalities of the inferior colliculus, such as hypoplasia/structural disarrangement and immunonegativity or poor positivity of serotonin, were exclusively found in sudden death victims, and not in controls. In addition, these alterations were frequently related to dysgenesis of connected structures, precisely the raphé nuclei and the superior olivary complex, and to nicotine absorption in pregnancy. We propose, on the basis of these results, the involvement of the inferior colliculus in more important functions than those related to hearing, as breathing and, more extensively, all the vital activities, and then in pathological conditions underlying a sudden death in vulnerable periods of the autonomic nervous system development, particularly associated to harmful risk factors as cigarette smoking. PMID:25674737

  7. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  8. Diabetes and Retinal Vascular Dysfunction

    PubMed Central

    Shin, Eui Seok; Sorenson, Christine M.; Sheibani, Nader

    2014-01-01

    Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR). We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR. PMID:25667739

  9. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis

    PubMed Central

    Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  10. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis.

    PubMed

    Gilbert, Sam J; Meuwese, Julia D I; Towgood, Karren J; Frith, Christopher D; Burgess, Paul W

    2009-04-01

    Multi-voxel pattern analyses have proved successful in 'decoding' mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state ('mentalizing'versus 'non-mentalizing') in a 2 x 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  11. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.

    PubMed

    Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang

    2015-01-01

    Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness) are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented. PMID:26224491

  12. The effect of age on the relationship between cardiac and vascular function

    PubMed Central

    Houghton, David; Jones, Thomas W.; Cassidy, Sophie; Siervo, Mario; MacGowan, Guy A.; Trenell, Michael I.; Jakovljevic, Djordje G.

    2016-01-01

    Age-related changes in cardiac and vascular function are associated with increased risk of cardiovascular mortality and morbidity. The aim of the present study was to define the effect of age on the relationship between cardiac and vascular function. Haemodynamic and gas exchange measurements were performed at rest and peak exercise in healthy individuals. Augmentation index was measured at rest. Cardiac power output, a measure of overall cardiac function, was calculated as the product of cardiac output and mean arterial blood pressure. Augmentation index was significantly higher in older than younger participants (27.7 ± 10.1 vs. 2.5 ± 10.1%, P < 0.01). Older people demonstrated significantly higher stroke volume and mean arterial blood pressure (P < 0.05), but lower heart rate (145 ± 13 vs. 172 ± 10 beats/min, P < 0.01) and peak oxygen consumption (22.5 ± 5.2 vs. 41.2 ± 8.4 ml/kg/min, P < 0.01). There was a significant negative relationship between augmentation index and peak exercise cardiac power output (r = −0.73, P = 0.02) and cardiac output (r = −0.69, P = 0.03) in older participants. Older people maintain maximal cardiac function due to increased stroke volume. Vascular function is a strong predictor of overall cardiac function in older but in not younger people. PMID:26590322

  13. Antioxidative effect of aspirin on vascular function of aged ovariectomized rats.

    PubMed

    Demirci, Buket; Demir, Omer; Dost, Turhan; Birincioglu, Mustafa

    2014-02-01

    This study investigated the vascular effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in the very late stage of postmenopausal vascular aging and looked for a better choice of anti-inflammatory drug for women in reducing the cardiovascular risk by decreasing the oxidant status in this term. The rat aorta isolated from young and old rats that were treated with either aspirin (10 mg/kg/day) or indomethacin (INDO, 1 mg/kg/day) within last 10 weeks after 16-month overiectomy (OVX) follow-up. Endothelium-dependant acetylcholine (Ach, 0.001-30 μM) and independent sodium nitroprusside (SNP, 0.0001-3 μM) relaxant; α-receptor phenylephrine (PE, 0.001-30 μM) and voltage-dependant high potassium (KCl; 40 mM) contractile responses were assessed. Total oxidant and antioxidant status were measured from the serum samples. Aged OVX rat's both aortic endothelium and smooth muscle relaxation were significantly less than of younger ones, whereas their contractile functions tended to decrease. INDO did not treat the Ach, SNP responses, whereas it increased the PE and KCl contractility. Aspirin improved the relaxation function and antioxidant capacity and decreased the oxidant status. These data demonstrate that even if they are in the very late stage of life and menopause, the analgesic choices could restore the well established endothelial dysfunction, vascular stiffness, and oxidant status. PMID:23872923

  14. Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy

    PubMed Central

    Wang, Juan-Juan; Zhu, Meili; Le, Yun-Zheng

    2015-01-01

    Müller cells are macroglia and play many essential roles as supporting cells in the retina. To respond to pathological changes in diabetic retinopathy (DR), a major complication in the eye of diabetic patients, retinal Müller glia produce a high level of vascular endothelial growth factor (VEGF or VEGF-A). As VEGF is expressed by multiple retinal cell-types and Müller glia comprise only a small portion of cells in the retina, it has been a great challenge to reveal the function of VEGF or other globally expressed proteins produced by Müller cells. With the development of conditional gene targeting tools, it is now possible to dissect the function of Müller cell-derived VEGF in vivo. By using conditional gene targeting approach, we demonstrate that Müller glia are a major source of retinal VEGF in diabetic mice and Müller cell-derived VEGF plays a significant role in the alteration of protein expression and peroxynitration, which leads to retinal inflammation, neovascularization, vascular leakage, and vascular lesion, key pathological changes in DR. Therefore, Müller glia are a potential cellular target for the treatment of DR, a leading cause of blindness. PMID:26069721

  15. [Cerebral hemodynamics and statokinetic functions in patients with vertebral basilar vascular insufficiency].

    PubMed

    Butko, D Iu

    2004-01-01

    One hundred and forty-eight patients, aged 29-59 years, with vertebral basilar vascular insufficiency were studied before, during and after betaserc treatment in a dose 48 mg/day during 3 weeks. Along with neurological examination, cerebral dopplerography and computer stabilography methods were used. The main clinical appearances of cerebrovascular pathology of vertebrobasilar system were as follows: vertigo (93.2%), asthenia syndrome (91.2%), autonomic vascular disorders (63.5%) and stato-coordinative disturbances, the latter were represented primarily by disturbances of equilibrium system functions (83.8%). Cerebral dopplerography and computer stabilography were found to be reliable methods for patients with chronic insufficiency of cerebral blood circulation in vertebral basilar area. Drug betaserc (betahystine hydrochloride) effectively stops statokinetic disturbances in patients with discirculatory encelopathy in vertebral basilar area. PMID:15847325

  16. Extracellular functional noncoding nucleic acid bioaptamers and angiotropin RNP ribokines in vascularization and self-tolerance.

    PubMed

    Wissler, Josef H; Wissler, Joerg E; Logemann, Enno

    2008-08-01

    Endogenous extracellular and circulating functional small noncoding nucleic acids (ncNAs; <200 nucleotides) and complexes with proteins (ribonucleoproteins; RNPs) make up varying biolibraries of molecular imprints of cellular histories. They are nascently formed upon cellular activation by extrinsic (environmental) factors, including mitogens, cell-mediated immune memory reactions (Landsteiner-Chase-Lawrence transfer factors), and metabolic (hypoxia) and (physical) shear stress forces. Those factors are conventional models for epigenetic (non-Mendelian) vascular remodeling variations directed rather to proteinaceous gene expression and regulation than genomic DNA sequence changes. Structurally defined ncNAs are described as small hairpin nc-shRNA bioaptamers in interaction with proteins forming functional (Cu,Ca,Na,K)-metalloregulated complexes (CuRNP; angiotropins). As nonmitogenic angiomorphogen cytokines (ribokines), they may reprogram confluent quiescent (contact-inhibited) endothelial cell types to migratory, phagokinetically active phenotypes in the morphogenesis of tolerated neovascular patterns. Their functions in organized and mess-chaotic vascular patterns were investigated with regard to master gene, information, epigenetic, vascular, and tumor factors. Some ncNAs feature three-dimensional codes (3D episcripts) for distinct protein conformer phases. They are suggested as being specific recognition types, the estimated repertoires of which are superior in diversity and specificity to conventional immune (glyco-)proteins. For episcription of phenotype variations, they may address and integrate information flow on molecular shapes to protein-mediated nucleic acid processing and [post-]translational modification mechanisms in ncNA-, redox, and metalloregulated conformation phase pathway-locked loops (CPLL). Several vascular and cancer epigenetic regulator proteins are shown to be entangled by sharing helix-nucleating structural (proteomic) domains for

  17. Long-term Successful Weight Loss Improves Vascular Endothelial Function in Severely Obese Individuals

    PubMed Central

    Bigornia, Sherman J.; Mott, Melanie M.; Hess, Donald T.; Apovian, Caroline M.; McDonnell, Marie E.; Duess, Mai-Ann; Kluge, Matthew A.; Fiscale, Antonino J.; Vita, Joseph A.; Gokce, Noyan

    2010-01-01

    Obesity is associated with increased cardiovascular risk. Although short-term weight loss improves vascular endothelial function, longer term outcomes have not been widely investigated. We examined brachial artery endothelium-dependent vasodilation and metabolic parameters in 29 severely obese subjects who lost ≥10% body weight (age 45 ± 13 years; BMI 48 ± 9 kg/m2) at baseline and after 12 months of dietary and/or surgical intervention. We compared these parameters to 14 obese individuals (age 49 ± 11 years; BMI 39 ± 7 kg/m2) who failed to lose weight. For the entire group, mean brachial artery flow-mediated dilation (FMD) was impaired at 6.7 ± 4.1%. Following sustained weight loss, FMD increased significantly from 6.8 ± 4.2 to 10.0 ± 4.7%, but remained blunted in patients without weight decline from 6.5 ± 4.0 to 5.7 ± 4.1%, P = 0.013 by ANOVA. Endothelium-independent, nitroglycerin-mediated dilation (NMD) was unaltered. BMI fell by 13 ± 7 kg/m2 following successful weight intervention and was associated with reduced total and low-density lipoprotein cholesterol, glucose, hemoglobin A1c, and high-sensitivity C-reactive protein (CRP). Vascular improvement correlated most strongly with glucose levels (r = −0.51, P = 0.002) and was independent of weight change. In this cohort of severely obese subjects, sustained weight loss at 1 year improved vascular function and metabolic parameters. The findings suggest that reversal of endothelial dysfunction and restoration of arterial homeostasis could potentially reduce cardiovascular risk. The results also demonstrate that metabolic changes in association with weight loss are stronger determinants of vascular phenotype than degree of weight reduction. PMID:20057371

  18. Functional spectroscopy approach to the assessment of nitric oxide storage in vascular tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan; Feelisch, Martin

    2003-10-01

    Much attention has been devoted to the enzymatic production of nitric oxide (NO) by the endothelial layer lining blood vessel walls, which regulates among other things local vasodilatation and platelet adhesion. Considerably less attention, however, has been paid to the accumulation of NO-related products in the vascular wall itself. Such local storage of NO products could conceivably contribute to the local regulation of blood flow and provide additional anti-adhesive protection, if biochemically activated to regenerate NO. Since little is known about their chemical nature, concentrations, and possible role in vascular biology we sought to characterize those species basally resent in rat aorta. To this end we developed a functional form of optical spectroscopy that allows us not only to identify NO-stores in intact tissues but also to monitor their production and disappearance in real-time. The method is based on the ability of NO stores to reversibly release NO when illuminated with light of particular wavelengths, which can be detected as a robust relaxation of vascular smooth muscle (photorelaxation). Characterization of NO-stores is achieved through a careful assessment of photorelaxation action spectra, taking into account the light scattering properties of the tissue, and of depletion of the NO-stores induced by exposure to controlled levels of light. This functional form of optical spectroscopy is applied to rat aortic tissue where the results suggest that the NO photolytically released from tissue stores originated from a low-molecular-weight RSNO as well as from nitrite. The significance of these findings to vascular physiology and pathophysiology is discussed.

  19. Physiologic assessment before video thoracoscopic resection for lung cancer in patients with abnormal pulmonary function

    PubMed Central

    Benattia, Amira; Debeaumont, David; Guyader, Vincent; Tardif, Catherine; Peillon, Christophe; Cuvelier, Antoine

    2016-01-01

    Background Impaired respiratory function may prevent curative surgery for patients with non-small cell lung cancer (NSCLC). Video-assisted thoracoscopic surgery (VATS) reduces postoperative morbility-mortality and could change preoperative assessment practices and therapeutic decisions. We evaluated the relation between preoperative pulmonary function tests and the occurrence of postoperative complications after VATS pulmonary resection in patients with abnormal pulmonary function. Methods We included 106 consecutive patients with ≤80% predicted value of presurgical expiratory volume in one second (FEV1) and/or diffusing capacity of carbon monoxide (DLCO) and who underwent VATS pulmonary resection for NSCLC from a prospective surgical database. Results Patients (64±9.5 years) had lobectomy (n=91), segmentectomy (n=7), bilobectomy (n=4), or pneumonectomy (n=4). FEV1 and DLCO preoperative averages were 68%±21% and 60%±18%. Operative mortality was 1.89%. Only FEV1 was predictive of postoperative complications [odds ratio (OR), 0.96; 95% confidence interval (CI), 0.926–0.991, P=0.016], but there was no determinable threshold. Twenty-five patients underwent incremental exercise testing. Desaturations during exercise (OR, 0.462; 95% CI, 0.191–0.878, P=0.039) and heart rate (HR) response (OR, 0.953; 95% CI, 0.895–0.993, P=0.05) were associated with postoperative complications. Conclusions FEV1 but not DLCO was a significant predictor of pulmonary complications after VATS pulmonary resection despite a low rate of severe morbidity. Incremental exercise testing seems more discriminating. Further investigation is required in a larger patient population to change current pre-operative threshold in a new era of minimally invasive surgery. PMID:27293834

  20. Adolescent Intermittent Alcohol Exposure: Persistence of Structural and Functional Hippocampal Abnormalities into Adulthood

    PubMed Central

    Risher, Mary-Louise; Fleming, Rebekah L.; Risher, Christopher; Miller, K. M.; Klein, Rebecca C.; Wills, Tiffany; Acheson, Shawn K.; Moore, Scott D.; Wilson, Wilkie A.; Eroglu, Cagla; Swartzwelder, H. S.

    2015-01-01

    Background Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.e., intermittent EtOH exposure during adolescence [AIE]) in rats to determine whether adolescent exposure to alcohol leads to long-term structural and functional changes that are manifested in adult neuronal circuitry. Methods We specifically focused on hippocampal area CA1, a brain region associated with learning and memory. Using electrophysiological, immunohistochemical, and neuroanatomical approaches, we measured post-AIE changes in synaptic plasticity, dendritic spine morphology, and synaptic structure in adulthood. Results We found that AIE-pretreated adult rats manifest robust long-term potentiation, induced at stimulus intensities lower than those required in controls, suggesting a state of enhanced synaptic plasticity. Moreover, AIE resulted in an increased number of dendritic spines with characteristics typical of immaturity. Immunohistochemistry-based analysis of synaptic structures indicated a significant decrease in the number of co-localized pre- and postsynaptic puncta. This decrease is driven by an overall decrease in 2 postsynaptic density proteins, PSD-95 and SAP102. Conclusions Taken together, these findings reveal that repeated alcohol exposure during adolescence results in enduring structural and functional abnormalities in the hippocampus. These synaptic changes in the hippocampal circuits may help to explain learning-related behavioral changes in adult animals preexposed to AIE. PMID:25916839

  1. The role of mechanotransduction on vascular smooth muscle myocytes' [corrected] cytoskeleton and contractile function.

    PubMed

    Ye, George J C; Nesmith, Alexander P; Parker, Kevin Kit

    2014-09-01

    Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM. PMID:25125187

  2. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    PubMed

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients. PMID:26426912

  3. Abnormal cleavage of APP impairs its functions in cell adhesion and migration.

    PubMed

    Sheng, Baiyang; Song, Bo; Zheng, Zhenhuan; Zhou, Fangfang; Lu, Guangyuan; Zhao, Nanming; Zhang, Xiufang; Gong, Yandao

    2009-02-01

    Amyloid precursor protein (APP) is expressed ubiquitously but its wrong cleavage only occurs in central nervous system. In this research, overexpression of wild type human APP695 was found to stimulate the adhesion and migration of N2a cells. In the cells co-transfected by familial Alzheimer's disease (FAD)-linked Swedish mutant of APP695 gene plus big up tri, openE9 deleted presenilin1 gene (N2a/Swe. big up tri, open9), however, this stimulating function was impaired compared to that in the cells co-transfected by Swedish mutant of APP695 gene plus dominant negative mutant of presenilin1 D385A gene (N2a/Swe.385). Furthermore, it was also found that the phosphorylation of FAK Tyr-861 and GSK-3beta Ser-9 was reduced in N2a/Swe.Delta9 cells, which can be possibly taken as a reasonable explanation for the underlying mechanism. Our results suggest that impaired cell adhesion and migration induced by abnormal cleavage of APP could contribute to the pathological effects in FAD brain. PMID:19056463

  4. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  5. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  6. Acute Effect of High-Intensity Eccentric Exercise on Vascular Endothelial Function in Young Men.

    PubMed

    Choi, Youngju; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Ra, Song-Gyu; Shiraki, Hitoshi; Ajisaka, Ryuichi; Maeda, Seiji

    2016-08-01

    Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and β-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in β-stiffness index and change in FMD (r = -0.891; p < 0.01) with eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction. PMID:24832967

  7. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    PubMed

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  8. Functional role of connexins and pannexins in the interaction between vascular and nervous system.

    PubMed

    Gaete, Pablo S; Lillo, Mauricio A; Figueroa, Xavier F

    2014-10-01

    The microvascular network of the microcirculation works in tight communication with surrounding tissues to control blood supply and exchange of solutes. In cerebral circulation, microvascular endothelial cells constitute a selective permeability barrier that controls the environment of parenchymal brain tissue, which is known as the blood-brain barrier (BBB). Connexin- and pannexin-formed channels (gap junctions and hemichannels) play a central role in the coordination of endothelial and smooth muscle cell function and connexin-mediated signaling in endothelial cells is essential in the regulation of BBB permeability. Likewise, gap junction communication between astrocyte end-feet also contributes to maintain the BBB integrity, but the participation of hemichannels in this process cannot be discarded. Sympathetic and sensory perivascular nerves are also involved in the control and coordination of vascular function through the release of vasoconstrictor or vasodilator signals and by the regulation of gap junction communication in the vessel wall. Conversely, ATP release through pannexin-1-formed channels mediates the α1-adrenergic signaling. Furthermore, here we show that capsaicin-induced CGRP release from mesenteric perivascular sensory nerves induces pannexin-1-formed channel opening, which in turn leads to reduction of pannexin-1 and endothelial nitric oxide synthase (eNOS) expression along the time. Interestingly, blockade of CGRP receptors with CGRP8-37 increased eNOS expression by ∼5-fold, suggesting that capsaicin-sensitive sensory nerves are involved in the control of key signaling proteins for vascular function. In this review, we discuss the importance of connexin-based channels in the control of BBB integrity and the functional interaction of vascular connexins and pannexins with the peripheral nervous system. PMID:24446239

  9. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  10. Prefrontal Dopaminergic Receptor Abnormalities and Executive Functions in Parkinson’s Disease

    PubMed Central

    Ko, Ji Hyun; Antonelli, Francesca; Monchi, Oury; Ray, Nicola; Rusjan, Pablo; Houle, Sylvain; Lang, Anthony E.; Christopher, Leigh; Strafella, Antonio P.

