Sample records for abnormal vascular network

  1. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P < 0.01). In both superficial and deep network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P < 0.01). The deep network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  2. Analysis of perfusion, microcirculation and drug transport in tumors. A computational study.

    NASA Astrophysics Data System (ADS)

    Zunino, Paolo; Cattaneo, Laura

    2013-11-01

    We address blood flow through a network of capillaries surrounded by a porous interstitium. We develop a computational model based on the Immersed Boundary method [C. S. Peskin. Acta Numer. 2002.]. The advantage of such an approach relies in its efficiency, because it does not need a full description of the real geometry allowing for a large economy of memory and CPU time and it facilitates handling fully realistic vascular networks [L. Cattaneo and P. Zunino. Technical report, MOX, Department of Mathematics, Politecnico di Milano, 2013.]. The analysis of perfusion and drug release in vascularized tumors is a relevant application of such techniques. Blood vessels in tumors are substantially leakier than in healthy tissue and they are tortuous. These vascular abnormalities lead to an impaired blood supply and abnormal tumor microenvironment characterized by hypoxia and elevated interstitial fluid pressure that reduces the distribution of drugs through advection [L.T. Baxter and R.K. Jain. Microvascular Research, 1989]. Finally, we discuss the application of the model to deliver nanoparticles. In particular, transport of nanoparticles in the vessels network, their adhesion to the vessel wall and the drug release in the surrounding tissue will be addressed.

  3. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis.

    PubMed

    Lanzillo, Roberta; Cennamo, Gilda; Criscuolo, Chiara; Carotenuto, Antonio; Velotti, Nunzio; Sparnelli, Federica; Cianflone, Alessandra; Moccia, Marcello; Brescia Morra, Vincenzo

    2017-09-01

    Optical coherence tomography (OCT) angiography is a new method to assess the density of the vascular networks. Vascular abnormalities are considered involved in multiple sclerosis (MS) pathology. To assess the presence of vascular abnormalities in MS and to evaluate their correlation to disease features. A total of 50 MS patients with and without history of optic neuritis (ON) and 46 healthy subjects were included. All underwent spectral domain (SD)-OCT and OCT angiography. Clinical history, Expanded Disability Status Scale (EDSS), Multiple Sclerosis Severity Score (MSSS) and disease duration were collected. Angio-OCT showed a vessel density reduction in eyes of MS patients when compared to controls. A statistically significant reduction in all SD-OCT and OCT angiography parameters was noticed both in eyes with and without ON when compared with control eyes. We found an inverse correlation between SD-OCT parameters and MSSS ( p = 0.003) and between vessel density parameters and EDSS ( p = 0.007). We report a vessel density reduction in retina of MS patients. We highlight the clinical correlation between vessel density and EDSS, suggesting that angio-OCT could be a good marker of disease and of disability in MS.

  4. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  5. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less

  6. In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.

  7. Ultra-high-sensitive optical micro-angiography provides depth resolved visualization of microcirculations within human skin under psoriatic conditions

    NASA Astrophysics Data System (ADS)

    Qin, Jia; An, Lin; Wang, Ruikang

    2011-03-01

    Adequate functioning of the peripheral micro vascular in human skin is necessary to maintain optimal tissue perfusion and preserve normal hemodynamic function. There is a growing body of evidence suggests that vascular abnormalities may directly related to several dermatologic diseases, such as psoriasis, port-wine stain, skin cancer, etc. New in vivo imaging modalities to aid volumetric microvascular blood perfusion imaging are there for highly desirable. To address this need, we demonstrate the capability of ultra-high sensitive optical micro angiography to allow blood flow visualization and quantification of vascular densities of lesional psoriasis area in human subject in vivo. The microcirculation networks of lesion and non-lesion skin were obtained after post processing the data sets captured by the system. With our image resolution (~20 μm), we could compare these two types of microcirculation networks both qualitatively and quantitatively. The B-scan (lateral or x direction) cross section images, en-face (x-y plane) images and the volumetric in vivo perfusion map of lesion and non-lesion skin areas were obtained using UHS-OMAG. Characteristic perfusion map features were identified between lesional and non-lesional skin area. A statistically significant difference between vascular densities of lesion and non-lesion skin area was also found using a histogram based analysis. UHS-OMAG has the potential to differentiate the normal skin microcirculation from abnormal human skin microcirculation non-invasively with high speed and sensitivity. The presented data demonstrates the great potential of UHS-OMAG for detecting and diagnosing skin disease such as psoriasis in human subjects.

  8. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  9. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    PubMed

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  10. Multimodal Retinal Imaging in Incontinentia Pigmenti Including Optical Coherence Tomography Angiography: Findings From an Older Cohort With Mild Phenotype.

    PubMed

    Liu, Tin Yan Alvin; Han, Ian C; Goldberg, Morton F; Linz, Marguerite O; Chen, Connie J; Scott, Adrienne W

    2018-05-01

    Incontinentia pigmenti (IP) is a rare, X-linked dominant disease with potentially severe ocular complications that predominantly affect the peripheral retina. However, little is known about its effects on the macula. To describe the structural and vascular abnormalities observed in the maculas of patients with IP and to correlate these findings with peripheral pathologies. Prospective, cross-sectional study at Wilmer Eye Institute, Johns Hopkins University. Five participants with a clinical diagnosis of IP were included and underwent multimodal imaging with ultra-wide-field fluorescein angiography (FA), spectral-domain optical coherence tomography (OCT), and OCT angiography. The structural and vascular abnormalities observed on spectral-domain OCT and OCT angiography and their correlation with peripheral pathologies seen on ultra-wide-field FA. A total of 9 eyes from 5 patients (median age, 20.5 years; range, 8.4-54.2 years) were included. Median Snellen visual acuity was 20/32 (range, 20/16 to 20/63). ultra-wide-field FA-identified retinal vascular abnormalities in all 7 eyes in which FA was obtained. These abnormalities included microaneurysms, areas of nonperfusion, and vascular anastomoses, most of which were peripheral to the standard view of 30° FA with peripheral sweeps. Structural abnormalities were observed in 6 eyes on spectral-domain OCT, including inner retinal thinning and irregularities in the outer plexiform layer. Optical coherence tomography angiography abnormalities were noted in all 9 eyes, including decreased vascular density, abnormal vascular loops, and flow loss in the superficial and deep plexuses, which corresponded to areas of retinal thinning on spectral-domain OCT. Although our study is limited by the small sample size, the findings suggest that multimodal imaging is useful for detecting structural and vascular abnormalities that may not be apparent on ophthalmoscopy in patients with IP. Macular pathologies, especially a decrease in vascular density on OCT angiography, are common. Further studies are needed to characterize further the association between macular and peripheral abnormalities in patients with IP.

  11. Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks.

    PubMed

    Rebling, Johannes; Estrada, Héctor; Gottschalk, Sven; Sela, Gali; Zwack, Michael; Wissmeyer, Georg; Ntziachristos, Vasilis; Razansky, Daniel

    2018-04-19

    A critical link exists between pathological changes of cerebral vasculature and diseases affecting brain function. Microscopic techniques have played an indispensable role in the study of neurovascular anatomy and functions. Yet, investigations are often hindered by suboptimal trade-offs between the spatiotemporal resolution, field-of-view (FOV) and type of contrast offered by the existing optical microscopy techniques. We present a hybrid dual-wavelength optoacoustic (OA) biomicroscope capable of rapid transcranial visualization of large-scale cerebral vascular networks. The system offers 3-dimensional views of the morphology and oxygenation status of the cerebral vasculature with single capillary resolution and a FOV exceeding 6 × 8 mm 2 , thus covering the entire cortical vasculature in mice. The large-scale OA imaging capacity is complemented by simultaneously acquired pulse-echo ultrasound (US) biomicroscopy scans of the mouse skull. The new approach holds great potential to provide better insights into cerebrovascular function and facilitate efficient studies into neurological and vascular abnormalities of the brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of Screening for Retinopathy of Prematurity by ROPtool or a Lay Reader.

    PubMed

    Abbey, Ashkan M; Besirli, Cagri G; Musch, David C; Andrews, Chris A; Capone, Antonio; Drenser, Kimberly A; Wallace, David K; Ostmo, Susan; Chiang, Michael; Lee, Paul P; Trese, Michael T

    2016-02-01

    To determine if (1) tortuosity assessment by a computer program (ROPtool, developed at the University of North Carolina, Chapel Hill, and Duke University, and licensed by FocusROP) that traces retinal blood vessels and (2) assessment by a lay reader are comparable with assessment by a panel of 3 retinopathy of prematurity (ROP) experts for remote clinical grading of vascular abnormalities such as plus disease. Validity and reliability analysis of diagnostic tools. Three hundred thirty-five fundus images of prematurely born infants. Three hundred thirty-five fundus images of prematurely born infants were obtained by neonatal intensive care unit nurses. A panel of 3 ROP experts graded 84 images showing vascular dilatation, tortuosity, or both and 251 images showing no evidence of vascular abnormalities. These images were sent electronically to an experienced lay reader who independently graded them for vascular abnormalities. The images also were analyzed using the ROPtool, which assigns a numerical value to the level of vascular abnormality and tortuosity present in each of 4 quadrants or sectors. The ROPtool measurements of vascular abnormalities were graded and compared with expert panel grades with a receiver operating characteristic (ROC) curve. Grades between human readers were cross-tabulated. The area under the ROC curve was calculated for the ROPtool, and sensitivity and specificity were computed for the lay reader. Measurements of vascular abnormalities by ROPtool and grading of vascular abnormalities by 3 ROP experts and 1 experienced lay reader. The ROC curve for ROPtool's tortuosity assessment had an area under the ROC curve of 0.917. Using a threshold value of 4.97 for the second most tortuous quadrant, ROPtool's sensitivity was 91% and its specificity was 82%. Lay reader sensitivity and specificity were 99% and 73%, respectively, and had high reliability (κ, 0.87) in repeated measurements. ROPtool had very good accuracy for detection of vascular abnormalities suggestive of plus disease when compared with expert physician graders. The lay reader's results showed excellent sensitivity and good specificity when compared with those of the expert graders. These options for remote reading of images to detect vascular abnormalities deserve consideration in the quest to use telemedicine with remote reading for efficient delivery of high-quality care and to detect infants requiring bedside examination. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  13. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  14. NORMALIZATION OF THE VASCULATURE FOR TREATMENT OF CANCER AND OTHER DISEASES

    PubMed Central

    Goel, Shom; Duda, Dan G.; Xu, Lei; Munn, Lance L.; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a “normalization” of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more “mature” or “normal” phenotype. This “vascular normalization” is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases. PMID:21742796

  15. The vascular and neurogenic factors associated with erectile dysfunction in patients after pelvic fractures.

    PubMed

    Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen

    2015-01-01

    Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus re?ex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED.

  16. Prediction of vascular abnormalities on CT angiography in patients with acute headache.

    PubMed

    Alons, Imanda M E; Goudsmit, Ben F J; Jellema, Korné; van Walderveen, Marianne A A; Wermer, Marieke J H; Algra, Ale

    2018-05-09

    Patients with acute headache increasingly undergo CT-angiography (CTA) to evaluate underlying vascular causes. The aim of this study is to determine clinical and non-contrast CT (NCCT) criteria to select patients who might benefit from CTA. We retrospectively included patients with acute headache who presented to the emergency department of an academic medical center and large regional teaching hospital and underwent NCCT and CTA. We identified factors that increased the probability of finding a vascular abnormality on CTA, performed multivariable regression analyses and determined discrimination with the c-statistic. A total of 384 patients underwent NCCT and CTA due to acute headache. NCCT was abnormal in 194 patients. Among these, we found abnormalities in 116 cases of which 99 aneurysms. In the remaining 190 with normal NCCT we found abnormalities in 12 cases; four unruptured aneurysms, three cerebral venous thrombosis', two reversible cerebral vasoconstriction syndromes, two cervical arterial dissections and one cerebellar infarction. In multivariable analysis abnormal NCCT, lowered consciousness and presentation within 6 hr of headache onset were independently associated with abnormal CTA. The c-statistic of abnormal NCCT alone was 0.80 (95% CI: 0.75-0.80), that also including the other two variables was 0.84 (95% CI: 0.80-0.88). If NCCT was normal no other factors could help identify patients at risk for abnormalities. In patients with acute headache abnormal NCCT is the strongest predictor of a vascular abnormality on CTA. If NCCT is normal no other predictors increase the probability of finding an abnormality on CTA and diagnostic yield is low. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  17. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease.

    PubMed

    Joo, Illsung L; Lai, Aaron Y; Bazzigaluppi, Paolo; Koletar, Margaret M; Dorr, Adrienne; Brown, Mary E; Thomason, Lynsie A M; Sled, John G; McLaurin, JoAnne; Stefanovic, Bojana

    2017-04-12

    Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.

  18. Pulmonary vascular anomalies: a review of clinical and radiological findings of cases presenting with different complaints in childhood.

    PubMed

    Nacaroğlu, Hikmet Tekin; Ünsal-Karkıner, Canan Şule; Bahçeci-Erdem, Semiha; Özdemir, Rahmi; Karkıner, Aytaç; Alper, Hüdaver; Can, Demet

    2016-01-01

    Congenital pulmonary vascular abnormalities arise from several etiologies. These anomalies are difficult to categorize and sorted into distinct classifications. Major pulmonary vascular abnormalities can be ranked as interruption of the main pulmonary artery or its absence, emergence of the left pulmonary artery in the right pulmonary artery, pulmonary venous drainage abnormalities, and pulmonary arteriovenous malformations (PAVMs). Some of the cases are asymptomatic and diagnosed by coincidence, whereas a few of them are diagnosed by typical findings in the newborn and infancy period, symptoms, and radiological appearances. Early diagnosis is important, since death may occur as a result of pulmonary and cardiac pathologies developed in patients with pulmonary vascular anomalies. In this case presentation, the clinical and radiological findings of patients that presented with different complaints and were diagnosed with pulmonary vascular anomalies were introduced.

  19. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  20. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  1. Prenatal alcohol exposure affects vasculature development in the neonatal brain.

    PubMed

    Jégou, Sylvie; El Ghazi, Faiza; de Lendeu, Pamela Kwetieu; Marret, Stéphane; Laudenbach, Vincent; Uguen, Arnaud; Marcorelles, Pascale; Roy, Vincent; Laquerrière, Annie; Gonzalez, Bruno José

    2012-12-01

    In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities. Copyright © 2012 American Neurological Association.

  2. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) with multiple vascular complications misdiagnosed as Dubowitz syndrome.

    PubMed

    Dieks, Jana-Katharina; Baumer, Alessandra; Wilichowski, Ekkehard; Rauch, Anita; Sigler, Matthias

    2014-09-01

    To date, the genetic basis of Dubowitz syndrome (short stature, microcephaly, facial abnormalities, eczema) is unknown and vascular complications are not known to be associated with this syndrome. In microcephalic osteodysplastic primordial dwarfism type II (MOPD II; disproportionate short statue, microcephaly, facial abnormalities), however, cerebral aneurysms and other vascular abnormalities are frequent complications. MOPD II is a genetic disorder caused by mutations in the pericentrin (PCNT) gene (21q22). We report on a patient who came to our attention as a 22-year-old with subarachnoid bleeding due to a ruptured cranial aneurysm. Until then, the patient was thought and published to have Dubowitz syndrome; previously, he was treated with coronary bypass surgery for extensive coronary angiopathy. Consecutive genetic testing revealed MOPD II. After clinical stabilization, the patient was discharged to a specialized rehabilitation center where he died due to re-rupture of a cranial aneurysm. In patients with short stature-especially when clinical features are accompanied by vascular complications-MOPD II should be considered as a differential diagnosis leading to consecutive genetic testing. After detection of mutations in the PCNT gene, a full vascular status including cerebral imaging and cardiac evaluation needs to be determined in order to analyze vascular abnormalities and initiate prophylactic treatment.

  3. Myocardial infarction with Moyamoya disease and pituitary gigantism in a young female patient.

    PubMed

    Ahn, Y K; Jeong, M H; Bom, H S; Park, J C; Kim, J K; Chung, D J; Chung, M Y; Cho, J G; Kang, J C

    1999-08-01

    Myocardial infarction is very rare in young female patients with systemic vascular disorders. Moyamoya disease is a cerebrovascular disease associated with an abnormal vascular network. This report presents a 19-year-old female patient who suffered from chest pain and exertional dyspnea for 2 months prior to admission. She had a history of Moyamoya disease and pituitary gigantism since childhood. Her ejection fraction on echocardiogram was 20% and a perfusion defect with partial reversibility in the anterior wall was demonstrated on stress single photon emission computed tomography (SPECT). Diagnostic coronary angiogram revealed critical stenosis in the middle left anterior descending artery, which was treated by coronary stenting. Her subjective symptoms were relieved and the perfusion defect seen on SPECT decreased after coronary intervention.

  4. The vascular and neurogenic factors associated with erectile dysfunction in patients after pelvic fractures

    PubMed Central

    Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen

    2015-01-01

    ABSTRACT Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus reflex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED. PMID:26689522

  5. Persistence of an intact endometrial matrix and vessels structure in women exposed to VA-2914, a selective progesterone receptor modulator.

    PubMed

    Ravet, S; Munaut, C; Blacher, S; Brichant, G; Labied, S; Beliard, A; Chabbert-Buffet, N; Bouchard, P; Foidart, J-M; Pintiaux, A

    2008-11-01

    VA-2914 is a selective progesterone receptor modulator with potential contraceptive activity that induces amenorrhea, whereas progestins cause endometrial spotting and bleeding. This abnormal bleeding due to progestins is a consequence of focal stromal proteolysis by an increase in naked vessel size and density. Our objective was to quantify the effects of VA-2914 on endometrial vascularization, fibrillar matrix, and vascular endothelial growth factor (VEGF)-A expression in endometrial biopsies from 41 women before and after 12 wk daily treatment with a placebo, or 2.5, 5, or 10 mg VA-2914. Collagen fibrillar network was stained by silver impregnation. Vessel area, density, and structure were quantified with a computer-assisted image analysis system after double immunostaining using an anti-von Willebrand factor (endothelial cells) and an anti-alpha smooth muscle actin (vascular smooth muscle cells) marker antibody. VEGF-A mRNAs were quantified by RT-PCR and localized by immunohistochemistry. The endometrial vessels, collagen network, and mRNA levels of VEGF-A were identical during the luteal phase at baseline and in VA-2914 treated women. VEGF-A distribution was unchanged. VA-2914 does not alter the endometrial matrix and cells, and does not modify the endometrial vessel morphology as compared with baseline biopsies.

  6. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    PubMed

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  7. A Fourteen-Year Experience with Vascular Anomalies Encountered during Transaxillary Rib Resection for Thoracic Outlet Syndrome.

    PubMed

    Yi, Jeniann A; Johnston, Robert J; Nehler, Mark R; Gibula, Douglas R; Alix, Kristen; Glebova, Natalia O; Brantigan, Charles O

    2017-04-01

    Transaxillary approach to first rib resection and scalenectomy (TAFRRS) is a well-established technique for treatment of thoracic outlet syndrome (TOS). Although anatomic features encountered during TAFRRS are in general constant, vascular anomalies may be encountered but have not been described to date. Herein we describe vascular abnormalities encountered during TAFRRS. We performed a retrospective review of a prospective practice database of 224 operations for TOS performed in 172 patients from March 2000 to March 2014. We excluded 10 patients with missing operative reports, 3 reoperations on the same patient, and 8 non-transaxillary resections. We recorded vascular anomalies identified in operative reports and reviewed computed tomography imaging to delineate the nature of these abnormalities. The overall incidence of vascular anomalies was 11% (22 of 203 TAFRRS). Most patients with anomalies had venous TOS (vTOS) (9 patients, 41%), followed by 7 (32%) with neurogenic TOS (nTOS). The remainder of the patients had arterial TOS (aTOS) (6 patients, 27%). Seven patients (32%) had an abnormal subclavian artery (SCA) with 5 (23%) having an abnormal arterial course in the anterior scalene muscle (ASM); 6 patients (27%) had an abnormal internal mammary artery (IMA) originating from distal SCA; 4 (18%) had abnormalities in the supreme thoracic artery (bifurcation or duplication); 2 (9%) had an abnormal branch from the SCA with anomalous location in the operative field; and 3 (14%) had an abnormal large venous branch penetrating the ASM. In the 19 patients with arterial anomalies, 8 (42%) were recognized as arterial branches penetrating the ASM, and 11 (58%) were noticed as they had anomalous arterial locations within the operative field. Most arterial anomalies were seen in vTOS (9, 45%), followed by nTOS (7, 35%). No intraoperative vascular complications occurred. Perioperative complications included 1 occurrence of postoperative transfusion for bleeding following axillary drain discontinuation and 2 Horner's syndromes. One aberrant IMA was electively ligated to allow complete thoracic outlet decompression. Arterial anomalies during TAFRRS are encountered in 11% of operations, and may present with vessel locations in unusual areas within the operative field, or as abnormal vessels penetrating the ASM, thus making scalenectomy precarious. Careful attention must be paid to possible abnormal locations of vessels in the thoracic outlet to avoid bleeding complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Study of the Radial Peripapillary Capillary Network in Congenital Optic Disc Anomalies With Optical Coherence Tomography Angiography.

    PubMed

    Cennamo, Gilda; Rossi, Claudia; Ruggiero, Pasquale; de Crecchio, Giuseppe; Cennamo, Giovanni

    2017-04-01

    To evaluate the radial peripapillary capillary network with optical coherence tomography angiography (angio-OCT) in morning glory syndrome (MGS), optic disc colobomas, and optic disc pits, and to explore possible correlations between the neural vascular structure and the pathogenesis of congenital optic disc anomalies. Prospective observational comparative case series. Fifteen eyes of 15 patients with congenital optic disc anomalies were enrolled in this study. All patients underwent angio-OCT. The scans were centered on optic discs. The mean age at presentation was 33 years (range: 19-50 years). Congenital optic disc anomalies were identified in all 15 eyes. Three eyes had the characteristic funduscopic signs of MGS, and angio-OCT scans of the peripapillary retina revealed a dense microvascular network. Optic disc colobomas were found in 5 eyes, and the characteristic funduscopic signs of optic pits were found in 7 eyes. Angio-OCT showed the absence of a radial peripapillary microvascular network in these 12 eyes. The finding that angio-OCT scans confirmed the presence of a peripapillary microvascular network only in MGS cases supports the hypothesis that a primary neuroectodermal abnormality and a secondary mesenchymal abnormality leads to MGS. Angio-OCT is a safe, rapid imaging technique that could shed light on the pathogenesis of rare diseases of the optic disc. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. [Polypoidal choroidal vasculopathy with spontaneous regression of subfoveal changes--case report].

    PubMed

    Lachowicz, Ewelina; Kubasik-Kładna, Katarzyna; Mozolewska-Piotrowska, Katarzyna; Karczewicz, Danuta

    2012-01-01

    To report a patient with polypoidal choroidal vasculopathy (PCV) with spontaneous regression of subfoveal changes during follow-up. The seventy six years old men was referred to the treatment of exudative type of age related macular degeneration (AMD) in the RE. The routine ophthalmological examination, the optical coherence tomography (OCT), fluorescein angiography (FA), and indocyanine green angiography (ICGA) were performed. Decreasing of visual acuity of the RE and abnormal result of the Amsler test, hemorrhagic and exudative changes near inferior-temporalis vascular arcade were observed. Intraretinal fluid in the OCT was noted. FA revealed parapapillaris changes suggesting CNV. ICGA showed the presence of branching vascular network extending from choroidal vasculature (BVN) and polypoidal and aneurysmal vascular terminal lesion (PL) localized under retinal pigment epithelium (RPE). Based on the results PCV was diagnosed and the patient was referred to laserotherapy. Due to the regression of the eye fundus changes during the period of observation, confirmed by control OCT and FA the treatment was not implemented.

  10. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    PubMed

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    PubMed

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379-397.

  12. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK

    PubMed Central

    Martínez-Revelles, Sonia; García-Redondo, Ana B.; Avendaño, María S.; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R.; Fortuño, Ana; Touyz, Rhian M.; Martínez-González, Jose; Salaices, Mercedes

    2017-01-01

    Abstract Aims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Results: Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.− levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. Innovation: We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. Conclusion: LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379–397. PMID:28010122

  13. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  14. Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice.

    PubMed

    Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine; Joshi, Shweta; Bhat, Vikas; Durden, Donald L; Mosnier, Laurent O; Drygalski, Annette von

    2018-06-01

    Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression. Schattauer GmbH Stuttgart.

  15. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  16. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  17. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  18. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease

    PubMed Central

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer’s disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans. PMID:28401931

  19. Optical Microangiography Based on Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  20. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1.

    PubMed

    Liu, Xinyi; Uemura, Akiyoshi; Fukushima, Yoko; Yoshida, Yutaka; Hirashima, Masanori

    2016-11-22

    The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer.

    PubMed

    Shibuya, K; Hoshino, H; Chiyo, M; Iyoda, A; Yoshida, S; Sekine, Y; Iizasa, T; Saitoh, Y; Baba, M; Hiroshima, K; Ohwada, H; Fujisawa, T

    2003-11-01

    We investigated the use of high magnification bronchovideoscopy combined with narrow band imaging (NBI) for the detailed examination of angiogenic squamous dysplasia (ASD). This was carried out in relation to bronchial vascular patterns with abnormal mucosal fluorescence in heavy smokers at high risk for lung cancer. Forty eight patients with sputum cytology specimens suspicious or positive for malignancy were entered into the study. Conventional white light and fluorescence bronchoscopic examination was first performed. Observations by high magnification bronchovideoscopy with conventional white light were made primarily at sites of abnormal fluorescence, and then repeated with NBI light to examine microvascular networks in the bronchial mucosa. Spectral features on the RGB (Red/Green/Blue) sequential videoscope system were changed from the conventional RGB broadband filter to the new NBI filter. The wavelength ranges of the new NBI filter were B1: 400-430 nm, B2: 420-470 nm, and G: 560-590 nm. ASD tissues were also examined using a confocal laser scanning microscope equipped with argon-krypton (488 nm) and argon (514 nm) laser sources. The microvessels, vascular networks of various grades, and dotted vessels in ASD tissues were clearly observed in NBI-B1 images. Diameters of the dotted vessels visible on NBI-B1 images agreed with the diameters of ASD capillary blood vessels diagnosed by pathological examination. Capillary blood vessels were also clearly visualised by green fluorescence by confocal laser scanning microscopy. There was a significant association between the frequency of dotted vessels by NBI-B1 imaging and tissues confirmed as ASD pathologically (p=0.002). High magnification bronchovideoscopy combined with NBI was useful in the detection of capillary blood vessels in ASD lesions at sites of abnormal fluorescence. This may enable the discrimination between ASD and another pre-invasive bronchial lesion.