    2012-01-01

    The main pattern of cognitive impairments seen in early to moderate stages of Parkinson’s disease (PD) includes deficits of executive functions. These nonmotor complications have a significant impact on the quality of life and day-to-day activities of PD patients and are not effectively managed by current therapies, a problem which is almost certainly due to the fact that the disease extends beyond the nigrostriatal system. To investigate the role of extrastriatal dopamine in executive function in PD, PD patients and a control group were studied with positron-emission-tomography using a high-affinity dopamine D2/D3 receptor tracer, [11C]FLB-457. All participants were scanned twice while performing an executive task and a control task. Patients were off medication for at least 12 h. The imaging analysis revealed that parkinsonian patients had lower [11C]FLB-457 binding than control group independently of task conditions across different brain regions. Cognitive assessment measures were positively correlated with [11C]FLB-457 binding in the bilateral dorsolateral prefrontal cortex and anterior cingulate cortex only in control group, but not in PD patients. Within the control group, during the executive task (as compared to control task), there was evidence of reduced [11C]FLB-457 binding (indicative of increased dopamine release) in the right orbitofrontal cortex. In contrast, PD patients did not show any reduction in binding during the executive task (as compared with control task). These findings suggest that PD patients present significant abnormalities in extrastriatal dopamine associated with executive processing. These observations provide important insights on the pathophysiology of cognitive dysfunction in PD. PMID:22331665

  11. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism

    PubMed Central

    Zhao, Chengjian; Zhang, Wei; Zhao, Yuwei; Yang, Yun; Luo, Hui; Ji, Gaili; Dong, E; Deng, Hongxing; Lin, Shuo; Wei, Yuquan; Yang, Hanshuo

    2016-01-01

    The angiogenic switch is an important oncogenic step that determines whether microtumors remain dormant or progresses further. It has been generally perceived that the primary function of this tumorgenic event is to supply oxygen and nutrients through blood circulation. Using in vivo imaging of zebrafish and mouse tumor models, we showed that endothelial cords aggressively penetrated into microtumors and remained non-circulatory for several days before undergoing vascular blood perfusion. Unexpectedly, we found that initial tumor growth in both models was significantly reduced if endothelial cords were removed by blocking VEGF-VEGFR2 signaling or using a vascular deficient zebrafish mutant. It was further shown that soluble factors including IL-8, secreted by endothelial cells (ECs) were responsible for stimulating tumor cells proliferation. These findings establish that tumor angiogenesis play a much earlier and broader role in promoting tumor growth, which is independent of vascular circulation. Understanding this novel mechanism of angiogenic tumor progression offers new entry points for cancer therapeutics. PMID:26762853

  12. External Volume Expansion Modulates Vascular Growth and Functional Maturation in a Swine Model

    PubMed Central

    Kao, Huang-Kai; Hsu, Hsiang-Hao; Chuang, Wen-Yu; Chen, Sheng-Chih; Chen, Bin; Wu, Shinn-Chih; Guo, Lifei

    2016-01-01

    Despite increasing application of the pre-grafting expansion during autologous fat transplantation in breast reconstruction, little is known about its mechanism of action. To address that, ventral skins of miniature pigs were treated over a 10-day or 21-day period, with continuous suction at −50 mm Hg via a 7-cm diameter rubber-lined suction-cup device. Soft tissue thickness increased immediately after this external volume expansion (EVE) treatment, such increase completely disappeared by the next day. In the dermis and subcutaneous fat, the EVE treated groups showed significant increases in blood vessel density evident by CD31 staining as well as in vascular networks layered with smooth muscle cells when compared with the control group. This finding was corroborated by the increased percentage of endothelial cells present in the treatment groups. There was no significant difference in the percentages of proliferating basal keratinocytes or adipocytes, nor in epidermal thickness. Moreover, the EVE had no effect on proliferation or differentiation potential of adipose stem cells. Taken together, the major effects of EVE appeared to be vascular remodeling and maturation of functional blood vessels. This understanding may help clinicians optimize the vascularity of the recipient bed to further improve fat graft survival. PMID:27174509

  13. External Volume Expansion Modulates Vascular Growth and Functional Maturation in a Swine Model.

    PubMed

    Kao, Huang-Kai; Hsu, Hsiang-Hao; Chuang, Wen-Yu; Chen, Sheng-Chih; Chen, Bin; Wu, Shinn-Chih; Guo, Lifei

    2016-01-01

    Despite increasing application of the pre-grafting expansion during autologous fat transplantation in breast reconstruction, little is known about its mechanism of action. To address that, ventral skins of miniature pigs were treated over a 10-day or 21-day period, with continuous suction at -50 mm Hg via a 7-cm diameter rubber-lined suction-cup device. Soft tissue thickness increased immediately after this external volume expansion (EVE) treatment, such increase completely disappeared by the next day. In the dermis and subcutaneous fat, the EVE treated groups showed significant increases in blood vessel density evident by CD31 staining as well as in vascular networks layered with smooth muscle cells when compared with the control group. This finding was corroborated by the increased percentage of endothelial cells present in the treatment groups. There was no significant difference in the percentages of proliferating basal keratinocytes or adipocytes, nor in epidermal thickness. Moreover, the EVE had no effect on proliferation or differentiation potential of adipose stem cells. Taken together, the major effects of EVE appeared to be vascular remodeling and maturation of functional blood vessels. This understanding may help clinicians optimize the vascularity of the recipient bed to further improve fat graft survival. PMID:27174509

  14. Short-term exercise training improves vascular function in hypercholesterolemic rabbit femoral artery.

    PubMed

    Jen, Chauying J; Liu, Yu-Fan; Chen, Hsiun-Ing

    2005-06-30

    Chronic exercise in healthy or hypercholesteremic animals for at least two months improves their vascular functions. This study is to examine whether short-term exercise training protocols can correct early-stage vascular dysfunction induced by high-cholesterol diet feeding. Male New Zealand White rabbits were fed for 2, 4 or 6 weeks with rabbit chow with or without the addition of 2% (w/w) cholesterol. They were further divided into control and exercise groups. Animals in exercise groups ran on a leveled treadmill for the same time periods as diet intervention. At the end of experiments, femoral arteries were dissected, loaded with fura 2-AM, and mounted in a tissue flow chamber. Phenylephrine-precontracted vessel specimens were exposed to acetylcholine. The endothelial intracellular calcium elevation and vasorelaxation were determined simultaneously under an epifluorescence microscope with ratio imaging capability. En face oil red O staining was used to evaluate fatty streak formation. Our results showed that 1) high-cholesterol diet feeding for > or = 4 weeks caused lipid deposition, reduced the acetylcholine-evoked endothelial calcium signaling, and impaired both endothelium-dependent and endothelium-independent vascular responses in a time-dependent manner; 2) vasorelaxation at given levels of endothelial intracellular calcium elevation decreased in hypercholesterolemia; 3) concomitant exercise program had reverse effects. We conclude that high-cholesterol diet intervention for as short as 4 weeks induces vascular structural changes, impairs endothelial intracellular calcium signaling and vasodilatation in rabbit femoral arteries. Short-term exercise training in parallel completely eliminates these adverse effects so long as the diet intervention is no more than 6 weeks. PMID:16201452

  15. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  16. Obstructive sleep apnea and vascular disease

    PubMed Central

    Lanfranchi, Paola; Somers, Virend A

    2001-01-01

    There is emerging evidence linking obstructive sleep apnea (OSA) to vascular disease, including hypertension. This relationship may be independent of co-morbidity, such as obesity. Even apparently healthy OSA patients have evidence of subtle functional vascular abnormalities that are known to occur in patients with hypertension and atherosclerosis. Untreated OSA may possibly contribute to the initiation and/or progression of pathophysiologic mechanisms involved in hypertension, heart failure, cardiac ischemia and stroke. This brief commentary will examine the evidence and mechanisms linking OSA to vascular disease. PMID:11737928

  17. Graves' disease, Celiac disease and liver function abnormalities in a patient--clinical manifestation and diagnostic difficulties.

    PubMed

    Góra-Gębka, Magdalena; Woźniak, Małgorzata; Cielecka-Kuszyk, Joanna; Korpal-Szczyrska, Maria; Sznurkowska, Katarzyna; Zagierski, Maciej; Jankowska, Irena; Plata-Nazar, Katarzyna; Kamińska, Barbara; Liberek, Anna

    2014-01-01

    Autoimmune diseases due to probable common pathogenesis tend to coexist in some patients. Complex clinical presentation with diverse timing of particular symptoms and sophisticated treatment with numerous side effects, may cause diagnostic difficulties, especially in children. The paper presents diagnostic difficulties and pitfalls in a child with Graves' disease, celiac disease and liver function abnormalities. PMID:24904927

  18. Functional Mineralocorticoid Receptors in Human Vascular Endothelial Cells Regulate ICAM-1 Expression and Promote Leukocyte Adhesion

    PubMed Central

    Caprio, Massimiliano; Newfell, Brenna G.; la Sala, Andrea; Baur, Wendy; Fabbri, Andrea; Rosano, Giuseppe; Mendelsohn, Michael E.; Jaffe, Iris Z.

    2008-01-01

    In clinical trials, aldosterone antagonists decrease cardiovascular mortality and ischemia by unknown mechanisms. The steroid hormone aldosterone acts by binding to the mineralocorticoid receptor (MR), a ligand-activated transcription factor. In humans, aldosterone causes MR-dependent endothelial cell (EC) dysfunction and in animal models, aldosterone increases vascular macrophage infiltration and atherosclerosis. MR antagonists inhibit these effects without changing blood pressure, suggesting a direct role for vascular MR in EC function and atherosclerosis. Whether human vascular EC express functional MR is not known. Here we show that human coronary artery and aortic EC express MR mRNA and protein and that EC MR mediates aldosterone-dependent gene transcription. Human EC also express the enzyme 11-beta hydroxysteroid dehydrogenase-2(11βHSD2) and inhibition of 11βHSD2 in aortic EC enhances gene transactivation by cortisol, supporting that EC 11βHSD2 is functional. Furthermore, aldosterone stimulates transcription of the proatherogenic leukocyte-EC adhesion molecule Intercellular Adhesion Molecule-1(ICAM1) gene and protein expression on human coronary artery EC, an effect inhibited by the MR antagonist spironolactone and by MR knock-down with siRNA. Cell adhesion assays demonstrate that aldosterone promotes leukocyte-EC adhesion, an effect that is inhibited by spironolactone and ICAM1 blocking antibody, supporting that aldosterone induction of EC ICAM1 surface expression via MR mediates leukocyte-EC adhesion. These data show that aldosterone activates endogenous EC MR and proatherogenic gene expression in clinically important human EC. These studies describe a novel mechanism by which aldosterone may influence ischemic cardiovascular events and support a new explanation for the decrease in ischemic events in patients treated with aldosterone antagonists. PMID:18467630

  19. Proton pump inhibitors and vascular function: A prospective cross-over pilot study

    PubMed Central

    Ghebremariam, Yohannes T.; Cooke, John P.; Khan, Fouzia; Thakker, Rahul N.; Chang, Peter; Shah, Nigam H.; Nead, Kevin T.; Leeper, Nicholas J.

    2015-01-01

    Background Proton pump inhibitors (PPIs) are commonly used drugs for the treatment of gastric reflux. Recent retrospective cohorts and large database studies have raised concern that the use of PPIs is associated with increased cardiovascular (CV) risk. However, there is no prospective clinical study evaluating whether the use of PPIs directly causes CV harm. Methods We conducted a controlled open-label cross-over pilot study among 21 adults aged 18 and older who are healthy (n = 11) or have established clinical cardiovascular disease (n = 10). Study subjects were assigned to receive a PPI (Prevacid; 30 mg) or a placebo pill once daily for 4 weeks. After a 2 week washout period, participants were crossed-over to receive the alternate treatment for the ensuing 4 weeks. Subjects underwent evaluation of vascular function (by the EndoPAT technique) and had plasma levels of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of endothelial function previously implicated in PPI-mediated risk) measured prior to and after each treatment interval. Results We observed a marginal inverse correlation between the EndoPAT score and plasma levels of ADMA (r = −0.364). Subjects experienced a greater worsening in plasma ADMA levels while on PPI than on placebo, and this trend was more pronounced amongst those subjects with a history of vascular disease. However, these trends did not reach statistical significance, and PPI use was also not associated with an impairment in flow mediated vasodilation during the course of this study. Conclusions In this open-label, cross-over pilot study conducted among healthy subjects and coronary disease patients, PPI use did not significantly influence vascular endothelial function. Larger, long-term and blinded trials are needed to mechanistically explain the correlation between PPI use and adverse clinical outcomes, which has recently been reported in retrospective cohort studies. PMID:25835348

  20. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust

  1. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders☆

    PubMed Central

    Elias, Peter M.; Williams, Mary L.; Feingold, Kenneth R.

    2013-01-01

    Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a “best attempt” by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite

  2. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure.

    PubMed

    Cantalupo, Anna; Zhang, Yi; Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-09-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein-coupled receptor-dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II-induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II-induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  3. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

    PubMed Central

    Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-01-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein–coupled receptor–dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II–induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II–induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  4. Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice

    PubMed Central

    Wang, Ruey-Sheng; Chang, Heng-Yu; Kao, Shu-Huei; Kao, Cheng-Heng; Wu, Yi-Chen; Yeh, Shuyuan; Tzeng, Chii-Reuy; Chang, Chawnshang

    2015-01-01

    In the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR−/−) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood. Comparing in vitro maturation rate of oocytes, we found oocytes collected from AR−/− mice have a significantly poor maturating rate with 60% reached metaphase II and 30% remained in germinal vesicle breakdown stage, whereas 95% of wild-type AR (AR+/+) oocytes had reached metaphase II. Interestingly, we found these AR−/− female mice also had an increased frequency of morphological alterations in the mitochondria of granulosa cells with reduced ATP generation (0.18 ± 0.02 vs. 0.29 ± 0.02 µM/mg protein; p < 0.05) and aberrant mitochondrial biogenesis. Mechanism dissection found loss of AR led to a significant decrease in the expression of peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1-β (PGC1-β) and its sequential downstream genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), in controlling mitochondrial biogenesis. These results indicate that AR may contribute to maintain oocyte quality and fertility via controlling the signals of PGC1-β-mediated mitochondrial biogenesis in granulosa cells. PMID:25941928

  5. Abnormalities of motor function, transcription and cerebellar structure in mouse models of THAP1 dystonia.

    PubMed

    Ruiz, Marta; Perez-Garcia, Georgina; Ortiz-Virumbrales, Maitane; Méneret, Aurelie; Morant, Andrika; Kottwitz, Jessica; Fuchs, Tania; Bonet, Justine; Gonzalez-Alegre, Pedro; Hof, Patrick R; Ozelius, Laurie J; Ehrlich, Michelle E

    2015-12-20

    DYT6 dystonia is caused by mutations in THAP1 [Thanatos-associated (THAP) domain-containing apoptosis-associated protein] and is autosomal dominant and partially penetrant. Like other genetic primary dystonias, DYT6 patients have no characteristic neuropathology, and mechanisms by which mutations in THAP1 cause dystonia are unknown. Thap1 is a zinc-finger transcription factor, and most pathogenic THAP1 mutations are missense and are located in the DNA-binding domain. There are also nonsense mutations, which act as the equivalent of a null allele because they result in the generation of small mRNA species that are likely rapidly degraded via nonsense-mediated decay. The function of Thap1 in neurons is unknown, but there is a unique, neuronal 50-kDa Thap1 species, and Thap1 levels are auto-regulated on the mRNA level. Herein, we present the first characterization of two mouse models of DYT6, including a pathogenic knockin mutation, C54Y and a null mutation. Alterations in motor behaviors, transcription and brain structure are demonstrated. The projection neurons of the deep cerebellar nuclei are especially altered. Abnormalities vary according to genotype, sex, age and/or brain region, but importantly, overlap with those of other dystonia mouse models. These data highlight the similarities and differences in age- and cell-specific effects of a Thap1 mutation, indicating that the pathophysiology of THAP1 mutations should be assayed at multiple ages and neuronal types and support the notion of final common pathways in the pathophysiology of dystonia arising from disparate mutations. PMID:26376866

  6. Regulator of G Protein Signaling 2: A Versatile Regulator of Vascular Function

    PubMed Central

    Osei-Owusu, Patrick; Blumer, Kendall J.

    2016-01-01

    Regulators of G protein signaling (RGS) proteins of the B/R4 family are widely expressed in the cardiovascular system where their role in fine tuning G protein signaling is critical to maintaining homeostasis. Among members of this family, RGS2 and RGS5 have been shown to play key roles in cardiac and smooth muscle function by tightly regulating signaling pathways that are activated through Gq/11 and Gi/o classes of heterotrimeric G proteins. This chapter reviews accumulating evidence supporting a key role for RGS2 in vascular function and the implication of changes in RGS2 function and/or expression in the pathogenesis of blood pressure disorders, particularly hypertension. With such understanding, RGS2 and the signaling pathways it controls may emerge as novel targets for developing next-generation anti-hypertensive drugs/agents. PMID:26123303

  7. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  8. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  9. Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug.

    PubMed

    Wang, Zhihong; Lu, Yaxin; Qin, Kang; Wu, Yifan; Tian, Yingping; Wang, Jianing; Zhang, Jimin; Hou, Jingli; Cui, Yun; Wang, Kai; Shen, Jie; Xu, Qingbo; Kong, Deling; Zhao, Qiang

    2015-07-28

    Nitric oxide (NO) is an important signaling molecule in cardiovascular system, and the sustained release of NO by endothelial cells plays a vital role in maintaining patency and homeostasis. In contrast, lack of endogenous NO in artificial blood vessel is believed to be the main cause of thrombus formation. In this study, enzyme prodrug therapy (EPT) technique was employed to construct a functional vascular graft by immobilization of galactosidase on the graft surface. The enzyme-functionalized grafts exhibited excellent catalytic property in decomposition of the exogenously administrated NO prodrug. Localized and on-demand release of NO was demonstrated by in vitro release assay and fluorescent probe tracing in an ex vivo model. The immobilized enzyme retained catalytic property even after subcutaneous implantation of the grafts for one month. The functional vascular grafts were implanted into the rat abdominal aorta with a 1-month monitoring period. Results showed effective inhibition of thrombus formation in vivo and enhancement of vascular tissue regeneration and remodeling on the grafts. Thus, we create an enzyme-functionalized vascular graft that can catalyze prodrug to release NO locally and sustainably, indicating that this approach may be useful to develop new cell-free vascular grafts for treatment of vascular diseases. PMID:26004323

  10. Arterial structure and function in vascular ageing: are you as old as your arteries?

    PubMed

    Thijssen, Dick H J; Carter, Sophie E; Green, Daniel J

    2016-04-15

    Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans. PMID:26140618

  11. Pulmonary function abnormalities in adult patients with acute exacerbation of bronchiectasis: A retrospective risk factor analysis.

    PubMed

    Ma, Yanliang; Niu, Yuqian; Tian, Guizhen; Wei, Jingan; Gao, Zhancheng

    2015-08-01

    Lung function impairments, especially airflow obstruction, are important features during acute exacerbation in patients with bronchiectasis. Recognition of the risk factors associated with airflow obstruction is important in the management of these exacerbations. The medical records of adult patients admitted to the Peking University People's Hospital, Beijing, China, from 2004 to 2011 with a diagnosis of bronchiectasis were reviewed retrospectively. Univariate and multivariate analyses were used to evaluate the risk factors associated with airflow obstruction. Airflow obstruction was found in 55.6% of 156 patients hospitalized with acute exacerbation of bronchiectasis, and the risk factors associated with airflow obstruction included young age (≤14 years old) at diagnosis (odds ratio (OR) = 3.454, 95% confidence interval (CI) 1.709-6.982, p = 0.001) as well as the presence of chronic obstructive pulmonary disease (COPD; OR = 14.677, 95% CI 5.696-37.819, p = 0.001), asthma (OR = 3.063, 95% CI 1.403-6.690, p = 0.005), and wheezing on auscultation (OR = 3.279, 95% CI 1.495-7.194, p = 0.003). The C-reactive protein (13.9 mg/dl vs. 6.89 mg/dl, p = 0.005), partial pressure of arterial oxygen (66.7 ± 8.57 mmHg vs. 89.56 ± 12.80 mmHg, p < 0.001), and partial pressure of arterial carbon dioxide (40.52 ± 2.77 mmHg vs. 42.87 ± 5.39 mmHg, p = 0.02) profiles were different between patients with or without airflow obstruction. In addition, patients colonized with potential pathogenic microorganisms had a decreased diffusing capacity (56.0% vs. 64.7%, p = 0.04). Abnormal pulmonary function was common in hospitalized patients with bronchiectasis exacerbations. Airflow obstruction was correlated with the patient's age at diagnosis, as well as the presence of combined COPD and asthma, and wheezing on auscultation, which also resulted in more severe systemic inflammation and hypoxemia. PMID:25882894

  12. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-06-01

    Platelet endothelial cell adhesion molecule (PECAM-1) is highly expressed in vascular cells such as endothelial cells (ECs) and blood-borne cells like platelets and leukocytes. In ECs, this molecule controls junctional and adhesive properties. In physiological conditions, PECAM-1 supports the endothelial barrier function. In inflammation that is observed in vessels affected by atherosclerosis, the function of PECAM-1 is impaired, an event that leads to increased adhesion of neutrophils and other leukocytes to ECs, decreased vascular integrity, and higher leukocyte transmigration to the intima media. PECAM-1 has six extracellular immunoglobulin (Ig)-like domains that support attraction and adhesion of leukocytes to ECs. The cytoplasmic tail of PECAM-1 contains two tyrosine residues (Tyr-663 and Tyr-686) that could be phosphorylated by Src family protein kinases is involved in the intracellular signaling. Actually, those tyrosines are the part of the immunoreceptor tyrosine-based inhibition motifs (ITIMs) that inhibit inflammation. However, in atherosclerosis, the PECAM-1-dependent immune suppression is disturbed. This in turn facilitates recruitment of leukocytes and supports proatherogenic inflammation. PMID:27079772

  13. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  14. Immortalized Functional Endothelial Progenitor Cell Lines from Umbilical Cord Blood for Vascular Tissue Engineering

    PubMed Central

    Sobhan, Praveen K.; Seervi, Mahendra; Joseph, Jeena; Varghese, Saneesh; Pillai, Prakash Rajappan; Sivaraman, Divya Mundackal; James, Jackson; George, Roshin Elizabeth; Elizabeth, K.E.; Pillai, M. Radhakrishna

    2012-01-01

    Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial–cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell–biomaterial interactions, as well as a variety of tissue-engineering applications. PMID:22889128

  15. The Restorative Effects of Eucommia ulmoides Oliver Leaf Extract on Vascular Function in Spontaneously Hypertensive Rats.

    PubMed

    Hosoo, Shingo; Koyama, Masahiro; Kato, Mai; Hirata, Tetsuya; Yamaguchi, Yasuyo; Yamasaki, Hiroo; Wada, Atsunori; Wada, Keiji; Nishibe, Sansei; Nakamura, Kozo

    2015-01-01

    Eucommia ulmoides Oliv. leaf is a traditional Chinese antihypertensive and antidiabetic medicine. We examined the effects of chronic Eucommia leaf extract (ELE) administration on artery function and morphology in spontaneously hypertensive rats (SHRs). ELE was orally administered via normal diet ad libitum to six-week-old male SHRs at a concentration of 5% for seven weeks. Acetylcholine (ACh)-induced endothelium-dependent relaxation, sodium nitroprusside (SNP)-induced endothelium-independent relaxation, plasma nitric oxide (NO) levels, and media thickness were assessed. ELE significantly improved ACh-induced aortic endothelium-dependent relaxation but did not affect SNP-induced endothelium-independent relaxation in the SHRs, as compared to the animals receiving normal diet. Plasma NO levels and media thickness were significantly increased and decreased, respectively, in the ELE-treated SHRs. Therefore, long-term ELE administration may effectively improve vascular function by increasing plasma NO levels and bioavailability, and by preventing vascular hypertrophy in the SHR aorta. PMID:26690110

  16. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    PubMed Central

    Zanetti, Michela; Grillo, Andrea; Losurdo, Pasquale; Panizon, Emiliano; Mearelli, Filippo; Cattin, Luigi; Barazzoni, Rocco; Carretta, Renzo

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction. PMID:26301252

  17. Exercise training improves vascular function in adolescents with type 2 diabetes.

    PubMed

    Naylor, Louise H; Davis, Elizabeth A; Kalic, Rachelle J; Paramalingam, Niru; Abraham, Mary B; Jones, Timothy W; Green, Daniel J

    2016-02-01

    The impact of exercise training on vascular health in adolescents with type 2 diabetes has not been previously studied. We hypothesized that exercise training would improve micro- and macrovascular health in adolescents with type 2 diabetes. Thirteen adolescents (13-21 years, 10F) with type 2 diabetes were recruited from Princess Margaret Hospital. Participants were randomized to receive either an exercise program along with standard clinical care (n = 8) or standard care alone (n = 5). Those in the intervention group received 12 weeks of gym-based, personalized, and supervised exercise training. Those in the control group were instructed to maintain usual activity levels. Assessments were conducted at baseline and following week 12. The exercise group was also studied 12 weeks following the conclusion of their program. Assessments consisted of conduit artery endothelial function (flow-mediated dilation, FMD) and microvascular function (cutaneous laser Doppler). Secondary outcomes included body composition (dual-energy X-ray absorptiometry, DXA), glycemic control (whole body insulin sensitivity, M) assessed using the euglycemic-hyperinsulinemic clamp protocol, cardiorespiratory fitness (V˙O2peak), and muscular strength (1RM). Exercise training increased FMD (P < 0.05), microvascular function (P < 0.05), total lean mass (P < 0.05), and muscle strength (P < 0.001). There were no changes in cardiorespiratory fitness, body weight, BMI, or M. In the control group, body weight (P < 0.01), BMI (P < 0.01), and total fat mass (P < 0.05) increased. At week 24, improvements in vascular function were reversed. This study indicates that exercise training can improve both conduit and microvascular endothelial function and health, independent of changes in insulin sensitivity in adolescents with type 2 diabetes. PMID:26887327

  18. Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function

    PubMed Central

    Nakayama, Karina H; Joshi, Prajakta A; Lai, Edwina S; Gujar, Prachi; Joubert, Lydia-M; Chen, Bertha; Huang, Ngan F

    2015-01-01

    Background: We developed an aligned bi-layered vascular graft derived from human induced pluripotent stem cells (iPSCs) that recapitulates the cellular composition, orientation, and anti-inflammatory function of blood vessels. Materials & methods: The luminal layer consisted of longitudinal-aligned nanofibrillar collagen containing primary endothelial cells (ECs) or iPSC-derived ECs (iPSC-ECs). The outer layer contained circumferentially oriented nanofibrillar collagen with primary smooth muscle cells (SMCs) or iPSC-derived SMCs(iPSC-SMCs). Results: On the aligned scaffolds, cells organized F-actin assembly within 8º from the direction of nanofibrils. When compared to randomly-oriented scaffolds, EC-seeded aligned scaffolds had significant reduced inflammatory response, based on adhesivity to monocytes. Conclusion: This study highlights the importance of anisotropic scaffolds in directing cell form and function, and has therapeutic significance as physiologically relevant blood vessels. PMID:26440211

  19. Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation.

    PubMed

    Xue, Mingzhan; Weickert, Martin O; Qureshi, Sheharyar; Kandala, Ngianga-Bakwin; Anwar, Attia; Waldron, Molly; Shafie, Alaa; Messenger, David; Fowler, Mark; Jenkins, Gail; Rabbani, Naila; Thornalley, Paul J

    2016-08-01

    Risk of insulin resistance, impaired glycemic control, and cardiovascular disease is excessive in overweight and obese populations. We hypothesized that increasing expression of glyoxalase 1 (Glo1)-an enzyme that catalyzes the metabolism of reactive metabolite and glycating agent methylglyoxal-may improve metabolic and vascular health. Dietary bioactive compounds were screened for Glo1 inducer activity in a functional reporter assay, hits were confirmed in cell culture, and an optimized Glo1 inducer formulation was evaluated in a randomized, placebo-controlled crossover clinical trial in 29 overweight and obese subjects. We found trans-resveratrol (tRES) and hesperetin (HESP), at concentrations achieved clinically, synergized to increase Glo1 expression. In highly overweight subjects (BMI >27.5 kg/m(2)), tRES-HESP coformulation increased expression and activity of Glo1 (27%, P < 0.05) and decreased plasma methylglyoxal (-37%, P < 0.05) and total body methylglyoxal-protein glycation (-14%, P < 0.01). It decreased fasting and postprandial plasma glucose (-5%, P < 0.01, and -8%, P < 0.03, respectively), increased oral glucose insulin sensitivity index (42 mL ⋅ min(-1) ⋅ m(-2), P < 0.02), and improved arterial dilatation Δbrachial artery flow-mediated dilatation/Δdilation response to glyceryl nitrate (95% CI 0.13-2.11). In all subjects, it decreased vascular inflammation marker soluble intercellular adhesion molecule-1 (-10%, P < 0.01). In previous clinical evaluations, tRES and HESP individually were ineffective. tRES-HESP coformulation could be a suitable treatment for improved metabolic and vascular health in overweight and obese populations. PMID:27207552

  20. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals. PMID:26280556

  1. Detrimental effects of high-fat diet loading on vascular endothelial function and therapeutic efficacy of ezetimibe and statins in patients with type 2 diabetes.

    PubMed

    Kurozumi, Akira; Okada, Yosuke; Mori, Hiroko; Kobayashi, Takuya; Masuda, Daisaku; Yamashita, Shizuya; Tanaka, Yoshiya

    2016-05-31

    Several recent reports from large clinical trials have described the role of postprandial hyperlipidemia in the onset of atherosclerosis. In this pilot study, the effects of postprandial lipid abnormalities induced by high-fat diet loading on vascular endothelial function in type 2 diabetes were investigated and the effects of ezetimibe and statins on endothelial function were compared. In 20 patients in Study 1, peripheral arterial tonometry tests were performed before and 4h after loading to measure the reactive hyperemia index (RHI). In Study 2, the same patients were randomly allocated to ezetimibe or rosuvastatin. After 1 week of treatment, loading tests were conducted in the same manner. In Study 1, the RHI decreased from 1.86 to 1.60. There were no significant correlations between changes in RHI and the area under the curve (AUC) or coefficient of variation (CV) of each metabolic marker. In Study 2, ezetimibe treatment resulted in a significant improvement in RHI. The two drugs had comparable effects on changes in AUC. There were no significant correlations between changes in RHI and changes in AUC or changes in CV. When age, sex, drug, hemoglobin A1c, and changes in each lipid were evaluated as independent variables with RHI improvement as the dependent variable, drug differences were found to exert the greatest effect on RHI improvement using a stepwise procedure. The results of this study suggest that the progression of atherosclerosis is due to abnormalities in postprandial lipid metabolism and that ezetimibe can potentially inhibit the aggravation of vascular endothelial dysfunction after high-fat diet loading. PMID:26842592

  2. Short-Term Exposure to Air Pollution and Digital Vascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Mittleman, Murray A.; Hamburg, Naomi M.

    2014-01-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1–7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. PMID:25100647

  3. Measurements of vascular function using strain-gauge plethysmography: technical considerations, standardization, and physiological findings.

    PubMed

    Alomari, Mahmoud A; Solomito, Angela; Reyes, Rafael; Khalil, Syed Muaz; Wood, Robert H; Welsch, Michael A

    2004-01-01

    The main purpose of the present study was to examine the relationships between measures of fitness [estimated peak oxygen consumption (V(O2) peak) and handgrip strength] and forearm vascular function in 55 young (22.6 +/- 3.5 yr) adults. In addition, the present study considered methodological and technical aspects regarding the examination of the venous system using mercury in-Silastic strain-gauge plethysmography (MSGP). Forearm venous capacitance and outflow were examined using five different [7, 14, 21, 28, and 35 mmHg < diastolic blood pressure (DBP)] venous occlusion pressures and after a 5- and 10-min period of venous occlusion. A pressure of 7 mmHg < DBP and a period of 10 min venous occlusion produced the greatest (P < 0.05) venous capacitance and outflow, without altering arterial indexes. Reproducibility of forearm arterial and venous indexes were evaluated at rest and after 5 min of upper arm arterial occlusion at 240 mmHg on three different occasions within 10 days with the interclass correlation coefficient ranging from 0.70 and 0.94. Estimated V(O2) peak correlated with postocclusion arterial inflow (r = 0.54, P = 0.012) and resting venous outflow (r = 0.56, P = 0.016). Finally, handgrip strength was associated with venous capacitance (r = 0.57, P = 0.007) and outflow (r = 0.67, P = 0.001). These results indicate that the examination of forearm vascular function using MSGP is reproducible. Moreover, the data show the importance of careful consideration of the selection of venous occlusion pressure and period when implementing these measures in longitudinal trials. Finally, the associations between fitness and venous measures suggest a link between venous function and exercise performance. PMID:14512279

  4. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype

    PubMed Central

    García-Cardeña, Guillermo; Comander, Jason; Anderson, Keith R.; Blackman, Brett R.; Gimbrone, Michael A.

    2001-01-01

    One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli—a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis. PMID:11296290

  5. Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated functional and structural temporal lobe abnormalities located close to the auditory cortical regions in schizophrenia. The goal of this study was to determine whether functional abnormalities exist in the cortical processing of musical sound in schizophrenia. Methods Twelve schizophrenic patients and twelve age- and sex-matched healthy controls were recruited, and participants listened to a random sequence of two kinds of sonic entities, intervals (tritones and perfect fifths) and chords (atonal chords, diminished chords, and major triads), of varying degrees of complexity and consonance. The perception of musical sound was investigated by the auditory evoked potentials technique. Results Our results showed that schizophrenic patients exhibited significant reductions in the amplitudes of the N1 and P2 components elicited by musical stimuli, to which consonant sounds contributed more significantly than dissonant sounds. Schizophrenic patients could not perceive the dissimilarity between interval and chord stimuli based on the evoked potentials responses as compared with the healthy controls. Conclusion This study provided electrophysiological evidence of functional abnormalities in the cortical processing of sound complexity and music consonance in schizophrenia. The preliminary findings warrant further investigations for the underlying mechanisms. PMID:23721126

  6. Multimodal cardiovascular magnetic resonance quantifies regional variation in vascular structure and function in patients with coronary artery disease: Relationships with coronary disease severity

    PubMed Central

    2011-01-01

    Background Cardiovascular magnetic resonance (CMR) of the vessel wall is highly reproducible and can evaluate both changes in plaque burden and composition. It can also measure aortic compliance and endothelial function in a single integrated examination. Previous studies have focused on patients with pre-identified carotid atheroma. We define these vascular parameters in patients presenting with coronary artery disease and test their relations to its extent and severity. Methods and Results 100 patients with CAD [single-vessel (16%); two-vessel (39%); and three-vessel (42%) non-obstructed coronary arteries (3%)] were studied. CAD severity and extent was expressed as modified Gensini score (mean modified score 12.38 ± 5.3). A majority of carotid plaque was located in the carotid bulb (CB). Atherosclerosis in this most diseased segment correlated modestly with the severity and extent of CAD, as expressed by the modified Gensini score (R = 0.251, P < 0.05). Using the AHA plaque classification, atheroma class also associated with CAD severity (rho = 0.26, P < 0.05). The distal descending aorta contained the greatest plaque, which correlated with the degree of CAD (R = 0.222; P < 0.05), but with no correlation with the proximal descending aorta, which was relatively spared (R = 0.106; P = n. s.). Aortic distensibility varied along its length with the ascending aorta the least distensible segment. Brachial artery FMD was inversely correlated with modified Gensini score (R = -0.278; P < 0.05). In multivariate analysis, distal descending aorta atheroma burden, distensibility of the ascending aorta, carotid atheroma class and FMD were independent predictors of modified Gensini score. Conclusions Multimodal vascular CMR shows regional abnormalities of vascular structure and function that correlate modestly with the degree and extent of CAD. PMID:22017860

  7. Cardiac and vascular changes with kidney transplantation

    PubMed Central

    Ali, A.; Macphee, I.; Kaski, J. C.; Banerjee, D.

    2016-01-01

    Cardiovascular event rates are high in patients with chronic kidney disease (CKD), increasing with deteriorating kidney function, highest in CKD patients on dialysis, and improve with kidney transplantation (KTx). The cardiovascular events in CKD patients such as myocardial infarction and heart failure are related to abnormalities of vascular and cardiac structure and function. Many studies have investigated the structural and functional abnormalities of the heart and blood vessels in CKD, and the changes that occur with KTx, but the evidence is often sparse and occasionally contradictory. We have reviewed the available evidence and identified areas where more research is required to improve the understanding and mechanisms of these changes. There is enough evidence demonstrating improvement of left ventricular hypertrophy, except in children, and sufficient evidence of improvement of left ventricular function, with KTx. There is reasonable evidence of improvement in vascular function and stiffness. However, the evidence for improvement of vascular structure and atherosclerosis is insufficient. Further studies are necessary to establish the changes in vascular structure, and to understand the mechanisms of vascular and cardiac changes, following KTx. PMID:26937071

  8. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells

    SciTech Connect

    Takahashi, Yoichiro; Watanabe, Hiroyuki; Murakami, Manabu; Ono, Kyoichi; Munehisa, Yoshiko; Koyama, Takashi; Nobori, Kiyoshi; Iijima, Toshihiko; Ito, Hiroshi

    2007-10-05

    We investigated the functional role of STIM1, a Ca{sup 2+} sensor in the endoplasmic reticulum (ER) that regulates store-operated Ca{sup 2+} entry (SOCE), in vascular smooth muscle cells (VSMCs). STIM1 was mainly localized at the ER and plasma membrane. The knockdown of STIM1 expression by small interfering (si) RNA drastically decreased SOCE. In contrast, an EF-hand mutant of STIM1, STIM1{sup E87A}, produced a marked increase in SOCE, which was abolished by co-transfection with siRNA to transient receptor potential canonical 1 (TRPC1). In addition, transfection with siRNA against STIM1 suppressed phosphorylation of cAMP-responsive element binding protein (CREB) and cell growth. These results suggest that STIM1 is an essential component of SOCE and that it is involved in VSMC proliferation.

  9. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  10. Associations Between Abnormal Rod-Mediated Dark Adaptation and Health and Functioning in Older Adults With Normal Macular Health

    PubMed Central

    Owsley, Cynthia; Huisingh, Carrie; Jackson, Gregory R.; Curcio, Christine A.; Szalai, Alexander J.; Dashti, Nassrin; Clark, Mark; Rookard, Kia; McCrory, Mark A.; Wright, Tyler T.; Callahan, Michael A.; Kline, Lanning B.; Witherspoon, C. Douglas; McGwin, Gerald

    2014-01-01

    Purpose. Delayed rod-mediated dark adaptation (DA) is characteristic of early age-related macular degeneration (AMD) and also can be observed in some older adults in normal macular health. We examine cross-sectional associations between rod-mediated DA and risk factors for AMD in older adults in normal macular health. Methods. The sample consisted of adults aged ≥60 years old in normal macular health per grading of fundus photos using an established disease classification system. Rod-mediated DA was measured psychophysically following a photobleach using a computer-automated dark adaptometer with targets centered at 5° on the inferior vertical meridian. The speed of DA was characterized by the rod-intercept value, with abnormal DA defined as rod-intercept ≥ 12.3 minutes. We assessed several health and functional characteristics that the literature has suggested increase AMD risk (e.g., smoking, alcohol use, inflammatory markers, apolipoproteins, low luminance visual acuity, chronic medical conditions, body mass, family history). Results. Among 381 participants (mean age, 68.5 years; SD, 5.5), 78% had normal and 22% had abnormal DA, with the prevalence of abnormal DA increasing with age. After age-adjustment, abnormal DA was associated with increased odds of elevated C-reactive protein (CRP), heavy use of or abstention from alcohol, high blood pressure, and drop in visual acuity under mesopic conditions. Conclusions. Despite having normal macular health according to accepted definitions of AMD presence, approximately one-quarter of older adults recruited from primary eye care clinics had abnormal DA, which was associated with known risk factors for AMD, including elevated CRP. PMID:24854857

  11. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats.

    PubMed

    Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y

    2016-02-01

    Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. PMID

  12. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic

  13. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults.

    PubMed

    Jokura, Hiroko; Watanabe, Isamu; Umeda, Mika; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    Epidemiological studies indicate that habitual coffee consumption lowers the risk of diabetes and cardiovascular diseases. Postprandial hyperglycemia is a direct and independent risk factor for cardiovascular diseases. We previously demonstrated that coffee polyphenol ingestion increased secretion of Glucagon-like peptide 1 (GLP-1), which has been shown to exhibit anti-diabetic and cardiovascular effects. We hypothesized coffee polyphenol consumption may improve postprandial hyperglycemia and vascular endothelial function by increasing GLP-1 release and/or reducing oxidative stress. To examine this hypothesis, we conducted a randomized, acute, crossover, intervention study in healthy male adults, measuring blood parameters and flow-mediated dilation (FMD) after ingestion of a meal with or without coffee polyphenol extract (CPE). Nineteen subjects consumed a test meal with either a placebo- or CPE-containing beverage. Blood biomarkers and FMD were measured at fasting and up to 180 minutes postprandially. The CPE beverage led to a significantly lower peak postprandial increase in blood glucose and diacron-reactive oxygen metabolite, and significantly higher postprandial FMD than the placebo beverage. Postprandial blood GLP-1 increase tended to be higher after ingestion of the CPE beverage, compared with placebo. Subclass analysis revealed that the CPE beverage significantly improved postprandial blood GLP-1 response and reduced blood glucose increase in the subjects with a lower insulinogenic index. Correlation analysis showed postprandial FMD was negatively associated with blood glucose increase after ingestion of the CPE beverage. In conclusion, these results suggest that coffee polyphenol consumption improves postprandial hyperglycemia and vascular endothelial function, which is associated with increased GLP-1 secretion and decreased oxidative stress in healthy humans. PMID:26337017

  14. Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury

    PubMed Central

    Miyabe, Megumi; Ohashi, Koji; Shibata, Rei; Uemura, Yusuke; Ogura, Yasuhiro; Yuasa, Daisuke; Kambara, Takahiro; Kataoka, Yoshiyuki; Yamamoto, Takashi; Matsuo, Kazuhiro; Joki, Yusuke; Enomoto, Takashi; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Van Den Hoff, Maurice J.B.; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2014-01-01

    Aims It is well-established that exercise diminishes cardiovascular risk, but whether humoral factors secreted by muscle confer these benefits has not been conclusively shown. We have shown that the secreted protein follistatin-like 1 (Fstl1) has beneficial actions on cardiac and endothelial function. However, the role of muscle-derived Fstl1 in proliferative vascular disease remains largely unknown. Here, we investigated whether muscle-derived Fstl1 modulates vascular remodelling in response to injury. Methods and results The targeted ablation of Fstl1 in muscle led to an increase in neointimal formation following wire-induced arterial injury compared with control mice. Conversely, muscle-specific Fstl1 transgenic (TG) mice displayed a decrease in the neointimal thickening following arterial injury. Muscle-specific Fstl1 ablation and overexpression increased and decreased, respectively, the frequency of BrdU-positive proliferating cells in injured vessels. In cultured human aortic smooth muscle cells (HASMCs), treatment with human FSTL1 protein decreased proliferation and migration induced by stimulation with PDGF-BB. Treatment with FSTL1 enhanced AMPK phosphorylation, and inhibition of AMPK abrogated the inhibitory actions of FSTL1 on HASMC responses to PDGF-BB. The injured arteries of Fstl1-TG mice exhibited an increase in AMPK phosphorylation, and administration of AMPK inhibitor reversed the anti-proliferative actions of Fstl1 on the vessel wall. Conclusion Our findings indicate that muscle-derived Fstl1 attenuates neointimal formation in response to arterial injury by suppressing SMC proliferation through an AMPK-dependent mechanism. Thus, the release of protein factors from muscle, such as Fstl1, may partly explain why the maintenance of muscle function can have a therapeutic effect on the cardiovascular system. PMID:24743592

  15. Low-level X-radiation effects on functional vascular changes in Syrian hamster cheek pouch epithelium during hydrocarbon carcinogenesis

    SciTech Connect

    Lurie, A.G.; Coghill, J.E.; Rippey, R.M.