  3. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  4. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.

    PubMed

    Schaal, Karen B; Munk, Marion R; Wyssmueller, Iris; Berger, Lieselotte E; Zinkernagel, Martin S; Wolf, Sebastian

    2017-11-10

    To detect vascular abnormalities in diabetic retinopathy using swept-source optical coherence tomography angiography (SS-OCTA) widefield images, and to compare the findings with color fundus photographs (CFPs) using Early Treatment Diabetic Retinopathy Study severity grading. 3 mm × 3 mm and 12 mm × 12 mm scans were acquired to cover 70° to 80° of the posterior pole using a 100-kHz SS-OCTA instrument. Two masked graders assessed the presence of vascular abnormalities on SS-OCTA and the Early Treatment Diabetic Retinopathy Study level on CFP. The grading results were then compared. A total of 120 diabetic eyes (60 patients) were imaged with the SS-OCTA instrument. Cohort 1 (91 eyes; SS-OCTA grading only) showed microaneurysms in 91% (n = 83), intraretinal microvascular abnormalities in 79% (n = 72), and neovascularization in 21% (n = 19) of cases. Cohort 2 (52 eyes; CFP grading compared with SS-OCTA) showed microaneurysms on CFP in 90% (n = 47) and on SS-OCTA in 96% (n = 50) of cases. Agreement in intraretinal microvascular abnormality detection was fair (k = 0.2). Swept-source optical coherence tomography angiography detected 50% of intraretinal microvascular abnormality cases (n = 26), which were missed on CFP. Agreement in detecting neovascularization was moderate (k = 0.5). Agreement in detection of diabetic retinopathy features on CFP and SS-OCTA varies depending on the vascular changes examined. Swept-source optical coherence tomography angiography shows a higher detection rate of intraretinal microvascular abnormalities (P = 0.039), compared with Early Treatment Diabetic Retinopathy Study grading.

  5. Vascular alterations in PDAPP mice after anti-Aβ immunotherapy: Implications for amyloid-related imaging abnormalities.

    PubMed

    Zago, Wagner; Schroeter, Sally; Guido, Teresa; Khan, Karen; Seubert, Peter; Yednock, Ted; Schenk, Dale; Gregg, Keith M; Games, Dora; Bard, Frédérique; Kinney, Gene G

    2013-10-01

    Clinical studies of β-amyloid (Aβ) immunotherapy in Alzheimer's disease (AD) patients have demonstrated reduction of central Aβ plaque by positron emission tomography (PET) imaging and the appearance of amyloid-related imaging abnormalities (ARIA). To better understand the relationship between ARIA and the pathophysiology of AD, we undertook a series of studies in PDAPP mice evaluating vascular alterations in the context of central Aβ pathology and after anti-Aβ immunotherapy. We analyzed PDAPP mice treated with either 3 mg/kg/week of 3D6, the murine form of bapineuzumab, or isotype control antibodies for periods ranging from 1 to 36 weeks and evaluated the vascular alterations in the context of Aβ pathology and after anti-Aβ immunotherapy. The number of mice in each treatment group ranged from 26 to 39 and a total of 345 animals were analyzed. The central vasculature displayed morphological abnormalities associated with vascular Aβ deposits. Treatment with 3D6 antibody induced clearance of vascular Aβ that was spatially and temporally associated with a transient increase in microhemorrhage and in capillary Aβ deposition. Microhemorrhage resolved over a time period that was associated with a recovery of vascular morphology and a decrease in capillary Aβ accumulation. These data suggest that vascular leakage events, such as microhemorrhage, may be related to the removal of vascular Aβ. With continued treatment, this initial susceptibility period is followed by restoration of vascular morphology and reduced vulnerability to further vascular leakage events. The data collectively suggested a vascular amyloid clearance model of ARIA, which accounts for the currently known risk factors for the incidence of ARIA in clinical studies. Copyright © 2013. Published by Elsevier Inc.

  6. Vascular changes on fluorescein angiography of premature infants with low risk of retinopathy of prematurity after high oxygen exposure.

    PubMed

    Martinez-Castellanos, Maria Ana; Velez-Montoya, Raul; Price, Kenneth; Henaine-Berra, Andree; García-Aguirre, Gerardo; Morales-Canton, Virgilio; Cernichiaro-Espinosa, Linda Alejandra

    2017-01-01

    To describe a wide array of peripheral vascular changes using fluorescein angiography in preterm neonates, without high risk characteristics for developing retinopathy of prematurity, that were exposed to high oxygen concentration. Retrospective, two center, case series. Newborns at two different hospitals with ≥1500 g or gestational age of ≥32 weeks, fluorescein angiography performed, and with high oxygen exposure without adequate control were included. 294 infants diagnosed with ROP were analyzed. Only 28 eyes from 14 patients with peripheral vascular abnormalities in older and heavier babies were included. Two distinct type of peripheral vascular changes were observed: group 1 or non-proliferative: areas of capillary non-perfusion along with widespread arteriovenous shunting between adjacent primary vessels, tortuosity of primary vessels, abnormal budding of tertiary vessels and capillaries, abnormal capillary tufts and absence of foveal avascular zone; group 2 or proliferative: all of the characteristics of group 1 plus leakage of dye from the boundary between perfused and non-perfused retina and/or optic disc. Peripheral vascular abnormalities different from retinopathy of prematurity are observed in older than 32 weeks of gestational age, and heavier than 1500 g babies. This makes the authors classify these patients as having a disease caused solely by oxygen dysregulation at the neonatal intensive care unit similarly to the oxygen induced retinopathy in experimental studies.

  7. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  8. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  9. Extent of BOLD Vascular Dysregulation Is Greater in Diffuse Gliomas without Isocitrate Dehydrogenase 1 R132H Mutation.

    PubMed

    Englander, Zachary K; Horenstein, Craig I; Bowden, Stephen G; Chow, Daniel S; Otten, Marc L; Lignelli, Angela; Bruce, Jeffrey N; Canoll, Peter; Grinband, Jack

    2018-06-01

    Purpose To determine the effect that R132H mutation status of diffuse glioma has on extent of vascular dysregulation and extent of residual blood oxygen level-dependent (BOLD) abnormality after surgical resection. Materials and Methods This study was an institutional review board-approved retrospective analysis of an institutional database of patients, and informed consent was waived. From 2010 to 2017, 39 treatment-naïve patients with diffuse glioma underwent preoperative echo-planar imaging and BOLD functional magnetic resonance imaging. BOLD vascular dysregulation maps were made by identifying voxels with time series similar to tumor and dissimilar to healthy brain. The spatial overlap between tumor and vascular dysregulation was characterized by using the Dice coefficient, and areas of BOLD abnormality outside the tumor margins were quantified as BOLD-only fraction (BOF). Linear regression was used to assess effects of R132H status on the Dice coefficient, BOF, and residual BOLD abnormality after surgical resection. Results When compared with R132H wild-type (R132H-) gliomas, R132H-mutated (R132H+) gliomas showed greater spatial overlap between BOLD abnormality and tumor (mean Dice coefficient, 0.659 ± 0.02 [standard error] for R132H+ and 0.327 ± 0.04 for R132H-; P < .001), less BOLD abnormality beyond the tumor margin (mean BOF, 0.255 ± 0.03 for R132H+ and 0.728 ± 0.04 for R132H-; P < .001), and less postoperative BOLD abnormality (residual fraction, 0.046 ± 0.0047 for R132H+ and 0.397 ± 0.045 for R132H-; P < .001). Receiver operating characteristic curve analysis showed high sensitivity and specificity in the discrimination of R132H+ tumors from R132H- tumors with calculation of both Dice coefficient and BOF (area under the receiver operating characteristic curve, 0.967 and 0.977, respectively). Conclusion R132H mutation status is an important variable affecting the extent of tumor-associated vascular dysregulation and the residual vascular dysregulation after surgical resection. © RSNA, 2018 Online supplemental material is available for this article.

  10. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  11. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity

    PubMed Central

    Martin, John D.; Fukumura, Dai; Duda, Dan G.; Boucher, Yves; Jain, Rakesh K.

    2017-01-01

    Solid tumors consist of cancer cells and stromal cells, including resident and transiting immune cells—all ensconced in an extracellular matrix (ECM)—nourished by blood vessels and drained by lymphatic vessels. The microenvironment constituents are abnormal and heterogeneous in morphology, phenotype, and physiology. Such irregularities include an inefficient tumor vascular network comprised of leaky and compressed vessels, which impair blood flow and oxygen delivery. Low oxygenation in certain tumor regions—or focal hypoxia—is a mediator of cancer progression, metastasis, immunosuppression, and treatment resistance. Thus, repairing an abnormal and heterogeneous microenvironment—and hypoxia in particular—can significantly improve treatments of solid tumors. Here, we summarize two strategies to reengineer the tumor microenvironment (TME)—vessel normalization and decompression—that can alleviate hypoxia. In addition, we discuss how these two strategies alone and in combination with each other—or other therapeutic strategies—may overcome the challenges posed by cancer heterogeneity. PMID:27663981

  12. Graph analysis of cell clusters forming vascular networks

    NASA Astrophysics Data System (ADS)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  13. Lack of sensitivity of measurements of Vd/Vt at rest and during exercise in detection of hemodynamically significant pulmonary vascular abnormalities in collagen vascular disease.

    PubMed

    Mohsenifar, Z; Tashkin, D P; Levy, S E; Bjerke, R D; Clements, P J; Furst, D

    1981-05-01

    Wasted ventilation fraction (Vd/Vt) normally declines substantially during exercise in persons without lung disease. Failure of Vd/Vt to decrease during exercise has been reported to be one of the earliest abnormalities in patients with dyspnea caused by pulmonary vaso-occlusive disease, suggesting that measurement of Vd/Vt at rest and during exercise are useful in the diagnosis of pulmonary vascular disorders. We studied pulmonary hemodynamic and Vd/Vt responses to exercise in 11 patients in the supine position with suspected pulmonary vascular involvement caused by progressive systemic sclerosis, systemic lupus erythematosus, or recurrent pulmonary emboli, 10 of whom had dyspnea at rest and/or on exertion. In contrast to previous reports of no change or an increase in Vd/Vt during exercise in patients with pulmonary vascular disease, we found Vd/Vt to decrease significantly during exercise in 8 of 9 patients in whom mean pulmonary artery pressures were abnormally elevated at rest and/or during exercise. Our findings suggest that normal responses of Vd/Vt to exercise do not exclude hemodynamically significant pulmonary vaso-occlusive disease.

  14. Using impedance cardiography to detect asymptomatic cardiovascular disease in prehypertensive adults with risk factors.

    PubMed

    DeMarzo, Arthur P

    2013-06-01

    Early detection of cardiovascular disease (CVD) in prehypertension could initiate appropriate treatment and prevent progression. Impedance cardiography (ICG) is a noninvasive technology that can be used to assess cardiovascular function. This study used ICG waveform analysis with postural change to detect CVD in asymptomatic prehypertensive adults over 40 years of age with no history of CVD and at least 2 cardiovascular risk factors: cigarette smoking, poor diet, physical inactivity, central obesity, family history of premature CVD, elevated blood glucose, and dyslipidemia. A study group of 25 apparently healthy adults was tested by ICG in standing and supine positions. Criteria for an age-matched control group of 16 healthy subjects included an active lifestyle, no risk factor, and no history of CVD. In addition to hemodynamic measurements of systemic vascular resistance (SVR) and cardiac index (CI), ICG used SVR to assess vascular resistive load, an index of arterial compliance and a widening of the systolic waveform to assess vascular pulsatile load, and waveform analysis and measured wave amplitude to detect ventricular dysfunction. All subjects in the study group had some abnormal ICG data, with an average of 2.9 ± 1.5 abnormalities per person. ICG indicated that 24 (96%) had elevated vascular load, 13 (52%) had some type of ventricular dysfunction, and 12 (48%) had abnormal hemodynamics. For the control group, ICG showed none (0%) with elevated vascular load, none (0%) with ventricular dysfunction, and 7 (44%) with high CI. Prehypertensives over 40 years of age with multiple risk factors have different cardiovascular abnormalities. This ICG test could be used as part of a prevention program for early detection of CVD. An abnormal ICG test could expedite the initiation of customized treatment that targets the subclinical CVD.

  15. Widefield in vivo spectral and fluorescence imaging microscopy of microvessel blood supply and oxygenation

    NASA Astrophysics Data System (ADS)

    Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.

    2011-02-01

    Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.

  16. Using impedance cardiography with postural change to stratify patients with hypertension.

    PubMed

    DeMarzo, Arthur P

    2011-06-01

    Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.

  17. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.

  18. Coexistence of pheochromocytoma with uncommon vascular lesions

    PubMed Central

    Kota, Sunil Kumar; Kota, Siva Krishna; Meher, Lalit Kumar; Jammula, Sruti; Panda, Sandip; Modi, Kirtikumar D.

    2012-01-01

    Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14%) had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis. PMID:23226643

  19. Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed With Optical Coherence Tomography Angiography.

    PubMed

    Adhi, Mehreen; Filho, Marco A Bonini; Louzada, Ricardo N; Kuehlewein, Laura; de Carlo, Talisa E; Baumal, Caroline R; Witkin, Andre J; Sadda, Srinivas R; Sarraf, David; Reichel, Elias; Duker, Jay S; Waheed, Nadia K

    2016-07-01

    To evaluate the perifoveolar retinal capillary network at different depths and to quantify the foveal avascular zone (FAZ) in eyes with retinal vein occlusion (RVO) compared with their fellow eyes and healthy controls using spectral-domain optical coherence tomography angiography (SD-OCTA). We prospectively recruited 23 patients with RVO including 15 eyes with central RVO (CRVO) and 8 eyes with branch RVO (BRVO), their fellow eyes, and 8 age-matched healthy controls (8 eyes) for imaging on prototype OCTA software within RTVue-XR Avanti. The 3 × 3 mm and 6 × 6 mm en face angiograms of superficial and deep retinal capillary plexuses were segmented. Perifoveolar retinal capillary network was analyzed and FAZ was quantified. Decrease in vascular perfusion at the deep plexus was observed in all eyes with CRVO (8/8, 100%) and BRVO (6/6, 100%) without cystoid macular edema, and in 8 of 15 (53%) and 2 of 8 (25%) of the fellow eyes, respectively. Vascular tortuosity was observed in 13 of 15 (87%) CRVO and 5 of 8 (63%) BRVO eyes. Collaterals were seen in 10 of 15 (67%) CRVO and 5 of 8 (63%) BRVO eyes. Mean FAZ area was larger in eyes with RVO than their fellow eyes (1.13 ± 0.25 mm2 versus 0.58 ± 0.28 mm2; P = 0.007) and controls (1.13 ± 0.25 mm2 versus 0.30 ± 0.09 mm2; P < 0.0001), and in fellow eyes of RVO patients when compared to controls (0.58 ± 0.28 mm2 versus 0.30 ± 0.09 mm2; P = 0.01). Spectral-domain OCTA reveals abnormalities at different levels of perifoveolar retinal capillary network and is able to quantify the FAZ in RVO. Longitudinal studies may be considered to evaluate the clinical utility of OCTA in RVO and other retinal vascular diseases.

  20. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.

    PubMed

    Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana

    2018-01-01

    Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n  = 20), quantitatively and qualitatively in relatively healthy older subjects ( n  = 96), and qualitatively in patients from a memory clinic ( n  = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ  = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of brain abnormalities and motion artefacts. In conclusion, this study shows that a convolutional neural network-based segmentation method can accurately segment brain tissues and WMH in MR images of older patients with varying degrees of brain abnormalities and motion artefacts.

  1. Dysphagia lusorium in elderly: A case report

    PubMed Central

    Kantarceken, Bulent; Bulbuloglu, Ertan; Yuksel, Murvet; Cetinkaya, Ali

    2004-01-01

    AIM: Late unset of dysphagia due to vascular abnormalities is a rare condition. We aimed to present a case of right subclavian artery abnormalities caused dysphagia in the elderly. METHODS: A 68-year-old female was admitted with dysphagia seven months ago. Upper endoscopic procedures and routine examinations could not demonstrate any etiology. Multislice computed thorax tomography was performed for probable extra- esophagial lesions. RESULTS: Multislice computed thorax tomography showed right subclavian artery abnormality and esophagial compression with this aberrant artery. CONCLUSION: Causes of dysphagia in the elderly are commonly malignancies, strictures and/or motility disorders. If routine examinations and endoscopic procedures fail to show any etiology, rare vascular abnormalities can be considered in such patients. Multislice computed tomography is a usefull choice in such conditions. PMID:15285045

  2. VESGEN Software for Mapping and Quantification of Vascular Regulators

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  3. Small vessel disease, neurovascular regulation and cognitive impairment: post-mortem studies reveal a complex relationship, still poorly understood.

    PubMed

    Love, Seth; Miners, J Scott

    2017-07-15

    The contribution of vascular disease to cognitive impairment is under-recognized and the pathogenesis is poorly understood. This information gap has multiple causes, including a lack of post-mortem validation of clinical diagnoses of vascular cognitive impairment (VCI) or vascular dementia (VaD), the exclusion of cases with concomitant neurodegenerative disease when diagnosing VCI/VaD, and a lack of standardization of neuropathological assessment protocols for vascular disease. Other contributors include a focus on end-stage destructive lesions to the exclusion of more subtle types of diffuse brain injury, on structural abnormalities of arteries and arterioles to the exclusion of non-structural abnormalities and capillary damage, and the use of post-mortem sampling strategies that are biased towards the identification of neurodegenerative pathologies. Recent studies have demonstrated the value of detailed neuropathology in characterizing vascular contributions to cognitive impairment (e.g. in diabetes), and highlight the importance of diffuse white matter changes, capillary damage and vasoregulatory abnormalities in VCI/VaD. The use of standardized, evidence-based post-mortem assessment protocols and the inclusion of biochemical as well as morphological methods in neuropathological studies should improve the accuracy of determination of the contribution of vascular disease to cognitive impairment and clarify the relative contribution of different pathogenic processes to the tissue damage. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. Vascular anomalies of the head and neck.

    PubMed

    Donald, P J

    2001-02-01

    Vascular abnormalities of the head and neck are relatively uncommon lesions. An understanding of these anomalies based on their pathogenesis and natural history clearly divides them into hemangiomas and vascular malformations. Treatment strategies that are reasonable and predictable can then be devised based on the aforementioned factors.

  5. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  6. [Anomalous systemic arterial supply to normal basal segments of the left lung (Pryce type I)].

    PubMed

    Ryu, Chusei; Sawada, Takahiro; Machino, Ryusuke

    2013-03-01

    Patient 1 was a 54-year-old female diagnosed with anomalous systemic arterial supply to normal basal segments of the left lung discovered as an abnormality on chest X-ray radiography. Patient 2 was a 47-year-old male in whom the disease was diagnosed by close examination of bloody sputum. Division of the abnormal artery and left lower lobectomy were performed in patient 1. Arterial congestion and serpentine distribution were noted in the basal segments of the lung, which was the region perfused by the abnormal artery, on histopathological examination. Arteriosclerotic changes were noted in the vascular wall, but no abnormal vascular wall or alveolar structure was noted in S6, which was not included in theperfused region. Based on the above findings, division of the abnormal artery and left basal segmentectomy were performed in patient 2. Bloody sputum disappeared, and activity of daily living( ADL) were not impaired after surgery.

  7. Placental disease and abnormal umbilical artery Doppler waveforms in trisomy 21 pregnancy: A case-control study.

    PubMed

    Corry, Edward; Mone, Fionnuala; Segurado, Ricardo; Downey, Paul; McParland, Peter; McAuliffe, Fionnuala M; Mooney, Eoghan E

    2016-11-01

    The objectives of this study were firstly to determine the proportion of placental pathology in fetuses affected by trisomy 21 (T21) using current pathological descriptive terminology and secondly to examine if a correlation existed between the finding of an abnormal umbilical artery Doppler (UAD) waveform, the presence of T21 and defined placental pathological categories. This case-control study assessed singleton fetuses with karyotypically confirmed trisomy 21 where placental histopathology had been conducted from 2003 to 2015 inclusive, within a university tertiary obstetric centre. This was compared with unselected normal singleton control pregnancies matched within a week of gestation at delivery. Data included birthweight centiles and placental histopathology. Comparisons of Doppler findings across placental pathological categories were performed using statistical analysis. 104 cases were analysed; 52 cases of trisomy 21 and 52 controls. Fetal vascular malperfusion (48.1% vs. 5.8%, p = 0.001) and maturation defects (39.2% vs. 15.7%, p = 0.023) were more common in trisomy 21 placentas. Compared with controls, trisomy 21 fetuses were more likely to have shorter umbilical cords (p = 0.001) and had more UAD abnormalities. Amongst T21 pregnancies, umbilical artery Doppler abnormalities are associated with the presence of maternal vascular malperfusion. Fetal vascular malperfusion and maturation defects are more common in trisomy 21 placentas. Abnormal umbilical artery Doppler waveforms are more common in T21 and are associated with maternal vascular malperfusion. Placental disease may explain the increased rate of intrauterine death in T21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. New insights into diabetic retinopathy by OCT angiography.

    PubMed

    Liu, Guodong; Xu, Ding; Wang, Fang

    2018-06-04

    Diabetic retinopathy (DR) is one of the most common diabetic complications, which has become a leading cause for vision loss, mainly because of macular edema and vitreous hemorrhage. Optical coherence tomography (OCT) angiography is a novel technique to visualize vascular changes including microaneurysm, non-perfusion area, intraretinal microvascular abnormalities, and neovascularization. Recently, it is possible to quantify vascular density, foveal avascular zone area, non-perfusion area objectively using OCT angiography. In addition, OCT angiography also provides an alternative method to evaluate the effect of anti-vascular endothelial growth factor (VEGF) treatments by providing high resolution images of macular microcirculatory abnormalities. Thus OCT angiography is an effective method to investigate the vascular changes of the disease, and can also be potentially applied in the diagnosis, treatment, and follow up of DR. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optical coherence tomography based angiography [Invited

    PubMed Central

    Chen, Chieh-Li; Wang, Ruikang K.

    2017-01-01

    Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography. PMID:28271003

  10. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia

    PubMed Central

    Mourani, Peter M.; Abman, Steven H.

    2015-01-01

    Advances in the care of preterm infants have improved survival of infants born at earlier gestational ages. Yet, these infants remain at risk for the chronic lung disease of infancy, bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, demonstrating that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities, which contributes significantly to morbidity and mortality. In the past few years, several epidemiological studies have delineated the incidence of PH in preterm infants and the impact on outcomes. However, these studies have also highlighted gaps in our understanding of PVD in BPD, including universally accepted definitions, approaches to diagnosis and treatment, and patient outcomes. Associated pulmonary vascular and cardiac abnormalities are increasingly recognized complications contributing to PH in these infants, but incidence of these lesions and degree of contribution to disease remains unknown. Therapeutic strategies for PVD in BPD are largely untested, but recent evidence presents the rationale for the approach to diagnosis and treatment of BPD infants with PH that can be evaluated in future studies. PMID:26593082

  11. Natural history of splenic vascular abnormalities after blunt injury: A Western Trauma Association multicenter trial.

    PubMed

    Zarzaur, Ben L; Dunn, Julie A; Leininger, Brian; Lauerman, Margaret; Shanmuganathan, Kathirkamanthan; Kaups, Krista; Zamary, Kirellos; Hartwell, Jennifer L; Bhakta, Ankur; Myers, John; Gordy, Stephanie; Todd, Samuel R; Claridge, Jeffrey A; Teicher, Erik; Sperry, Jason; Privette, Alicia; Allawi, Ahmed; Burlew, Clay Cothren; Maung, Adrian A; Davis, Kimberly A; Cogbill, Thomas; Bonne, Stephanie; Livingston, David H; Coimbra, Raul; Kozar, Rosemary A

    2017-12-01

    Following blunt splenic injury, there is conflicting evidence regarding the natural history and appropriate management of patients with vascular injuries of the spleen such as pseudoaneurysms or blushes. The purpose of this study was to describe the current management and outcomes of patients with pseudoaneurysm or blush. Data were collected on adult (aged ≥18 years) patients with blunt splenic injury and a splenic vascular injury from 17 trauma centers. Demographic, physiologic, radiographic, and injury characteristics were gathered. Management and outcomes were collected. Univariate and multivariable analyses were used to determine factors associated with splenectomy. Two hundred patients with a vascular abnormality on computed tomography scan were enrolled. Of those, 14.5% were managed with early splenectomy. Of the remaining patients, 59% underwent angiography and embolization (ANGIO), and 26.5% were observed. Of those who underwent ANGIO, 5.9% had a repeat ANGIO, and 6.8% had splenectomy. Of those observed, 9.4% had a delayed ANGIO, and 7.6% underwent splenectomy. There were no statistically significant differences between those observed and those who underwent ANGIO. There were 111 computed tomography scans with splenic vascular injuries available for review by an expert trauma radiologist. The concordance between the original classification of the type of vascular abnormality and the expert radiologist's interpretation was 56.3%. Based on expert review, the presence of an actively bleeding vascular injury was associated with a 40.9% risk of splenectomy. This was significantly higher than those with a nonbleeding vascular injury. In this series, the vast majority of patients are managed with ANGIO and usually embolization, whereas splenectomy remains a rare event. However, patients with a bleeding vascular injury of the spleen are at high risk of nonoperative failure, no matter the strategy used for management. This group may warrant closer observation or an alternative management strategy. Prognostic study, level III.