    1985-07-01

    Effects of repeated low-level X radiation on functional microvascular changes in hamster cheek pouch epithelium during and following carcinogenesis by 7,12-dimethylbenz(a)anthracene (DMBA) were studied. Hamsters were treated with either radiation, DMBA, radiation + DMBA, or no treatment. Animals were sacrificed at 3-week intervals from 0 to 39 weeks after treatments began. Pouch vascular volume and permeability changes were studied by fractional distributions of radiotracers and were analyzed by a variety of statistical methods which explored the vascular parameters, treatment types, elapsed time, presence of the carcinogen, and histopathologic changes. All treatments resulted in significant changes in vascular volume with time, while only DMBA treatments alone resulted in significant changes in vascular permeability with time. As in prior studies, there were significant vascular volume differences between DMBA and DMBA + radiation groups of tumor-bearing cheek pouches. Radiation significantly affected DMBA-associated vascular volume and permeability changes during carcinogenesis. Several possible explanations for the relationship of these changes to the enhancement of DMBA carcinogenesis are discussed.

  16. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function.

    PubMed

    Liang, Mao-Shih; Koobatian, Maxwell; Lei, Pedro; Swartz, Daniel D; Andreadis, Stelios T

    2013-10-01

    We investigated the hypothesis that immobilizing TGF-β1 within fibrin hydrogels may act in synergy with cyclic mechanical stimulation to enhance the properties of vascular grafts. To this end, we engineered a fusion TGF-β1 protein that can covalently anchor to fibrin during polymerization upon the action of factor XIII. We also developed a 24-well based bioreactor in which vascular constructs can be mechanically stimulated by distending the silastic mandrel in the middle of each well. TGF-β1 was either conjugated to fibrin or supplied in the culture medium and the fibrin-based constructs were cultured statically for a week followed by cyclic distention for another week. The tissues were examined for myogenic differentiation, vascular reactivity, mechanical properties and ECM content. Our results showed that some aspects of vascular function were differentially affected by growth factor presentation vs. pulsatile force application, while others were synergistically enhanced by both. Overall, this two-prong biomimetic approach improved ECM secretion, vascular reactivity and mechanical properties of vascular constructs. These findings may be applied in other tissue engineering applications such as cartilage, tendon or cardiac regeneration where growth factors TGF-β1 and mechano-stimulation play critical roles. PMID:23810080

  17. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling.

    PubMed

    Cetinkaya, Arda; Xiong, Jingwei Rachel; Vargel, İbrahim; Kösemehmetoğlu, Kemal; Canter, Halil İbrahim; Gerdan, Ömer Faruk; Longo, Nicola; Alzahrani, Ahmad; Camps, Mireia Perez; Taskiran, Ekim Zihni; Laupheimer, Simone; Botto, Lorenzo D; Paramalingam, Eeswari; Gormez, Zeliha; Uz, Elif; Yuksel, Bayram; Ruacan, Şevket; Sağıroğlu, Mahmut Şamil; Takahashi, Tokiharu; Reversade, Bruno; Akarsu, Nurten Ayse

    2016-08-01

    Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones. PMID:27476657

  18. Genetic Variation in Vascular Endothelial Growth Factor-A and Lung Function

    PubMed Central

    Custovic, Adnan; Tepper, Robert; Graves, Penelope; Stern, Debra A.; Jones, Marcus; Hankinson, Jenny; Curtin, John A.; Wu, Jiakai; Blekic, Mario; Bukvic, Blazenka Kljaic; Aberle, Neda; Marinho, Susana; Belgrave, Danielle; Morgan, Wayne J.; Martinez, Fernando D.

    2012-01-01

    Rationale: Given the role of vascular endothelial growth factor (VEGF) in lung development, we hypothesized that polymorphisms in VEGF-A may be associated with lung function. Objectives: The current study was designed to assess the role of genetic variants in VEGF-A as determinants of airway function from infancy through early adulthood. Methods: Association between five single-nucleotide polymorphisms (SNPs) in VEGF-A and lung function were assessed longitudinally in two unselected birth cohorts and cross-sectionally among infants. Replication with two SNPs was conducted in adults and children with asthma. We investigated the functionality of the SNP most consistently associated with lung function (rs3025028) using Western blotting to measure the ratio of plasma VEGF-A165b/panVEGF-A165 among homozygotes. Measurements and Main Results: In two populations in infancy, C-allele homozygotes of rs3025028 had significantly higher VmaxFRC, forced expiratory flow50, and forced expiratory flow25–75 compared with other genotype groups. Among preschool children (age 3 yr), C allele of rs3025028 was associated with significantly higher specific airway conductance, with similar findings observed for lung function in school-age children. For FEV1/FVC ratio similar findings were observed among adolescents and young adults (birth cohort), and then replicated in adults and schoolchildren with asthma (cross-sectional studies). For rs3025038, plasma VEGF-A165b/panVEGF-A165 was significantly higher among CC versus GG homozygotes (P ≤ 0.02) at birth, in school-age children, and in adults. Conclusions: We report significant associations between VEGF-A SNP rs3025028 and parameters of airway function measured throughout childhood, with the effect persisting into adulthood. We propose that the mechanism may be mediated through the ratios of active and inhibitory isoforms of VEGF-A165, which may be determined by alternative splicing. PMID:22461367

  19. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function

    PubMed Central

    Chen, Chun-An; Wang, Tse-Yao; Varadharaj, Saradhadevi; Reyes, Levy A.; Hemann, Craig; Hassan Talukder, M. A.; Chen, Yeong-Renn; Druhan, Lawrence J.; Zweier, Jay L.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O2•−), which are key mediators of cellular signalling. In the presence of Ca2+/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from L-arginine (L-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH4) and L-Arg1–3. In the absence of BH4, NO synthesis is abrogated and instead O2•− is generated4–7. While NOS dysfunction occurs in diseases with redox stress, BH4 repletion only partly restores NOS activity and NOS-dependent vasodilation7. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation8,9. Under oxidative stress, S-glutathionylation occurs through thiol–disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione10,11. Cysteine residues are critical for the maintenance of eNOS function12,13; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O2•− generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O2•− generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol

  20. Pediatric Patients with Vitiligo in Eastern China: Abnormalities in 145 Cases Based on Thyroid Function Tests and Immunological Findings

    PubMed Central

    Xianfeng, Cheng; Yuegen, Jiang; Zhiyu, Yin; Yan, Yang; Xuesi, Zeng; Fenglai, Wang; Ansheng, Li; Wei, Wang

    2015-01-01

    Background The aim of this study was to evaluate abnormalities in thyroid function according to tests and the humoral immune systems of patients from Eastern China with pediatric vitiligo. Material/Methods A total of 145 pediatric patients with vitiligo were investigated in this study, along with 59 children without autoimmune diseases as controls. Laboratory tests of thyroid function were conducted, and these tests examined free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), thyroglobulin antibody (TG-Ab), thyroid peroxidase antibody (TPO-Ab), antinuclear antibodies (ANAs), immunoglobulins (IgA, IgM, and IgG), and complements (C3 and C4). Results A total of 63 patients (43.4%), including 39 boys (44.3%) and 24 girls (42.1%), displayed abnormalities in thyroid function according to the tests. This finding indicated that patients with vitiligo differed significantly from those in the control group (P<0.001), particularly in terms of FT3 and TSH abnormalities (P<0.05). However, these groups did not deviate significantly with respect to FT4, Tg-Ab, and TPO-Ab abnormalities (P>0.05). Thirteen patients (8.9%) and 1 (1.7%) control were positive for ANA. All 12 specific antibodies were detected in 8 patients. Anti-SSA/Ro-60 and anti-SSA/Ro-52 were the most prevalent antibodies, followed by anti-dsDNA and then by anti-SmD1 and CENB-P. The serum levels of IgA and IgG decreased more significantly in the vitiligo group than in the control group (P<0.001). However, no significant difference was observed in terms of IgM levels (P>0.05). C4 serum levels also decreased more significantly in the vitiligo group than in the control group (P=0.035). Conclusions Results suggest that the incidence of abnormalities in the thyroid functions of children and adolescents is significantly higher in those with vitiligo than that in those in the control group. In addition, immunological dysfunction is common in the vitiligo group. PMID:26496247

  1. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.

    PubMed

    Wang, Lubin; Zou, Feng; Zhai, Tianye; Lei, Yu; Tan, Shuwen; Jin, Xiao; Ye, Enmao; Shao, Yongcong; Yang, Yihong; Yang, Zheng

    2016-05-01

    Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users. In this study, structural and resting-state functional magnetic resonance imaging data were collected from 30 former heroin-dependent (FHD) subjects who were drug free for more than 3 years and 30 non-addicted control (CN) volunteers. Voxel-based morphometry was used to identify possible gray matter volume differences between the FHD and CN groups. Alterations in resting-state functional connectivity in FHD were examined using brain areas with gray matter deficits as seed regions. Significantly reduced gray matter volume was observed in FHD in an area surrounding the parieto-occipital sulcus, which included the precuneus and cuneus. Functional connectivity analyses revealed that the FHD subjects showed reduced positive correlation within the default mode network and visual network and decreased negative correlation between the default mode network, visual network and task positive network. Moreover, the altered functional connectivity was correlated with self-reported impulsivity scores in the FHD subjects. Our findings suggest that disruption of large-scale brain systems is present in former heroin users even after multi-year abstinence, which could serve as system-level neural underpinnings for behavioral dysfunctions associated with addiction. PMID:25727574

  2. Treated effect of silymarin on vascular function of aged rats: Dependant on nitric oxide pathway.

    PubMed

    Demirci, Buket; Demir, Omer; Dost, Turhan; Birincioglu, Mustafa

    2013-11-01

    Abstract Context: Aging leads to endothelial dysfunction and vascular stiffness which are the main causes of many cardiovascular diseases. Previous reports have shown that the cell protective effect of silymarin (SM) is dependent on its antioxidant properties. Objectives: We investigated the effect of SM on vascular functions of aged rats and the involvement of nitric oxide or cyclooxygenase (COX) activity in this effect. Materials and methods: Isolated rat aortas were obtained from 22-month old rats. Each ring was incubated with SM (50 mg/L), SM/l-nitro-arginine methyl ester (100 μM, l-NAME) or SM/indomethacin (10 μM, INDO) in tissue bath. Three- to four-month-old rats were used as young controls. Endothelium-intact rings were precontracted with α-receptor agonist phenylephrine (0.001-30 µM) or voltage-dependent high potassium (40 mM), endothelium dependent/independent relaxant responses were obtained using acetylcholine (0.001-30 µM) and sodium nitroprusside (0.0001-3 µM), respectively. Results: Aging increased phenylephrine sensitivity (6.45 ± 0.08; 6.88 ± 0.09) and decreased KCl contraction (882 ± 118.4; 499 ± 80.4). SM treatment decreased the Emax of both agents (548 ± 109; 223 ± 48.9). Aging deteriorated acetylcholine relaxation (93.9 ± 2.09; 72.0 ± 2.56) and SM improved the response (86.3 ± 1.90). l-NAME prevented the SM effect whereas INDO was ineffective. Discussion and Conclusion: Immediate SM treatment partially restored endothelial dysfunction and vascular tone in aging. The possible mechanism might not be mediated by prostacyclin or the COX pathway in acute administration; the nitric oxide pathway and calcium antagonistic features of SM relate to its action on the vessel. PMID:24188646

  3. Heat acclimation improves cutaneous vascular function and sweating in trained cyclists

    PubMed Central

    Lorenzo, Santiago

    2010-01-01

    The aim of this study was to explore heat acclimation effects on cutaneous vascular responses and sweating to local ACh infusions and local heating. We also sought to examine whether heat acclimation altered maximal skin blood flow. ACh (1, 10, and 100 mM) was infused in 20 highly trained cyclists via microdialysis before and after a 10-day heat acclimation program [two 45-min exercise bouts at 50% maximal O2 uptake (V̇o2max) in 40°C (n = 12)] or control conditions [two 45-min exercise bouts at 50% V̇o2max in 13°C (n = 8)]. Skin blood flow was monitored via laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC) was calculated as LDF ÷ mean arterial pressure. Sweat rate was measured by resistance hygrometry. Maximal brachial artery blood flow (forearm blood flow) was obtained by heating the contralateral forearm in a water spray device and measured by Doppler ultrasound. Heat acclimation increased %CVCmax responses to 1, 10, and 100 mM ACh (43.5 ± 3.4 vs. 52.6 ± 2.6% CVCmax, 67.7 ± 3.4 vs. 78.0 ± 3.0% CVCmax, and 81.0 ± 3.8 vs. 88.5 ± 1.1% CVCmax, respectively, all P < 0.05). Maximal forearm blood flow remained unchanged after heat acclimation (290.9 ± 12.7 vs. 269.9 ± 23.6 ml/min). The experimental group showed significant increases in sweating responses to 10 and 100 mM ACh (0.21 ± 0.03 vs. 0.31 ± 0.03 mg·cm−2·min−1 and 0.45 ± 0.05 vs. 0.67 ± 0.06 mg·cm−2·min−1, respectively, all P < 0.05), but not to 1 mM ACh (0.13 ± 0.02 vs. 0.18 ± 0.02 mg·cm−2·min−1, P = 0.147). No differences in any of the variables were found in the control group. Heat acclimation in highly trained subjects induced local adaptations within the skin microcirculation and sweat gland apparatus. Furthermore, maximal skin blood flow was not altered by heat acclimation, demonstrating that the observed changes were attributable to improvement in cutaneous vascular function and not to structural changes that limit maximal vasodilator capacity

  4. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  5. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks.

    PubMed

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  6. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  7. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function. PMID:21808008

  8. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes.

    PubMed

    Manimmanakorn, Apiwan; Manimmanakorn, Nuttaset; Taylor, Robert; Draper, Nick; Billaut, Francois; Shearman, Jeremy P; Hamlin, Michael J

    2013-07-01

    The aim was to investigate the effects of low-load resistant training combined with vascular occlusion or normobaric hypoxic exposure, on neuromuscular function. In a randomised controlled trial, well-trained athletes took part in a 5-week training of knee flexor/extensor muscles in which low-load resistant exercise (20% of one repetition maximum, 1-RM) was combined with either (1) an occlusion pressure of approximately 230 mmHg (KT, n = 10), (2) hypoxic air to generate an arterial blood oxygen saturation of ~80% (HT, n = 10), or (3) with no additional stimulus (CT, n = 10). Before and after training, participants completed the following tests: 3-s maximal voluntary contraction (MVC₃), 30-s MVC, and an endurance test (maximal number of repetitions at 20% 1-RM, Reps₂₀). Electromyographic activity (root mean square, RMS) was measured during tests and the cross-sectional area (CSA) of the quadriceps and hamstrings was measured pre- and post-training. Relative to CT, KT, and HT showed likely increases in MVC₃ (11.0 ± 11.9 and 15.0 ± 13.1%, mean ± 90% confidence interval), MVC₃₀ (10.2 ± 9.0 and 18.3 ± 17.4%), and Reps₂₀ (28.9 ± 23.7 and 23.3 ± 24.0%). Compared to the CT group, CSA increased in the KT (7.6 ± 5.8) and HT groups (5.3 ± 3.0). KT had a large effect on RMS during MVC₃, compared to CT (effect size 0.8) and HT (effect size 0.8). We suspect hypoxic conditions created within the muscles during vascular occlusion and hypoxic training may play a key role in these performance enhancements. PMID:23412543

  9. Nitroso-Redox Status and Vascular Function in Marginal and Severe Ascorbate Deficiency

    PubMed Central

    Garcia-Saura, Maria-Francisca; Saijo, Fumito; Bryan, Nathan S.; Bauer, Selena; Rodriguez, Juan

    2012-01-01

    Abstract Marginal vitamin C (ascorbic acid) deficiency is a prevalent yet underappreciated risk factor for cardiovascular disease. Along with glutathione, ascorbate plays important roles in antioxidant defense and redox signaling. Production of nitric oxide (NO) and reactive oxygen species and their interaction, giving rise to nitroso and nitrosyl product formation, are key components of the redox regulation/signaling network. Numerous in vitro studies have demonstrated that these systems are interconnected via multiple chemical transformation reactions, but little is known about their dynamics and significance in vivo. Aims: We sought to investigate the time-course of changes in NO/redox status and vascular function during ascorbate depletion in rats unable to synthesize vitamin C. Results: We here show that both redox and protein nitros(yl)ation status in blood and vital organs vary dynamically during development of ascorbate deficiency. Prolonged marginal ascorbate deficiency is associated with cell/tissue-specific perturbations in ascorbate and glutathione redox and NO status. Scurvy develops earlier in marginally deficient compared to adequately supplemented animals, with blunted compensatory NO production and a dissociation of biochemistry from clinical symptomology in the former. Paradoxically, aortic endothelial reactivity is enhanced rather than impaired, irrespective of ascorbate status. Innovation/Conclusion: Enhanced NO production and protein nitros(yl)ation are integral responses to the redox stress of acute ascorbate deprivation. The elevated cardiovascular risk in marginal ascorbate deficiency is likely to be associated with perturbations of NO/redox-sensitive signaling nodes unrelated to the regulation of vascular tone. This new model may have merit for the future study of redox-sensitive events in marginal ascorbate deficiency. Antioxid. Redox Signal. 17, 937–950. PMID:22304648

  10. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice

    PubMed Central

    Westergren, Helena U.; Grönros, Julia; Heinonen, Suvi E.; Miliotis, Tasso; Jennbacken, Karin; Sabirsh, Alan; Ericsson, Anette; Jönsson-Rylander, Ann-Cathrine; Svedlund, Sara; Gan, Li-Ming

    2015-01-01

    Background Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. Methods and Results In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. Conclusion In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes. PMID:26098416

  11. Association Between Peripheral Vascular Endothelial Function and Progression of Open-Angle Glaucoma.

    PubMed

    Liu, Chun-Hsiu; Su, Wei-Wen; Shie, Shian-Sen; Cheng, Shih-Tsung; Su, Cheng-Wen; Ho, Wang-Jing

    2016-03-01

    The aim of the study is to evaluate the relationship between Humphrey visual field progression and peripheral vascular endothelial function in patients with open-angle glaucoma (OAG), assessed by noninvasive endothelium-dependent flow-mediated vasodilation (FMD).Forty OAG patients, among which 22 had normal-tension glaucoma (NTG) and 18 had primary open-angle glaucoma (POAG) were enrolled. Each enrolled patient underwent a thorough ophthalmological examination including the Humphrey visual field test and measurement of FMD via high-resolution 2-dimensional ultrasonographic imaging of the brachial artery. Blood samples were evaluated for biochemistry and lipid profiles as well as levels of high-sensitivity C-reactive protein (hsCRP). The annual change of threshold sensitivity of the visual field in each test location were analyzed with pointwise linear regression. The correlation between long-term visual field progression and FMD was evaluated.A mean follow-up of 7.47 ± 1.84 years revealed a faster progression rate over the superior visual field in all 40 OAG patients (superior field -0.24 ± 0.67 dB/y, inferior field -0.10 ± 0.59 dB/y, P = 0.37). However, only the annual sensitivity change of the inferior peripheral field showed correlation with baseline FMD. There was no significant difference in the change slope of visual field between NTG and POAG patients.A correlation between baseline brachial artery FMD and visual field progression was observed in the inferior peripheral field in patients with NTG and POAG. This result suggests that peripheral vascular endothelial dysfunction may be related to glaucoma progression. PMID:26962832

  12. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function

    PubMed Central

    Kleinhenz, Jennifer M.; Murphy, Tamara C.; Pokutta-Paskaleva, Anastassia P.; Gleason, Rudolph L.; Lyle, Alicia N.; Taylor, W. Robert; Blount, Mitsi A.; Cheng, Juan; Yang, Qinglin; Sutliff, Roy L.; Hart, C. Michael

    2015-01-01

    Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis. PMID:26451838

  13. Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function

    PubMed Central

    Lammers, Steven; Scott, Devon; Hunter, Kendall; Tan, Wei; Shandas, Robin; Stenmark, Kurt R.

    2012-01-01

    The relationship between cardiac function and the afterload against which the heart muscle must work to circulate blood throughout the pulmonary circulation is defined by a complex interaction between many coupled system parameters. These parameters range broadly and incorporate system effects originating primarily from three distinct locations: input power from the heart, hydraulic impedance from the large conduit pulmonary arteries, and hydraulic resistance from the more distal microcirculation. These organ systems are not independent, but rather, form a coupled system in which a change to any individual parameter affects all other system parameters. The result is a highly nonlinear system which requires not only detailed study of each specific component and the effect of disease on their specific function, but also requires study of the interconnected relationship between the microcirculation, the conduit arteries, and the heart in response to age and disease. Here, we investigate systems-level changes associated with pulmonary hypertensive disease progression in an effort to better understand this coupled relationship. PMID:23487595

  14. Liver Function Test Abnormalities in Depressed Patients Treated with Antidepressants: A Real-World Systematic Observational Study in Psychiatric Settings

    PubMed Central

    Verstuyft, Céline; Corruble, Emmanuelle; Perlemuter, Gabriel; Colle, Romain

    2016-01-01

    Background Concerning the risk of antidepressant induced liver injury, it is not clear whether psychiatrists perform a liver function test (LFT) and whether an increase in aminotransferase levels should contraindicate antidepressant treatment. Aim To evaluate LFT availability, the prevalence of LFT abnormalities and the probable cause of an altered LFT in patients with a major depressive episode (MDE) requiring an antidepressant drug. Methods We studied LFT evaluation in a real world psychiatric setting, in a sample of 321 consecutive patients with a current major depressive episode (MDE) requiring an antidepressant drug treatment, but without current alcohol or drug dependence or unstable medical disease. Results An LFT is performed in 36.1% (116/321) of depressed patients. One fifth of antidepressant-treated patients who had an LFT evaluation had abnormal results. The most frequent causes of LFT abnormalities were: NAFLD (nonalcoholic fatty liver disease) (7/321; 2.1%), acute alcohol consumption (4/321; 1.2%), antidepressant-induced liver injury (3/321; 0.9%), hepatitis C virus infection (2/321; 0.6%) and heart failure (1/321; 0.3%). The cause of LFT abnormalities was unknown in 32% of patients (8/25) due to the absence of etiological investigations. Conclusion These results demonstrate that an LFT is infrequently performed by psychiatrists in depressed patients requiring an antidepressant drug. Baseline LFT assessment and observations during the first six months of antidepressant treatment may be useful for detection of patients with pre-existing liver disease such as NAFLD, and early identification of cases of antidepressant-induced liver injury. An increase in aminotransferase levels may be related to an underlying liver disease, but does not contraindicate antidepressant treatment. PMID:27171561

  15. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. PMID:25354028

  16. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    PubMed Central

    Cassandro, Ettore; Cassandro, Claudia; Sequino, Giuliano; Scarpa, Alfonso; Petrolo, Claudio; Chiarella, Giuseppe

    2015-01-01

    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests. PMID:26693371

  17. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  18. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    PubMed

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration. PMID:26662727

  19. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries

    PubMed Central

    Clearwater, Michael J.; Luo, Zhiwei; Ong, Sam Eng Chye; Blattmann, Peter; Thorp, T. Grant

    2012-01-01

    Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis ‘Hort16A’) exhibiting a pre-harvest ‘shrivel’ disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (Da) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high Da. Phloem flows were required for growth, with gradual recovery after a step increase in Da. Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to Da-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined. PMID:22155631

  20. Investigating surface topology and cyclic-RGD peptide functionalization on vascular endothelialization.

    PubMed

    McNichols, Colton; Wilkins, Justin; Kubota, Atsutoshi; Shiu, Yan T; Aouadi, Samir M; Kohli, Punit

    2014-02-01

    The advantages of endothelialization of a stent surface in comparison with the bare metal and drug-eluting stents used today include reduced late-stent restenosis and in-stent thrombosis. In this article, we study the effect of surface topology and functionalization of tantalum (Ta) with cyclic-(arginine-glycine-aspartic acid-d-phenylalanine-lysine) (cRGDfK) on the attachment, spreading, and growth of vascular endothelial cells. Self-assembled nanodimpling on Ta surfaces was performed using a one-step electropolishing technique. Next, cRGDfK was covalently bonded onto the surface using silane chemistry. Our results suggest that nanotexturing alone was sufficient to enhance cell spreading, but the combination of a nanodimpled surfaces along with the cRGDfK peptide may produce a better endothelialization coating on the surface in terms of higher cell density, better cell spreading, and more cell-cell interactions, when compared to using cRGDfK peptide functionalization alone or nanotexturing alone. We believe that future research should look into how to implement both modifications (topographic and chemical modifications) to optimize the stent surface for endothelialization. PMID:23505215

  1. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    SciTech Connect

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  2. Differentiation and functional connection of vascular elements in compatible and incompatible pear/quince internode micrografts.

    PubMed

    Espen, Luca; Cocucci, Maurizio; Sacchi, Gian Attilio

    2005-11-01

    Micrografts of internodes excised from in vitro grown pear plants (Pyrus communis L. cv. 'Bosc' (B) and cv. 'Butirra Hardy' (BH)) and quince (Cydonia oblonga Mill. East Malling clone C (EMC)), were cultured aseptically to test the effectiveness of their functional vascular reconnection in relation to incompatibility-compatibility relationships that these genotypes exhibit in the field. The incompatible heterograft (B/EMC) showed a marked delay in internode cohesion compared with the autografts (both B/B and BH/BH) and the compatible heterograft (BH/EMC). Even when fused, the translocation of [14C]-sorbitol from upper to lower internode was lower in B/EMC micrografts than in the other combinations. Epifluorescence studies performed with carboxyfluorescin, a specific phloem probe, indicated that the limited translocation was caused by a delay in the establishment of functional phloem continuity between the two internodes. In the B/EMC combination, new differentiated tracheary elements (TE) in the parenchyma tissue at the graft interface between the two internodes were not detected until 30 days after grafting, whereas in the BH/EMC heterograft and both autografts, new xylem connections appeared to cross the interface 20 days after grafting. Immunohistochemical detection (terminal nick-end labeling assay) of the number of cells undergoing nuclear DNA fragmentation at the graft interface confirmed that the limited and delayed TE differentiation in B/EMC heterografts was associated with a decrease in the activity of programmed cell death processes involved in the differentiation of TE. PMID:16105809

  3. Investigating Surface Topology and Cyclic-RGD Peptide functionalization on Vascular Endothelialization

    PubMed Central

    McNichols, Colton; Wilkins, Justin; Kubota, Atsu; Shiu, Yan T.; Aouadi, Samir M.; Kohli, Punit

    2013-01-01

    The advantages of endothelialization of a stent surface in comparison with the bare metal and drug eluting stents used today include reduced late-stent restenosis and in-stent thrombosis. In this paper, we study the effect of surface topology and functionalization of tantalum (Ta) with cyclic-(arginine-glycine-aspartic acid-D-phenylalanine-lysine (cRGDfK)) on the attachment, spreading, and growth of vascular endothelial cells. Self-assembled nano-dimpling on Ta surfaces was performed using a one-step electropolishing technique. Next, cRGDfK was covalently bonded onto the surface using silane chemistry. Our results suggest that nano-texturing alone was sufficient to enhance cell spreading, but the combination of a nano-dimpled surfaces along with the cRGDfK peptide may produce a better endothelialization coating on the surface in terms of higher cell density, better cell spreading, and more cell-cell interactions, when compared to using cRGDfK peptide functionalization alone or nano-texturing alone. We believe that future research should look into how to implement both modifications (topographic and chemical modifications) to optimize the stent surface for endothelialization. PMID:23505215

  4. Influence of Vascular Variant of the Posterior Cerebral Artery (PCA) on Cerebral Blood Flow, Vascular Response to CO2 and Static Functional Connectivity

    PubMed Central

    Emmert, Kirsten; Zöller, Daniela; Preti, Maria Giulia; Van De Ville, Dimitri; Giannakopoulos, Panteleimon; Haller, Sven

    2016-01-01

    Introduction The fetal origin of the posterior cerebral artery (fPCA) is a frequent vascular variant in 11–29% of the population. For the fPCA, blood flow in the PCA originates from the anterior instead of the posterior circulation. We tested whether this blood supply variant impacts the cerebral blood flow assessed by arterial spin labeling (ASL), cerebrovascular reserve as well as resting-state static functional connectivity (sFC) in the sense of a systematic confound. Methods The study included 385 healthy, elderly subjects (mean age: 74.18 years [range: 68.9–90.4]; 243 female). Participants were classified into normal vascular supply (n = 296, 76.88%), right fetal origin (n = 23, 5.97%), left fetal origin (n = 16, 4.16%), bilateral fetal origin (n = 4, 1.04%), and intermediate (n = 46, 11.95%, excluded from further analysis) groups. ASL-derived relative cerebral blood flow (relCBF) maps and cerebrovascular reserve (CVR) maps derived from a CO2 challenge with blocks of 7% CO2 were compared. Additionally, sFC between 90 regions of interest (ROIs) was compared between the groups. Results CVR was significantly reduced in subjects with ipsilateral fPCA, most prominently in the temporal lobe. ASL yielded a non-significant trend towards reduced relCBF in bilateral posterior watershed areas. In contrast, conventional atlas-based sFC did not differ between groups. Conclusions In conclusion, fPCA presence may bias the assessment of cerebrovascular reserve by reducing the response to CO2. In contrast, its effect on ASL-assessed baseline perfusion was marginal. Moreover, fPCA presence did not systematically impact resting-state sFC. Taken together, this data implies that perfusion variables should take into account the vascularization patterns. PMID:27532633

  5. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  6. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  7. Physiologically Modeled Pulse Dynamics to Improve Function in In Vitro-Endothelialized Small-Diameter Vascular Grafts.

    PubMed

    Uzarski, Joseph S; Cores, Jhon; McFetridge, Peter S

    2015-11-01

    The lack of a functional endothelium on small-diameter vascular grafts leads to intimal hyperplasia and thrombotic occlusion. Shear stress conditioning through controlled hydrodynamics within in vitro perfusion bioreactors has shown promise as a mechanism to drive endothelial cell (EC) phenotype from an activated, pro-inflammatory wound state toward a quiescent functional state that inhibits responses that lead to occlusive failure. As part of an overall design strategy to engineer functional vascular grafts, we present a novel two-phase shear conditioning approach to improve graft endothelialization. Axial rotation was first used to seed uniform EC monolayers onto the lumenal surface of decellularized scaffolds derived from the human umbilical vein. Using computer-controlled perfusion circuits, a flow-ramping paradigm was applied to adapt endothelia to arterial levels of fluid shear stress and pressure without graft denudation. The effects of constant pulse frequencies (CF) on EC quiescence were then compared with pulse frequencies modeled from temporal fluctuations in blood flow observed in vivo, termed physiologically modeled pulse dynamics (PMPD). Constructs exposed to PMPD for 72 h expressed a more functional transcriptional profile, lower metabolic activity (39.8% ± 8.4% vs. 62.5% ± 11.5% reduction, p = 0.012), and higher nitric oxide production (80.42 ± 23.93 vs. 48.75 ± 6.93 nmol/10(5) cells, p = 0.028) than those exposed to CF. By manipulating in vitro flow conditions to mimic natural physiology, endothelialized vascular grafts can be stimulated to express a nonactivated phenotype that would better inhibit peripheral cell adhesion and smooth muscle cell hyperplasia, conditions that typically lead to occlusive failure. Development of robust, functional endothelia on vascular grafts by modulation of environmental conditions within perfusion bioreactors may ultimately improve clinical outcomes in vascular bypass grafting. PMID:25996580

  8. Abnormalities in Cardiac Structure and Function in Adults with Sickle Cell Disease are not Associated with Pulmonary Hypertension

    PubMed Central

    Knight-Perry, Jessica E.; de las Fuentes, Lisa; Waggoner, Alan D.; Hoffmann, Raymond G.; Blinder, Morey A.; Dávila-Román, Victor G.; Field, Joshua J.

    2011-01-01

    Background In sickle cell disease (SCD), pulmonary hypertension (assessed by tricuspid regurgitant jet [TRJ] velocity ≥ 2.5 m/s) is associated with increased mortality. The relationships between TRJ velocity, left ventricular (LV) and right ventricular (RV) systolic and diastolic function (i.e., relaxation and compliance) have not been well characterized in SCD. Design and Methods Prospective study of 53 ambulatory SCD adults (age, mean: 34 years; range 21-65 years) and 33 African American controls to define the relationship between LV and RV function and TRJ velocity by use of echocardiography. Results SCD subjects had larger left and right atrial volumes and increased LV mass compared to controls. When SCD cases were compared to controls, LV and RV relaxation (i.e., E’) were similar. Among SCD subjects, pulmonary hypertension (TRJ ≥ 2.5 m/s) was present in 40% of cases. Higher TRJ velocity was correlated with larger LA volumes and areas in SCD cases. Additionally, some measures of LV (peak A, lateral and septal annulus E/E’) and RV compliance (TV E/E’) were correlated with TRJ velocity. No other measures of LV/RV systolic function or LV diastolic function (i.e., relaxation and compliance) were associated with TRJ velocity. Conclusions Ambulatory adults with SCD exhibited structural (i.e., LV and RV chamber enlargement) and functional (i.e., higher surrogate measures of LV and RV filling pressure) abnormalities compared to the control group. In SCD subjects, few abnormalities of LV and RV structure/function were associated with TRJ velocity. PMID:21873028

  9. Pioglitazone treatment increases COX-2-derived prostacyclin production and reduces oxidative stress in hypertensive rats: role in vascular function

    PubMed Central

    Hernanz, Raquel; Martín, Ángela; Pérez-Girón, Jose V; Palacios, Roberto; Briones, Ana M; Miguel, Marta; Salaices, Mercedes; Alonso, María J

    2012-01-01

    BACKGROUND AND PURPOSE PPARγ agonists, glitazones, have cardioprotective and anti-inflammatory actions associated with gene transcription interference. In this study, we determined whether chronic treatment of adult spontaneously hypertensive rats (SHR) with pioglitazone alters BP and vascular structure and function, and the possible mechanisms involved. EXPERIMENTAL APPROACH Mesenteric resistance arteries from untreated or pioglitazone-treated (2.5 mg·kg−1·day−1, 28 days) SHR and normotensive [Wistar Kyoto (WKY)] rats were used. Vascular structure was studied by pressure myography, vascular function by wire myography, protein expression by Western blot and immunohistochemistry, mRNA levels by RT-PCR, prostanoid levels by commercial kits and reactive oxygen species (ROS) production by dihydroethidium-emitted fluorescence. KEY RESULTS In SHR, pioglitazone did not modify either BP or vascular structural and mechanical alterations or phenylephrine-induced contraction, but it increased vascular COX-2 levels, prostacyclin (PGI2) production and the inhibitory effects of NS 398, SQ 29,548 and tranylcypromine on phenylephrine responses. The contractile phase of the iloprost response, which was reduced by SQ 29,548, was greater in pioglitazone-treated and pioglitazone-untreated SHR than WKY. In addition, pioglitazone abolished the increased vascular ROS production, NOX-1 levels and the inhibitory effect of apocynin and allopurinol on phenylephrine contraction, whereas it did not modify eNOS expression but restored the potentiating effect of N-nitro-L-arginine methyl ester on phenylephrine responses. CONCLUSIONS AND IMPLICATIONS Although pioglitazone did not reduce BP in SHR, it increased COX-2-derived PGI2 production, reduced oxidative stress, and increased NO bioavailability, which are all involved in vasoconstrictor responses in resistance arteries. These effects would contribute to the cardioprotective effect of glitazones reported in several pathologies. PMID

  10. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta-analysis of 28 functional neuroimaging studies.

    PubMed

    Martin, Anna; Kronbichler, Martin; Richlan, Fabio

    2016-07-01

    We used coordinate-based meta-analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under- and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta-analyses of the two sets of studies showed universal reading-related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task-negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography-specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676-2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  11. Vascular Endothelial Growth Factor Prevents Apoptosis and Preserves Contractile Function in Hypertrophied Infant Heart

    PubMed Central

    Friehs, Ingeborg; Barillas, Rodrigo; Vasilyev, Nikolay V.; Roy, Nathalie; McGowan, Francis X.; del Nido, Pedro J.

    2012-01-01

    Background Cardiac hypertrophy is an adaptive response to increased workload that, if unrelieved, leads to heart failure. It has been reported that cardiomyocyte apoptosis contributes to failure, and that vascular endothelial growth factor (VEGF) treatment of hypertrophied myocardium increases capillary density and improves myocardial perfusion. In this study we hypothesized that VEGF treatment reduces cardiomyocyte apoptosis and thereby preserves myocardial contractile function. Methods and Results Newborn rabbits underwent aortic banding. At 4 and 6 weeks of age, hypertrophied animals were treated with intrapericardial administration of recombinant VEGF protein. Three groups of animals were investigated: age-matched controls (C), untreated hypertrophied (H), and VEGF-treated hypertrophied hearts (T). Cardiomyocyte apoptosis was determined by TUNEL staining and PARP cleavage (immunoblotting of nuclear extracts) and cardiac function by transthoracic echocardiography. Death attributable to severe heart failure occurred in 14 of 43 untreated and 2 of 29 VEGF-treated animals (P<0.01). TUNEL-positive cardiomyocyte nuclei (n/1000 nuclei) were significantly increased in untreated hearts at 5 weeks (H: 10±1.8 versus T: 3±0.7) and at 7 weeks (H: 13±3.6 versus T: 5±1.5; P<0.05). Increased apoptosis in untreated hypertrophy was also confirmed by the presence of PARP cleavage (H: 74±7 versus T: 41±4 arbitrary densitometry units; P<0.05). VEGF treatment preserved left ventricular mass, prevented dilation (T: 1.01±0.06 versus H: 0.77±0.07; P<0.05), and preserved contractility indices compared with untreated hearts. Conclusions Lack of adaptive capillary growth impairs myocardial perfusion and substrate delivery in hypertrophying myocardium. VEGF treatment reduces myocardial apoptosis and prolongs survival in a model of severe progressive left ventricular hypertrophy. Promoting capillary growth with VEGF reduces apoptosis, preserves myocardial contractile function, and

  12. Agonist-mediated changes in intracellular pH: role in vascular smooth muscle cell function

    SciTech Connect

    Berk, B.C.; Canessa, M.; Vallega, G.; Alexander, R.W.

    1988-01-01

    Changes in intracellular pH (pHi) are likely to play an important role in regulation of vascular smooth muscle cell (VSMC) function. In most blood vessels, acidification is associated with decreased contractile tone and alkalinization with increased tone. However, the nature of agonist-mediated alterations in pHi and the role of pHi in other VSMC responses has been little studied. We have used the pH sensitive dye, BCECF, to study pHi in cultured rat aortic VSMC. Basal pHi at 37 degrees C in physiologic saline buffer (pH 7.3) was 7.08 in suspended VSMC and 7.26 in substrate-attached VSMC. An amiloride-sensitive Na+/H+ exchanger mediated pHi recovery following an acid load. Angiotensin II- and platelet-derived growth factor typified one class of VSMC agonists, causing an initial transient (less than 5 min) acidification followed by a sustained (greater than 20 min) alkalinization. The acidification phase was associated with increased Ca2+ mobilization as demonstrated by increases in intracellular Ca2+ and 45Ca2+ efflux. The alkalinization was associated with Na+ influx and H+ efflux consistent with Na+/H+ exchange. Epidermal growth factor and phorbol esters typified another class of agonists which stimulated only a sustained alkalinization. Alterations in regulation of VSMC pHi may play an important role in VSMC hypertrophy and/or proliferation as suggested by the finding of increased cell growth and Na+/H+ exchange in spontaneously hypertensive rat VSMC compared to Wistar-Kyoto VSMC. Although no functional correlate for initial acidification has been identified, cytoplasmic alkalinization appears to be required for the sustained formation of diacylglycerol following angiotensin II stimulation. These findings suggest that alterations in pHi may regulate several VSMC functions such as agonist-mediated signal transduction, excitation-response coupling, and growth.

  13. Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction.