  12. 123I-FP-CIT SPECT imaging in early diagnosis of dementia in patients with and without a vascular component

    PubMed Central

    Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy

    2015-01-01

    Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on DaTScan. PMID:26190980

  13. PHACE syndrome misdiagnosed as a port-wine stain

    PubMed Central

    Thomson, Jason; Greig, Aina; Lloyd, Claire; Morrison, Danny; Flohr, Carsten

    2015-01-01

    We present the case of a boy born with a large macular, segmental vascular anomaly over the left face, initially diagnosed as a capillary malformation (port-wine stain) by the postnatal paediatric team. The vascular anomaly in the face then grew rapidly during the first few weeks of life and started to occlude the left eye, causing parental concerns about the infant's vision. A dermatological opinion established that the lesion was a segmental infantile haemangioma (IH). This, in combination with the posterior fossa malformation previously detected on antenatal scanning and confirmed by an MRI postnatally, satisfied the criteria for Posterior fossa abnormalities, Haemangiomas, Arterial abnormalities, Cardiac abnormalities and Eye abnormalities (PHACE) syndrome: a rare cutaneous neurovascular syndrome. This case highlights the diagnostic challenge posed by early phenotypes of haemangiomas as well as the importance of correctly diagnosing PHACE syndrome. PMID:26177999

  14. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.

  15. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  16. A Cross-Sectional Cohort Study of Cerebrovascular Disease and Late Effects After Radiation Therapy for Craniopharyngioma.

    PubMed

    Lo, Andrea C; Howard, A Fuchsia; Nichol, Alan; Hasan, Haroon; Martin, Monty; Heran, Manraj; Goddard, Karen

    2016-05-01

    The study objective was to describe radiation-induced vascular abnormalities, stroke prevalence, and stroke risk factors in survivors of childhood craniopharyngioma. Twenty survivors of childhood craniopharyngioma who received radiotherapy (RT) were included in the study. A clinical history, quality of life assessment, cognitive functioning assessment, magnetic resonance angiogram or computed tomography angiogram, fasting lipid profile, and fasting glucose or hemoglobin A1c test were obtained. Median age at diagnosis was 10.3 years and median age at time of study was 29.0 years. Vascular abnormalities were detected in six (32%) of 19 patients' angiograms (vascular stenosis, decreased artery size, aneurysm, cavernoma, and small vessel disease). Five (25%) of 20 patients experienced a stroke after RT. Median time since RT was 27.8 versus 9.1 years in patients with versus without vascular abnormalities (P = 0.02). A low level of high-density lipoproteiin (HDL) was present in 100% (5/5) of patients who had a post-RT stroke as compared with 13% (2/15) of patients who did not have any post-RT stroke (P = 0.02). Previous stroke had occurred in 0% (0/5) of patients receiving growth hormone (GH) replacement at the time of study, compared to 40% (6/15) of patients who were not receiving GH replacement (P = 0.09). Patients with craniopharyngioma treated with RT have a high prevalence of stroke and vascular abnormalities, particularly those with low HDL and longer duration of time since RT. There is a trend to suggest that continual GH replacement may reduce the risk of stroke. These patients should undergo careful monitoring and aggressive modification of stroke risk factors. © 2016 Wiley Periodicals, Inc.

  17. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    PubMed

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  18. Hepatopulmonary syndrome: update on pathogenesis and clinical features.

    PubMed

    Zhang, Junlan; Fallon, Michael B

    2012-09-01

    Hepatopulmonary syndrome (HPS) is a serious vascular complication of liver disease that occurs in 5-32% of patients with cirrhosis. The presence of HPS markedly increases mortality. No effective medical therapies are currently available and liver transplantation is the only established treatment option for HPS. The definition and diagnosis of HPS are established by the presence of a triad of liver disease with intrapulmonary vascular dilation that causes abnormal arterial gas exchange. Experimental biliary cirrhosis induced by common bile duct ligation in the rat reproduces the pulmonary vascular and gas exchange abnormalities of human HPS and serves as a pertinent animal model. Pulmonary microvascular dilation and angiogenesis are two central pathogenic features that drive abnormal pulmonary gas exchange in experimental HPS, and thus might underlie HPS in humans. Defining the mechanisms involved in the microvascular alterations of HPS has the potential to lead to effective medical therapies. This Review focuses on the current understanding of the pathogenesis, clinical features and management of HPS.

  19. Emerging role of thalidomide in the treatment of gastrointestinal bleeding.

    PubMed

    McFarlane, Michael; O'Flynn, Lauren; Ventre, Rachel; Disney, Benjamin R

    2018-04-01

    Thalidomide was initially synthesised in 1954 and marketed as a sedative and antiemetic for morning sickness. It was withdrawn in 1961 due to the realisation that it was teratogenic with over 10 000 children born with congenital abnormalities. Since then it has been used for treatment of dermatological and oncological conditions, including myeloma. In 1994, it was found to have a potent antiangiogenic effect via downregulation of vascular endothelial growth factor (VEGF). This has led to its use in gastrointestinal bleeding, as vascular abnormalities such as angiodysplasia have been found to have elevated VEGF levels. This article will review the current evidence of the use of thalidomide in bleeding associated with gastrointestinal vascular malformations, including angiodysplasia, gastric cancer and radiation-induced proctitis.

  20. A Review of Vascular Abnormalities of the Spine.

    PubMed

    Singh, Rahul; Lucke-Wold, Brandon; Gyure, Kymberly; Boo, Sohyun

    2016-01-01

    Patients with spinal vascular lesions present with unique symptoms and have important anatomical and physiologic changes that must be considered prior to treatment. In this mini-review, we provide an overview of normal spinal vascular anatomy and discuss several key spinal vascular lesions. We provide an overview of cavernous malformations, intradural arteriovenous malformations, perimedullary arteriovenous fistulas, and dural arteriovenous fistulas. Important considerations are addressed in terms of pathologic characterization, specific imaging findings, and treatment approaches.

  1. Exploiting Self-organization in Bioengineered Systems: A Computational Approach.

    PubMed

    Davis, Delin; Doloman, Anna; Podgorski, Gregory J; Vargis, Elizabeth; Flann, Nicholas S

    2017-01-01

    The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches.

  2. Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions.

    PubMed

    Deegan, Anthony J; Talebi-Liasi, Faezeh; Song, Shaozhen; Li, Yuandong; Xu, Jingjiang; Men, Shaojie; Shinohara, Michi M; Flowers, Mary E; Lee, Stephanie J; Wang, Ruikang K

    2018-03-01

    In clinical dermatology, the identification of subsurface vascular and structural features known to be associated with numerous cutaneous pathologies remains challenging without the use of invasive diagnostic tools. To present an advanced optical coherence tomography angiography (OCTA) method to directly visualize capillary-level vascular and structural features within skin in vivo. An advanced OCTA system with a 1310 nm wavelength was used to image the microvascular and structural features of various skin conditions. Subjects were enrolled and OCTA imaging was performed with a field of view of approximately 10 × 10 mm. Skin blood flow was identified using an optical microangiography (OMAG) algorithm. Depth-resolved microvascular networks and structural features were derived from segmented volume scans, representing tissue slabs of 0-132, 132-330, and 330-924 μm, measured from the surface of the skin. Subjects with both healthy and pathological conditions, such as benign skin lesions, psoriasis, chronic graft-versus-host-disease (cGvHD), and scleroderma, were OCTA scanned. Our OCTA results detailed variations in vascularization and local anatomical characteristics, for example, depth-dependent vascular, and structural alterations in psoriatic skin, alongside their resolve over time; vascular density changes and distribution irregularities, together with corresponding structural depositions in the skin of cGvHD patients; and vascular abnormalities in the nail folds of a patient with scleroderma. OCTA can image capillary blood flow and structural features within skin in vivo, which has the potential to provide new insights into the pathophysiology, as well as dynamic changes of skin diseases, valuable for diagnoses, and non-invasive monitoring of disease progression and treatment. Lasers Surg. Med. 50:183-193, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Pulse oximetry in the evaluation of peripheral vascular disease.

    PubMed

    Jawahar, D; Rachamalla, H R; Rafalowski, A; Ilkhani, R; Bharathan, T; Anandarao, N

    1997-08-01

    The role of pulse oximetry in the evaluation of peripheral vascular disease (PVD) was investigated. In addition, the value of elevating the limb to improve the sensitivity of detection of PVD by the pulse oximeter was also determined. Pulse oximetry reading in the toes were obtained in 40 young, healthy volunteers and in 40 randomly selected patients referred to the vascular investigation laboratory over a period of two months. All 40 healthy volunteers had normal pulse oximetry readings. Normal pulse oximetry reading in the toes was defined as > 95% O2 Sat and +/-2 of finger pulse oximetry reading. In all 40 patients, pulse oximetry readings were either normal or not detected at all. Since there was no gradation in decrease in the pulse oximetry reading with severity of disease or with elevation of the patient's lower extremity, an absent or no reading was considered as an abnormal result from the test. The frequency of abnormal pulse oximetry readings increased significantly in groups with abnormal ankle-brachial pressure index (ABPI) and also varied significantly with elevation of the patients' lower limbs. In patients with no PVD detected by Doppler (ABPI > 0.9), pulse oximetry readings were normal in all. However, in patients with moderate PVD (ABPI, 0.5-0.9), 84% of the patients' lower limbs had normal pulse oximetry readings and 16% had an abnormal reading at baseline level (flat). An additional 12% of the lower limbs in this group had an abnormal reading on elevation of the limb to 12 inches. In patients with severe PVD (ABPI < 0.5), 54% of the patients' lower limbs had an abnormal reading at baseline and an additional 23% had an abnormal reading at elevation of the limb to 12 inches. In conclusion, pulse oximetry was not a sensitive test for detecting early PVD.

  4. Predictive factors for the occurrence of idiopathic menorrhagia: evidence for a hereditary trait.

    PubMed

    Kuzmina, Natalia; Palmblad, Jan; Mints, Miriam

    2011-01-01

    The aim of the present study was to assess predictive factors for occurrence of idiopathic menorrhagia (IM), a disease characterized by abnormal endometrial blood vessel morphology. It was hypothesized that IM exhibits familial clustering (suggesting inheritance) and is associated with other vascular abnormalities, primarily cutaneous hemangiomas. Women with IM (n=152) and healthy, regularly menstruating (n=56) women answered a questionnaire concerning menstrual pattern, susceptibility to bleeding and family history of abnormal gynecological bleeding. Factor analysis with principal component extraction was used to separate predictive factors that may be associated with IM. A total of 35 different items were analyzed. A strong association was found between IM and a family history of heavy menstrual bleeding (r=0.68), but not with cutaneous vascular abnormalities. Our results revealed that a family history of heavy menstrual bleeding may have the highest predictive value for the diagnosis of IM, indicating a hereditary trait.

  5. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.

  6. PHACE syndrome misdiagnosed as a port-wine stain.

    PubMed

    Thomson, Jason; Greig, Aina; Lloyd, Claire; Morrison, Danny; Flohr, Carsten

    2015-07-15

    We present the case of a boy born with a large macular, segmental vascular anomaly over the left face, initially diagnosed as a capillary malformation (port-wine stain) by the postnatal paediatric team. The vascular anomaly in the face then grew rapidly during the first few weeks of life and started to occlude the left eye, causing parental concerns about the infant's vision. A dermatological opinion established that the lesion was a segmental infantile haemangioma (IH). This, in combination with the posterior fossa malformation previously detected on antenatal scanning and confirmed by an MRI postnatally, satisfied the criteria for Posterior fossa abnormalities, Haemangiomas, Arterial abnormalities, Cardiac abnormalities and Eye abnormalities (PHACE) syndrome: a rare cutaneous neurovascular syndrome. This case highlights the diagnostic challenge posed by early phenotypes of haemangiomas as well as the importance of correctly diagnosing PHACE syndrome. 2015 BMJ Publishing Group Ltd.

  7. Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals

    PubMed Central

    Kim, Tyson N.; Goodwill, Patrick W.; Chen, Yeni; Conolly, Steven M.; Schaffer, Chris B.; Liepmann, Dorian; Wang, Rong A.

    2012-01-01

    Background The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. Methodology/Principal Findings We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. Conclusions/Significance To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies. PMID:22761686

  8. Superficial ovarian cortex vascularization is inversely related to the follicle reserve in normal cycling ovaries and is increased in polycystic ovary syndrome.

    PubMed

    Delgado-Rosas, F; Gaytán, M; Morales, C; Gómez, R; Gaytán, F

    2009-05-01

    The superficial ovarian cortex constitutes the micro-environment where resting and early growing follicles reside. As small follicles do not possess an independent capillary network, both their survival and early growth depend on their proximity to the cortical vessels. Little is known about the possible changes in superficial ovarian cortex vascularization in normal women throughout reproductive life or in pathological conditions such as polycystic ovary syndrome (PCOS) involving abnormal early follicle growth. We studied the vascularization of the superficial and deep cortical stroma (DCS) in normal cycling ovaries from 21 to 50 years of age and in infertile women with PCOS. We used archival ovarian samples and specific CD34 immunostaining to determine blood vessel density and to analyse correlation with age and with the ovarian follicle reserve. Normal cycling ovaries showed an age-related increase in the superficial cortical stroma vascularization that was inversely correlated with the density of small (primordial and primary) follicles. In contrast, blood vessel density in the DCS significantly decreased in women aged >or=40 years. Ovaries from PCOS showed a 2-fold increase in blood vessel density in both superficial cortical stroma and DCS with respect to age-matched controls. The increased vascularization of the superficial cortical stroma in normal ovaries in relation to age and in ovaries from PCOS could have profound effects on cortical metabolic rate, primordial follicle survival/activation and early follicle growth, and may underline changes in follicle dynamics in mid-aged women and in PCOS.

  9. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

    PubMed

    Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew

    2011-03-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

  10. Current drug therapies for rosacea: a chronic vascular and inflammatory skin disease.

    PubMed

    Feldman, Steven R; Huang, William W; Huynh, Tu T

    2014-06-01

    Rosacea is a chronic skin disorder that presents with abnormal vascular and inflammatory conditions. Clinical manifestations include flushing, facial erythema, inflammatory papules and pustules, telangiectasias, edema, and watery or irritated eyes. To discuss the evolving pathophysiology of rosacea, factors involved in promoting the chronic vascular and inflammatory abnormalities seen in rosacea, and the available drug therapies for the condition. Chronic inflammation and vascular changes are believed to be underlying factors in the pathophysiology of rosacea. Aberrant cathelicidin expression, elevated kallikrein 5 (KLK5) proteolytic activity, and altered toll-like receptor 2 (TLR2) expression have been reported in rosacea skin leading to the production of proinflammatory cytokines. Until recently, drug therapies only targeted the inflammatory lesions (papules and pustules) and transient erythema associated with these inflammatory lesions of rosacea. Brimonidine tartrate gel 0.5% was recently approved for the treatment of persistent (nontransient) facial erythema of rosacea, acting primarily on the cutaneous vascular component of the disease. Rosacea is a chronic vascular and inflammatory skin disease. Understanding the role of factors that trigger the onset of rosacea symptoms and exacerbate the condition is crucial in treating this skin disease.

  11. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  12. A Review of Vascular Abnormalities of the Spine

    PubMed Central

    Singh, Rahul; Lucke-Wold, Brandon; Gyure, Kymberly; Boo, Sohyun

    2017-01-01

    Patients with spinal vascular lesions present with unique symptoms and have important anatomical and physiologic changes that must be considered prior to treatment. In this mini-review, we provide an overview of normal spinal vascular anatomy and discuss several key spinal vascular lesions. We provide an overview of cavernous malformations, intradural arteriovenous malformations, perimedullary arteriovenous fistulas, and dural arteriovenous fistulas. Important considerations are addressed in terms of pathologic characterization, specific imaging findings, and treatment approaches. PMID:28191502

  13. Sox17 is required for normal pulmonary vascular morphogenesis

    PubMed Central

    Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.

    2015-01-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  14. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.

    PubMed

    Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M

    2016-01-01

    Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.

  15. Automated neurovascular tracing and analysis of the knife-edge scanning microscope Rat Nissl data set using a computing cluster.

    PubMed

    Sungjun Lim; Nowak, Michael R; Yoonsuck Choe

    2016-08-01

    We present a novel, parallelizable algorithm capable of automatically reconstructing and calculating anatomical statistics of cerebral vascular networks embedded in large volumes of Rat Nissl-stained data. In this paper, we report the results of our method using Rattus somatosensory cortical data acquired using Knife-Edge Scanning Microscopy. Our algorithm performs the reconstruction task with averaged precision, recall, and F2-score of 0.978, 0.892, and 0.902 respectively. Calculated anatomical statistics show some conformance to values previously reported. The results that can be obtained from our method are expected to help explicate the relationship between the structural organization of the microcirculation and normal (and abnormal) cerebral functioning.

  16. Traumatic Arteriovenous Fistula of the Scalp in the Left Temporoparietal Region with Intra- and Extracranial Blood Supply

    PubMed Central

    Zheng, Feng; Augustus Pitts, Herbert; Goldbrunner, Roland; Krischek, Boris

    2016-01-01

    Traumatic AVF of the scalp is a rare abnormal vascular disease. It is defined as a communication between the high flow arterial system and the low flow venous network, which directly connects the arterial feeding vessels of the scalp and the draining veins without an intervening capillary bed. The superficial temporal artery (STA) was involved in 90% of the cases, and 71% of the patients only had one dominant feeding STA. Here, we report the case of a rare large traumatic arteriovenous fistula (AVF) of the scalp that is fed by intra- and extracranial blood supply. The clinical and radiological features are presented, and the possible pathogenesis and surgical technique are discussed. PMID:26885435

  17. [Orbito-palpebral vascular pathology].

    PubMed

    Heran Dreyfus, F; Galatoire, O; Koskas, P; Lafitte, F; Nau, E; Bergès, O

    2016-11-01

    Orbito-palpebral vascular pathology represents 10% of all the diseases of this area. The lesion may be discovered during a brain CT scan or MRI, or because it causes clinical symptoms such as orbital mass, visual or oculomotor alteration, pain, proptosis, or acute bleeding due to a complication of the lesion (hemorrhage, thrombosis). We present these lesions using an anatomical, clinical, imaging and therapeutic approach. We distinguish four different entities. Vascular tumors have common imaging characteristics (hypersignal on T2 sequence, contrast enhancement, abnormal vascularization well depicted with ultrasound and Doppler, and possible bleeding). The main lesions are cavernous hemangiomas, the most frequent lesion of that type during adulthood; infantile hemangiomas, the most frequent vascular tumor in children; and more seldomly, hemangioperitcytomas. True vascular malformations are divided according to their flow. Low flow lesions are venous (orbital varix), capillarovenous or lymphatic (lymphangioma). High flow malformations, more rare, are either arteriovenous or arterial malformations (aneurisms). Complex malformations include both low and high flow elements. Lesions leading to modifications of the orbito-palpebral blood flow are mainly due to cavernous sinus abnormalities, either direct carotid-cavernous fistula affecting young adults after severe head trauma, or dural fistula, more insidious, found in older adults. The last section is devoted to congenital syndromic vascular malformations (Sturge-Weber, Rendu-Olser…). This classification allows for a better understanding of these pathologies and their specific imaging features. Copyright © 2016. Published by Elsevier Masson SAS.

  18. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    PubMed

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  19. Indian-Ink Perfusion Based Method for Reconstructing Continuous Vascular Networks in Whole Mouse Brain

    PubMed Central

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247

  20. Vascular alterations underlie developmental problems manifested in cloned cattle before or after birth.

    PubMed

    Maiorka, Paulo Cesar; Favaron, Phelipe Oliveira; Mess, Andrea Maria; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications).

  1. Vascular Alterations Underlie Developmental Problems Manifested in Cloned Cattle before or after Birth

    PubMed Central

    Favaron, Phelipe Oliveira; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications). PMID:25584533

  2. Vascular, inflammatory, and metabolic factors associated with cognition in aging persons with chronic epilepsy.

    PubMed

    Hermann, Bruce P; Sager, Mark A; Koscik, Rebecca L; Young, Kate; Nakamura, Keith

    2017-11-01

    We examined cognition in aging persons with chronic epilepsy; characterized targeted vascular, inflammatory, and metabolic risk factors associated with abnormal cognitive aging in the general population; and examined associations between cognition and vascular, inflammatory, and metabolic health. Participants included 40 persons with chronic localization-related epilepsy and 152 controls, aged 54.6 and 55.3, respectively. Participants underwent neuropsychological assessment, clinical examination, and fasting blood evaluation for quantification of vascular status (systolic and diastolic blood pressure, obesity/body mass index [BMI], total and high-density lipoprotein [HDL] cholesterol level, and homocysteine), inflammatory markers (high sensitivity C-reactive protein [hs-CRP], and interleukin-6 [IL-6]), and metabolic status (insulin resistance [Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)], glucose). Epilepsy participants exhibited impairment across all cognitive factor scores (all p's < 0.0001); abnormalities in BMI (p = 0.049), hs-CRP (p = 0.046), HOMA-IR (p = 0.0040), and fasting glucose (p = 0.03), with significant relationships between higher HOMA-IR with poorer Immediate Memory (p = 0.03) and Visuospatial Ability (0.03); elevated hs-CRP with poorer Visuospatial (p = 0.035) and Verbal Ability (p = 0.06); elevated BMI with poorer Speed/Flexibility (p = 0.04), Visuospatial (p = 0.001) and Verbal Ability (p = 0.02); and lower HDL with poorer Verbal Learning/Delayed Memory (p = 0.01), Speed/Flexibility (p = 0.043), and Working Memory (p = 0.008). Aging persons with chronic epilepsy exhibit multiple abnormalities in metabolic, inflammatory, and vascular health that are associated with poorer cognitive function. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  3. Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina in a child exposed to misoprostol during pregnancy.

    PubMed

    Rosa, Rafael Fabiano Machado; Travi, Giovanni M; Valiatti, Fabiana; Zen, Paulo Ricardo Gazzola; Pinto, Louise Lapagesse; Kiss, Andrea; Graziadio, Carla; Paskulin, Giorgio Adriano

    2007-06-01

    Poland syndrome has been attributed to a process of vascular disruption, and exposure to misoprostol at 6-8 weeks of gestation has been shown to produce defects attributed to vascular disruption. Herein we report the first case of a patient with Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina, whose mother used misoprostol during pregnancy. A White boy of 1 year and 7 months of age, whose mother used misoprostol during the second month of pregnancy, presented with bilateral epicanthal folds, aplasia of the sternocostal head of the pectoralis major muscle with a hypoplastic nipple on the right side, and asymmetry between the upper limbs. The results of an angiotomographic study showed the presence of an aberrant right subclavian artery. Ultrasonographic evaluation showed turbulence and a high peak in the diastolic velocity in both carotid arteries, suggesting stenosis. Ophthalmologic assessment disclosed an intense bilateral tortuosity of the retinal blood vessels, with arterialnarrowing and rarefaction of the retinal pigment epithelium. This case suggests that the mechanism of vascular disruption of misoprostol could be related to the aberrant subclavian artery and the observed Poland syndrome. His retinal findings are different from those in cases described thus far in the literature, and this pattern of anomaly has never been associated with a gestational exposure to misoprostol. The possibility of a relationship of the aberrant right subclavian artery and the pattern of blood flow verified in the carotid arteries with the eye fundus abnormalities could be causally related or simply coincidental.

  4. [When to ask for a skin biopsy in a patient with leg ulcer? Retrospective study of 143 consecutive biopsies].

    PubMed

    Stansal, A; Khayat, K; Duchatelle, V; Tella, E; Gautier, V; Sfeir, D; Attal, R; Lazareth, I; Priollet, P

    2018-02-01

    A vascular cause is found in around 85% of leg ulcer patients, but non-vascular causes are also observed. Their diagnosis is based on a set of clinical arguments and skin biopsy with histological analysis. The aim of this study was to analyze the results of these biopsies and to find common criteria for ulcers whose skin biopsies had led to the diagnosis of a non-vascular ulcer. A retrospective study was carried out on the analysis of 143 skin biopsies of leg ulcers. The reasons for the biopsy were mainly atypical clinical signs and/or the lack of improvement in care after 6 months, as advocated by the French health authorities. The skin biopsies led to a diagnosis of non-vascular ulcer in 4.9% of cases (7/143), including skin cancer (n=5, 3.5%), cutaneous leishmaniasis (n=1, 0.7%) and Pyoderma gangrenosum (n=1, 0.7%). The univariate statistical analysis revealed that an elevated rim and abnormal excessive granulation tissue were significantly more frequently found in these ulcers. All patients with a positive skin biopsy had associated vascular involvement. This study found a 5% rate of non-vascular causes of ulcers, mainly skin cancer. Elevated rims and abnormal excessive granulation tissue were the unusual features most commonly found in these ulcers. All patients whose skin biopsy revealed a non-vascular cause had associated vascular involvement. This information confirms the need to perform a skin biopsy, even in the presence of a vascular disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  6. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

    PubMed

    Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki

    2013-12-01

    Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  8. [Vascular malformations in the Williams-Beuren syndrome: report of three new cases].

    PubMed

    Sator, Hicham; Rhouni, Fatima Ezzahra; Benjouad, Ibitihale; Rhouni, Fatima Ezzahra; Benjouad, Ibitihale; Dafiri, Rachida; Chat, Latifa

    2016-01-01

    The Williams-Beuren syndrome is a rare genetic disease. It combines classically specific facial dysmorphism, cardiovascular malformations and specific neuropsychological profile. We report three cases of Williams-Beuren syndrome in children with particular emphasis on vascular abnormalities observed on CT angiography and MR angiography.