    PubMed

    Lamb, F S; Barna, T J

    1998-07-01

    Norepinephrine (NE) increases Cl- efflux from vascular smooth muscle (VSM) cells. An increase in Cl- conductance produces membrane depolarization. We hypothesized that if Cl- currents are important for agonist-induced depolarization, then interfering with cellular Cl- handling should alter contractility. Isometric contraction of rat aortic rings was studied in a bicarbonate buffer. Substitution of extracellular Cl- with 130 mM methanesulfonate (MS; 8 mM Cl-) did not cause contraction. NE- and serotonin-induced contractions were potentiated in this low-Cl- buffer, whereas responses to K+, BAY K 8644, or NE in the absence of Ca2+ were unaltered. Substitution of Cl- with I- or Br- suppressed responses to NE. Inhibition of Cl- transport with bumetanide (10(-5) M) or bicarbonate-free conditions (10 mM HEPES) inhibited NE- but not KCl-induced contraction. The Cl--channel blockers DIDS (10(-3) M), anthracene-9-carboxylic acid (10(-3) M), and niflumic acid (10(-5) M) all inhibited NE-induced contraction, whereas tamoxifen (10(-5) M) did not. Finally, disruption of sarcoplasmic reticular function with cyclopiazonic acid (10(-7) M) or ryanodine (10(-5) M) prevented the increase in the peak response to NE produced by low-Cl- buffer. We conclude that a Cl- current with a permeability sequence of I- > Br- > Cl- > MS is critical to agonist-induced contraction of VSM. PMID:9688908

  14. Non-invasive functional imaging of Cerebral Blood Volume with Vascular-Space-Occupancy (VASO) MRI

    PubMed Central

    Lu, Hanzhang; Hua, Jun; van Zijl, Peter C.M.

    2013-01-01

    Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can directly probe vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of Blood-Oxygenation-Level-Dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called Vascular-Space-Occupancy (VASO) MRI and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish these two compartments within a voxel and uses blood-nulling inversion recovery sequence to yield an MR signal proportional to 1-CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable to several other fMRI methods such as BOLD or Arterial-Spin-Labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, CBF, and CSF. Sensitivity of the VASO technique remains to be the primary disadvantage when compared to BOLD, but this technique is increasingly demonstrating utility in neuroscientific and clinical applications. PMID:23355392

  15. Nitinol-based Nanotubular and Nanowell Coatings for the Modulation of Human Vascular Cell Functions

    NASA Astrophysics Data System (ADS)

    Lee, Phin Peng

    Current approaches to reducing restenosis do not balance the reduction of vascular smooth muscle cell proliferation with the increase in the healing of the endothelium. Here, I present my study on the synthesis and characterization of a nanotubular coating on Nitinol substrates. I found that the coating demonstrated 'pro-healing' properties by increasing primary human aortic endothelial cell spreading, migration and collagen and elastin production. Certain cellular functions such as collagen and elastin production were also found to be affected by changes in nanotube diameter. The coating also reduced the proliferation and mRNA expression of collagen I and MMP2 for primary human aortic smooth muscle cells. I will also demonstrate the synthesis of a nanowell coating on Nitinol stents as well as an additional poly(lactic-co-glycolic acid) coating on top of the nanowells that has the potential for controlling drug release. These findings demonstrate the potential for the coatings to aid in the prevention of restenosis and sets up future explorations of ex vivo and in vivo studies.

  16. Integrated Evaluation of Age-Related Changes in Structural and Functional Vascular Parameters Used to Assess Arterial Aging, Subclinical Atherosclerosis, and Cardiovascular Risk in Uruguayan Adults: CUiiDARTE Project

    PubMed Central

    Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Brum, Javier; Alallón, Walter; Negreira, Carlos; Lluberas, Ricardo; Armentano, Ricardo L.

    2011-01-01

    This work was carried out in a Uruguayan (South American) population to characterize aging-associated physiological arterial changes. Parameters markers of subclinical atherosclerosis and that associate age-related changes were evaluated in healthy people. A conservative approach was used and people with nonphysiological and pathological conditions were excluded. Then, we excluded subjects with (a) cardiovascular (CV) symptoms, (b) CV disease, (c) diabetes mellitus or renal failure, and (d) traditional CV risk factors (other than age and gender). Subjects (n = 388) were submitted to non-invasive vascular studies (gold-standard techniques), to evaluate (1) common (CCA), internal, and external carotid plaque prevalence, (2) CCA intima-media thickness and diameter, (3) CCA stiffness (percentual pulsatility, compliance, distensibility, and stiffness index), (4) aortic stiffness (carotid-femoral pulse wave velocity), and (5) peripheral and central pressure wave-derived parameters. Age groups: ≤20, 21–30, 31–40, 41–50, 51–60, 61–70, and 71–80 years old. Age-related structural and functional vascular parameters profiles were obtained and analyzed considering data from other populations. The work has the strength of being the first, in Latin America, that uses an integrative approach to characterize vascular aging-related changes. Data could be used to define vascular aging and abnormal or disease-related changes. PMID:22187622

  17. Integrated Evaluation of Age-Related Changes in Structural and Functional Vascular Parameters Used to Assess Arterial Aging, Subclinical Atherosclerosis, and Cardiovascular Risk in Uruguayan Adults: CUiiDARTE Project.

    PubMed

    Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Brum, Javier; Alallón, Walter; Negreira, Carlos; Lluberas, Ricardo; Armentano, Ricardo L

    2011-01-01

    This work was carried out in a Uruguayan (South American) population to characterize aging-associated physiological arterial changes. Parameters markers of subclinical atherosclerosis and that associate age-related changes were evaluated in healthy people. A conservative approach was used and people with nonphysiological and pathological conditions were excluded. Then, we excluded subjects with (a) cardiovascular (CV) symptoms, (b) CV disease, (c) diabetes mellitus or renal failure, and (d) traditional CV risk factors (other than age and gender). Subjects (n = 388) were submitted to non-invasive vascular studies (gold-standard techniques), to evaluate (1) common (CCA), internal, and external carotid plaque prevalence, (2) CCA intima-media thickness and diameter, (3) CCA stiffness (percentual pulsatility, compliance, distensibility, and stiffness index), (4) aortic stiffness (carotid-femoral pulse wave velocity), and (5) peripheral and central pressure wave-derived parameters. Age groups: ≤20, 21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years old. Age-related structural and functional vascular parameters profiles were obtained and analyzed considering data from other populations. The work has the strength of being the first, in Latin America, that uses an integrative approach to characterize vascular aging-related changes. Data could be used to define vascular aging and abnormal or disease-related changes. PMID:22187622

  18. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.

    PubMed

    Chen, Yunhui; Juhás, Michal; Greenshaw, Andrew J; Hu, Qiang; Meng, Xin; Cui, Hongsheng; Ding, Yongzhuo; Kang, Lu; Zhang, Yubo; Wang, Yuhua; Cui, Guangcheng; Li, Ping

    2016-06-01

    Altered brain activities in the cortico-striato-thalamocortical (CSTC) circuitry are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, whether the underlying changes occur only within this circuitry or in large-scale networks is still not thoroughly understood. This study performed voxel-based functional connectivity analysis on resting-state functional magnetic resonance imaging (fMRI) data from thirty OCD patients and thirty healthy controls to investigate whole-brain intrinsic functional connectivity patterns in OCD. Relative to the healthy controls, OCD patients showed decreased functional connectivity within the CSTC circuitry but increased functional connectivity in other brain regions. Furthermore, decreased left caudate nucleus-thalamus connectivity within the CSTC circuitry was positively correlated with the illness duration of OCD. This study provides additional evidence that CSTC circuitry may play an essential role and alteration of large-scale brain networks may be involved in the pathophysiology of OCD. PMID:27143323

  19. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  20. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  1. Degranulation and abnormal bactericidal function of granulocytes procured by reversible adhesion to nylon wool.

    PubMed

    Klock, J C; Bainton, D F

    1976-07-01

    Granylocyte bactericidal capacity, chemotaxis, hexose monophosphate shung activity (before and after phagocytic stimulus), and quantitative nitroblue tetrazolium reduction and enzyme content were examined in cells obtained by filtration leukaphresis (FL) and continuous-flow centrifugation (CFC). A decrease in the bactericidal efficiency of FL-produced cells compared to that of both normal and CFC-procured granulocytes was found; the decrease was 17% with a cell-to-bacteria ratio of 5:1, and 55% with a 1:1 ratio. Moreover, FL-acquired cells were often vacuolated and consistently contained less acid phosphatase and beta-glucuronidase than did normal granulocytes. When normal cells were incubated for 1-2 hr with nylon wool, 30% of the total acid phosphatase and beta-glucuronidase was released, with no evidence of cell death, thus suggesting degranulation. Similar results were obtained with glass, cotton, or polysulfone plastic fibers. Electron microscopic and peroxidase cytochemical studies of the adherence of normal granulocytes to nylon fibers were also carried out. After 30 min of incubation, cell-to-fiber attachment and cellular aggregation had occurred, although the cells per se appeared normal. After 60 and 120 min, other changes became apparent: (1) a decrease in the amount of cytoplasmic granules; (2) large, intracytoplasmic vaculoles; and (3) extracellular peroxidase on fiber surfaces. We conclude that granulocytes obtained by adherence to nylon fibers show both morphological and biochemical evidence of degranulation and diminished bactericidal capacity, and that these abnormalities may be causally related to decreased granulocyte survival in transfusion recipients. PMID:947403

  2. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function. PMID:26922413

  3. Differential Effects of Hormone Therapy on Serotonin, Vascular Function and Mood in the KEEPS

    PubMed Central

    Raz, Limor; Hunter, Larry; Dowling, N. Maritza; Wharton, Whitney; Gleason, Carey; Jayachandran, Muthuvel; Anderson, Layne; Asthana, Sanjay; Miller, Virginia

    2016-01-01

    Background Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. Methods The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemia index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. Results Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility associated with elevations in platelet 5-HT only in the oCEE group (r = −0.5, p = 0.02). Conclusions Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β- estradiol in platelets and the brain. PMID:26652904

  4. Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury

    PubMed Central

    El-Azab, M F; Baldowski, B R B; Mysona, B A; Shanab, A Y; Mohamed, I N; Abdelsaid, M A; Matragoon, S; Bollinger, K E; Saul, A; El-Remessy, A B

    2014-01-01

    BACKGROUND AND PURPOSE Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin-interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration. EXPERIMENTAL APPROACH Neurotoxicity was induced by intravitreal injection of NMDA into wild-type (WT) and TXNIP-knockout (TKO) mice. The expression of apoptotic and inflammatory markers was assessed by immunohistochemistry, elisa and Western blot. Microvascular degeneration was assessed by periodic acid-Schiff and haematoxylin staining and retinal function by electroretinogram. KEY RESULTS NMDA induced early (1 day) and significant retinal PARP activation, a threefold increase in TUNEL-positive nuclei and 40% neuronal loss in ganglion cell layer (GCL); and vascular permeability in WT but not TKO mice. NMDA induced glial activation, expression of TNF-α and IL-1β that co-localized with Müller cells in WT but not TKO mice. In parallel, NMDA triggered the expression of NOD-like receptor protein (NLRP3), activation of caspase-1, and release of IL-1β and TNF-α in primary WT but not TKO Müller cultures. After 14 days, NMDA induced 1.9-fold microvascular degeneration, 60% neuronal loss in GCL and increased TUNEL-labelled cells in the GCL and inner nuclear layer in WT but not TKO mice. Electroretinogram analysis showed more significant reductions in b-wave amplitudes in WT than in TKO mice. CONCLUSION AND IMPLICATIONS Targeting TXNIP expression prevented early retinal ganglion cell death, glial activation, retinal inflammation and secondary neuro/microvascular degeneration and preserved retinal function. TXNIP is a promising new therapeutic target for retinal neurodegenerative diseases. PMID:24283717

  5. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse.

    PubMed

    Kassan, Modar; Ait-Aissa, Karima; Ali, Maha; Trebak, Mohamed; Matrougui, Khalid

    2015-10-01

    We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2. PMID:26036345

  6. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development

    PubMed Central

    Velletri, T; Xie, N; Wang, Y; Huang, Y; Yang, Q; Chen, X; Chen, Q; Shou, P; Gan, Y; Cao, G; Melino, G; Shi, Y

    2016-01-01

    It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS. PMID:26775693

  7. The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and Metabolic Syndrome

    PubMed Central

    Ruberg, Frederick L.; Chen, Zhongjing; Hua, Ning; Bigornia, Sherman; Guo, Zifang; Hallock, Kevin; Jara, Hernan; LaValley, Michael; Phinikaridou, Alkystis; Qiao, Ye; Viereck, Jason; Apovian, Caroline M.; Hamilton, James A.

    2010-01-01

    Storage of lipid in ectopic depots outside of abdominal visceral and subcutaneous stores, including within the pericardium and liver, has been associated with obesity, insulin resistance, and cardiovascular risk. We sought to determine whether anatomically distinct ectopic depots were physiologically correlated and site-specific effects upon cardiovascular function could be identified. Obese subjects (n = 28) with metabolic syndrome but without known atherosclerotic disease and healthy controls (n = 18) underwent magnetic resonance imaging (MRI) and proton MR spectroscopy (MRS) to quantify pericardial and periaortic lipid volumes, cardiac function, aortic compliance, and intrahepatic lipid content. Fasting plasma lipoproteins, glucose, insulin, and free-fatty acids were measured. Pericardial and intrahepatic (P < 0.01) and periaortic (P < 0.05) lipid volumes were increased in obese subjects vs. controls and were strongly and positively correlated (P ≤ 0.01) but independent of BMI (P = NS) among obese subjects. Intrahepatic lipid was associated with insulin resistance (P < 0.01) and triglycerides (P < 0.05), whereas pericardial and periaortic lipid were not (P = NS). Periaortic and pericardial lipid positively correlated to free-fatty acids (P ≤ 0.01) and negatively correlated to high-density lipoprotein (HDL) cholesterol (P < 0.05). Pericardial lipid negatively correlated to cardiac output (P = 0.03) and stroke volume (P = 0.01) but not to left ventricular ejection fraction (P = 0.46). None of the ectopic depots correlated to aortic compliance. In conclusion, ectopic storage of lipid in anatomically distinct depots appeared tightly correlated but independent of body size. Site-specific functional abnormalities were observed for pericardial but not periaortic lipid. These findings underscore the utility of MRI to assess individual differences in ectopic lipid that are not predictable from BMI. PMID:19875992

  8. Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study.

    PubMed

    Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli

    2016-06-15

    Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. PMID:27079332

  9. Abnormal spontaneous regional brain activity in primary insomnia: a resting-state functional magnetic resonance imaging study

    PubMed Central

    Li, Chao; Ma, Xiaofen; Dong, Mengshi; Yin, Yi; Hua, Kelei; Li, Meng; Li, Changhong; Zhan, Wenfeng; Li, Cheng; Jiang, Guihua

    2016-01-01

    Objective Investigating functional specialization is crucial for a complete understanding of the neural mechanisms of primary insomnia (PI). Resting-state functional magnetic resonance imaging (fMRI) is a useful tool to explore the functional specialization of PI. However, only a few studies have focused on the functional specialization of PI using resting-state fMRI and results of these studies were far from consistent. Thus, the current study aimed to investigate functional specialization of PI using resting-state fMRI with amplitude of low frequency fluctuations (ALFFs) algorithm. Methods In this study, 55 PI patients and 44 healthy controls were included. ALFF values were compared between the two groups using two-sample t-test. The relationship of abnormal ALFF values with clinical characteristics and duration of insomnia was investigated using Pearson’s correlation analysis. Results PI patients showed lower ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral cerebellum posterior lobes, while higher ALFF values in the right middle/inferior temporal that extended to the right occipital lobe. In addition, we found that the duration of PI negatively correlated with ALFF values in the left orbitofrontal cortex/inferior frontal gyrus, and the Pittsburgh Sleep Quality Index score negatively correlated with ALFF values in the left inferior parietal lobule. Conclusion The present study added information to limited studies on functional specialization and provided evidence for hyperarousal hypothesis in PI. PMID:27366068

  10. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury.

    PubMed

    Begum, Gulnaz; Yan, Hong Q; Li, Liaoliao; Singh, Amneet; Dixon, C Edward; Sun, Dandan

    2014-03-01

    In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits. PMID:24599472

  11. Abnormal functional connectivity density in patients with ischemic white matter lesions: An observational study.

    PubMed

    Ding, Ju-Rong; Ding, Xin; Hua, Bo; Xiong, Xingzhong; Wang, Qingsong; Chen, Huafu

    2016-09-01

    White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective. PMID:27603353

  12. Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome

    PubMed Central

    Jeter, Cameron B.; Patel, Saumil S.; Morris, Jeffrey S.; Chuang, Alice Z.; Butler, Ian J.; Sereno, Anne B.

    2014-01-01

    Background Reports conflict as to whether Tourette Syndrome (TS) confers deficits in executive function. This study's aim was to evaluate executive function in youths with TS using oculomotor tasks while controlling for confounds of tic severity, age, medication and severity of comorbid disorders. Method Four saccade tasks requiring the executive functions of response generation, response inhibition, and working memory (prosaccade, antisaccade, 0-back and 1-back) were administered. Twenty youths with TS and low tic severity (TS-low), nineteen with TS and moderate tic severity (TS-moderate), and twenty-nine typically developing control subjects (Controls) completed the oculomotor tasks. Results There were small differences across groups in the prosaccade task. Controlling for any small sensorimotor differences, TS-moderate subjects had significantly higher error rates than Controls and TS-low subjects in the 0-back and 1-back tasks. In the 1-back task, these patients also took longer to respond than Controls or TS-low subjects. Conclusions In a highly controlled design, the findings demonstrate for the first time that increased tic severity in TS is associated with impaired response inhibition and impaired working memory and that these executive function deficits cannot be accounted for by differences in age, medication or comorbid symptom severity. PMID:25040172

  13. Post mTBI fatigue is associated with abnormal brain functional connectivity

    PubMed Central

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants’ fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject’s fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  14. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  15. Abnormal Functional MRI BOLD Contrast in the Vegetative State after Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Heelmann, Volker

    2010-01-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal…

  16. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  17. Post mTBI fatigue is associated with abnormal brain functional connectivity.

    PubMed

    Nordin, Love Engström; Möller, Marika Christina; Julin, Per; Bartfai, Aniko; Hashim, Farouk; Li, Tie-Qiang

    2016-01-01

    This study set out to investigate the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20 minute continuous psychomotor vigilance task (PVT) for patients with chronic post-concussion syndrome. Ten patients in chronic phase after mild traumatic brain injury (mTBI) with persisting symptoms of fatigue and ten matched healthy controls participated in the study. We assessed the participants' fatigue levels and conducted resting-state fMRI before and after a sustained PVT. We evaluated the changes in brain functional connectivity indices in relation to the subject's fatigue behavior using a quantitative data-driven analysis approach. We found that the PVT invoked significant mental fatigue and specific functional connectivity changes in mTBI patients. Furthermore, we found a significant linear correlation between self-reported fatigue and functional connectivity in the thalamus and middle frontal cortex. Our findings indicate that resting-state fMRI measurements may be a useful indicator of performance potential and a marker of fatigue level in the neural attentional system. PMID:26878885

  18. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor.

    PubMed

    Benito-León, Julián; Louis, Elan D; Manzanedo, Eva; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan; Molina-Arjona, José Antonio; Matarazzo, Michele; Romero, Juan Pablo; Domínguez-González, Cristina; Domingo-Santos, Ángela; Sánchez-Ferro, Álvaro

    2016-07-01

    Very little is known about the pathogenesis of orthostatic tremor (OT). We have observed that OT patients might have deficits in specific aspects of neuropsychological function, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests a possible involvement of frontocerebellar circuits. We examined whether resting-state functional magnetic resonance imaging (fMRI) might provide further insights into the pathogenesis on OT. Resting-state fMRI data in 13 OT patients (11 women and 2 men) and 13 matched healthy controls were analyzed using independent component analysis, in combination with a "dual-regression" technique, to identify group differences in several resting-state networks (RSNs). All participants also underwent neuropsychological testing during the same session. Relative to healthy controls, OT patients showed increased connectivity in RSNs involved in cognitive processes (default mode network [DMN] and frontoparietal networks), and decreased connectivity in the cerebellum and sensorimotor networks. Changes in network integrity were associated not only with duration (DMN and medial visual network), but also with cognitive function. Moreover, in at least 2 networks (DMN and medial visual network), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, visual memory, and language). In this exploratory study, we observed selective impairments of RSNs in OT patients. This and other future resting-state fMRI studies might provide a novel method to understand the pathophysiological mechanisms of motor and nonmotor features of OT. PMID:27442678

  19. Epidermal barrier abnormalities in exfoliative ichthyosis with a novel homozygous loss-of-function mutation in CSTA.

    PubMed

    Moosbrugger-Martinz, V; Jalili, A; Schossig, A S; Jahn-Bassler, K; Zschocke, J; Schmuth, M; Stingl, G; Eckl, K M; Hennies, H C; Gruber, R

    2015-06-01

    Autosomal recessive exfoliative ichthyosis (AREI) results from mutations in CSTA, encoding cysteine protease inhibitor A (cystatin A). We present a 25-year-old man from Iran with consanguineous parents, who presented with congenital erythroderma, hyperhidrosis and diffuse hyperkeratosis with coarse palmoplantar peeling of the skin, aggravated by exposure to water and by occlusion. Candidate gene analysis revealed a previously unknown homozygous loss-of-function mutation c.172C>T (p.Arg58Ter) in CSTA, and immunostaining showed absence of epidermal cystatin A, confirming the diagnosis of AREI. Ultrastructural analysis by transmission electron microscopy showed normal degradation of corneodesmosomes, mild intercellular oedema in the spinous layer but not in the basal layer, normal-appearing desmosomes, and prominent keratin filaments within basal keratinocytes. Thickness of cornified envelopes was reduced, lamellar lipid bilayers were disturbed, lamellar body secretion occurred prematurely and processing of secreted lamellar body contents was delayed. These barrier abnormalities were reminiscent of (albeit less severe than in) Netherton syndrome, which results from a deficiency of the serine protease inhibitor LEKTI. This work describes ultrastructural findings with evidence of epidermal barrier abnormalities in AREI. PMID:25400170

  20. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  1. Developmental Abnormalities of Neuronal Structure and Function in Prenatal Mice Lacking the Prader-Willi Syndrome Gene Necdin

    PubMed Central

    Pagliardini, Silvia; Ren, Jun; Wevrick, Rachel; Greer, John J.