  9. Hepatic hilar and sectorial vascular and biliary anatomy in right graft adult live liver donor transplantation.

    PubMed

    Radtke, A; Sgourakis, G; Sotiropoulos, G C; Molmenti, E P; Nadalin, S; Fouzas, I; Schroeder, T; Saner, F H; Schenk, A; Cicinnati, V R; Malagó, M; Lang, H

    2008-11-01

    The aim of this study was to analyze vascular and biliary variants at the hilar and sectorial level in right graft adult living donor liver transplantation. From January 2003 to June 2007, 139 consecutive live liver donors underwent three-dimensional computed tomography (3-D CT) reconstructions and virtual 3-D liver partitioning. We evaluated the portal (PV), arterial (HA), and biliary (BD) anatomy. The hilar and sectorial biliary/vascular anatomy was predominantly normal (70%-85% and 67%-78%, respectively). BD and HA showed an equal incidence (30%) of hilar anomalies. BD and PV had a nearly identical incidence of sectorial abnormalities (64.7% and 66.2%, respectively). The most frequent "single" anomaly was seen centrally in HA (21%) and distally in BD (18%). A "double" anomaly involved BD/HA (7.2%) in the hilum, and HA/PV and BD/PV (6.5% each) sectorially. A "triple" anomaly involving all systems was found at the hilum in 1.4% of cases, and at the sectorial level in 9.4% of instances. Simultanous central and distal abnormalities were rare. In this study, 13.7% of all donor candidates showed normal hilar and sectorial anatomy involving all 3 systems. A simultaneous central and distal "triple" abnormality was not encountered. A combination of "triple" hilar anomaly with "triple" sectorial normality was observed in 2 cases (1.4%). A central "triple" normality associated with a distal "triple" abnormality occurred in 7 livers (5%). Our data showed a variety of "horizontal" (hilar or sectorial) and "vertical" (hilar and sectorial) vascular and biliary branching patterns, providing comprehensive assistance for surgical decision-making prior to right graft hepatectomy.

  10. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  11. 78 FR 734 - Medical Imaging Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ..., LLC. The proposed indication (use) for this product is for magnetic resonance imaging in brain...) to detect and visualize areas with disruption of the blood brain barrier (specialized tissues that help protect the brain) and/or abnormal vascularity (abnormal blood circulation). FDA intends to make...

  12. Prominent Intrapulmonary Bronchopulmonary Anastomoses and Abnormal Lung Development in Infants and Children with Down Syndrome.

    PubMed

    Bush, Douglas; Abman, Steven H; Galambos, Csaba

    2017-01-01

    To determine the frequency of histologic features of impaired lung vascular and alveolar development and to identify the presence of intrapulmonary bronchopulmonary anastomoses (IBA) in infants and children who died with Down syndrome. A retrospective review of autopsy reports and lung histology from 13 children with Down syndrome (ages: 0-8 years) was performed. Histologic features of abnormal lung development were identified and semiquantified, including the presence of IBA. Three-dimensional reconstructions of IBA were also performed. Comparisons were made with 4 age-matched patients without Down syndrome with congenital heart defects who underwent autopsies during this time period. Of the 13 subjects with Down syndrome, 69% died from cardiac events, 77% had a congenital heart defect, and 46% had a clinical diagnosis of pulmonary hypertension. Lung histology from all subjects with Down syndrome demonstrated alveolar simplification, and 92% had signs of persistence of a double capillary network in the distal lung. The lungs from the subjects with Down syndrome frequently had features of pulmonary arterial hypertensive remodeling (85%), and prominent bronchial vessels and IBA were observed in all subjects with Down syndrome. These features were more frequent in subjects with Down syndrome compared with control subjects. Children with Down syndrome who died of cardiopulmonary diseases often have histologic evidence of impaired lung alveolar and vascular development, including the presence of prominent IBA and pulmonary hypertension. We speculate that children with Down syndrome are at risk for reduced lung surface area and recruitment of IBA, which may worsen gas exchange in subjects with Down syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  14. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    PubMed

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  15. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia

    PubMed Central

    Park, Sung Ok; Wankhede, Mamta; Lee, Young Jae; Choi, Eun-Jung; Fliess, Naime; Choe, Se-Woon; Oh, Seh-Hoon; Walter, Glenn; Raizada, Mohan K.; Sorg, Brian S.; Oh, S. Paul

    2009-01-01

    Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor–like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches. PMID:19805914

  16. Sodium sensitive hypertension: renal and adrenal non-modulation in its pathogenesis

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.; Williams, G. H.

    1988-01-01

    The thrust of this essay will be to organize a growing body of evidence which indicates that an abnormality of the kidney, and the adrenal, involving disordered regulation through the renin-angiotensin system, is responsible for the pathogenesis in about 45% of patients--a discrete subgroup that may be most common cause of hypertension. That fundamental abnormality leads to disordered renal sodium handling and sodium-sensitive hypertension, abnormalities in the renal vascular response to changes in sodium intake and to angiotensin II, blunted decrements of renin release in response to saline or angiotensin II, and an accentuated renal vasodilator response to angiotensin converting enzyme (ACE) inhibition. ACE inhibition not only increases renal blood flow substantially more in these patients than it does in normal subjects, ACE inhibition also restores to normal the renal vascular and adrenal response to angiotensin II, renin release in response to angiotensin II, renal sodium handling--and ultimately blood pressure. Finally, and perhaps most intriguing, similar abnormalities have been found in 50% of the normotensive offspring of patients with essential hypertension and evidence is accruing to indicate that the abnormality is inherited as a Mendelian dominant.

  17. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    PubMed

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  18. Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct

    NASA Astrophysics Data System (ADS)

    Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza

    2014-06-01

    Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.

  19. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  20. [Cutaneous hemangiomas and vascular malformations and associated pathology (Pascual-Castroviejo type II syndrome). Study of 41 patients].

    PubMed

    Pascual-Castroviejo, I; Pascual-Pascual, S I; Velázquez-Fragua, R; García, L; López-Gutiérrez, J C; Viaño-López, J; Martínez, V; Palencia, R

    To describe the clinical, diagnostic and therapeutic features of this angiomatous neurocutaneous syndrome, which is the most frequent one, and to report a personal series of 41 patients. Forty one patients--31 females and 10 males--were studied during childhood and then, several patients were followed during many years, which allowed us to learn about the evolution of the abnormalities. The cutaneous lesions were classified as hemangiomas in 30 patients (73%) and as vascular malformations in 11 patients (27%). A cerebellar anomaly (unilateral hemispheric hypoplasia and Dandy-Walker malformation) was seen in 13 patients (31.5%) cerebral cortical dysplasia in 4 patients (10%), aortic arch coarctation in 6 patients (15%), and congenital cardiopathy in 5 patients (12%). The most frequent abnormalities were intracranial and/or extracranial vascular malformations. Persistence of the trigeminal artery was observed in 7 patients (17%), absence or severe hypoplasia of an internal carotid artery in 13 patients (32%), absence of a vertebral artery in 7 patients (17%), hypoplasia of intracranial arteries in 6 patients (15%) and aneurysmal enlargement of carotid or vertebral arteries in 5 patients (12%). Also were observed 4 patients (10%) with intracranial hemangioma, 2 (5%) with hemangioma in mediastinum, and 3 (7.5%) with intestinal hemangioma, all of which disappeared during the first years of life. Aneurysmal enlargement of the carotid and vertebral arteries and intracranial branches also disappeared after a process of progressive narrowing of the arterial lumen that caused complete obstruction of these arteries. At the same time the cutaneous hemangioma regressed. During this process, collateral vascularization through branches of the external carotid artery and of the non-affected branches of the contralateral intracranial arteries developed. This neurocutaneous syndrome is the most frequent one and it is associated with several types of vascular and non-vascular abnormalities which can involve any organ of the body. Internal and external hemangiomas and hemangiomatous lesions progress and tend to regress concomitantly.

  1. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.

  2. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  3. Computed Tomography Angiography in Microsurgery: Indications, Clinical Utility, and Pitfalls

    PubMed Central

    Lee, Gordon K.; Fox, Paige M.; Riboh, Jonathan; Hsu, Charles; Saber, Sepideh; Rubin, Geoffrey D.; Chang, James

    2013-01-01

    Objective: Computed tomographic angiography (CTA) can be used to obtain 3-dimensional vascular images and soft-tissue definition. The goal of this study was to evaluate the reliability, usefulness, and pitfalls of CTA in preoperative planning of microvascular reconstructive surgery. Methods: A retrospective review of patients who obtained preoperative CTA in preparation for planned microvascular reconstruction was performed over a 5-year period (2001–2005). The influence of CTA on the original operative plan was assessed for each patient, and CTA results were correlated to the operative findings. Results: Computed tomographic angiography was performed on 94 patients in preparation for microvascular reconstruction. In 48 patients (51%), vascular abnormalities were noted on CTA. Intraoperative findings correlated with CTA results in 97% of cases. In 42 patients (45%), abnormal CTA findings influenced the original operative plan, such as the choice of vessels, side of harvest, or nature of the reconstruction (local flap instead of free tissue transfer). Technical difficulties in performing CTA were encountered in 5 patients (5%) in whom interference from external fixation devices was the main cause. Conclusions: This large study of CTA obtained for preoperative planning of reconstructive microsurgery at both donor and recipient sites study demonstrates that CTA is safe and highly accurate. Computed tomographic angiography can alter the surgeon's reconstructive plan when abnormalities are noted preoperatively and consequently improve results by decreasing vascular complication rates. The use of CTA should be considered for cases of microsurgical reconstruction where the vascular anatomy may be questionable. PMID:24023972

  4. Pseudo-low Frequency Hearing Loss and Its Improvement After Treatment May Be Objective Signs of Significant Vascular Pathology in Patients With Pulsatile Tinnitus.

    PubMed

    Jeon, Hyoung Won; Kim, So Young; Choi, Byung Se; Bae, Yun Jung; Koo, Ja-Won; Song, Jae-Jin

    2016-10-01

    In patients with pulsatile tinnitus (PT), physical examination such as auscultation with head position change or digital compression over the ipsilateral jugular vein provides physicians with important information. However, objective diagnosis of PT is sometimes limited because 1) audible bruit is absent on auscultation in some patients, 2) abnormal vascular structures found in radiologic evaluation is not always pathognomonic because they can be found in asymptomatic subjects as well, and 3) although an objective diagnostic tool using transcanal sound recording has recently been introduced, special equipment is needed. In this regard, recent studies that have reported ipsilateral low-frequency hearing loss (LFHL) on pure-tone audiometry (PTA) in some patients with PT, and its recovery after successful management, prompted us to conduct a retrospective observational study on the characteristics of the audiometric profile, the association between the audiometric profile and radiologic findings, and pre- and posttreatment changes in low-frequency hearing thresholds in PT patients. We tested two hypotheses: PT patients with marked vascular pathologies located close to the cochlea may show ipsilateral pseudo-LFHL (PLFHL) because of the masking effects of the PT itself, and their PLFHL may disappear if their vascular pathology is successfully managed by surgical or endovascular intervention. Retrospective case review. Tertiary referral center. A total of 85 PT subjects who underwent both audiologic and radiologic examinations. All patients' pre- and posttreatment PTA thresholds and radiologic findings were analyzed. By comparing the LFHL (an ipsilateral hearing threshold greater than 10 dB HL at both 250 and 500 Hz or greater than 20 dB HL at either 250 or 500 Hz compared with the contralateral side) group and a non-LFHL group with regard to the incidence of vascular structural abnormalities, we evaluated the incidence of abnormal vascular structures in the head and neck between the LFHL and non-LFHL groups. In addition, by comparing pre- and posttreatment PTA thresholds of seven PT patients with ipsilateral LFHL, we further evaluated the changes in low-frequency hearing thresholds and their role as an objective sign for diagnosis and outcome evaluation. Of 85 patients, 22 (25.9%) presented with ipsilateral LFHL. Compared with patients without this condition, patients with ipsilateral LFHL showed a significantly higher rate of abnormal vascular structure. In addition, most of the radiologic abnormalities found in the LFHL group were highly suspicious causative lesions that are responsible for the perception of PT according to the previous literature. In eight PT patients with ipsilateral LFHL who underwent both pre- and posttreatment audiograms, the average posttreatment pure-tone threshold at 250 Hz showed significant improvement compared with the pretreatment threshold. PT patients presenting with ipsilateral LFHL have higher possibility of having a discrete vascular pathology near the cochlea on radiologic evaluation. As ipsilateral LFHL improves in most patients after treatment, LFHL in patients with PT may be PLFHL because of the masking effects of the pulsatile sound, and the changes in the low-frequency thresholds may be applicable for objective diagnosis and evaluation of the effects of the treatment.

  5. Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin.

    PubMed

    Egaña, José Tomás; Condurache, Alexandru; Lohmeyer, Jörn Andreas; Kremer, Mathias; Stöckelhuber, Beate M; Lavandero, Sergio; Machens, Hans-Günther

    2009-03-01

    Neovascularization plays a pivotal role in tissue engineering and tissue regeneration. However, reliable technologies to visualize and quantify blood vessel networks in target tissue areas are still pending. In this work, we introduce a new method which allows comparing vascularization levels in normal and tissue-engineered skin. Normal skin was isolated, and vascular dermal regeneration was analyzed based on tissue transillumination and computerized digital segmentation. For tissue-engineered skin, a bilateral full skin defect was created in a nude mouse model and then covered with a commercially available scaffold for dermal regeneration. After 3 weeks, the whole skin (including scaffold for dermal regeneration) was harvested, and vascularization levels were analyzed. The blood vessel network in the skin was better visualized by transillumination than by radio-angiographic studies, the gold standard for angiographies. After visualization, the whole vascular network was digitally segmented showing an excellent overlapping with the original pictures. Quantification over the digitally segmented picture was performed, and an index of vascularization area (VAI) and length (VLI) of the vessel network was obtained in target tissues. VAI/VLI ratio was calculated to obtain the vessel size index. We present a new technique which has several advantages compared to others, as animals do not require intravascular perfusions, total areas of interest can be quantitatively analyzed at once, and the same target tissue can be processed for further experimental analysis.

  6. Prediction of heart abnormality using MLP network

    NASA Astrophysics Data System (ADS)

    Hashim, Fakroul Ridzuan; Januar, Yulni; Mat, Muhammad Hadzren; Rizman, Zairi Ismael; Awang, Mat Kamil

    2018-02-01

    Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network, this paper tries to develop a program that allows the detection of heart abnormality activity. Utilizing several training algorithms with Purelin activation function, an amount of heartbeat signals received through the electrocardiogram (ECG) will be employed to condition the MLP network.

  7. Effect of Prevascularization on In Vivo Vascularization of Poly(Propylene fumarate)/Fibrin Scaffolds

    PubMed Central

    Mishra, Ruchi; Roux, Brianna M.; Posukonis, Megan; Bodamer, Emily; Brey, Eric M.; Fisher, John P.; Dean, David

    2016-01-01

    The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week preculture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mice model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing NP to 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds. PMID:26606451

  8. Dynamics of pulsatile flow in fractal models of vascular branching networks.

    PubMed

    Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt

    2009-07-01

    Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.

  9. pyNS: an open-source framework for 0D haemodynamic modelling.

    PubMed

    Manini, Simone; Antiga, Luca; Botti, Lorenzo; Remuzzi, Andrea

    2015-06-01

    A number of computational approaches have been proposed for the simulation of haemodynamics and vascular wall dynamics in complex vascular networks. Among them, 0D pulse wave propagation methods allow to efficiently model flow and pressure distributions and wall displacements throughout vascular networks at low computational costs. Although several techniques are documented in literature, the availability of open-source computational tools is still limited. We here present python Network Solver, a modular solver framework for 0D problems released under a BSD license as part of the archToolkit ( http://archtk.github.com ). As an application, we describe patient-specific models of the systemic circulation and detailed upper extremity for use in the prediction of maturation after surgical creation of vascular access for haemodialysis.

  10. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  11. Pulse wave velocity in the microcirculation reflects both vascular compliance and resistance: Insights from computational approaches.

    PubMed

    Pan, Qing; Wang, Ruofan; Reglin, Bettina; Fang, Luping; Yan, Jing; Cai, Guolong; Kuebler, Wolfgang M; Pries, Axel R; Ning, Gangmin

    2018-05-05

    PWV is the speed of pulse wave propagation through the circulatory system. mPWV emerges as a novel indicator of hypertension, yet it remains unclear how different vascular properties affect mPWV. We aim to identify the biomechanical determinants of mPWV. A 1D model was used to simulate PWV in a rat mesenteric microvascular network and, for comparison, in a human macrovascular arterial network. Sensitivity analysis was performed to assess the relationship between PWV and vascular compliance and resistance. The 1D model enabled adequate simulation of PWV in both micro- and macrovascular networks. Simulated arterial PWV changed as a function of vascular compliance but not resistance, in that arterial PWV varied at a rate of 0.30 m/s and -6.18 × 10 -3  m/s per 10% increase in vascular compliance and resistance, respectively. In contrast, mPWV depended on both vascular compliance and resistance, as it varied at a rate of 2.79 and -2.64 cm/s per 10% increase in the respective parameters. The present study identifies vascular compliance and resistance in microvascular networks as critical determinants of mPWV. We anticipate that mPWV can be utilized as an effective indicator for the assessment of microvascular biomechanical properties. © 2018 John Wiley & Sons Ltd.

  12. NO/redox disequilibrium in the failing heart and cardiovascular system

    PubMed Central

    Hare, Joshua M.; Stamler, Jonathan S.

    2005-01-01

    There is growing evidence that the altered production and/or spatiotemporal distribution of reactive oxygen and nitrogen species creates oxidative and/or nitrosative stresses in the failing heart and vascular tree, which contribute to the abnormal cardiac and vascular phenotypes that characterize the failing cardiovascular system. These derangements at the integrated system level can be interpreted at the cellular and molecular levels in terms of adverse effects on signaling elements in the heart, vasculature, and blood that subserve cardiac and vascular homeostasis. PMID:15765132

  13. Variation in family physicians' recording of auscultation abnormalities in patients with acute cough is not explained by case mix. A study from 12 European networks.

    PubMed

    Francis, Nick A; Melbye, Hasse; Kelly, Mark J; Cals, Jochen W L; Hopstaken, Rogier M; Coenen, Samuel; Butler, Christopher C

    2013-06-01

    Conflicting data on the diagnostic and prognostic value of auscultation abnormalities may be partly explained by inconsistent use of terminology. To describe general practitioners use of chest auscultation abnormality terms for patients presenting with acute cough across Europe, and to explore the influence of geographic location and case mix on use of these terms. Clinicians recorded whether 'diminished vesicular breathing', 'wheezes', 'crackles' and 'rhonchi' were present in an observational study of adults with acute cough in 13 networks in 12 European countries. We describe the use of these terms overall and by network, and used multilevel logistic regression to explore variation by network, controlling for patients' gender, age, comorbidities, smoking status and symptoms. 2345 patients were included. Wheeze was the auscultation abnormality most frequently recorded (20.6% overall) with wide variation by network (range: 8.3-30.8%). There was similar variation for other auscultation abnormalities. After controlling for patient characteristics, network was a significant predictor of auscultation abnormalities with odds ratios for location effects ranging from 0.37 to 4.46 for any recorded auscultation abnormality, and from 0.25 to 3.14 for rhonchi. There is important variation in recording chest auscultation abnormalities by general practitioners across Europe, which cannot be explained by differences in patient characteristics. There is a need and opportunity for standardization in the detection and classification of lung sounds.

  14. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.

    PubMed

    Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P

    2013-05-01

    Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.

  15. Tansig activation function (of MLP network) for cardiac abnormality detection

    NASA Astrophysics Data System (ADS)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  16. Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs

    PubMed Central

    Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali

    2014-01-01

    Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845

  17. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  18. Harnessing Electrostatic Forces to Grow Bio-inspired Hierarchical Vascular Networks

    NASA Astrophysics Data System (ADS)

    Behler, Kristopher; Melrose, Zachary; Schott, Andrew; Wetzel, Eric

    2012-02-01

    Vascular networks provide a system for fluid distribution. Artificial vascular materials with enhanced properties are currently being developed that could ultimately be integrated into systems reliant upon fluid transport while retaining their structural properties. An uninterrupted and controllable supply of liquid is optimal for many applications such as continual self-healing materials, in-situ delivery of index matched fluids, thermal management and drug delivery systems could benefit from a bio-inspired vascular approach that combines complex network geometries with minimal processing parameters. Two such approaches to induce vascular networks are electrohydrodynamic viscous fingering (EHVF) and electrical treeing (ET). EHVF is a phenomenon that occurs when a low viscosity liquid is forced through a high viscosity fluid or matrix, resulting in branches due to capillary and viscous forces in the high viscosity material. By applying voltages of 0 -- 60 kV, finger diameter is reduced. ET is the result of partial discharges in a dielectric material. In the vicinity of a small diameter electrode, the local electric field is greater than the global dielectric strength, causing a localized, step-wise, breakdown to occur forming a highly branched interconnected structure. ET is a viable method to produce networks on a smaller, micron, scale than the products of the EHVF method.

  19. Cardiac abnormality prediction using HMLP network

    NASA Astrophysics Data System (ADS)

    Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril

    2018-02-01

    Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.

  20. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  1. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  2. Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    PubMed Central

    2010-01-01

    Objective To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children. Study design Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009. Results 21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications. Conclusion Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions. PMID:20128925

  3. Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon

    2015-12-01

    In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature. Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering. © 2015 American Heart Association, Inc.

  4. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  5. Vascular pattern formation in plants.

    PubMed

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Protecting against vascular disease in brain

    PubMed Central

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  7. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  8. PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling.

    PubMed

    Bernabeu, Miguel O; Jones, Martin L; Nash, Rupert W; Pezzarossa, Anna; Coveney, Peter V; Gerhardt, Holger; Franco, Claudio A

    2018-05-08

    In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  10. A case report of spinal dural arteriovenous fistula: origins, determinants, and consequences of abnormal vascular malformations.

    PubMed

    Zakhary, Sherry M; Hoehmann, Christopher L; Cuoco, Joshua A; Hitscherich, Kyle; Alam, Hamid; Torres, German

    2017-06-01

    A spinal dural arteriovenous fistula is an abnormally layered connection between radicular arteries and venous plexus of the spinal cord. This vascular condition is relatively rare with an incidence of 5-10 cases per million in the general population. Diagnosis of spinal dural arteriovenous fistula is differentiated by contrast-enhanced magnetic resonance angiography or structural magnetic resonance imaging, but a definitive diagnosis requires spinal angiography methods. Here, we report a case of a 67-year-old female with a spinal dural arteriovenous fistula, provide a pertinent clinical history to the case nosology, and discuss the biology of adhesive proteins, chemotactic molecules, and transcription factors that modify the behavior of the vasculature to possibly cause sensorimotor deficits.

  11. Imaging features of non-traumatic vascular liver emergencies.

    PubMed

    Onur, Mehmet Ruhi; Karaosmanoglu, Ali Devrim; Akca, Onur; Ocal, Osman; Akpinar, Erhan; Karcaaltincaba, Musturay

    2017-05-01

    Acute non-traumatic liver disorders can originate from abnormalities of the hepatic artery, portal vein and hepatic veins. Ultrasonography and computed tomography can be used in non-traumatic acute vascular liver disorders according to patient status, indication and appropriateness of imaging modality. Awareness of the imaging findings, in the appropriate clinical context, is crucial for prompt and correct diagnosis, as delay may cause severe consequences with significant morbidity and mortality. This review article will discuss imaging algorithms, and multimodality imaging findings for suspected acute vascular disorders of the liver.

  12. Vascular involvement in systemic sclerosis (scleroderma)

    PubMed Central

    Pattanaik, Debendra; Brown, Monica; Postlethwaite, Arnold E

    2011-01-01

    Systemic sclerosis (SSc) is an acquired multiorgan connective tissue disease with variable mortality and morbidity dictated by clinical subset type. The etiology of the basic disease and pathogenesis of the systemic autoimmunity, fibrosis, and fibroproliferative vasculopathy are unknown and debated. In this review, the spectrum of vascular abnormalities and the options currently available to treat the vascular manifestations of SSc are discussed. Also discussed is how the hallmark pathologies (ie, how autoimmunity, vasculopathy, and fibrosis of the disease) might be effected and interconnected with modulatory input from lysophospholipids, sphingosine 1-phosphate, and lysophosphatidic acid. PMID:22096374

  13. Common Leg Injuries of Long-Distance Runners

    PubMed Central

    Gallo, Robert A.; Plakke, Michael; Silvis, Matthew L.

    2012-01-01

    Context Long-distance running (greater than 3000 m) is often recommended to maintain a healthy lifestyle. Running injury rates increase significantly when weekly mileage extends beyond 40 miles cumulatively. With the development of running analysis and other diagnostic tests, injuries to the leg secondary to bone, musculotendinous, and vascular causes can be diagnosed and successfully managed. Evidence Acquisition Searches used the terms running, injuries, lower extremity, leg, medial tibial stress syndrome, compartment syndrome, stress fractures, popliteal artery entrapment, gastrocnemius soleus tears, and Achilles tendinopathy. Sources included Medline, Google Scholar, and Ovid from 1970 through January 2012. Results Tibial stress fractures and medial tibial stress syndrome can sometimes be prevented and/or treated by correcting biomechanical abnormalities. Exertional compartment syndrome and popliteal artery entrapment syndrome are caused by anatomic abnormalities and are difficult to treat without surgical correction. Conclusion Leg pain due to bone, musculotendinous, and vascular causes is common among long-distance runners. Knowledge of the underlying biomechanical and/or anatomic abnormality is necessary to successfully treat these conditions. PMID:24179587

  14. Characterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging

    NASA Astrophysics Data System (ADS)

    Reitan, Nina Kristine; Thuen, Marte; Goa, Pa˚L. Erik; de Lange Davies, Catharina

    2010-05-01

    Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Dextran (40 kDa) and Gadomer were used as molecular tracers for CLSM and DCE-MRI, respectively. A significant correlation was found between permeability indicators. The extravasation rate Ki as measured by CLSM correlated positively with DCE-MRI parameters, such as the volume transfer constant Ktrans and the initial slope of the contrast agent concentration-time curve. This demonstrates that these two techniques give complementary information. Extravasation was further related to microvascular structure and was found to correlate with the fractal dimension and vascular density. The structural parameter values that were obtained from CLSM images were higher for abnormal tumor vasculature than for normal vessels.

  15. Scleroderma en coup de sabre with recurrent episodes of brain hemorrhage.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Oka, Tomonori; Miyagaki, Tomomitsu; Tamaki, Zenshiro; Nonaka, Senshu; Sato, Shinichi

    2016-02-01

    We report a 39-year-old man referred to our facility with linear sclerotic lesions along the several Blaschko's lines of the scalp. A year before the referral, he had had an episode of brain hemorrhage, although there was no evidence of vascular malformation or any other risk factors of brain hemorrhage for his young age. On the diagnosis of scleroderma en coup de sabre, prednisolone intake was initiated, and the skin lesions were well controlled. However, in the course of our follow up, he had another episode of brain hemorrhage, again without any evidence of cerebral vascular abnormalities. Organic intracranial abnormalities in this disease are well-documented, but there have been few reports on comorbid recurrent brain hemorrhages. We herein discuss the possible relationship of the skin lesions with the brain hemorrhages in our case, taking notice of the implication of developmental abnormalities behind these apparently independent phenomena inside and outside the cranium. © 2015 Japanese Dermatological Association.

  16. Inner retinal vasculopathy in Zika virus disease.

    PubMed

    Singh, Mandeep S; Marquezan, Maria Carolina; Omiadze, Revaz; Reddy, Ashvini K; Belfort, Rubens; May, William N

    2018-06-01

    Zika virus infection is associated with vision-threatening ocular complications including uveitis and outer retinopathy. The aim of this report is to describe a case of an adult patient with serologically confirmed Zika infection who presented with retinal vascular abnormalities that coincided with systemic post-viral neurological manifestations of the disease. A 34-year-old white female presented with symptoms of peripheral neuropathy following serologically confirmed Zika virus infection that was acquired in Puerto Rico four months prior to presentation. Ocular evaluation revealed perifoveal microaneurysms which were not associated with visual symptoms. These data potentially expand the phenotypic spectrum of Zika virus retinopathy. In addition to outer retinal abnormalities which are well-described in infants and adults, inner retinal vascular abnormalities may also occur and may be temporally associated with post-viral neurological sequelae of Zika virus infection. Clinicians should be aware of potential retinal involvement in affected patients who present with neurological symptoms after recovery from acute Zika virus infection.

  17. Perfusion lung imaging in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, M.; Miniati, M.; Di Ricco, G.

    1986-07-01

    In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less

  18. Phosphate toxicity and vascular mineralization.

    PubMed

    Razzaque, Mohammed S

    2013-01-01

    Vascular calcification or mineralization is a major complication seen in patients with advanced stages of chronic kidney disease (CKD), and it is associated with markedly increased morbidity and mortality. Most of the CKD-related vascular mineralization is attributable to abnormal mineral ion metabolism. Elevated serum calcium and phosphate levels, along with increased calcium-phosphorus byproduct, and the use of active vitamin D metabolites are thought to be the predisposing factors for developing vascular mineralization in patients with CKD. Recent experimental studies have shown that vascular mineralization can be suppressed by reducing serum phosphate levels, even in the presence of extremely high serum calcium and 1,25-dihydroxyvitamin D levels, indicating that reducing 'phosphate toxicity' should be the important therapeutic priority in CKD patients for minimizing the risk of developing vascular mineralization and the disease progression. Copyright © 2013 S. Karger AG, Basel.

  19. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels

    PubMed Central

    Zanotelli, Matthew R.; Ardalani, Hamisha; Zhang, Jue; Hou, Zhonggang; Nguyen, Eric H.; Swanson, Scott; Nguyen, Bao Kim; Bolin, Jennifer; Elwell, Angela; Bischel, Lauren L.; Xie, Angela W.; Stewart, Ron; Beebe, David J.; Thomson, James A.; Schwartz, Michael P.; Murphy, William L.

    2016-01-01

    Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14 days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. PMID:26945632

  20. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    PubMed

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  1. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  2. Social media in vascular surgery.

    PubMed

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  3. What determines blood vessel structure? Genetic prespecification vs. hemodynamics.

    PubMed

    Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne

    2006-12-01

    Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.

  4. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

    PubMed

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-11-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. We reported a method for preparing autologous extracellular matrix scaffolds, murine collagen-Ph hydrogels, and demonstrated its suitability for use in supporting human progenitor cell-based formation of 3D vascular networks in vitro and in vivo. Results showed extensive human vascular networks can be generated within 7 days, engineered vascular density inside collagen-Ph constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with existing vasculature to further support the survival of host muscle tissues. Moreover, optimized conditions of cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Presence of cardiovascular structural changes in essential hypertensive patients with coronary microvascular disease and effects of long-term treatment.

    PubMed

    Virdis, A; Ghiadoni, L; Lucarini, A; Di Legge, V; Taddei, S; Salvetti, A

    1996-04-01

    In asymptomatic essential hypertensive patients with angiographically normal coronary arteries and without left ventricular hypertrophy, dipyridamole-induced ischemic-like ST segment depression may be a marker of coronary microvascular disease. In this study we evaluated, first, whether this cardiac abnormality is linked to structural or functional vascular abnormalities, and second, the effect of antihypertensive treatment by 12-month administration of the angiotensin converting enzyme (ACE) inhibitor captopril (50 mg twice a day orally). In essential hypertensives with dipypridamole echocardiography stress test (DET) (DET+, n = 8) and without (DET-, n = 8) ST segment depression greater than 0.1 mV during intravenous dipyridamole infusion (0.84 mg/kg over 10 min), we studied the forearm blood flow (FBF, venous plethysmography, mL/100) modifications induced by intrabrachial acetylcholine (Ach) (0.15, 0.45, 1.5, 4.5, 15 micrograms/100 mL/min x 5 min each), an endothelium-dependent vasodilator, and by sodium nitroprusside (SNP) (1, 2, 4 micrograms/100 mL/min x 5 min each), a smooth muscle cell relaxant compound. Minimal forearm vascular resistances (MFVR), an index of arteriolar structural changes, were also calculated. Both Ach and SNP caused greater vasodilation in DET- as compared to DET+ while MFVRs were lower in DET- compared to DET+. After treatment, both DET+ and DET- patients showed a significant and similar reduction in blood pressure and left ventricular mass index, while vasodilation to acetylcholine and sodium nitroprusside was increased only in the DET+ group. In addition, forearm minimal vascular resistances were significantly reduced only in DET+ patients, who showed disappearance of dipyridamole-induced ischemic-like ST segment depression. In conclusion, these data confirm that essential hypertensive patients with microvascular coronary disease are characterized by the presence of structural changes in the forearm vascular bed. Our results also indicate that both cardiac and forearm vascular abnormalities can be reversed by antihypertensive treatment with an ACE inhibitor.

  6. Glacier moraine formation-mimicking colloidal particle assembly in microchanneled, bioactive hydrogel for guided vascular network construction.

    PubMed

    Lee, Min Kyung; Rich, Max H; Shkumatov, Artem; Jeong, Jae Hyun; Boppart, Marni D; Bashir, Rashid; Gillette, Martha U; Lee, Jonghwi; Kong, Hyunjoon

    2015-01-28

    This study demonstrates that a new method to align microparticles releasing bioactive molecules in microchannels of a hydrogel allows the guiding of growth direction and spacing of vascular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Large-Scale Hypoconnectivity Between Resting-State Functional Networks in Unmedicated Adolescent Major Depressive Disorder.

    PubMed

    Sacchet, Matthew D; Ho, Tiffany C; Connolly, Colm G; Tymofiyeva, Olga; Lewinn, Kaja Z; Han, Laura Km; Blom, Eva H; Tapert, Susan F; Max, Jeffrey E; Frank, Guido Kw; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2016-11-01

    Major depressive disorder (MDD) often emerges during adolescence, a critical period of brain development. Recent resting-state fMRI studies of adults suggest that MDD is associated with abnormalities within and between resting-state networks (RSNs). Here we tested whether adolescent MDD is characterized by abnormalities in interactions among RSNs. Participants were 55 unmedicated adolescents diagnosed with MDD and 56 matched healthy controls. Functional connectivity was mapped using resting-state fMRI. We used the network-based statistic (NBS) to compare large-scale connectivity between groups and also compared the groups on graph metrics. We further assessed whether group differences identified using nodes defined from functionally defined RSNs were also evident when using anatomically defined nodes. In addition, we examined relations between network abnormalities and depression severity and duration. Finally, we compared intranetwork connectivity between groups and assessed the replication of previously reported MDD-related abnormalities in connectivity. The NBS indicated that, compared with controls, depressed adolescents exhibited reduced connectivity (p<0.024, corrected) between a specific set of RSNs, including components of the attention, central executive, salience, and default mode networks. The NBS did not identify group differences in network connectivity when using anatomically defined nodes. Longer duration of depression was significantly correlated with reduced connectivity in this set of network interactions (p=0.020, corrected), specifically with reduced connectivity between components of the dorsal attention network. The dorsal attention network was also characterized by reduced intranetwork connectivity in the MDD group. Finally, we replicated previously reported abnormal connectivity in individuals with MDD. In summary, adolescents with MDD show hypoconnectivity between large-scale brain networks compared with healthy controls. Given that connectivity among these networks typically increases during adolescent neurodevelopment, these results suggest that adolescent depression is associated with abnormalities in neural systems that are still developing during this critical period.

  8. Large-Scale Hypoconnectivity Between Resting-State Functional Networks in Unmedicated Adolescent Major Depressive Disorder

    PubMed Central

    Sacchet, Matthew D; Ho, Tiffany C; Connolly, Colm G; Tymofiyeva, Olga; Lewinn, Kaja Z; Han, Laura KM; Blom, Eva H; Tapert, Susan F; Max, Jeffrey E; Frank, Guido KW; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2016-01-01

    Major depressive disorder (MDD) often emerges during adolescence, a critical period of brain development. Recent resting-state fMRI studies of adults suggest that MDD is associated with abnormalities within and between resting-state networks (RSNs). Here we tested whether adolescent MDD is characterized by abnormalities in interactions among RSNs. Participants were 55 unmedicated adolescents diagnosed with MDD and 56 matched healthy controls. Functional connectivity was mapped using resting-state fMRI. We used the network-based statistic (NBS) to compare large-scale connectivity between groups and also compared the groups on graph metrics. We further assessed whether group differences identified using nodes defined from functionally defined RSNs were also evident when using anatomically defined nodes. In addition, we examined relations between network abnormalities and depression severity and duration. Finally, we compared intranetwork connectivity between groups and assessed the replication of previously reported MDD-related abnormalities in connectivity. The NBS indicated that, compared with controls, depressed adolescents exhibited reduced connectivity (p<0.024, corrected) between a specific set of RSNs, including components of the attention, central executive, salience, and default mode networks. The NBS did not identify group differences in network connectivity when using anatomically defined nodes. Longer duration of depression was significantly correlated with reduced connectivity in this set of network interactions (p=0.020, corrected), specifically with reduced connectivity between components of the dorsal attention network. The dorsal attention network was also characterized by reduced intranetwork connectivity in the MDD group. Finally, we replicated previously reported abnormal connectivity in individuals with MDD. In summary, adolescents with MDD show hypoconnectivity between large-scale brain networks compared with healthy controls. Given that connectivity among these networks typically increases during adolescent neurodevelopment, these results suggest that adolescent depression is associated with abnormalities in neural systems that are still developing during this critical period. PMID:27238621

  9. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy.

    PubMed

    Gleichgerrcht, Ezequiel; Kocher, Madison; Bonilha, Leonardo

    2015-11-01

    The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  10. Social network composition of vascular patients and its associations with health behavior and clinical risk factors.

    PubMed

    Heijmans, Naomi; van Lieshout, Jan; Wensing, Michel

    2017-01-01

    This study aimed to explore linkages of patients' social network composition with health behaviors and clinical risk factors. This observational study was embedded in a project aimed at improving cardiovascular risk management (CRVM) in primary care. 657 vascular patients (227 with cardiovascular disease, 380 at high vascular risk), mean age 72.4 (SD 9.4) years, were recruited as were individuals patients considered important for dealing with their disease, so called alters (n = 487). Network composition was measured with structured patient questionnaires. Both patients and alters completed questionnaires to measure health behavior (habits for physical activity, diet, and smoking). Clinical risk factors (systolic blood pressure, LDL cholesterol level, and body mass index) were extracted from patients' medical records. Six logistic regression analyses, using generalized estimating equations, were used to test three hypothesized effects of network composition (having alters with healthful behaviors, without depression, and with specialized knowledge) on six outcomes, adjusted for demographic, personal and psychological characteristics. Having alters with overall healthful behavior was related to healthful patient diet (OR 2.14, 95%CI: 1.52-3.02). Having non-smoking alters in networks was related to reduced odds for patient smoking (OR 0.17, 95%CI: 0.05-0.60). No effects of presence of non-depressed alters were found. Presence of alters with specialized knowledge on CVRM was inversely related to healthful diet habits of patients (OR 0.47, 95%CI 0.24-0.89). No significant associations between social network composition and clinical risk factors were found. Diet and smoking, but not physical exercise and clinical risk factors, were associated with social network composition of patients with vascular conditions. In this study of vascular patients, controlling for both personal and psychological factors, fewer network influences were found compared to previous research. Further research is needed to examine network structure characteristics as well as the role of psychological factors to enhance understanding health behavior of patients involved in CVRM.

  11. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  12. Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct

    PubMed Central

    Sukmana, Irza

    2012-01-01

    The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881

  13. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy

    PubMed Central

    Tal, Reshef; Segars, James H.

    2014-01-01

    Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids. PMID:24077979

  14. Segmented swept source optical coherence tomography angiography assessment of the perifoveal vasculature in patients with X-linked juvenile retinoschisis: a serial case report.

    PubMed

    Stringa, Francesco; Tsamis, Emmanouli; Papayannis, Alessandro; Chwiejczak, Katarzyna; Jalil, Assad; Biswas, Susmito; Ahmad, Hassan; Stanga, Paulo Eduardo

    2017-01-01

    To describe perifoveal microvascular changes occurring in X-linked juvenile retinoschisis (XLRS) using swept source optical coherence tomography angiography (SS OCTA). This is a serial case report of three patients. Retrospective data of patients affected by XLRS were collected. Structural optical coherence tomography (OCT) and color fundus photography (CFPh) were carried out with Topcon ® OCT 2000 3D OCT as part of the standard care. Two patients were imaged on Topcon Atlantis ® SS OCTA and one on Topcon Triton ® SS OCTA. SS OCTA images were acquired using the 3 × 3 mm fovea-centered cubes scanning protocol. Analysis of both perifoveal superficial vascular plexus (pSVP) and perifoveal deep vascular plexus (pDVP) was performed by two observers after automated segmentation. Four eyes of three males (mean age 14 ± 3.8 years) were analyzed. All eyes showed foveoschisis on CFPh images. OCT B-scans of three eyes showed schistic cysts in the ganglion cell layer, inner nuclear layer (INL) and outer nuclear layer (ONL); in one eye, cysts were depicted in INL and ONL only. In two eyes, SS OCTA showed abnormal foveal avascular zone (FAZ) shape in the pSVP, and in the other two, FAZ shape was abnormal in both plexuses. In all eyes, retinal vascular abnormalities (ie, microvascular protrusions) were present in pDVP. SS OCTA can depict perifoveal microvascular changes in young patients affected by XLRS. In this study, the structural and vascular changes seem to be more evident in the pDVP and may represent a useful biomarker of prognosis.

  15. Redox-dependent impairment of vascular function in sickle cell disease.

    PubMed

    Aslan, Mutay; Freeman, Bruce A

    2007-12-01

    The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.

  16. Histopathological features of Proteus syndrome.

    PubMed

    Hoey, S E H; Eastwood, D; Monsell, F; Kangesu, L; Harper, J I; Sebire, N J

    2008-05-01

    Proteus syndrome is a rare, sporadic overgrowth disorder for which the underlying genetic defect remains unknown. Although the clinical course is well-described there is no systematic histopathological description of the lesional pathology. To describe the histopathological features encountered in a series of patients with Proteus syndrome from a single centre. Patients with Proteus syndrome who had undergone therapeutic surgical resection or biopsy were identified from a database and the histopathological findings were reviewed, with particular regard to descriptive features of the underlying tissue abnormality. There were 18 surgical specimens from nine patients, median age 4 years (range 1-9), classified into four main categories: soft-tissue swellings (lipomatous lesions), vascular anomalies (vascular malformation and haemangioma), macrodactyly (hamartomatous overgrowth) and others (sebaceous naevus and nonspecific features). In all cases, the clinical features of overgrowth were due to increased amounts of disorganized tissue, indicating a hamartomatous-type defect in which normal tissue constituents were present, but with an abnormal distribution and architecture. Vascular malformations represented a prominent category of lesions, accounting for 50% of the specimens, predominantly comprising lymphatic and lymphovascular malformations. No malignancy or cytological atypia was identified in any case. The histopathological features of lesions resected from children with Proteus syndrome predominantly include hamartomatous mixed connective tissue lesions, benign neoplasms such as lipomata, and lymphatic-rich vascular malformations.

  17. Subtle gray matter changes in temporo-parietal cortex associated with cardiovascular risk factors.

    PubMed

    de Toledo Ferraz Alves, Tânia Corrêa; Scazufca, Márcia; Squarzoni, Paula; de Souza Duran, Fábio Luiz; Tamashiro-Duran, Jaqueline Hatsuko; Vallada, Homero P; Andrei, Anna; Wajngarten, Mauricio; Menezes, Paulo R; Busatto, Geraldo F

    2011-01-01

    Vascular risk factors may play an important role in the pathophysiology of Alzheimer's disease (AD). While there is consistent evidence of gray matter (GM) abnormalities in earlier stages of AD, the presence of more subtle GM changes associated with vascular risk factors in the absence of clinically significant vascular events has been scarcely investigated. This study aimed to examine GM changes in elderly subjects with cardiovascular risk factors. We predicted that the presence of cardiovascular risk would be associated with GM abnormalities involving the temporal-parietal cortices and limbic structures. We recruited 248 dementia-free subjects, age range 66-75 years, from the population-based "São Paulo Ageing and Health Study", classified in accordance to their Framingham Coronary Heart Disease Risk (FCHDR) score to undergo an MRI scan. We performed an overall analysis of covariance, controlled to total GM and APOE4 status, to investigate the presence of regional GM abnormalities in association with FCHDR subgroups (high-risk, medium-risk, and low-risk), and followed by post hoc t-test. We also applied a co-relational design in order to investigate the presence of linear progression of the GM vulnerability in association with cardiovascular risk factor. Voxel-based morphometry showed that the presence of cardiovascular risk factors were associated with regional GM loss involving the temporal cortices bilaterally. Those results retained statistical significance after including APOE4 as a covariate of interest. We also observed that there was a negative correlation between FCHDR scores and rGM distribution in the parietal cortex. Subclinical cerebrovascular abnormalities involving GM loss may provide an important link between cardiovascular risk factors and AD.

  18. Cell-microenvironment interactions and architectures in microvascular systems

    PubMed Central

    Bersini, Simone; Yazdi, Iman K.; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-01-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. PMID:27417066

  19. Cell-microenvironment interactions and architectures in microvascular systems.

    PubMed

    Bersini, Simone; Yazdi, Iman K; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-11-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies.

    PubMed

    Chen, Chiao-Chi V; Chen, Yu-Chen; Hsiao, Han-Yun; Chang, Chen; Chern, Yijuang

    2013-07-05

    The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.

  1. Construction and validation of a scale of assessment of self-care behaviours anticipatory to creation of arteriovenous fistula.

    PubMed

    Sousa, Clemente Neves; Figueiredo, Maria Henriqueta; Dias, Vanessa Filipa; Teles, Paulo; Apóstolo, João Luís

    2015-12-01

    We developed a scale to assess the self-care behaviours developed by patients with end-stage renal disease to preserve the vascular network prior to construction of arteriovenous fistula. The possibility of creation of an arteriovenous fistula depends on the existence of an arterial and venous network in good condition, namely the size and elasticity of the vessels. It is essential to teach the person to develop self-care behaviours for the preservation of the vascular network, regardless of the modality of dialysis selected. Methodological study. The scale was developed based on clinical experience and research conducted by the researcher in the area of the vascular access for haemodialysis. The content of the scale was judged by two panels of experts for content validity. The revised version of the scale was administered to a convenience sample of 90 patients with end-stage renal disease. In the statistical analysis, we used the Cronbach's alpha, the Kaiser-Meyer-Olkin and scree plot and the principal component analysis with varimax rotation. A principal component analysis confirmed the univariate structure of the scale (KMO = 0·759, Bartlett's sphericity test-approximate χ(2) 142·201, p < 0·000). Cronbach's α is 0·831, varying between 0·711-0·879. This scale revealed properties that allow its use to assess the patients self-care behaviours regarding the preservation of the vascular network. This scale can be used to evaluate educational programmes for the development of self-care behaviours in the preservation of vascular network. This scale can identify not only the patients that are able to take care of their vascular network but also the proportion of patients who are not able to do it, that need to be educated. © 2015 John Wiley & Sons Ltd.

  2. A prospective study for the detection of vascular injury in adult and pediatric patients with cervicothoracic seat belt signs.

    PubMed

    Rozycki, Grace S; Tremblay, Lorraine; Feliciano, David V; Tchorz, Kathryn; Hattaway, Aaron; Fountain, Jack; Pettitt, Barbara J

    2002-04-01

    A delayed diagnosis of injury to cervicothoracic vessels from blunt trauma may cause significant adverse sequelae. The association of a cervicothoracic seat belt sign with such an injury is unknown. Algorithms were prospectively studied for the detection of occult vascular injury in patients with cervicothoracic seat belt signs. Patients with neck seat belt signs underwent arteriography or computed tomographic angiography (CTA). Those with thoracic seat belt signs underwent aortography/arteriography if a ruptured thoracic aorta or injury to a great vessel was suspected or a neurovascular abnormality was present. During a 17-month period, 797 patients were admitted to the trauma service secondary to motor vehicle crashes. One hundred thirty-one (16.4%) had cervical or thoracic seat belt signs. Four (3%) of the patients had carotid artery injuries, the presence of which was strongly associated with a Glasgow Coma Scale score < 14, an Injury Severity Score > 16 (p < 0.0001), and the presence of a clavicle and/or first rib fracture (p < 0.0037). Of the remaining patients, 17 had thoracic trauma. There were no vascular injuries in the children and only one had thoracic trauma. The algorithms are safe and accurate for the detection of cervicothoracic vascular injury in adult and pediatric patients with seat belt signs. The cervicothoracic seat belt mark and an abnormal physical examination are an effective combination in screening for cervicothoracic vascular injury.

  3. Heart in TLC

    MedlinePlus

    ... Although rare, some patients have coarctation of the aorta, renal artery stenosis, or thoracic or abdominal aneurysms. ... and thoracic vascular abnormalities, including coarctation of the aorta. An abdominal ultrasound is the initial modality of ...

  4. Asymmetric Branching in Biological Resource Distribution Networks

    NASA Astrophysics Data System (ADS)

    Brummer, Alexander Byers

    There is a remarkable relationship between an organism's metabolic rate (resting power consumption) and the organism's mass. It may be a universal law of nature that an organism's resting metabolic rate is proportional to its mass to the power of 3/4. This relationship, known as Kleiber's Law, appears to be valid for both plants and animals. This law is important because it implies that larger organisms are more efficient than smaller organisms, and knowledge regarding metabolic rates are essential to a multitude of other fields in ecology and biology. This includes modeling the interactions of many species across multiple trophic levels, distributions of species abundances across large spatial landscapes, and even medical diagnostics for respiratory and cardiovascular pathologies. Previous models of vascular networks that seek to identify the origin of metabolic scaling have all been based on the unrealistic assumption of perfectly symmetric branching. In this dissertation I will present a theory of asymmetric branching in self-similar vascular networks (published by Brummer et al. in [9]). The theory shows that there can exist a suite of vascular forms that result in the often observed 3/4 metabolic scaling exponent of Kleiber's Law. Furthermore, the theory makes predictions regarding major morphological features related to vascular branching patterns and their relationships to metabolic scaling. These predictions are suggestive of evolutionary convergence in vascular branching. To test these predictions, I will present an analysis of real mammalian and plant vascular data that shows: (i) broad patterns in vascular networks across entire animal kingdoms and (ii) within these patterns, plant and mammalian vascular networks can be uniquely distinguished from one another (publication in preparation by Brummer et al.). I will also present results from a computational study in support of point (i). Namely, that asymmetric branching may be the optimal strategy to balance the simultaneous demands of maximizing the number of nutrient exchange sites (capillaries or leaves) versus hydraulic resistance to resource transport (publication in preparation by Brummer et al.). Finally, I report on improved methods of estimating whole organism metabolism based solely on measurements of vasculature.

  5. Vascular loop in the cerebellopontine angle causing pulsatile tinnitus and headache: a case report

    PubMed Central

    Ramly, NA; Roslenda, AR; Suraya, A; Asma, A

    2014-01-01

    Tinnitus is a common disorder, it can be classified as pulsatile and non-pulsatile or objective and subjective. Pulsatile tinnitus is less common than non-pulsatile and can be due to vascular tumour such as glomus or vascular abnormality. We presented an interesting case of a 30 year-old Malay lady with a two-year history of pulsatile tinnitus which was worsening in three months duration. It was associated with intermittent headache. Clinical examination and tuning fork test were unremarkable. Apart from mild hearing loss at high frequency on the left ear, the pure tone audiogram (PTA) was otherwise normal. In view of the patient’s young age with no risk factor for high frequency loss, a magnetic resonance imaging (MRI) was performed to look for any abnormality in the cerebellopontine angle. It revealed a single vessel looping around the left vestibulocochlear and facial nerves at the cisternal portion, likely a branch of the anteroinferior cerebellar artery (AICA). Literature review on the pathophysiology and treatment option in this condition is discussed. PMID:26417253

  6. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Neuronal network models of epileptogenesis

    PubMed Central

    Abdullahi, Aminu T.; Adamu, Lawan H.

    2017-01-01

    Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy. PMID:28416779

  8. Hemodynamic Based Coronary Artery Aneurysm Thrombosis Risk Stratification in Kawasaki Disease Patients

    NASA Astrophysics Data System (ADS)

    Grande Gutierrez, Noelia; Mathew, M.; McCrindle, B.; Kahn, A.; Burns, J.; Marsden, A.