    2005-01-01

    Necdin (Ndn) is one of a cluster of genes deleted in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Ndntm2Stw mutant mice die shortly after birth because of abnormal respiratory rhythmogenesis generated by a key medullary nucleus, the pre-Bötzinger complex (preBötC). Here, we address two fundamental issues relevant to its pathogenesis. First, we performed a detailed anatomical study of the developing medulla to determine whether there were defects within the preBötC or synaptic inputs that regulate respiratory rhythmogenesis. Second, in vitro studies determined if the unstable respiratory rhythm in Ndntm2Stw mice could be normalized by neuromodulators. Anatomical defects in Ndntm2Stw mice included defasciculation and irregular projections of axonal tracts, aberrant neuronal migration, and a major defect in the cytoarchitecture of the cuneate/gracile nuclei, including dystrophic axons. Exogenous application of neuromodulators alleviated the long periods of slow respiratory rhythms and apnea, but some instability of rhythmogenesis persisted. We conclude that deficiencies in the neuromodulatory drive necessary for preBötC function contribute to respiratory dysfunction of Ndntm2Stw mice. These abnormalities are part of a more widespread deficit in neuronal migration and the extension, arborization, and fasciculation of axons during early stages of central nervous system development that may account for respiratory, sensory, motor, and behavioral problems associated with PWS. PMID:15972963

  2. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    PubMed Central

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-01-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4±2.3years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS. PMID:20615010

  3. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  4. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population.

    PubMed

    Tong, Zhimin; Shen, Huanxi; Yang, Dandan; Zhang, Feng; Bai, Ying; Li, Qian; Shi, Jian; Zhang, Hengdong; Zhu, Baoli

    2016-01-01

    Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m³ DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population. PMID:27463724

  5. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population

    PubMed Central

    Tong, Zhimin; Shen, Huanxi; Yang, Dandan; Zhang, Feng; Bai, Ying; Li, Qian; Shi, Jian; Zhang, Hengdong; Zhu, Baoli

    2016-01-01

    Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m3 DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population. PMID:27463724

  6. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    PubMed

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD. PMID:26887382

  7. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms.

    PubMed

    Chalubinski, Maciej; Wojdan, Katarzyna; Luczak, Emilia; Gorzelak, Paulina; Borowiec, Maciej; Gajewski, Adrian; Rudnicka, Karolina; Chmiela, Magdalena; Broncel, Marlena

    2015-10-01

    The vascular endothelium forms a barrier that controls flow of solutes and proteins and the entry of leukocytes into tissue. Injured tissue releases IL-33, which then alarms the immune system and attracts Th2 cells, thus increasing local concentration of IL-4. The aim of the study was to assess the influence of IL-33 and IL-4 on barrier functions of the human endothelium, expression of tight and adherent junction proteins, apoptosis and adhesive molecule surface expression in human endothelium in order to describe the mechanism of this effect. IL-33 and IL-4 decreased endothelial integrity and increased permeability. When added together, both cytokines lowered the endothelial integrity twice as much as used alone. This effect was accompanied by the down-regulation of occludin and VE-cadherin mRNA expression. Additionally, IL-4, but not IL-33, induced cell apoptosis. Both IL-33 and IL-4 showed the additive potency to down-regulate VE-cadherin mRNA expression. IL-33, unlike IL-4, increased the surface expression of ICAM-1, but not PECAM-1 in endothelial cells. Our results indicate that IL-33 may reversibly destabilize the endothelial barrier, thus accelerating the supply with immunomodulators and assisting leukocytes to reach wounded tissue. However, extended and less-controlled down-regulation of endothelial barrier, which may be a consequence of IL-33-initiated, but in fact IL-4-induced apoptosis of endothelial cells, may be deleterious and may eventually lead to the aggravation of inflammatory processes and the prolongation of tissue dysfunction. PMID:26231284

  8. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  9. Changes in vascular plant functional types drive carbon cycling in peatlands

    NASA Astrophysics Data System (ADS)

    Zeh, Lilli; Bragazza, Luca; Erhagen, Björn; Limpens, Juul; Kalbitz, Karsten

    2016-04-01

    Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic changes. Therefore, a sound understanding of the impact of vegetation dynamics on C cycling will help to better predict the response of peatlands to environmental changes. Here, we aimed to assess the role of plant functional types (PFTs) in affecting peat decomposition in relation to climate warming. To this aim, we selected two peatlands at different altitude (i.e. 1300 and 1700 m asl) on the south-eastern Alps of Italy. The two sites represent a contrast in temperature, overall vascular plant biomass and relative ericoids abundance, with the highest biomass and ericoids occurrence at the low latitude. Within the sites we selected 20 plots of similar microtopographical position and general vegetation type (hummocks). All plots contained both graminoids and ericoids and had a 100% cover of Sphagnum mosses. The plots were subjected to four treatments (control, and three clipping treatments) in which we selectively removed aboveground biomass of ericoids, graminoids or both to explore the contribution of the different PFTs for soil respiration (n=5) and peat chemistry. Peat chemical composition was determined by the analysis of C and N and their stable isotopes in association with pyrolysis GC/MS. Soil respiration was measured after clipping with a Licor system. Preliminary findings suggest that peat decomposition pathway and rate depend on plant species composition and particularly on differences in root activity between PFTs. Finally, this study underlines the importance of biotic drivers to predict the effects of future environmental changes on peatland C cycling.

  10. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking.

    PubMed

    Zhong, Xuehua; Tao, Xiaorong; Stombaugh, Jesse; Leontis, Neocles; Ding, Biao

    2007-08-22

    Vascular entry is a decisive step for the initiation of long-distance movement of infectious and endogenous RNAs, silencing signals and developmental/defense signals in plants. However, the mechanisms remain poorly understood. We used Potato spindle tuber viroid (PSTVd) as a model to investigate the direct role of the RNA itself in vascular entry. We report here the identification of an RNA motif that is required for PSTVd to traffic from nonvascular into the vascular tissue phloem to initiate systemic infection. This motif consists of nucleotides U/C that form a water-inserted cis Watson-Crick/Watson-Crick base pair flanked by short helices that comprise canonical Watson-Crick/Watson-Crick base pairs. This tertiary structural model was inferred by comparison with X-ray crystal structures of similar motifs in rRNAs and is supported by combined mutagenesis and covariation analyses. Hydration pattern analysis suggests that water insertion induces a widened minor groove conducive to protein and/or RNA interactions. Our model and approaches have broad implications to investigate the RNA structural motifs in other RNAs for vascular entry and to study the basic principles of RNA structure-function relationships. PMID:17660743

  11. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment.

    PubMed

    Tattersall, Ian W; Du, Jing; Cong, Zhuangzhuang; Cho, Bennet S; Klein, Alyssa M; Dieck, Chelsea L; Chaudhri, Reyhaan A; Cuervo, Henar; Herts, James H; Kitajewski, Jan

    2016-04-01

    Angiogenesis is regulated by complex interactions between endothelial cells and support cells of the vascular microenvironment, such as tissue myeloid cells and vascular mural cells. Multicellular interactions during angiogenesis are difficult to study in animals and challenging in a reductive setting. We incorporated stromal cells into an established bead-based capillary sprouting assay to develop assays that faithfully reproduce major steps of vessel sprouting and maturation. We observed that macrophages enhance angiogenesis, increasing the number and length of endothelial sprouts, a property we have dubbed "angiotrophism." We found that polarizing macrophages toward a pro-inflammatory profile further increased their angiotrophic stimulation of vessel sprouting, and this increase was dependent on macrophage Notch signaling. To study endothelial/pericyte interactions, we added vascular pericytes directly to the bead-bound endothelial monolayer. These pericytes formed close associations with the endothelial sprouts, causing increased sprout number and vessel caliber. We found that Jagged1 expression and Notch signaling are essential for the growth of both endothelial cells and pericytes and may function in their interaction. We observed that combining endothelial cells with both macrophages and pericytes in the same sprouting assay has multiplicative effects on sprouting. These results significantly improve bead-capillary sprouting assays and provide an enhanced method for modeling interactions between the endothelium and the vascular microenvironment. Achieving this in a reductive in vitro setting represents a significant step toward a better understanding of the cellular elements that contribute to the formation of mature vasculature. PMID:26965898

  12. Role of Vascular Networks in Extending Glucose Sensor Function: Impact of Angiogenesis and Lymphangiogenesis on Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.

    2014-01-01

    The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850

  13. Regulation of Microvascular Function by Adipose Tissue in Obesity and Type 2 Diabetes: Evidence of an Adipose-Vascular Loop

    PubMed Central

    Zhang, Hanrui; Zhang, Cuihua

    2009-01-01

    In recent years, the general concept has emerged that chronic low-grade inflammation is the condition linking excessive development of adipose tissue and obesity-associated pathologies such as type 2 diabetes and cardiovascular diseases. Obesity and type 2 diabetes are characterized by a diminished production of protective factors such as adiponectin and increased detrimental adipocytokines such as leptin, resistin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), and monocyte chemoattractant protein-1 (MCP-1) by adipose tissue. Moreover, the evidence that the growth of the fat mass is associated with an accumulation of adipose tissue macrophages and T-lymphocytes has raised the hypothesis that the development of an inflammatory process within the growing fat mass is a primary event involved in the genesis of systemic metabolic and vascular alterations. This crosstalk of adipocyte, macrophage, lymphocyte, endothelial cells, and vascular smooth muscle cells contribute to the production of various cytokines, chemokines, and hormone-like factors, which actively participate in the regulation of vascular function by an endocrine and/or paracrine pattern. Thus, the signaling from perivascular adipose to the blood vessels is emerging as a potential therapeutic target for obesity and diabetes-associated vascular dysfunction. PMID:20098632

  14. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  15. Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

    PubMed Central

    Bjursell, Magnus K.; Blom, Henk J.; Cayuela, Jordi Asin; Engvall, Martin L.; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M.; Lundeberg, Joakim; Wedell, Anna

    2011-01-01

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. PMID:21963049

  16. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  17. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    SciTech Connect

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M. )

    1989-12-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 {plus minus} 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 {plus minus} 11.3%, 46.5 {plus minus} 12.0%, and 37.2 {plus minus} 11.0%, respectively. Stroke volume also increased from rest (54.6 {plus minus} 17.0 ml/beat) to the point of the anaerobic threshold (65.0 {plus minus} 21.2 ml/beat) and then decreased at peak exercise (52.4 {plus minus} 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease.

  18. Microstructural abnormalities of uncinate fasciculus as a function of impaired cognition in schizophrenia: A DTI study.

    PubMed

    Singh, Sadhana; Singh, Kavita; Trivedi, Richa; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-09-01

    Neuropsychological studies have reported that attention, memory, language, motor and emotion processing are impaired in schizophrenia. It is known that schizophrenia involves structural alterations in the white matter of brain that contribute to the pathophysiology of the disorder. Uncinate fasciculus (UNC), a bundle of white matter fibres, plays an important role in the pathology of this disorder and involved in cognitive functions such as memory, language and emotion processing. Therefore, the present study aimed to investigate microstructural changes in UNC fibre in schizophrenia patients relative to controls and its correlation with neuropsychological scores. Diffusion tensor imaging (DTI) and Hindi version of Penn Computerised Neuropsychological Battery test was performed in 14 schizophrenia patients and 14 controls. DTI measures [fractional anisotropy (FA) and mean diffusivity (MD)] from UNC fibre were calculated and a comparison was made between patients and controls. Pearson's correlation was performed between neuropsychological scores and DTI measures.Schizophrenia patients showed significantly reduced FA values in UNC fibre compared to controls. In schizophrenia patients, a positive correlation of attention, spatial memory, sensorimotor dexterity and emotion with FA was observed. These findings suggest that microstructural changes in UNC fibre may contribute to underlying dysfunction in the cognitive functions associated with schizophrenia. PMID:27581933

  19. Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is typically characterized by symptoms of inattention and hyperactivity/impulsivity, but there is increased recognition of a motivation deficit too. This neuropathology may reflect dysfunction of both attention and reward-motivation networks. Methods To test this hypothesis, we compared the functional connectivity density between 247 ADHD and 304 typically developing control children from a public magnetic resonance imaging database. We quantified short- and long-range functional connectivity density in the brain using an ultrafast data-driven approach. Results Children with ADHD had lower connectivity (short- and long-range) in regions of the dorsal attention (superior parietal cortex) and default-mode (precuneus) networks and in cerebellum and higher connectivity (short-range) in reward-motivation regions (ventral striatum and orbitofrontal cortex) than control subjects. In ADHD children, the orbitofrontal cortex (region involved in salience attribution) had higher connectivity with reward-motivation regions (striatum and anterior cingulate) and lower connectivity with superior parietal cortex (region involved in attention processing). Conclusions The enhanced connectivity within reward-motivation regions and their decreased connectivity with regions from the default-mode and dorsal attention networks suggest impaired interactions between control and reward pathways in ADHD that might underlie attention and motivation deficits in ADHD. PMID:22153589

  20. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  1. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata. PMID:27097408

  2. Vascular function and nitric oxide production in chronic social-stress-exposed rats with various family history of hypertension.

    PubMed

    Bernatowa, I; Csizmadiova, Z; Kopincova, J; Puzserova, A

    2007-09-01

    The study investigated the effect of chronic crowding stress on vascular function and nitric oxide (NO) production in rats with various family history of hypertension. Wistar (W), wBHR (offspring of W dams and spontaneously hypertensive sires), sBHR (offspring of spontaneously hypertensive dams and W sires) and spontaneously hypertensive rats (SHR) were used. Twelve-week-old males were divided into the control or crowded group for eight weeks. Basal blood pressure (BP, determined by tail-cuff plethysmography) of W, wBHR, sBHR and SHR rats was 112 +/- 3, 129 +/- 2, 135 +/- 2 and 187 +/- 3 mmHg, respectively. Crowding increased BP and reduced aortic NO synthase activity only in sBHR and SHR rats, without alterations in hypothalamic NO production. Acetylcholine-induced vasorelaxation of the femoral artery of stress-exposed rats was improved in W, unaltered in wBHR and sBHR and reduced in SHR. Crowding reduced serotonin-induced vasoconstriction in W and wBHR rats but had no effect in sBHR and SHR rats. In conclusion, the results suggest that crowded offspring of normotensive mothers were able to modify their vascular function in order to maintain BP at normal levels. On the other hand, offspring of hypertensive mothers were unable of effective adaptation of vascular function in stressful conditions resulting in gradual development of hypertension. PMID:17928645

  3. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. PMID:26559786

  4. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    PubMed

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441

  5. Abnormal resting-state functional connectivity within the default mode network subregions in male patients with obstructive sleep apnea

    PubMed Central

    Li, Hai-Jun; Nie, Xiao; Gong, Hong-Han; Zhang, Wei; Nie, Si; Peng, De-Chang

    2016-01-01

    Background and objective Abnormal resting-state functional connectivity (rs-FC) between the central executive network and the default mode network (DMN) in patients with obstructive sleep apnea (OSA) has been reported. However, the effect of OSA on rs-FC within the DMN subregions remains uncertain. This study was designed to investigate whether the rs-FC within the DMN subregions was disrupted and determine its relationship with clinical symptoms in patients with OSA. Methods Forty male patients newly diagnosed with severe OSA and 40 male education- and age-matched good sleepers (GSs) underwent functional magnetic resonance imaging (fMRI) examinations and clinical and neuropsychologic assessments. Seed-based region of interest rs-FC method was used to analyze the connectivity between each pair of subregions within the DMN, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), hippocampus formation (HF), inferior parietal cortices (IPC), and medial temporal lobe (MTL). The abnormal rs-FC strength within the DMN subregions was correlated with clinical and neuropsychologic assessments using Pearson correlation analysis in patients with OSA. Results Compared with GSs, patients with OSA had significantly decreased rs-FC between the right HF and the PCC, MPFC, and left MTL. However, patients with OSA had significantly increased rs-FC between the MPFC and left and right IPC, and between the left IPC and right IPC. The rs-FC between the right HF and left MTL was positively correlated with rapid eye movement (r=0.335, P=0.035). The rs-FC between the PCC and right HF was negatively correlated with delayed memory (r=-0.338, P=0.033). Conclusion OSA selectively impairs the rs-FC between right HF and PCC, MPFC, and left MTL within the DMN subregions, and provides an imaging indicator for assessment of cognitive dysfunction in OSA patients. PMID:26855576

  6. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients.

    PubMed

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D; Miller, Laura; Stevens, Michael C; Sahl, Robert; O'Boyle, Jacqueline G; Schultz, Robert T; Pearlson, Godfrey D

    2010-10-15

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation. PMID:20621638

  7. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome.

    PubMed

    Zhang, Xuan; Dai, Rongxin; Li, Wenyan; Zhao, Hongyi; Zhang, Yongjie; Zhou, Lina; Du, Hongqiang; Luo, Guangjin; Wu, Junfeng; Niu, Linlin; An, Yunfei; Zhang, Zhiyong; Ding, Yuan; Song, Wenxia; Liu, Chaohong; Zhao, Xiaodong

    2016-06-23

    Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4(+) T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4(+) T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6(+) Tfh cells, but the frequency of ICOS(+) Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS(+) Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS(+) Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4(+) naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6. PMID:27170596

  8. Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome

    PubMed Central

    Zhang, Xuan; Dai, Rongxin; Li, Wenyan; Zhao, Hongyi; Zhang, Yongjie; Zhou, Lina; Du, Hongqiang; Luo, Guangjin; Wu, Junfeng; Niu, Linlin; An, Yunfei; Zhang, Zhiyong; Ding, Yuan; Song, Wenxia; Liu, Chaohong

    2016-01-01

    Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4+ T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4+ T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6+ Tfh cells, but the frequency of ICOS+ Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS+ Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS+ Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4+ naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6. PMID:27170596

  9. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients

    PubMed Central

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D.; Miller, Laura; Stevens, Michael C.; Sahl, Robert; O'Boyle, Jacqueline G.; Schultz, Robert T.; Pearlson, Godfrey D.

    2011-01-01

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation. PMID:20621638

  10. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  11. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models.

    PubMed

    van der Pijl, Elizabeth M; van Putten, Maaike; Niks, Erik H; Verschuuren, Jan J G M; Aartsma-Rus, Annemieke; Plomp, Jaap J

    2016-06-01

    Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by dystrophin deficiency. Dystrophin is present intracellularly at the sarcolemma, connecting actin to the dystrophin-associated glycoprotein complex. Interestingly, it is enriched postsynaptically at the neuromuscular junction (NMJ), but its synaptic function is largely unknown. Utrophin, a dystrophin homologue, is also concentrated at the NMJ, and upregulated in DMD. It is possible that the absence of dystrophin at NMJs in DMD causes neuromuscular transmission defects that aggravate muscle weakness. We studied NMJ function in mdx mice (lacking dystrophin) and wild type mice. In addition, mdx/utrn(+/-) and mdx/utrn(-/-) mice (lacking utrophin) were used to investigate influences of utrophin levels. The three Duchenne mouse models showed muscle weakness when comparatively tested in vivo, with mdx/utrn(-/-) mice being weakest. Ex vivo muscle contraction and electrophysiological studies showed a reduced safety factor of neuromuscular transmission in all models. NMJs had ~ 40% smaller miniature endplate potential amplitudes compared with wild type, indicating postsynaptic sensitivity loss for the neurotransmitter acetylcholine. However, nerve stimulation-evoked endplate potential amplitudes were unchanged. Consequently, quantal content (i.e. the number of acetylcholine quanta released per nerve impulse) was considerably increased. Such a homeostatic compensatory increase in neurotransmitter release is also found at NMJs in myasthenia gravis, where autoantibodies reduce acetylcholine receptors. However, high-rate nerve stimulation induced exaggerated endplate potential rundown. Study of NMJ morphology showed that fragmentation of acetylcholine receptor clusters occurred in all models, being most severe in mdx/utrn(-/-) mice. Overall, we showed mild 'myasthenia-like' neuromuscular synaptic dysfunction in several Duchenne mouse models, which possibly affects muscle weakness and degeneration. PMID:27037492

  12. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine.