    2017-11-01

    Coronary artery aneurysms (CAA) as a result of Kawasaki Disease (KD) put patients at risk for thrombosis and myocardial infarction. Current AHA guidelines recommend CAA diameter >8 mm or Z-score >10 as the criterion for initiating systemic anticoagulation. Our hypothesis is that hemodynamic data derived from computational blood flow simulations is a better predictor of thrombosis than aneurysm diameter alone. Patient-specific coronary models were constructed from CMRI for a cohort of 10 KD patients (5 confirmed thrombosis cases) and simulations with fluid structure interaction were performed using the stabilized finite element Navier-Stokes solver available in SimVascular. We used a closed-loop lumped parameter network (LPN) to model the heart and vascular boundary conditions coupled numerically to the flow solver. An automated parameter estimation method was used to match LPN values to clinical data for each patient. Hemodynamic data analysis resulted in low correlation between Wall Shear Stress (WSS)/ Particle Residence Time (PRT) and CAA diameter but demonstrates the positive correlation between hemodynamics and adverse patient outcomes. Our results suggest that quantifying WSS and PRT should enable identification of regions at higher risk of thrombosis. We propose a quantitative method to non-invasively assess the abnormal flow in CAA following KD that could potentially improve clinical decision-making regarding anticoagulation therapy.

  9. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    PubMed

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  10. Building vascular networks.

    PubMed

    Bae, Hojae; Puranik, Amey S; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A; Khademhosseini, Ali

    2012-11-14

    Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.

  11. Building Vascular Networks

    PubMed Central

    Bae, Hojae; Puranik, Amey S.; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A.; Khademhosseini, Ali

    2013-01-01

    Only a few engineered tissues—skin, cartilage, bladder—have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology. PMID:23152325

  12. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Excimer laser phototherapy for the dissolution of vascular obstruction

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1984-01-09

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. 2 figures.

  14. Mixed vascular nevus syndrome: a report of four new cases and a literature review.

    PubMed

    Ruggieri, Martino; Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-10-01

    Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs . hypertrophy and brain megalencephaly/colpocephaly vs . cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction).

  15. Mixed vascular nevus syndrome: a report of four new cases and a literature review

    PubMed Central

    Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-01-01

    Background Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Methods Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. Results The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Conclusions Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs. hypertrophy and brain megalencephaly/colpocephaly vs. cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction). PMID:27942471

  16. Clinical and imaging features in lung torsion and description of a novel imaging sign.

    PubMed

    Hammer, Mark M; Madan, Rachna

    2018-04-01

    We set out to identify the clinical and imaging features seen in lung torsion, a rare but emergent diagnosis leading to vascular compromise of a lobe or entire lung. We retrospectively identified 10 patients with torsion who underwent chest CT. We evaluated each case for the presence of bronchial obstruction and abnormal fissure orientation. In seven patients who underwent contrast-enhanced CTs, we assessed for the presence of the antler sign, a novel sign seen on axial images demonstrating abnormal curvature of the artery and branches originating on one side. Five patients had right middle lobe (RML) torsion after right upper lobectomy, and the remaining occurred following thoracentesis, aortic surgery, or spontaneously. Chest CTs demonstrated bronchial obstruction in eight cases and presence of abnormal fissure orientation in four patients. The antler sign was present in three patients with whole-lung torsion and one patient with lobar torsion; vascular swirling was seen on 3-D images in all seven patients with contrast-enhanced CTs. Lung parenchymal imaging findings in lung torsion may be non-specific. Identification of the antler sign on contrast-enhanced chest CT, in combination with other signs such as bronchial obstruction and abnormal fissure orientation, indicates rotation of the bronchovascular pedicle. The presence of this sign should prompt further evaluation with 3-dimensional reconstructions.

  17. Hydrogels for Engineering of Perfusable Vascular Networks

    PubMed Central

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S. P.; Machens, Hans-Günther; Schilling, Arndt F.

    2015-01-01

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. PMID:26184185

  18. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice

    PubMed Central

    Cherubino, Mario; Valdatta, Luigi; Balzaretti, Riccardo; Pellegatta, Igor; Rossi, Federica; Protasoni, Marina; Tedeschi, Alessandra; Accolla, Roberto S; Bernardini, Giovanni; Gornati, Rosalba

    2016-01-01

    Aim: After in vivo implantation of cell-loaded devices, only the cells close to the capillaries can obtain nutrients to maintain their functions. It is known that factors secreted by stem cells, rather than stem cells themselves, are fundamental to guarantee new vascularization in the area of implant. Materials & methods: To investigate this possibility, we have grafted mice with Bilayer and Flowable Integra® scaffolds, loaded or not with human adipose-derived stem cells. Results: Our results support the therapeutic potential of human adipose-derived stem cells to induce new vascular networks of engineered organs and tissues. Conclusion: This finding suggests that our approach can help to form new vascular networks that allow sufficient vascularization of engineered organs and tissues in cases of difficult wound healing due to ischemic conditions. PMID:26965659

  19. Automated measurement of retinal blood vessel tortuosity

    NASA Astrophysics Data System (ADS)

    Joshi, Vinayak; Reinhardt, Joseph M.; Abramoff, Michael D.

    2010-03-01

    Abnormalities in the vascular pattern of the retina are associated with retinal diseases and are also risk factors for systemic diseases, especially cardiovascular diseases. The three-dimensional retinal vascular pattern is mostly formed congenitally, but is then modified over life, in response to aging, vessel wall dystrophies and long term changes in blood flow and pressure. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e. how curved or kinked a blood vessel, either vein or artery, appears along its course. We developed a new quantitative metric for vascular tortuosity, based on the vessel's angle of curvature, length of the curved vessel over its chord length (arc to chord ratio), number of curvature sign changes, and combined these into a unidimensional metric, Tortuosity Index (TI). In comparison to other published methods this method can estimate appropriate TI for vessels with constant curvature sign and vessels with equal arc to chord ratios, as well. We applied this method to a dataset of 15 digital fundus images of 8 patients with Facioscapulohumeral muscular dystrophy (FSHD), and to the other publically available dataset of 60 fundus images of normal cases and patients with hypertensive retinopathy, of which the arterial and venous tortuosities have also been graded by masked experts (ophthalmologists). The method produced exactly the same rank-ordered list of vessel tortuosity (TI) values as obtained by averaging the tortuosity grading given by 3 ophthalmologists for FSHD dataset and a list of TI values with high ranking correlation with the ophthalmologist's grading for the other dataset. Our results show that TI has potential to detect and evaluate abnormal retinal vascular structure in early diagnosis and prognosis of retinopathies.

  20. Flow effects of blood constitutive equations in 3D models of vascular anomalies

    NASA Astrophysics Data System (ADS)

    Neofytou, Panagiotis; Tsangaris, Sokrates

    2006-06-01

    The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.

  1. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism

    NASA Astrophysics Data System (ADS)

    Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei

    2017-08-01

    Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.

  2. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  3. Peripheral retinopathy in offspring of carriers of Norrie disease gene mutations. Possible transplacental effect of abnormal Norrin.

    PubMed

    Mintz-Hittner, H A; Ferrell, R E; Sims, K B; Fernandez, K M; Gemmell, B S; Satriano, D R; Caster, J; Kretzer, F L

    1996-12-01

    The Norrie disease (ND) gene (Xp11.3) (McKusick 310600) consists of one untranslated exon and two exons partially translated as the Norrie disease protein (Norrin). Norrin has sequence homology and computer-predicted tertiary structure of a growth factor containing a cystine knot motif, which affects endothelial cell migration and proliferation. Norrie disease (congenital retinal detachment), X-linked primary retinal dysplasia (congenital retinal fold), and X-linked exudative vitreoretinopathy (congenital macular ectopia) are allelic disorders. Blood was drawn for genetic studies from members of two families to test for ND gene mutations. Sixteen unaffected family members were examined ophthalmologically. If any retinal abnormality were identified, fundus photography and fluorescein angiography was performed. Family A had ND (R109stp), and family B had X-linked exudative vitreoretinopathy (R121L). The retinas of 11 offspring of carrier females were examined: three of seven carrier females, three of three otherwise healthy females, and one of one otherwise healthy male had peripheral inner retinal vascular abnormalities. The retinas of five offspring of affected males were examined: none of three carrier females and none of two otherwise healthy males had this peripheral retinal finding. Peripheral inner retinal vascular abnormalities similar to regressed retinopathy of prematurity were identified in seven offspring of carriers of ND gene mutations in two families. These ophthalmologic findings, especially in four genetically healthy offspring, strongly support the hypothesis that abnormal Norrin may have an adverse transplacental (environmental) effect on normal inner retinal vasculogenesis.

  4. Social network composition of vascular patients and its associations with health behavior and clinical risk factors

    PubMed Central

    Heijmans, Naomi; van Lieshout, Jan; Wensing, Michel

    2017-01-01

    Background This study aimed to explore linkages of patients’ social network composition with health behaviors and clinical risk factors. Methods/Design This observational study was embedded in a project aimed at improving cardiovascular risk management (CRVM) in primary care. 657 vascular patients (227 with cardiovascular disease, 380 at high vascular risk), mean age 72.4 (SD 9.4) years, were recruited as were individuals patients considered important for dealing with their disease, so called alters (n = 487). Network composition was measured with structured patient questionnaires. Both patients and alters completed questionnaires to measure health behavior (habits for physical activity, diet, and smoking). Clinical risk factors (systolic blood pressure, LDL cholesterol level, and body mass index) were extracted from patients’ medical records. Six logistic regression analyses, using generalized estimating equations, were used to test three hypothesized effects of network composition (having alters with healthful behaviors, without depression, and with specialized knowledge) on six outcomes, adjusted for demographic, personal and psychological characteristics. Results Having alters with overall healthful behavior was related to healthful patient diet (OR 2.14, 95%CI: 1.52–3.02). Having non-smoking alters in networks was related to reduced odds for patient smoking (OR 0.17, 95%CI: 0.05–0.60). No effects of presence of non-depressed alters were found. Presence of alters with specialized knowledge on CVRM was inversely related to healthful diet habits of patients (OR 0.47, 95%CI 0.24–0.89). No significant associations between social network composition and clinical risk factors were found. Discussion Diet and smoking, but not physical exercise and clinical risk factors, were associated with social network composition of patients with vascular conditions. In this study of vascular patients, controlling for both personal and psychological factors, fewer network influences were found compared to previous research. Further research is needed to examine network structure characteristics as well as the role of psychological factors to enhance understanding health behavior of patients involved in CVRM. PMID:28957372

  5. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  6. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability

    PubMed Central

    2014-01-01

    Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703

  7. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis

    PubMed Central

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    AIM To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. METHODS This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. RESULTS It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). CONCLUSION The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals. PMID:26309878

  8. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).

    PubMed

    Maloca, Peter; Gyger, Cyrill; Hasler, Pascal W

    2016-06-01

    To visualize and measure the vascular network of melanocytic choroidal tumors with speckle noise-free swept source optical coherence tomography (SS-OCT choroidal angiography). Melanocytic choroidal tumors from 24 eyes were imaged with 1050-nm optical coherence tomography (Topcon DRI OCT-1 Atlantis). A semi-automated algorithm was developed to remove speckle noise and to extract and measure the volume of the choroidal vessels from the obtained OCT data. In all cases, analysis of the choroidal vessels could be performed with SS-OCT without the need for pupillary dilation. The proposed method allows speckle noise-free, structure-guided visualization and measurement of the larger choroidal vessels in three dimensions. The obtained data suggest that speckle noise-free OCT may be more effective at identifying choroidal structures than traditional OCT methods. The measured volume of the extracted choroidal vessels of Haller's layer and Sattler's layer in the examined tumorous eyes was on average 0.982463955 mm(3) /982463956 μm(3) (range of 0.209764406 mm(3) /209764405.9 μm(3)to 1.78105544 mm(3) /1781055440 μm(3)). Full thickness obstruction of the choroidal vasculature by the tumor was found in 18 cases (72 %). In seven cases (18 %), choroidal vessel architecture did not show pronounced morphological abnormalities (18 %). Speckle noise-free OCT may serve as a new illustrative imaging technology and enhance visualization of the choroidal vessels without the need for dye injection. OCT can be used to identify and evaluate the choroidal vessels of melanocytic choroidal tumors, and may represent a potentially useful tool for imaging and monitoring of choroidal nevi and melanoma.

  9. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis.

    PubMed

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals.

  10. [Research on brain white matter network in cerebral palsy infant].

    PubMed

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  11. Altered Whole-Brain Structural Covariance of the Hippocampal Subfields in Subcortical Vascular Mild Cognitive Impairment and Amnestic Mild Cognitive Impairment Patients.

    PubMed

    Wang, Xuetong; Yu, Yang; Zhao, Weina; Li, Qiongling; Li, Xinwei; Li, Shuyu; Yin, Changhao; Han, Ying

    2018-01-01

    The hippocampus plays important roles in memory processing. However, the hippocampus is not a homogeneous structure, which consists of several subfields. The hippocampal subfields are differently affected by many neurodegenerative diseases, especially mild cognitive impairment (MCI). Amnestic mild cognitive impairment (aMCI) and subcortical vascular mild cognitive impairment (svMCI) are the two subtypes of MCI. aMCI is characterized by episodic memory loss, and svMCI is characterized by extensive white matter hyperintensities and multiple lacunar infarctions on magnetic resonance imaging. The primary cognitive impairment in svMCI is executive function, attention, and semantic memory. Some variations or disconnections within specific large-scale brain networks have been observed in aMCI and svMCI patients. The aim of this study was to investigate abnormalities in structural covariance networks (SCNs) between hippocampal subfields and the whole cerebral cortex in aMCI and svMCI patients, and whether these abnormalities are different between the two groups. Automated segmentation of hippocampal subfields was performed with FreeSurfer 5.3, and we selected five hippocampal subfields as the seeds of SCN analysis: CA1, CA2/3, CA4/dentate gyrus (DG), subiculum, and presubiculum. SCNs were constructed based on these hippocampal subfield seeds for each group. Significant correlations between hippocampal subfields, fusiform gyrus (FFG), and entorhinal cortex (ERC) in gray matter volume were found in each group. We also compared the differences in the strength of structural covariance between any two groups. In the aMCI group, compared to the normal controls (NC) group, we observed an increased association between the left CA1/CA4/DG/subiculum and the left temporal pole. Additionally, the hippocampal subfields (bilateral CA1, left CA2/3) significantly covaried with the orbitofrontal cortex in the svMCI group compared to the NC group. In the aMCI group compared to the svMCI group, we observed decreased association between hippocampal subfields and the right FFG, while we also observed an increased association between the bilateral subiculum/presubiculum and bilateral ERC. These findings provide new evidence that there is altered whole-brain structural covariance of the hippocampal subfields in svMCI and aMCI patients and provide insights to the pathological mechanisms of different MCI subtypes.

  12. Regionalization of services improves access to emergency vascular surgical care.

    PubMed

    Roche-Nagle, G; Bachynski, K; Nathens, A B; Angoulvant, D; Rubin, B B

    2013-04-01

    Management of vascular surgical emergencies requires rapid access to a vascular surgeon and hospital with the infrastructure necessary to manage vascular emergencies. The purpose of this study was to assess the impact of regionalization of vascular surgery services in Toronto to University Health Network (UHN) and St Michael's Hospital (SMH) on the ability of CritiCall Ontario to transfer patients with life- and limb-threatening vascular emergencies for definitive care. A retrospective review of the CritiCall Ontario database was used to assess the outcome of all calls to CritiCall regarding patients with vascular disease from April 2003 to March 2010. The number of patients with vascular emergencies referred via CritiCall and accepted in transfer by the vascular centers at UHN or SMH increased 500% between 1 April 2003-31 December 2005 and 1 January 2006-31 March 2010. Together, the vascular centers at UHN and SMH accepted 94.8% of the 1002 vascular surgery patients referred via CritiCall from other hospitals between 1 January 2006 and 31 March 2010, and 72% of these patients originated in hospitals outside of the Toronto Central Local Health Integration Network. Across Ontario, the number of physicians contacted before a patient was accepted in transfer fell from 2.9 ± 0.4 before to 1.7 ± 0.3 after the vascular centers opened. In conclusion, the vascular surgery centers at UHN and SMH have become provincial resources that enable the efficient transfer of patients with vascular surgical emergencies from across Ontario. Regionalization of services is a viable model to increase access to emergent care.

  13. Pressurized vascular systems for self-healing materials

    PubMed Central

    Hamilton, A. R.; Sottos, N. R.; White, S. R.

    2012-01-01

    An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen. PMID:21957119

  14. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia.

    PubMed

    Román, Gustavo C; Kalaria, Raj N

    2006-12-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.

  15. Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study.

    PubMed

    Ganella, Eleni P; Seguin, Caio; Pantelis, Christos; Whittle, Sarah; Baune, Bernhard T; Olver, James; Amminger, G Paul; McGorry, Patrick D; Cropley, Vanessa; Zalesky, Andrew; Bartholomeusz, Cali F

    2018-05-01

    Schizophrenia is increasingly conceived as a disorder of brain network connectivity and organization. However, reports of network abnormalities during the early illness stage of psychosis are mixed. This study adopted a data-driven whole-brain approach to investigate functional connectivity and network architecture in a first-episode psychosis cohort relative to healthy controls and whether functional network properties changed abnormally over a 12-month period in first-episode psychosis. Resting-state functional connectivity was performed at two time points. At baseline, 29 first-episode psychosis individuals and 30 healthy controls were assessed, and at 12 months, 14 first-episode psychosis individuals and 20 healthy controls completed follow-up. Whole-brain resting-state functional connectivity networks were mapped for each individual and analyzed using graph theory to investigate whether network abnormalities associated with first-episode psychosis were evident and whether functional network properties changed abnormally over 12 months relative to controls. This study found no evidence of abnormal resting-state functional connectivity or topology in first-episode psychosis individuals relative to healthy controls at baseline or at 12-months follow-up. Furthermore, longitudinal changes in network properties over a 12-month period did not significantly differ between first-episode psychosis individuals and healthy control. Network measures did not significantly correlate with symptomatology, duration of illness or antipsychotic medication. This is the first study to show unaffected resting-state functional connectivity and topology in the early psychosis stage of illness. In light of previous literature, this suggests that a subgroup of first-episode psychosis individuals who have a neurotypical resting-state functional connectivity and topology may exist. Our preliminary longitudinal analyses indicate that there also does not appear to be deterioration in these network properties over a 12-month period. Future research in a larger sample is necessary to confirm our longitudinal findings.

  16. Avascular Retinal Findings in a Child With Achondroplasia.

    PubMed

    Hua, Hong-Uyen T; Tran, Kimberly D; Medina, Carlos A; Fallas, Brenda; Negron, Cathy; Berrocal, Audina M

    2017-03-01

    The authors present clinical and angiographic findings in a 12-year-old girl with achondroplasia who presented with bilateral retinal peripheral nonperfusion and unilateral rhegmatogenous retinal detachment, which has not been previously described in achondroplasia. This report contributes incremental knowledge regarding aberrant retinal vascular phenomena observed in pediatric disease states and implicates the possible role of mutations in the FGFR3 gene in peripheral vascular abnormalities. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:272-274.]. Copyright 2017, SLACK Incorporated.

  17. Vascular abnormalities of the distal deep digital flexor tendon in 8 draught horses identified on histological examination.

    PubMed

    Crişan, Melania Ioana; Damian, Aurel; Gal, Adrian; Miclăuş, Viorel; Cernea, Cristina L; Denoix, Jean-Marie

    2013-08-01

    The purpose of this study was to provide a detailed description of the vascular changes in the distal part of deep digital flexor tendon (DDFT). Eight isolated forelimbs were collected from 8 horses with DDF tendinopathy diagnosed post-mortem by ultrasound and gross anatomopathological examination. The samples were fixed in 10% neutral buffered formalin, softened in 4% phenol and dehydrated with ethylic alcohol. Goldner's Trichrome staining method was used. The histopathological examination revealed vascular proliferation associated with structural disorders of blood vessels. Angiogenesis, fibroplasia and consecutive hypertrophy of the vascular wall with or without vascular occlusion were the most common findings. Other histopathological findings were: endothelial cell edema, progressive metaplasia from squamous to cubic cells, vascular wall hyalinization, endothelial cells apoptosis/necrosis and endothelial desquamation. These results demonstrated damage of the distal deep digital flexor tendon vasculature which may progressively alter the structural integrity of the tendon and contribute to degenerative lesions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    PubMed Central

    Hanson, Daniel R; Gottesman, Irving I

    2005-01-01

    Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. Summary A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons. PMID:15707482

  19. Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task.

    PubMed

    Anderson, Nathaniel E; Maurer, J Michael; Steele, Vaughn R; Kiehl, Kent A

    2018-06-01

    Psychopathy is a personality disorder accompanied by abnormalities in emotional processing and attention. Recent theoretical applications of network-based models of cognition have been used to explain the diverse range of abnormalities apparent in psychopathy. Still, the physiological basis for these abnormalities is not well understood. A significant body of work has examined psychopathy-related abnormalities in simple attention-based tasks, but these studies have largely been performed using electrocortical measures, such as event-related potentials (ERPs), and they often have been carried out among individuals with low levels of psychopathic traits. In this study, we examined neural activity during an auditory oddball task using functional magnetic resonance imaging (fMRI) during a simple auditory target detection (oddball) task among 168 incarcerated adult males, with psychopathic traits assessed via the Hare Psychopathy Checklist-Revised (PCL-R). Event-related contrasts demonstrated that the largest psychopathy-related effects were apparent between the frequent standard stimulus condition and a task-off, implicit baseline. Negative correlations with interpersonal-affective dimensions (Factor 1) of the PCL-R were apparent in regions comprising default mode and salience networks. These findings support models of psychopathy describing impaired integration across functional networks. They additionally corroborate reports which have implicated failures of efficient transition between default mode and task-positive networks. Finally, they demonstrate a neurophysiological basis for abnormal mobilization of attention and reduced engagement with stimuli that have little motivational significance among those with high psychopathic traits.

  20. Evolution of the VEGF-regulated vascular network from a neural guidance system.

    PubMed

    Ponnambalam, Sreenivasan; Alberghina, Mario

    2011-06-01

    The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

  1. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants

    PubMed Central

    Savage, V. M.; Bentley, L. P.; Enquist, B. J.; Sperry, J. S.; Smith, D. D.; Reich, P. B.; von Allmen, E. I.

    2010-01-01

    Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species. PMID:21149696

  2. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants.

    PubMed

    Savage, V M; Bentley, L P; Enquist, B J; Sperry, J S; Smith, D D; Reich, P B; von Allmen, E I

    2010-12-28

    Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species.

  3. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia.

    PubMed

    Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T

    2015-07-21

    Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population.

  4. Development of Embedded Vascular Networks in FRP for Active/Passive Thermal Management

    DTIC Science & Technology

    2015-04-01

    Passive Thermal Management Katarzyna...To) 30 September 2012 – 31 December 2014 4. TITLE AND SUBTITLE Development of Embedded Vascular Networks in FRP for Active/ Passive Thermal Management   5a...Active/ Passive   Thermal   Management   Reference:       EOARD  grant  (FA8655-­‐12-­‐1-­‐2144)   Investigators:    

  5. Engineered 3D vascular and neuronal networks in a microfluidic platform.

    PubMed

    Osaki, Tatsuya; Sivathanu, Vivek; Kamm, Roger D

    2018-03-26

    Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca 2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.

  6. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    PubMed

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2018-04-01

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  7. Role of Vascular Networks in Extending Glucose Sensor Function: Impact of Angiogenesis and Lymphangiogenesis on Continuous Glucose Monitoring in vivo

    PubMed Central

    Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.

    2014-01-01

    The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850

  8. Focal neurological deficits

    MedlinePlus

    ... include: Abnormal blood vessels (vascular malformation) Brain tumor Cerebral palsy Degenerative nerve illness (such as multiple sclerosis) Disorders of a single nerve or nerve group (for example, carpal tunnel syndrome ) Infection of the brain (such as meningitis or encephalitis) Injury Stroke Home ...

  9. Arteriovenous malformations of the uterus.

    PubMed

    Cura, M; Martinez, N; Cura, A; Dalsaso, T J; Elmerhi, F

    2009-09-01

    Arterial venous malformations (AVM) of the uterus are uncommon entities and should be considered in patients who present with profuse genital bleeding. There are two types of uterine AVM: acquired and congenital. Acquired uterine AVMs are conformed by communications between the uterine arteries and the myometrial veins, and are caused by an iatrogenic event or a pathological condition. Congenital AVMs are the result of abnormal development of primitive vessels that result in connections between pelvic arteries and veins in the uterus without an interconnecting capillary bed. Ultrasonography is a noninvasive diagnostic method able to demonstrate and characterize AVMs of the uterus. AVM in the pelvis may be noted incidentally by computed tomography (CT) of the pelvis, and magnetic resonance imaging (MRI) is frequently used to confirm and further characterize the sonographic findings of uterine AVM. Catheter angiography and embolization are very effective in defining the vascular anatomy and treating uterine vascular abnormalities.

  10. [Pathophysiology of sickle cell disease].

    PubMed

    Elion, J; Laurance, S; Lapouméroulie, C

    2010-12-01

    It has been 100 years since Herrick published the first medical case report of sickle cell disease. In 1949, Pauling discovered hemoglobin S (HbS). As early as the 1960-70s, emerged a coherent detailed molecular-level description of pathophysiology of sickle disease. It involved polymerization of deoxyhemoglobin S with formation of long fibers inside red blood cells (RBC) causing a distorted sickle shape and shortened lifespan. These changes constitute the basic disease process and account for hemolytic anemia and for obstructive events underlying vasoocclusive crises (VOC). However, they do not explain the mechanisms that trigger VOC. The purpose of this review is to present recent data on dehydration of sickle cell RBC, abnormalities in RBC adhesion to the vascular endothelium, the role of inflammatory events and of activation of all cells in the vessel, and abnormalities of vascular tone and carbon monoxide metabolism. These data provide new insight into the pathophysiology of the first molecular disease.