    PubMed

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Matos, Manuel E; Volek, Jeff S; Bruno, Richard S

    2011-11-01

    Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function. PMID:21940510

  13. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.

    PubMed

    Gupta, Prerak; Kumar, Manishekhar; Bhardwaj, Nandana; Kumar, Jadi Praveen; Krishnamurthy, C S; Nandi, Samit Kumar; Mandal, Biman B

    2016-06-29

    Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation. PMID:27269821

  14. Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.

    PubMed

    Pilorge, M; Fassier, C; Le Corronc, H; Potey, A; Bai, J; De Gois, S; Delaby, E; Assouline, B; Guinchat, V; Devillard, F; Delorme, R; Nygren, G; Råstam, M; Meier, J C; Otani, S; Cheval, H; James, V M; Topf, M; Dear, T N; Gillberg, C; Leboyer, M; Giros, B; Gautron, S; Hazan, J; Harvey, R J; Legendre, P; Betancur, C

    2016-07-01

    Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons. GlyRs containing the α2 subunit are highly expressed in the embryonic brain, where they promote cortical interneuron migration and the generation of excitatory projection neurons. We previously identified a rare microdeletion of the X-linked gene GLRA2, encoding the GlyR α2 subunit, in a boy with autism. The microdeletion removes the terminal exons of the gene (GLRA2(Δex8-9)). Here, we sequenced 400 males with ASD and identified one de novo missense mutation, p.R153Q, absent from controls. In vitro functional analysis demonstrated that the GLRA2(Δex8)(-)(9) protein failed to localize to the cell membrane, while the R153Q mutation impaired surface expression and markedly reduced sensitivity to glycine. Very recently, an additional de novo missense mutation (p.N136S) was reported in a boy with ASD, and we show that this mutation also reduced cell-surface expression and glycine sensitivity. Targeted glra2 knockdown in zebrafish induced severe axon-branching defects, rescued by injection of wild type but not GLRA2(Δex8-9) or R153Q transcripts, providing further evidence for their loss-of-function effect. Glra2 knockout mice exhibited deficits in object recognition memory and impaired long-term potentiation in the prefrontal cortex. Taken together, these results implicate GLRA2 in non-syndromic ASD, unveil a novel role for GLRA2 in synaptic plasticity and learning and memory, and link altered glycinergic signaling to social and cognitive

  15. Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    PubMed Central

    Donnan, Peter T; McLernon, David; Steinke, Douglas; Ryder, Stephen; Roderick, Paul; Sullivan, Frank M; Rosenberg, William; Dillon, John F

    2007-01-01

    Background Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs. Methods/Design A population-based retrospective cohort study will follow up all those who have had an incident liver function test (LFT) in primary care to subsequent liver disease or mortality over a period of 15 years (approx. 2.3 million tests in 99,000 people). The study is set in Primary Care in the region of Tayside, Scotland (pop approx. 429,000) between 1989 and 2003. The target population consists of patients with no recorded clinical signs or symptoms of liver disease and registered with a GP. The health technologies being assessed are LFTs, viral and auto-antibody tests, ultrasound, CT, MRI and liver biopsy. The study will utilise the Epidemiology of Liver Disease In Tayside (ELDIT) database to determine the outcomes of liver disease. These are based on hospital admission data (Scottish Morbidity Record 1), dispensed medication records, death certificates, and examination of medical records from Tayside hospitals. A sample of patients (n = 150) with recent initial ALF tests or invitation to biopsy will complete questionnaires to obtain quality of life data and anxiety measures. Cost-effectiveness and cost utility Markov model analyses will be performed from health service and patient perspectives using standard NHS costs. The findings will also be used to develop a computerised clinical decision support tool. Discussion

  16. Motor Network Plasticity and Low-Frequency Oscillations Abnormalities in Patients with Brain Gliomas: A Functional MRI Study

    PubMed Central

    Niu, Chen; Zhang, Ming; Min, Zhigang; Rana, Netra; Zhang, Qiuli; Liu, Xin; Li, Min; Lin, Pan

    2014-01-01

    Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC) and supplementary motor area (SMA). Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD) of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05). We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01–0.02 Hz; middle: 0.02–0.06 Hz; and high: 0.06–0.1 Hz), at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors. PMID:24806463

  17. Tspyl2 Loss-of-Function Causes Neurodevelopmental Brain and Behavior Abnormalities in Mice.

    PubMed

    Li, Qi; Chan, Siu Yuen; Wong, Kwun K; Wei, Ran; Leung, Yu On; Ding, Abby Y; Hui, Tomy C K; Cheung, Charlton; Chua, Siew E; Sham, Pak C; Wu, Ed X; McAlonan, Grainne M

    2016-07-01

    Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits. PMID:26826030

  18. Abnormal pituitary-gonadal axis may be responsible for rat decreased testicular function under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tan, Xin; Zhu, Bao-an; Qi, Meng-di; Ding, Su-ling

    Space flight and simulated microgravity lead to suppression of mammalian spermatogenesis and decreased plasma testosterone level. In order to explain the mechanism behind the depression, we used rat tail-suspended model to simulate weightless conditions. To prevent cryptorchidism caused by tail-suspension, some experimental animals received inguinal canal ligation. The results showed that mass of testis decreased significantly and seminiferous tubules became atrophied in rats after tail-suspension. The levels of plasma testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in tail-suspended rats with or without inguinal canal ligation decreased significantly compared with controls, and an increased level of plasma estradiol (E) was revealed in tail-suspended rats. The results indicate that besides the direct influence of fluid shift upon testis under short-term simulated microgravity, the pituitary function is also disturbed as a result of either immobilization stress or weight loss during tail-suspension treatment, which is responsible to some extent for the decreased testosterone secretion level and the atrophia of testis. The conversion of testosterone into E under simulated microgravity is another possible cause for the decline of plasma testosterone.

  19. Immunoregulation in onchocerciasis. Functional and phenotypic abnormalities of lymphocyte subsets and changes with therapy.

    PubMed Central

    Freedman, D O; Lujan-Trangay, A; Steel, C; Gonzalez-Peralta, C; Nutman, T B

    1991-01-01

    To help define the immunoregulatory defects in patients with onchocerciasis, flow cytometric analysis of circulating lymphocyte subpopulations was performed in parallel with functional assays. No significant differences in CD4/CD8 ratios were seen when microfilariae-positive individuals from Guatemala were compared with Guatemalan controls. However, the infected individuals had significantly increased numbers of circulating CD4+CD45RA+ lymphocytes (mean 38.3%) when compared with controls (mean 16.0%). Coexpression of the activation marker HLA-DR was significantly increased on CD4+ cells from infected individuals. In contrast, no up-regulation of HLA-DR was seen on CD8+ or CD19+ cells. At 1 year after initiation of treatment with semiannual doses of the microfilaricide ivermectin, there were significant increases (P less than 0.05) in the percentage of CD4+CD45RA- cells, the percentage of CD4+HLA-DR+ cells, and mitogen-induced lymphokine production (IL-2, IL-4). Despite these changes, parasite-specific IL-2 and IL-4 production which had been undetectable before treatment did not manifest itself even by the 2-yr follow-up. Defects in the T-cell activation pathway in Onchocerca volvulus-infected individuals may thus exist at several independent points; a state of parasite antigen-specific tolerance appears to remain even after the relative reversal of other generalized immunoregulatory defects. PMID:1829096

  20. Abnormal affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study.

    PubMed

    Xiao, Lin; Bechara, Antoine; Gong, Qiyong; Huang, Xiaoqi; Li, Xiangrui; Xue, Gui; Wong, Savio; Lu, Zhong-Lin; Palmer, Paula; Wei, Yonglan; Jia, Yong; Johnson, C Anderson

    2013-06-01

    The goal of this study was to investigate the neural correlates of affective decision making, as measured by the Iowa Gambling Task (IGT), which are associated with adolescent binge drinking. Fourteen adolescent binge drinkers (16-18 years of age) and 14 age-matched adolescents who had never consumed alcohol--never drinkers--were recruited from local high schools in Chengdu, China. Questionnaires were used to assess academic performance, drinking experience, and urgency. Brain regions activated by the IGT performance were identified with functional magnetic resonance imaging. Results showed that, compared to never drinkers, binge drinkers performed worse on the IGT and showed higher activity in the subcomponents of the decision-making neural circuitry implicated in the execution of emotional and incentive-related behaviors, namely, the left amygdala and insula bilaterally. Moreover, measures of the severity of drinking problems in real life, as well as high urgency scores, were associated with increased activity within the insula, combined with decreased activity within the orbitofrontal cortex. These results suggest that hyperreactivity of a neural system implicated in the execution of emotional and incentive-related behaviors can be associated with socially undesirable behaviors, such as binge drinking, among adolescents. These findings have social implications because they potentially reveal underlying neural mechanisms for making poor decisions, which may increase an individual's risk and vulnerability for alcoholism. PMID:22486330

  1. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  2. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  3. Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    PubMed Central

    Cohen, Helen S.; Cox, Christopher; Springer, Gayle; Hoffman, Howard J.; Young, Mary A.; Margolick, Joseph B.; Plankey, Michael W.

    2012-01-01

    Background Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. Methods Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. Results No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. Conclusion These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions. PMID:22675462

  4. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    PubMed

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. PMID:26808221

  5. Unique functional abnormalities in youth with combined marijuana use and depression: an FMRI study.

    PubMed

    Ford, Kristen A; Wammes, Michael; Neufeld, Richard W; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform

  6. Abnormalities of endocrine function in patients with clinically "silent" adrenal masses.

    PubMed

    Ambrosi, B; Peverelli, S; Passini, E; Re, T; Ferrario, R; Colombo, P; Sartorio, A; Faglia, G

    1995-04-01

    Because, in recent years, patients with incidentally discovered adrenal masses have been encountered increasingly, their endocrine function was investigated in basal conditions and after dynamic tests. Thirty-two patients (23 women and 9 men, aged 28-74 years) were studied. Lesion diameter, as documented by computed tomography and/or nuclear magnetic resonance imaging, ranged between 5 and 65 mm; the tumors were localized on the right in 22 patients, on the left in 5 and bilaterally in 5 cases. In basal conditions, urinary free cortisol (UFC) excretion, plasma adrenocorticotropin (ACTH) and cortisol levels were normal, except for 4 patients who showed high UFC and ACTH levels in the low-normal range. Ovine corticotropin-releasing hormone (CRH, 1 microgram/kg iv) was given to 18 patients, inducing normal ACTH and cortisol responses in 12, blunted responses in 4 and no response in 2 cases. No reduction in ACTH and cortisol levels after suppression tests was observed in 4 of 29 patients after dexamethasone (1 mg overnight) or in 6 of 29 after loperamide. The 4 patients who were unresponsive to both tests did not show any further inhibition after high-dose dexamethasone administration, had low plasma ACTH levels and showed impaired or absent responses to the CRH test: they were diagnosed as affected with preclinical Cushing's syndrome. An exogenous ACTH test performed in 30 patients caused a normal cortisol rise. Basal mean 17-hydroxy-progesterone (17-OHP) levels were not different from those in normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7711879

  7. Loss of Rab27 function results in abnormal lung epithelium structure in mice

    PubMed Central

    Bolasco, Giulia; Tracey-White, Dhani C.; Tolmachova, Tanya; Thorley, Andrew J.; Tetley, Teresa D.; Seabra, Miguel C.

    2011-01-01

    Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium. PMID:21160031

  8. Unique Functional Abnormalities in Youth with Combined Marijuana Use and Depression: An fMRI Study

    PubMed Central

    Ford, Kristen A.; Wammes, Michael; Neufeld, Richard W.; Mitchell, Derek; Théberge, Jean; Williamson, Peter; Osuch, Elizabeth A.

    2014-01-01

    Prior research has shown a relationship between early onset marijuana (MJ) use and depression; however, this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants [healthy controls (HC), patients with major depressive disorder (MDD), frequent MJ users, and the combination of MDD and MJ (MDD + MJ)]. For each participant, a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale), and each completed two 6-min fMRI scans of a passive music listening task. Data underwent pre-processing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD + MJ). Two statistical analyses were performed using SPM8, an analysis of covariance with two factors (group × music type) and a whole brain, multiple regression analysis incorporating two predictors of interest [MJ use in past 28 days; and Beck Depression Inventory (BDI) score]. We identified a significant group × music type interaction. Post hoc comparisons showed that the preferred music had significantly greater activation in the MDD + MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ, or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward processing in ways that are absent with either frequent MJ use or MDD alone. This could help inform

  9. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. PMID:27045029

  10. Abnormal Functional Specialization within Medial Prefrontal Cortex in High-Functioning Autism: A Multi-Voxel Similarity Analysis

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Meuwese, Julia D. I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in "decoding" mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males)…

  11. Clinical investigation: thyroid function test abnormalities in cardiac arrest associated with acute coronary syndrome

    PubMed Central

    Iltumur, Kenan; Olmez, Gonul; Arıturk, Zuhal; Taskesen, Tuncay; Toprak, Nizamettin

    2005-01-01

    Introduction It is known that thyroid homeostasis is altered during the acute phase of cardiac arrest. However, it is not clear under what conditions, how and for how long these alterations occur. In the present study we examined thyroid function tests (TFTs) in the acute phase of cardiac arrest caused by acute coronary syndrome (ACS) and at the end of the first 2 months after the event. Method Fifty patients with cardiac arrest induced by ACS and 31 patients with acute myocardial infarction (AMI) who did not require cardioversion or cardiopulmonary resuscitation were enrolled in the study, as were 40 healthy volunteers. The patients were divided into three groups based on duration of cardiac arrest (<5 min, 5–10 min and >10 min). Blood samples were collected for thyroid-stimulating hormone (TSH), tri-iodothyronine (T3), free T3, thyroxine (T4), free T4, troponin-I and creatine kinase-MB measurements. The blood samples for TFTs were taken at 72 hours and at 2 months after the acute event in the cardiac arrest and AMI groups, but only once in the control group. Results The T3 and free T3 levels at 72 hours in the cardiac arrest group were significantly lower than in both the AMI and control groups (P < 0.0001). On the other hand, there were no significant differences between T4, free T4 and TSH levels between the three groups (P > 0.05). At the 2-month evaluation, a dramatic improvement was observed in T3 and free T3 levels in the cardiac arrest group (P < 0.0001). In those patients whose cardiac arrest duration was in excess of 10 min, levels of T3, free T3, T4 and TSH were significantly lower than those in patients whose cardiac arrest duration was under 5 min (P < 0.001, P < 0.001, P < 0.005 and P < 0.05, respectively). Conclusion TFTs are significantly altered in cardiac arrest induced by ACS. Changes in TFTs are even more pronounced in patients with longer periods of resuscitation. The changes in the surviving patients were characterized by euthyroid sick

  12. In vitro effects of waterpipe smoke condensate on endothelial cell function: A potential risk factor for vascular disease

    PubMed Central

    Rammah, Mayyasa; Dandachi, Farah; Salman, Rola; Shihadeh, Alan; El-Sabban, Marwan

    2013-01-01

    Aim Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. Methods and results Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. Conclusions WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease. PMID:23454654

  13. Effect of soy isoflavone supplementation on vascular endothelial function and oxidative stress in postmenopausal women: a community randomized controlled trial.

    PubMed

    Pusparini; Dharma, Rahayuningsih; Suyatna, Fransiscus D; Mansyur, Muchtaruddin; Hidajat, Adi

    2013-01-01

    A 12-month randomized double blind controlled trial was conducted among 182 Indonesian postmenopausal women aged 47 to 60 years to determine the effect of 100 mg/day soy isoflavone supplementation on vascular endothelial function such as vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO) and malondialdehyde (MDA) as oxidative stress marker. The subjects were randomized to the intervention group receiving tablets consisting of 100 mg soy isoflavones and calcium carbonate 500 mg, and to the control group receiving 500 mg calcium carbonate. The concentrations of VCAM-1, NO and MDA were measured at baseline, and postsupplementation at 6 months and 12 months. After supplementation, the MDA concentrations were significantly lower in the soy isoflavone group compared with the control group (p=0.001). The concentrations of VCAM-1 and NO were not affected (p=0.992 and p=0.759, respectively). In all group the MDA concentration increased compared with baseline concentrations but the relative change of MDA concentrations was significantly lower in the soy isoflavone group compared with the control group. This study demonstrates that supplemental intake of soy isoflavones for 6 months and 12 months had an effect on oxidative stress by decreasing MDA concentration, but did not improve vascular endothelial function. PMID:23945405

  14. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  15. Association of digital vascular function with cardiovascular risk factors: a population study

    PubMed Central

    Kuznetsova, Tatiana; Van Vlierberghe, Eline; Knez, Judita; Szczesny, Gregory; Thijs, Lutgarde; Jozeau, Dominique; Balestra, Costantino; D'hooge, Jan; Staessen, Jan A

    2014-01-01

    Objectives Vasodilation of the peripheral arteries during reactive hyperaemia depends in part on release of nitric oxide from endothelial cells. Previous studies mainly employed a fingertip tonometric device to derive pulse wave amplitude (PWA) and PWA hyperaemic changes. An alternative approach is based on photoplethysmography (PPG). We sought to evaluate the correlates of digital PPG PWA hyperaemic responses as a measure of peripheral vascular function. Design The Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO) is a population-based cohort study. Setting Respondents were examined at one centre in northern Belgium. Participants For this analysis, our sample consisted of 311 former participants (53.5% women; mean age 52.6 years; 43.1% hypertensive), who were examined from January 2010 until March 2012 (response rate 85.1%). Primary outcome measures Using a fingertip PPG device, we measured digital PWA at baseline and at 30 s intervals for 4 min during reactive hyperaemia induced by a 5 min forearm cuff occlusion. We performed stepwise regression to identify correlates of the hyperaemic response ratio for each 30 s interval after cuff deflation. Results The maximal hyperaemic response was detected in the 30–60 s interval. The explained variance for the PPG PWA ratio ranged from 9.7% at 0–30 s interval to 22.5% at 60–90 s time interval. The hyperaemic response at each 30 s interval was significantly higher in women compared with men (p≤0.001). The PPG PWA changes at 0–90 s intervals decreased with current smoking (p≤0.0007) and at 0–240 s intervals decreased with higher body mass index (p≤0.035). These associations with sex, current smoking and body mass index were mutually independent. Conclusions Our study is the first to implement the new PPG technique to measure digital PWA hyperaemic changes in a general population. Hyperaemic response, as measured by PPG, is inversely associated with traditional

  16. Leukocyte Subtype Counts and Its Association with Vascular Structure and Function in Adults with Intermediate Cardiovascular Risk. MARK Study

    PubMed Central

    Gomez-Sanchez, Leticia; García-Ortiz, Luis; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Agudo-Conde, Cristina; Rigo, Fernando; Ramos, Rafel; Martí, Ruth; Gomez-Marcos, Manuel A.

    2015-01-01

    Objectives We investigated the relationship between leukocyte subtype counts and vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central augmentation index and cardio-ankle vascular index by gender in intermediate cardiovascular risk patients. Methods This study analyzed 500 subjects who were included in the MARK study, aged 35 to 74 years (mean: 60.3±8.4), 45.6% women. Measurement: Brachial ankle Pulse Wave Velocity (ba-PWV) estimate by equation, Cardio-AnkleVascular Index (CAVI) using the VaSera device and Carotid ultrasound was used to measure carotid Intima Media Thickness (IMT). The Mobil-O-Graph was used to measure the Central Augmentation Index (CAIx). Results Total leukocyte, neutrophil and monocyte counts were positively correlated with IMT (p < 0.01) in men. Monocyte count was positively correlated with CAIx in women (p < 0.01). In a multiple linear regression analysis, the IMT mean maintained a positive association with the neutrophil count (β = 1.500, p = 0.007) in men. CAIx maintained a positive association with the monocyte count (β = 2.445, p = 0.022) in women. Conclusion The results of this study suggest that the relationship between subtype circulating leukocyte counts and vascular structure and function, although small, may be different by gender. In men, the neutrophil count was positively correlated with IMT and in women, the monocyte count with CAIx, in a large sample of intermediate-risk patients. These association were maintained after adjusting for age and other confounders. Trial Registration ClinicalTrials.gov NCT01428934 PMID:25885665

  17. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  18. Assessment of Structural and Functional Abnormalities of the Myocardium and the Ascending Aorta in Fetus with Hypoplastic Left Heart Syndrome

    PubMed Central

    Jiang, Yan; Xu, Yali; Tang, J