  11. Optic disc dysplasia in poland syndrome.

    PubMed

    Maxfield, Steven D; Strominger, Mitchell B

    2014-06-01

    To report optic disc dysplasia in a case of Poland syndrome. Non-interventional case report. A 2-year-old boy with Poland syndrome was referred for ophthalmic evaluation after abnormal optic discs were found on exam. Physical exam at birth revealed right-sided aplasia of the pectoralis major muscle, symbrachydactyly, hypoplastic scapula, and an abnormal third rib. On dilated examination the optic nerve heads were dysplastic. The findings included multiple cilioretinal vessels, situs inversus, inferotemporal excavation, and surrounding pigmentary disturbances. Only one case of optic disc anomaly has been reported in Poland syndrome and was described as morning glory syndrome. The optic discs in our patient do not fit well with other optic disc excavation syndromes but are most reminiscent of those in papillorenal syndrome. As both Poland syndrome and papillorenal syndrome share vascular dysfunction as a possible etiology, this case adds to the literature of vascular dysgenesis in Poland syndrome.

  12. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  13. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    PubMed

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad applicability for evaluating vascularization in other engineered tissues as well.

  14. Three-dimensional ultrasonography and power Doppler for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding.

    PubMed

    El-Sharkawy, Mohamed; El-Mazny, Akmal; Ramadan, Wafaa; Hatem, Dina; Abdel-Hafiz, Aly; Hammam, Mohamed; Nada, Adel

    2016-03-16

    Ultrasonography has been extensively used in women suspected of having a gynecological malignancy. The aim of this study is to evaluate the efficacy of 3D ultrasonography and power Doppler for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding. This cross-sectional study included 78 premenopausal women with abnormal uterine bleeding scheduled for hysteroscopy and endometrial curettage. The endometrial thickness (ET), uterine artery pulsatility index (PI) and resistance index (RI), and endometrial volume (EV) and 3D power Doppler vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were measured and compared with hysteroscopic and histopathologic findings. The ET (P <0.001), EV (P <0.001), and endometrial VI (P <0.001) and VFI (P = 0.043) were significantly increased in patients with atypical endometrial hyperplasia and endometrial carcinoma (n = 10) than those with benign endometrium (n = 68); whereas, the uterine artery PI and RI and endometrial FI were not significantly different between the two groups. The best marker for discrimination between benign and malignant endometrium was the VI with an area under the ROC curve of 0.88 at a cutoff value of 0.81%. 3D ultrasonography and power Doppler, especially endometrial VI, may be useful for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding.

  15. Sildenafil Citrate Increases Fetal Weight in a Mouse Model of Fetal Growth Restriction with a Normal Vascular Phenotype

    PubMed Central

    Dilworth, Mark Robert; Andersson, Irene; Renshall, Lewis James; Cowley, Elizabeth; Baker, Philip; Greenwood, Susan; Sibley, Colin Peter; Wareing, Mark

    2013-01-01

    Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR. PMID:24204949

  16. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  17. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  18. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  19. MR Imaging of the Diabetic Foot.

    PubMed

    McCarthy, Eoghan; Morrison, William B; Zoga, Adam C

    2017-02-01

    Abnormalities of the peripheral nervous, vascular, and immune systems contribute to the development of numerous foot and ankle pathologies in the diabetic population. Although radiographs remain the most practical first-line imaging tool, magnetic resonance (MR) is the tertiary imaging modality of choice, allowing for optimal assessment of bone and soft tissue abnormalities. MR allows for the accurate distinction between osteomyelitis/septic arthritis and neuropathic osteoarthropathy. Furthermore, it provides an excellent presurgical anatomic road map of involved tissues and devitalized skin to ensure successful limited amputations when required. Signal abnormality in the postoperative foot aids in the diagnosis of recurrent infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. VEGF165 Stimulates Vessel Density and Vessel Diameter Differently in Angiogenesis and Lymphangiogenesis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.

    2005-01-01

    Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.

  1. Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks

    PubMed Central

    Newberry, Mitchell G; Ennis, Daniel B; Savage, Van M

    2015-01-01

    Scientists have long sought to understand how vascular networks supply blood and oxygen to cells throughout the body. Recent work focuses on principles that constrain how vessel size changes through branching generations from the aorta to capillaries and uses scaling exponents to quantify these changes. Prominent scaling theories predict that combinations of these exponents explain how metabolic, growth, and other biological rates vary with body size. Nevertheless, direct measurements of individual vessel segments have been limited because existing techniques for measuring vasculature are invasive, time consuming, and technically difficult. We developed software that extracts the length, radius, and connectivity of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using data from 20 human subjects, we calculated scaling exponents by four methods—two derived from local properties of branching junctions and two from whole-network properties. Although these methods are often used interchangeably in the literature, we do not find general agreement between these methods, particularly for vessel lengths. Measurements for length of vessels also diverge from theoretical values, but those for radius show stronger agreement. Our results demonstrate that vascular network models cannot ignore certain complexities of real vascular systems and indicate the need to discover new principles regarding vessel lengths. PMID:26317654

  2. Using impedance cardiography to detect subclinical cardiovascular disease in women with multiple risk factors: a pilot study.

    PubMed

    Demarzo, Arthur P

    2009-01-01

    Early detection of cardiovascular disease (CVD) could initiate appropriate treatment and prevent progression. This study used impedance cardiography (ICG) waveform analysis with postural change to detect functional CVD in women older than 40 years with no history of CVD and >or=2 of the following risk factors: cigarette smoking, poor diet, physical inactivity, central adiposity, family history of premature CVD, hypertension, and dyslipidemia. A study group of 32 women underwent ICG in standing and supine positions. An age-matched control group had 20 women with an active lifestyle, no risk factors, and no history of CVD. All women in the control group had normal ICG data. All women in the study group had some abnormal ICG data, with 28 (87.5%) having multiple ICG abnormalities. ICG data indicated that 13 (40.6%) had ventricular dysfunction, 14 (43.8%) had high vascular resistive load, and 30 (93.8%) had elevated vascular pulsatile load. The data suggest that subclinical CVD, detectable by ICG, is prevalent in women older than 40 years with multiple risk factors. Abnormal ICG results could expedite the initiation of customized treatment as part of a preventive approach to CVD. (c) 2009 Wiley Periodicals, Inc.

  3. The role of completion imaging following carotid artery endarterectomy.

    PubMed

    Ricco, Jean-Baptiste; Schneider, Fabrice; Illuminati, Giulio; Samson, Russell H

    2013-05-01

    A variety of completion imaging methods can be used during carotid endarterectomy to recognize technical errors or intrinsic abnormalities such as mural thrombus or platelet aggregation, but none of these methods has achieved wide acceptance, and their ability to improve the outcome of the operation remains a matter of controversy. It is unclear if completion imaging is routinely necessary and which abnormalities require re-exploration. Proponents of routine completion imaging argue that identification of these abnormalities will allow their immediate correction and avoid a perioperative stroke. However, much of the evidence in favor of this argument is incidental, and many experienced vascular surgeons who perform carotid endarterectomy do not use any completion imaging technique and report equally good outcomes using a careful surgical protocol. Furthermore, certain postoperative strokes, including intracerebral hemorrhage and hyperperfusion syndrome, are unrelated to the surgical technique and cannot be prevented by completion imaging. This controversial subject is now open to discussion, and our debaters have been given the task to clarify the evidence to justify their preferred option for completion imaging during carotid endarterectomy. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  4. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges

    PubMed Central

    Fukumura, Dai; Kloepper, Jonas; Amoozgar, Zohreh; Duda, Dan G.; Jain, Rakesh K.

    2018-01-01

    Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research. PMID:29508855

  5. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.

    PubMed

    Pellegata, Alessandro F; Tedeschi, Alfonso M; De Coppi, Paolo

    2018-01-01

    Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro , a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.

  6. New vascular classification of port-wine stains: improving prediction of Sturge-Weber risk.

    PubMed

    Waelchli, R; Aylett, S E; Robinson, K; Chong, W K; Martinez, A E; Kinsler, V A

    2014-10-01

    Facial port-wine stains (PWSs) are usually isolated findings; however, when associated with cerebral and ocular vascular malformations they form part of the classical triad of Sturge-Weber syndrome (SWS). To evaluate the associations between the phenotype of facial PWS and the diagnosis of SWS in a cohort with a high rate of SWS. Records were reviewed of all 192 children with a facial PWS seen in 2011-13. Adverse outcome measures were clinical (seizures, abnormal neurodevelopment, glaucoma) and radiological [abnormal magnetic resonance imaging (MRI)], modelled by multivariate logistic regression. The best predictor of adverse outcomes was a PWS involving any part of the forehead, delineated at its inferior border by a line joining the outer canthus of the eye to the top of the ear, and including the upper eyelid. This involves all three divisions of the trigeminal nerve, but corresponds well to the embryonic vascular development of the face. Bilateral distribution was not an independently significant phenotypic feature. Abnormal MRI was a better predictor of all clinical adverse outcome measures than PWS distribution; however, for practical reasons guidelines based on clinical phenotype are proposed. Facial PWS distribution appears to follow the embryonic vasculature of the face, rather than the trigeminal nerve. We propose that children with a PWS on any part of the 'forehead' should have an urgent ophthalmology review and a brain MRI. A prospective study has been established to test the validity of these guidelines. © The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  7. Role of splenic reservoir monocytes in pulmonary vascular monocyte accumulation in experimental hepatopulmonary syndrome

    PubMed Central

    Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian

    2016-01-01

    Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414

  8. ARTERIAL HYPERTENSION AND IRRADIATION DAMAGE TO THE NERVOUS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asscher, A.W.; Anson, S.G.

    1962-12-29

    On the basis of previous studies it appeared that irradiation damage to the nervous system might be more severe and more easily produced in hypertensive than in normotensive subjects. This hypothesis was investigated by studying the frequency of neurological complications and vascular lesions in the spinal cord after x irradiation of the cord in hypertensive and normotensive rats. Two weeks before irradiation of the spinal cord, a clip was applied to the right renal artery of the animals to produce hypertension. Single doses of 1500, 2000, or 3000 r were administered to the spinal cord in the cervical and uppermore » thoracic region of hypertensive rats (systolic blood pressure higher than 145 mm Hg) and normotensive rats. After 1500 r to spinal cord, no abnormalities were noted in the normotensive controls during the period of observation. Some hypertensive animaIs showed transient abnormalities of gait, and during the following week died suddenly. Those remaining died unexpectedly 35-259 days after irradiation without apparent preceding neurological manifestations, although acute vascular lesions were found in the irradiated regions of the spinal cord. The normotensive controls of the 2000-r group showed no abnormalities of gait or of tail sensation, but the hypertensive rats died 67-243 days after irradiation, and ntaxic episodes preceding these unexpected deaths in one animal. Ristologically, the irradiated segments of the cords showed multiple focal acute vascular necrosis. The smaller arteries in irradiated segments of the cords showed hyaline thickening; some of the smaller vessels were widely dilated and filled with blood, and their walls were necrotic. The white matter of the irradiated parts of these cords showed numerous holes (status spongiosus) in the lateral and dorsal columns. The anterior-horn cells in the irradiated zones were swollen, their nuclei pyknotic and cytoplasm devoid of Nissl granules. No abnormalities, besides thickening of the meninges in the irradiated areas, were found in the cords of the normotensive controls. After 3000 r the normotensive animals of this group showed no abnormalities of gait and Survived normally; no vascular lesions were found in their spinal cords. The hypentensive animals died suddenly 43-70 days after irradiation of the cord, and in all, death was preceded by ataxic episodes. Postmortem, numerous foci of acute vascular necrosis were found in the irradiated cord. These experiments suggest that moderate arterial hypertension seriously modifies the effect of x irradiation of the spinal cord. The transience of the ataxia in irradiated hypertensive rats suggests a possible origin in reversible vasoconstriction. When such episodes were followed by sudden death, arterial necrosis was invariably present in the irradiated region of the cord. Moreover, in hypertensive animals in which paraplegia developed, there was widespread necrosis of nerve tissue as well as organized vascular necrosis. A search of hospital records revealed three cases in which high blood pressure was recorded along with necrosis of the brain or spinal cord following therapeutic irradiation. In two of these, large doses of irradiation had been administered, and the necrosis might have been due to irradiation alone. In the third case, however, necrosis of the spinal cord occurred artd one factor which may have determined this individual sensitivity was high blood pressure. (BBB)« less

  9. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  10. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    PubMed Central

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  11. Infrared thermal imaging for detection of peripheral vascular disorders

    PubMed Central

    Bagavathiappan, S.; Saravanan, T.; Philip, John; Jayakumar, T.; Raj, Baldev; Karunanithi, R.; Panicker, T. M. R.; Korath, M. Paul; Jagadeesan, K.

    2009-01-01

    Body temperature is a very useful parameter for diagnosing diseases. There is a definite correlation between body temperature and diseases. We have used Infrared Thermography to study noninvasive diagnosis of peripheral vascular diseases. Temperature gradients are observed in the affected regions of patients with vascular disorders, which indicate abnormal blood flow in the affected region. Thermal imaging results are well correlated with the clinical findings. Certain areas on the affected limbs show increased temperature profiles, probably due to inflammation and underlying venous flow changes. In general the temperature contrast in the affected regions is about 0.7 to 1° C above the normal regions, due to sluggish blood circulation. The results suggest that the thermal imaging technique is an effective technique for detecting small temperature changes in the human body due to vascular disorders. PMID:20126565

  12. Improved heuristics for early melanoma detection using multimode hyperspectral dermoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas B.; Booth, Nicholas; Farkas, Daniel L.

    2017-02-01

    Purpose: To determine the performance of a multimode dermoscopy system (SkinSpect) designed to quantify and 3-D map in vivo melanin and hemoglobin concentrations in skin and its melanoma scoring system, and compare the results accuracy with SIAscopy, and histopathology. Methods: A multimode imaging dermoscope is presented that combines polarization, fluorescence and hyperspectral imaging to accurately map the distribution of skin melanin, collagen and hemoglobin in pigmented lesions. We combine two depth-sensitive techniques: polarization, and hyperspectral imaging, to determine the spatial distribution of melanin and hemoglobin oxygenation in a skin lesion. By quantifying melanin absorption in pigmented areas, we can also more accurately estimate fluorescence emission distribution mainly from skin collagen. Results and discussion: We compared in vivo features of melanocytic lesions (N = 10) extracted by non-invasive SkinSpect and SIMSYS-MoleMate SIAscope, and correlate them to pathology report. Melanin distribution at different depths as well as hemodynamics including abnormal vascularity we detected will be discussed. We will adapt SkinSpect scoring with ABCDE (asymmetry , border, color, diameter, evolution) and seven point dermatologic checklist including: (1) atypical pigment network, (2) blue-whitish veil, (3) atypical vascular pattern, (4) irregular streaks, (5) irregular pigmentation, (6) irregular dots and globules, (7) regression structures estimated by dermatologist. Conclusion: Distinctive, diagnostic features seen by SkinSpect in melanoma vs. normal pigmented lesions will be compared by SIAscopy and results from histopathology.

  13. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  14. Guidance of vascular development: lessons from the nervous system.

    PubMed

    Larrivée, Bruno; Freitas, Catarina; Suchting, Steven; Brunet, Isabelle; Eichmann, Anne

    2009-02-27

    The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.

  15. Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics

    PubMed Central

    Taylor, C.A.; Humphrey, J.D.

    2009-01-01

    The vasculature consists of a complex network of vessels ranging from large arteries to arterioles, capillaries, venules, and veins. This network is vital for the supply of oxygen and nutrients to tissues and the removal of carbon dioxide and waste products from tissues. Because of its primary role as a pressure-driven chemomechanical transport system, it should not be surprising that mechanics plays a vital role in the development and maintenance of the normal vasculature as well as in the progression and treatment of vascular disease. This review highlights some past successes of vascular biomechanics, but emphasizes the need for research that synthesizes complementary advances in molecular biology, biomechanics, medical imaging, computational methods, and computing power for purposes of increasing our understanding of vascular physiology and pathophysiology as well as improving the design of medical devices and clinical interventions, including surgical procedures. That is, computational mechanics has great promise to contribute to the continued improvement of vascular health. PMID:20161129

  16. Commentary: Using Impedance Cardiography to Detect Asymptomatic Cardiovascular Disease in Prehypertensive Adults with Risk Factors.

    PubMed

    DeMarzo, Arthur P

    2018-06-01

    New guidelines on hypertension eliminated the classification of prehypertension and divided those blood pressure (BP) levels into elevated BP and stage 1 hypertension. For elevated BP, this study showed that cardiovascular (CV) abnormalities were prevalent in adults over 40 years of age with at least 2 CV risk factors. Detecting abnormalities of the CV system moves a patient from being at high risk to having earlystage cardiovascular disease (CVD) and supports a decision to treat. By redefining stage 1 and lowering the target BP, the new guidelines have set an ambitious goal for early intervention to prevent progression of CVD. Proper drug selection and titration are critical. Hypertensive patients have diverse CV abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment can be customized based on the abnormal underlying mechanisms to rapidly control BP and prevent progression of CVD.

  17. [Congenital abnormalities of the aorta in children and adolescents].

    PubMed

    Eichhorn, J G; Ley, S

    2007-11-01

    Aortic abnormalities are common cardiovascular malformations accounting for 15-20% of all congenital heart disease. Ultrafast CT and MR imaging are noninvasive, accurate and robust techniques that can be used in the diagnosis of aortic malformations. While their sensitivity in detecting vascular abnormalities seems to be as good as that of conventional catheter angiocardiography, at over 90%, they are superior in the diagnosis of potentially life-threatening complications, such as tracheal, bronchial, or esophageal compression. It has been shown that more than 80% of small children with aortic abnormalities benefit directly from the use of noninvasive imaging: either cardiac catheterization is no longer necessary or radiation doses and periods of general anesthesia for interventional catheterization procedures can be much reduced. The most important congenital abnormalities of the aorta in children and adolescents are presented with reference to examples, and the value of CT and MR angiography is documented.

  18. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    PubMed

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  < 0.01) mainly involved the orbitofrontal, parietal, and temporal cortices, as well as the basal ganglia. The brain connectivity network was progressively disrupted as cognitive impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  19. [Melorheostosis associated with arteriovenous malformation of the ear].

    PubMed

    Ingen-Housz-Oro, S; Chigot, V; Hamel-Teillac, D; Brunelle, F; De Prost, Y

    2001-09-01

    Melorheostosis is a rare bone dystrophy that may be associated with various vascular malformations. We report a case of arteriovenous fistulae of the ear associated with melorheostosis limited to the same side of the body. A 13 year-old boy presented a congenital port-wine nevus of the right side of the head complicated by an arteriovenous fistulae and angiomatous nodules of the ear. He was treated by laser, surgery of the nodules, arterial embolisations and sclerotherapy. In 1999, he had a benign trauma of the right hand. The X-ray showed hyperostosis resembling wax flowing down a candle reaching the carpus and some of the metacarpals and the phalanges of the right hand, typical of melorheostosis. The complete radiographic check-up showed the same characteristic appearance on the right side of the skull and the long bones of the right upper limb. Except a deformation of the right fingers, there were no others symptoms. Melorheostosis is a rare, sporadic and benign bone dysplasia that may be localized to a single limb or disseminated. The diagnosis is usually made in late childhood. Pain, stiffness, deformation of a limb are the main clinical manifestations. The skin may be erythematous and sclerotic. The radiographic appearance is characteristic with hyperostosis on one side of the bone resembling wax flowing down a candle. A vascular abnormality is present in 17 p. 100 of cases (hemangiomas, aneurysms, renal artery stenosis.). In these cases, melorheostosis is usually limited to the same side of the vascular lesion. We report the first case of arteriovenous fistulae of the ear associated with melorheostosis, on the same side of the body. The physiopathology of melorheostosis is still unknown but the association with a homolateral vascular abnormality suggests a localized defect in embryogenesis of the vascular and skeletal systems.

  20. Retinal Vascular Changes and Prospective Risk of Disabling Dementia: the Circulatory Risk in Communities Study (CIRCS)

    PubMed Central

    Jinnouchi, Hiroshige; Kitamura, Akihiko; Yamagishi, Kazumasa; Kiyama, Masahiko; Imano, Hironori; Okada, Takeo; Cui, Renzhe; Umesawa, Mitsumasa; Muraki, Isao; Hayama-Terada, Mina; Kawasaki, Ryo; Sankai, Tomoko; Ohira, Tetsuya

    2017-01-01

    Aim: To investigate the association of retinal vascular changes with a risk of dementia in longitudinal population-based study. Methods: We performed a nested case-control study of 3,718 persons, aged 40–89 years, enrolled between 1983 and 2004. Retinal vascular changes were observed in 351 cases with disabling dementia (average period before the onset, 11.2 years) and in 702 controls matched for sex, age, and baseline year. Incidence of disabling dementia was defined as individuals who received cares for disabilities including dementia-related symptoms and/or behavioral disturbance. Conditional logistic regression analysis was used to calculate odds ratio (OR) and multivariable adjusted OR (Models 1 and 2) for incidence of disabling dementia according to each retinal vascular change. Regarding confounding variables, Model 1 included overweight status, hypertension, hyperglycemia, dyslipidemia, and smoking status, whereas Model 2 also included incidence of stroke prior to disabling dementia for further analysis. Results: The proportion of cases (controls) with retinal vascular changes was 23.1 (15.7)% for generalized arteriolar narrowing, 7.7 (7.5)% for focal arteriolar narrowing, 15.7 (11.8)% for arteriovenous nicking, 10.5 (9.3)% for increased arteriolar wall reflex, and 11.4 (9.8)% for any other retinopathy. Generalized arteriolar narrowing was associated with an increased risk of disabling dementia: crude OR, 1.66 (95% confidence interval, 1.19–2.31); Model 1: OR, 1.58 (1.12–2.23); Model 2: OR, 1.48 (1.04–2.10). The number of retinal abnormalities was associated in a dose–response manner with the risk. Conclusion: Generalized arteriolar narrowing and total number of retinal abnormalities may be useful markers for identifying persons at higher risks of disabling dementia. PMID:27904027

  1. Nailfold capillaroscopy abnormalities correlate with cutaneous and visceral involvement in systemic sclerosis patients.

    PubMed

    Sato, Lucy T; Kayser, Cristiane; Andrade, Luís E C

    2009-01-01

    The aim of this study was to correlate quantitative and semiquantitative nailfold capillaroscopy (NFC) parameters with the extent of cutaneous and visceral involvement in systemic sclerosis (SSc) patients. The presence of clinical and serological alterations was evaluated retrospectively and correlated with NFC findings (number of capillary loops/mm, vascular deletion score and number of enlarged and giant capillary loops). For evaluation of disease extension five manifestations were analyzed: finger pad lesions, skin involvement, esophageal involvement, interstitial lung disease, and pulmonary hypertension. There were 105 NFC examinations in 92 patients, 13 of whom were evaluated at two different time points. Patients with diffuse cutaneous SSc had a higher vascular deletion score than patients with limited cutaneous SSc, sine scleroderma SSc, and overlap syndrome (1.67+/-0.91 vs 0.99+/-0.82; p=0.0005). Modified Rodnan's skin score correlated positively with capillary deletion, evaluated by the vascular deletion score and the number of capillary loops/mm (p<0.001 and p=0.012; respectively). Patients with three or more involved tracts presented lower number of capillary loops/mm (8.00+/-1.69 vs 9.23+/-1.31 capillary loops/mm; p=0.025) and a higher vascular deletion score (1.41+/-0.95 vs 0.73+/-0.76; p=0.027) when compared to patients with less than three affected tracts. Vascular deletion score was significantly higher in patients with anti-Scl-70 antibodies that in patients without anti-Scl-70 antibodies (p=0.02). NFC abnormalities correlated positively with the diffuse form of SSc, the degree of cutaneous involvement, the number of affected tracts, and the presence of anti-Scl-70 antibodies.

  2. Resolution of brainstem edema after treatment of a dural tentorial arteriovenous fistula.

    PubMed

    Alvarez, Hortensia; Sasaki-Adams, Deanna; Castillo, Mauricio

    2015-10-01

    We report a patient with a petrosal arterio-venous dural fistula draining into the ponto-mesencephalic and medullary venous systems presenting with edema of the brain stem and complete reversal of magnetic resonance imaging (MRI) abnormalities after combined endovascular and surgical treatments. The venous anatomy of the posterior fossa and the significance of the venous involvement as the cause of clinical symptoms and imaging abnormalities in cerebro-medullary vascular lesions are discussed. © The Author(s) 2015.

  3. [A Project to Reduce the Occlusion Rate in Hemodialysis Arteriovenous Access].

    PubMed

    Huang, Jia-Ling; Jang, Jeng-Fong; Lee, Kun-Feng; Shie, Yu-Ting; Jin, Mei-Hua

    2015-06-01

    Vascular occlusions in patients frequently necessitate that duty nurses work overtime to manage related vascular problems. For patients, vascular occlusions require invasive treatments that are painful, take time to heal, and increase anxiety. Furthermore, vascular occlusions seriously influence the effectiveness of hemodialysis. This project worked to reduce the rates of occlusion from 18.6% to < 15% for hemodialysis arteriovenous grafts (AVGs) and from 5.2% to < 2.6% for arteriovenous fistulas (AVFs). This project was conducted between September 1st, 2012 and July 31th, 2013. Our approach used a retrospective study, literature review, meeting discussions, and data compilation. The four main problems identified as associated with occlusion were: (1) low blood pressure during hemodialysis; (2) successive fistula puncture sites were located too close to one another; (3) abnormal blood flow; and (4) poor moisture control. Our solutions included: 1) adjusting and creating forms; 2) adjusting related nursing procedures; and 3) organizing a related lecture for our department. The occlusion rates of AVG and AVF decreased from 18.6% to 7.4% and 5.2% to 0.9%, respectively. We significantly reduced AVG and AVF occlusion rates by using simple methods such as using a tourniquet ruler, designing big-print, illustrated patient instruction sheets on preventing low blood pressure, creating a simplified fistula puncture site series chart, creating a moisture control card, and scheduling follow-up visits for patients with abnormal blood flow at the OPD. This project provides a reference for other hemodialysis departments.

  4. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor.

    PubMed

    Zhao, Ming; He, Xi; Yang, Yong-Hua; Yu, Xiao-Jiang; Bi, Xue-Yuan; Yang, Yang; Xu, Man; Lu, Xing-Zhu; Sun, Qiang; Zang, Wei-Jin

    2015-04-01

    The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. A Systems Engineering Survey of Artificial Intelligence and Smart Sensor Networks in a Network-Centric Environment

    DTIC Science & Technology

    2009-09-01

    problems, to better model the problem solving of computer systems. This research brought about the intertwining of AI and cognitive psychology . Much of...where symbol sequences are sequential intelligent states of the network, and must be classified as normal, abnormal , or unknown. These symbols...is associated with abnormal behavior; and abcbc is associated with unknown behavior, as it fits no known behavior. Predicted outcomes from

  6. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation.

    PubMed

    Arakawa, Christopher K; Badeau, Barry A; Zheng, Ying; DeForest, Cole A

    2017-10-01

    A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  8. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    PubMed

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

  9. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development.

    PubMed

    Su, Zhenhong; Si, Wenxia; Li, Lei; Zhou, Bisheng; Li, Xiuchun; Xu, Yan; Xu, Chengqi; Jia, Haibo; Wang, Qing K

    2014-04-01

    Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rodent Studies of Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Shoukas, Artin A.

    1999-01-01

    Changes in blood pressure can occur for two reasons: 1) A decrease in cardiac output resulting from the altered contractility of the heart or through changes in venous filling pressure via the Frank Starling mechanism or; 2) A change in systemic vascular resistance. The observed changes in cardiac output and blood pressure after long term space flight cannot be entirely explained through changes in contractility or heart rate alone. Therefore, alterations in filling pressure mediated through changes in systemic venous capacitance and arterial resistance function may be important determinants of cardiac output and blood pressure after long term space flight. Our laboratory and previous studies have shown the importance of veno-constriction mediated by the carotid sinus baroreceptor reflex system on overall circulatory homeostasis and in the regulation of cardiac output. Our proposed experiments test the overall hypothesis that alterations in venous capacitance function and arterial resistance by the carotid sinus baroreceptor reflex system are an important determinant of the cardiac output and blood pressure response seen in astronauts after returning to earth from long term exposure to microgravity. This hypothesis is important to our overall understanding of circulatory adjustments made during long term space flight. It also provides a framework for investigating counter measures to reduce the incidence of orthostatic hypotension caused by an attenuation of cardiac output. We continue to use hind limb unweighted (HLU) rat model to simulate the patho physiological effects as they relate to cardiovascular deconditioning in microgravity. We have used this model to address the hypothesis that microgravity induced cardiovascular deconditioning results in impaired vascular responses and that these impaired vascular responses result from abnormal alpha-1 AR signaling. The impaired vascular reactivity results in attenuated blood pressure and cardiac output responses to an orthostatic challenge. We have used in vitro vascular reactivity assays to explore abnormalities in vascular responses in vessels from HLU animals and, cardiac output (CO), blood pressure (BP) and heart rate (HR) measurements to characterize changes in hemodynamics following HLU.

  11. Dual-fibular reconstruction of a massive tibial defect after Ewing's sarcoma resection in a pediatric patient with a vascular variation.

    PubMed

    Saridis, Alkis G; Megas, Panagiotis D; Georgiou, Christos S; Diamantakis, Georgios M; Tyllianakis, Minos E

    2011-01-01

    In the management of malignancies of the extremities, limb salvage procedures have recently taken on greater significance. For those patients under intense adjuvant chemotherapy and with massive bone loss, free vascularized fibular grafting is currently advocated as a reliable reconstructive option, maybe because of the controversial results of bone transport in similar situations. However, when there is a vascular abnormality of either the recipient or donor extremity, microsurgical procedures are not feasible, further limiting potential reconstructive alternatives. We present the case of a 13-year-old female patient with Ewing's sarcoma of the right tibia. Preoperative angiography showed that vascularity of the affected side depended totally on a single peroneal artery. The patient was treated initially with multiagent chemotherapy, followed by an excision of 23 cm. The defect was bridged by a gradual medial transportation of the ipsilateral fibula with the Ilizarov technique and strengthened by nonvascularized transfer of the contralateral fibula. Total external fixation time was 162 days. After the removal of the Ilizarov frame a walking cast was applied for another month. At 5 years postoperatively there was no recurrence of the malignancy. The patient had full weight-bearing ability on the affected limb, with preservation of the ankle and knee joints motion and without any limb length discrepancy or axial deformity. The functional outcome that was visible was graded excellent. Transverse distraction osteogenesis of the ipsilateral fibula performed well under chemotherapy, showing unproblematic callus formation. Supplemented with nonvascularized transfer of the contralateral fibula, provided a reconstructive option with biological affinity, sufficient biomechanical strength and durability, and with a decreased complication rate. This case report presents a viable option, especially in cases in which vascular abnormalities of either the donor or the recipient limb, combined with multiagent chemotherapy, restrict potential reconstructive alternatives. It also highlights why vascularized bone graft should not be regarded as a panacea for all situations in which a fibular graft is required. Level IV, case report.

  12. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  13. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520

  14. Genetic and epigenetic mechanisms in the early development of the vascular system

    PubMed Central

    Ribatti, Domenico

    2006-01-01

    The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states. PMID:16441559

  15. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.

    PubMed

    Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula

    2016-01-01

    Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Therapeutic indications for percutaneous laser in patients with vascular malformations and tumors].

    PubMed

    Labau, D; Cadic, P; Ouroussoff, G; Ligeron, C; Laroche, J-P; Guillot, B; Dereure, O; Quéré, I; Galanaud, J-P

    2014-12-01

    Lasers are increasingly used to treat vascular abnormalities. Indeed, this technique is non-invasive and allows a specific treatment. The aim of this review is to present some biophysical principles of the lasers, to describe the different sorts of lasers available for treatment in vascular medicine indications. Three principal lasers exist in vascular medicine: the pulsed-dye laser, for the treatment of superficial pink lesions, the NdYAG-KTP laser for purple and bigger lesions, and the NdYAG long pulse laser for even deeper and bigger vascular lesions. In vascular malformations, port wine stains can also be treated by pulsed-dye laser, KTP or NdYAG when they are old and thick. Telangiectasias are good indications for the three sorts of lasers, depending on their depth, color and size. Microcystic lymphatic malformations can be improved by laser treatment. Arterio-venous malformations constitute a contraindication of laser treatment. In vascular tumors, involuted infantile hemangiomas constitute an excellent indication of pulsed-dye laser treatment. Controlled studies are necessary to evaluate and to compare the efficacy of each laser, in order to determine their optimal indications and optimal parameters for each machine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Evaluation of vascular variations at cerebellopontine angle by 3D T2WI magnetic-resonance imaging in patients with vertigo.

    PubMed

    Beyazal Celiker, Fatma; Dursun, Engin; Celiker, Metin; Durakoglugil, Tugba; Beyazal, Mehmet; Inecikli, Mehmet Fatih; Ozgur, Abdulkadir; Terzi, Suat

    2017-01-01

    Vascular loops of the anterior-inferior cerebellar artery (AICA) at the cerebellopontine angle (CPA) are considered related to auditory-vestibular symptoms. Clinical association of these anatomical aberrations, which can be grouped together as vascular compression syndromes, is controversial. Magnetic resonance imaging (MRI) is widely used to visualize this anatomical region, given its high sensitivity and specificity. To elucidate the clinical relationship of vertigo symptoms with vascular loop compression syndrome by evaluating the neurovascular contacts of the vestibulocochlear nerve (VCN) and AICA at the CPA and internal auditory canal via high-resolution MRI. The study included 417 patients (178 with vertigo and 239 without vertigo) undergoing MRI for various clinical causes. MRI scans were assessed to study the presence of vascular abnormalities at the CPA. According to our findings, type 1 vascular variation was observed most frequently in both sides. MRI findings were similar for the patients with and without vertigo. Identifying the prevalence of the vascular loops of the AICA primarily depends on diagnostic technique, and our results identified a slightly higher prevalence than those of previous studies, which might be partly related to the high-sensitivity of 3-dimensional T2-weighted MRI.

  18. Scanning electron microscopic study on the microarchitecture of the vascular system in the pigeon lung.

    PubMed

    Nasu, Tetsuo

    2005-10-01

    The resin casts of the respiratory and vascular systems in pigeon lung were examined using a scanning electron microscope. The primary bronchi branched to form many secondary bronchi that anastomosed with each other via the parabronchi. Numerous infundibula protruded from the parabronchi via the atria and ramified into the air capillaries. The pulmonary artery entered into the lung and branched into three vessels that coursed the interparabronchial parts. The intraparabronchial arterioles penetrated the gas-exchange tissue to form the anastomosing networks of blood capillaries. The observation of the double casts of the respiratory and vascular systems revealed three-dimensional complicated networks of air capillaries and blood capillaries.

  19. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    PubMed

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  1. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

    PubMed

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  2. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of humans, animals and plants is significantly modified in such extraterrestrial environments. One physiological requirement shared by humans with larger plants and animals is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. The VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  3. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  4. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting

    PubMed Central

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia; Koh, Wonshill

    2013-01-01

    Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an EC lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically-generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between endothelial cells (ECs) and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation. PMID:21482411

  5. Evaluation of cardiovascular anomalies in patients with asymptomatic turner syndrome using multidetector computed tomography.

    PubMed

    Lee, Sun Hee; Jung, Ji Mi; Song, Min Seob; Choi, Seok jin; Chung, Woo Yeong

    2013-08-01

    Turner syndrome is well known to be associated with significant cardiovascular abnormalities. This paper studied the incidence of cardiovascular abnormalities in asymptomatic adolescent patients with Turner syndrome using multidetector computed tomography (MDCT) instead of echocardiography. Twenty subjects diagnosed with Turner syndrome who had no cardiac symptoms were included. Blood pressure and electrocardiography (ECG) was checked. Cardiovascular abnormalities were checked by MDCT. According to the ECG results, 11 had a prolonged QTc interval, 5 had a posterior fascicular block, 3 had a ventricular conduction disorder. MDCT revealed vascular abnormalities in 13 patients (65%). Three patients had an aberrant right subclavian artery, 2 had dilatation of left subclavian artery, and others had an aortic root dilatation, aortic diverticulum, and abnormal left vertebral artery. As for venous abnormalities, 3 patients had partial anomalous pulmonary venous return and 2 had a persistent left superior vena cava. This study found cardiovascular abnormalities in 65% of asymptomatic Turner syndrome patients using MDCT. Even though, there are no cardiac symptoms in Turner syndrome patients, a complete evaluation of the heart with echocardiography or MDCT at transition period to adults must be performed.

  6. Convergent evolution of vascular optimization in kelp (Laminariales).

    PubMed

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  7. Ultra High-Resolution In vivo Computed Tomography Imaging of Mouse Cerebrovasculature Using a Long Circulating Blood Pool Contrast Agent

    PubMed Central

    Starosolski, Zbigniew; Villamizar, Carlos A.; Rendon, David; Paldino, Michael J.; Milewicz, Dianna M.; Ghaghada, Ketan B.; Annapragada, Ananth V.

    2015-01-01

    Abnormalities in the cerebrovascular system play a central role in many neurologic diseases. The on-going expansion of rodent models of human cerebrovascular diseases and the need to use these models to understand disease progression and treatment has amplified the need for reproducible non-invasive imaging methods for high-resolution visualization of the complete cerebral vasculature. In this study, we present methods for in vivo high-resolution (19 μm isotropic) computed tomography imaging of complete mouse brain vasculature. This technique enabled 3D visualization of large cerebrovascular networks, including the Circle of Willis. Blood vessels as small as 40 μm were clearly delineated. ACTA2 mutations in humans cause cerebrovascular defects, including abnormally straightened arteries and a moyamoya-like arteriopathy characterized by bilateral narrowing of the internal carotid artery and stenosis of many large arteries. In vivo imaging studies performed in a mouse model of Acta2 mutations demonstrated the utility of this method for studying vascular morphometric changes that are practically impossible to identify using current histological methods. Specifically, the technique demonstrated changes in the width of the Circle of Willis, straightening of cerebral arteries and arterial stenoses. We believe the use of imaging methods described here will contribute substantially to the study of rodent cerebrovasculature. PMID:25985192

  8. Pulmonary lipomatous hemangiopericytoma: report of a rare tumor and comparison with solitary fibrous tumor.

    PubMed

    Yamazaki, Kazuto; Eyden, Brian P

    2007-01-01

    Lipomatous hemangiopericytoma is a rare mesenchymal tumor showing areas of lipid-containing cells admixed with a spindle-cell component. Like other hemangiopericytomas, it shows a similar vascular pattern to solitary fibrous tumor and, partly for this reason, it and other hemangiopericytomas have been subsumed into solitary fibrous tumor. The present study provides a comprehensive documentation of a single case of pulmonary lipomatous hemangiopericytoma of the lung, the first to be described at this site, and compares it with solitary fibrous tumor, in terms of clinical, histological, immunohistochemical, ultrastructural, and cytogenetic findings. Apart from the lipid-laden-cell component, pulmonary lipomatous hemangiopericytoma and solitary fibrous tumor were similar histologically. Bcl-2 was positive in both. CD34 was minimally expressed in pulmonary lipomatous hemangiopericytoma, which possessed some non-descriptive intercellular junctions, a feature shared by solitary fibrous tumor, which was CD34 positive. However, one of the latter was rich in gap junctions, a feature consistent with strong connexin (Cx) 43 staining and the existence, hitherto unappreciated, of a CD34/Cx43-positive tumor cell network. In pulmonary lipomatous hemangiopericytoma, chromosomal deletions of 43-44, X, -Y were found. In solitary fibrous tumor, 46, XY, del(13)(q?) abnormalities and abnormalities involving chromosome 10 were frequently observed. These similarities and differences are discussed in the context of the currently favored diagnostic fusion of hemangiopericytoma and solitary fibrous tumor.

  9. Video-rate resonant scanning multiphoton microscopy

    PubMed Central

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  10. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  11. Spatial development of transport structures in apple (Malus × domestica Borkh.) fruit

    PubMed Central

    Herremans, Els; Verboven, Pieter; Hertog, Maarten L. A. T. M.; Cantre, Dennis; van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Nicolaï, Bart M.

    2015-01-01

    The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus × domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of “Jonagold” apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9–12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit. PMID:26388883

  12. A clinicopathological approach to the diagnosis of dementia

    PubMed Central

    Elahi, Fanny M.; Miller, Bruce L.

    2018-01-01

    The most definitive classification systems for dementia are based on the underlying pathology which, in turn, is categorized largely according to the observed accumulation of abnormal protein aggregates in neurons and glia. These aggregates perturb molecular processes, cellular functions and, ultimately, cell survival, with ensuing disruption of large-scale neural networks subserving cognitive, behavioural and sensorimotor functions. The functional domains affected and the evolution of deficits in these domains over time serve as footprints that the clinician can trace back with various levels of certainty to the underlying neuropathology. The process of phenotyping and syndromic classification has substantially improved over decades of careful clinicopathological correlation, and through the discovery of in vivo biomarkers of disease. Here, we present an overview of the salient features of the most common dementia subtypes — Alzheimer disease, vascular dementia, frontotemporal dementia and related syndromes, Lewy body dementias, and prion diseases — with an emphasis on neuropathology, relevant epidemiology, risk factors, and signature signs and symptoms. PMID:28708131

  13. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  14. Familial Idiopathic Cranial Neuropathy in a Chinese Family.

    PubMed

    Zhang, Li; Liang, Jianfeng; Yu, Yanbing

    Cranial neuropathy is usually idiopathic and familial cases are uncommon. We describe a family with 5 members with cranial neuropathy over 3 generations. All affected patients were women, indicating an X-linked dominant or an autosomal dominant mode of inheritance. Our cases and a review of the literature suggest that familial idiopathic cranial neuropathy is a rare condition which may be related to autosomal dominant vascular disorders (e.g. vascular tortuosity, sclerosis, elongation or extension), small posterior cranial fossas, anatomical variations of the posterior circulation, hypersensitivity of cranial nerves and other abnormalities. Moreover, microvascular decompression is the treatment of choice because vascular compression is the main factor in the pathogenesis. To the best of our knowledge, this is the first report of familial cranial neuropathy in China.

  15. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  16. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  17. Mechanisms of vascular aging: What can we learn from Hutchinson-Gilford progeria syndrome?

    PubMed

    Del Campo, Lara; Hamczyk, Magda R; Andrés, Vicente; Martínez-González, José; Rodríguez, Cristina

    Aging is the main risk factor for cardiovascular disease (CVD). The increased prevalence of CVD is partly due to the global increase in life expectancy. In this context, it is essential to identify the mechanisms by which aging induces CVD, with the ultimate aim of reducing its incidence. Both atherosclerosis and heart failure significantly contribute to age-associated CVD morbidity and mortality. Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by the synthesis of progerin, which is noted for accelerated aging and CVD. This mutant form of prelamin A induces generalised atherosclerosis, vascular calcification, and cardiac electrophysiological abnormalities, leading to premature aging and death, mainly due to myocardial infarction and stroke. This review discusses the main vascular structural and functional abnormalities during physiological and premature aging, as well as the mechanisms involved in the exacerbated CVD and accelerated aging induced by the accumulation of progerin and prelamin A. Both proteins are expressed in non-HGPS individuals, and physiological aging shares many features of progeria. Research into HGPS could therefore shed light on novel mechanisms involved in the physiological aging of the cardiovascular system. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    USGS Publications Warehouse

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  20. Classification of breast abnormalities using artificial neural network

    NASA Astrophysics Data System (ADS)

    Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah

    2015-05-01

    Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.

  1. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    PubMed

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease

    PubMed Central

    Kishore, Asha; Meunier, Sabine; Popa, Traian

    2014-01-01

    Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063

  3. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  4. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor

    PubMed Central

    Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.

    2016-01-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210

  5. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-06

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  6. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix

    PubMed Central

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. PMID:26348142

  7. Limiting chest computed tomography in the evaluation of pediatric thoracic trauma.

    PubMed

    Golden, Jamie; Isani, Mubina; Bowling, Jordan; Zagory, Jessica; Goodhue, Catherine J; Burke, Rita V; Upperman, Jeffrey S; Gayer, Christopher P

    2016-08-01

    Computed tomography (CT) of the chest (chest CT) is overused in blunt pediatric thoracic trauma. Chest CT adds to the diagnosis of thoracic injury but rarely changes patient management. We sought to identify a subset of blunt pediatric trauma patients who would benefit from a screening chest CT based on their admission chest x-ray (CXR) findings. We hypothesize that limiting chest CT to patients with an abnormal mediastinal silhouette identifies intrathoracic vascular injuries not otherwise seen on CXR. All blunt trauma activations that underwent an admission CXR at our Level 1 pediatric trauma center from 2005 to 2013 were retrospectively reviewed. Patients who had a chest CT were evaluated for added diagnoses and change in management after CT. An admission CXR was performed in 1,035 patients. One hundred thirty-nine patients had a CT, and the diagnosis of intra-thoracic injury was added in 42% of patients. Chest CT significantly increased the diagnosis of contusion or atelectasis (30.3% vs 60.4%; p < 0.05), pneumothorax (7.2% vs 18.7%; p < 0.05), and other fractures (4.3% vs 10.8%; p < 0.05) on CXR compared to chest CT. Chest CT changed the management of only 4 patients (2.9%). Two patients underwent further radiologic evaluation that was negative for injury, one had a chest tube placed for an occult pneumothorax before exploratory laparotomy, and one patient had a thoracotomy for repair of aortic injury. Chest CT for select patients with an abnormal mediastinal silhouette on CXR would have decreased CT scans by 80% yet still identified patients with an intrathoracic vascular injury. The use of chest CT should be limited to the identification of intrathoracic vascular injuries in the setting of an abnormal mediastinal silhouette on CXR. Therapeutic study, level IV; diagnostic study, level III.

  8. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels.

    PubMed

    Hallaq, Haifa; Pinter, Emese; Enciso, Josephine; McGrath, James; Zeiss, Caroline; Brueckner, Martina; Madri, Joseph; Jacobs, Harris C; Wilson, Christine M; Vasavada, Hemaxi; Jiang, Xiaobing; Bogue, Clifford W

    2004-10-01

    The homeobox gene Hhex has recently been shown to be essential for normal liver, thyroid and forebrain development. Hhex(-/-) mice die by mid-gestation (E14.5) and the cause of their early demise remains unclear. Because Hhex is expressed in the developing blood islands at E7.0 in the endothelium of the developing vasculature and heart at E9.0-9.5, and in the ventral foregut endoderm at E8.5-9.0, it has been postulated to play a critical role in heart and vascular development. We show here, for the first time, that a null mutation of Hhex results in striking abnormalities of cardiac and vascular development which include: (1) defective vasculogenesis, (2) hypoplasia of the right ventricle, (3) overabundant endocardial cushions accompanied by ventricular septal defects, outflow tract abnormalities and atrio-ventricular (AV) valve dysplasia and (4) aberrant development of the compact myocardium. The dramatic enlargement of the endocardial cushions in the absence of Hhex is due to decreased apoptosis and dysregulated epithelial-mesenchymal transformation (EMT). Interestingly, vascular endothelial growth factor A (Vegfa) levels in the hearts of Hhex(-/-) mice were elevated as much as three-fold between E9.5 and E11.5, and treatment of cultured Hhex(-/-) AV explants with truncated soluble Vegfa receptor 1, sFlt-1, an inhibitor of Vegf signaling, completely abolished the excessive epithelial-mesenchymal transformation seen in the absence of Hhex. Therefore, Hhex expression in the ventral foregut endoderm and/or the endothelium is necessary for normal cardiovascular development in vivo, and one function of Hhex is to repress Vegfa levels during development.

  9. Vascular signaling abnormalities in Alzheimer disease.

    PubMed

    Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph

    2011-08-01

    Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.

  10. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  11. Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory

    PubMed Central

    Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941

  12. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  13. 76 FR 78216 - Organ Procurement and Transplantation Network

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... composite tissue allograft; however, for the purposes of rulemaking, the Health Resources and Services..., Hand transplantation and vascularized composite tissue allografts in orthopaedics and traumatology... vascularized composite allografts, described below, within the definition of organs covered by the rules...

  14. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  15. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.

    PubMed

    Balogh, Peter; Bagchi, Prosenjit

    2017-12-19

    We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Neural network topology in ADHD; evidence for maturational delay and default-mode network alterations.

    PubMed

    Janssen, T W P; Hillebrand, A; Gouw, A; Geladé, K; Van Mourik, R; Maras, A; Oosterlaan, J

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with widespread brain abnormalities in white and grey matter, affecting not only local, but global functional networks as well. In this study, we explored these functional networks using source-reconstructed electroencephalography in ADHD and typically developing (TD) children. We expected evidence for maturational delay, with underlying abnormalities in the default mode network. Electroencephalograms were recorded in ADHD (n=42) and TD (n=43) during rest, and functional connectivity (phase lag index) and graph (minimum spanning tree) parameters were derived. Dependent variables were global and local network metrics in theta, alpha and beta bands. We found evidence for a more centralized functional network in ADHD compared to TD children, with decreased diameter in the alpha band (η p 2 =0.06) and increased leaf fraction (η p 2 =0.11 and 0.08) in the alpha and beta bands, with underlying abnormalities in hub regions of the brain, including default mode network. The finding of a more centralized network is in line with maturational delay models of ADHD and should be replicated in longitudinal designs. This study contributes to the literature by combining high temporal and spatial resolution to construct EEG network topology, and associates maturational-delay and default-mode interference hypotheses of ADHD. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  18. The role of capillaroscopy and thermography in the assessment and management of Raynaud's phenomenon.

    PubMed

    Herrick, Ariane L; Murray, Andrea

    2018-05-01

    Most patients with Raynaud's phenomenon (RP) have "benign" primary RP (PRP), but a minority have an underlying cause, for example a connective tissue disease such as systemic sclerosis (SSc). Secondary RP can be associated with structural as well as functional digital vascular changes and can be very severe, potentially progressing to digital ulceration or gangrene. The first step in management is to establish why the patient has RP. This short review discusses the role of nailfold capillaroscopy and thermography in the assessment of RP. Nailfold capillaroscopy examines microvascular structure, which is normal in PRP but abnormal in most patients with SSc: the inclusion of abnormal nailfold capillaries into the 2013 classification criteria for SSc behoves clinicians diagnosing connective tissue disease to be familiar with the technique. For those without access to the gold standard of high magnification videocapillaroscopy, a low magnification dermatoscope or USB microscope can be used. Thermography measures surface temperature and is therefore an indirect measure of blood blow, assessing digital vascular function (abnormal in both PRP and SSc). Until now, the use of thermography has been mainly confined to specialist centres and used mainly in research: this may change with development of mobile phone thermography. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Molecular Regulation of Endothelial Cells by NF-1

    DTIC Science & Technology

    2013-01-01

    cancer progression. The mammalian target of rapamycin (mTOR) is a serine threonine kinase, that exists in two distinct signaling complexes: mTORC1 and...abnormalities such as diabetes , with known vascular complications. Thus mTOR may be a significant regulator of endothelial cell functions

  20. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  1. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. © 2013 Wiley Periodicals, Inc.

  2. Clinical image: MRI during migraine with aura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, A.C.

    1996-03-01

    Migraine refers to severe headaches that are usually unilateral, throbbing, and associated with nausea, vomiting, photophobia, and phonophobia. Migraine with aura (formerly called {open_quotes}classic migraine{close_quotes}) consists of the headache preceded or accompanied by neurological dysfunction. This dysfunction (aura) usually involves visual and sensory symptoms. The patient described herein experienced migraine with aura. MRI during and after the attack showed a reversible abnormality of the right posterior cerebral artery, with no parenchymal lesions. This appears to be the first report of abnormal MR vascular imaging during migraine with aura. 10 refs., 2 figs.

  3. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity

    PubMed Central

    Kyriakides, Themis R.; Leach, Kathleen J.; Hoffman, Allan S.; Ratner, Buddy D.; Bornstein, Paul

    1999-01-01

    Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of TSP2 in the FBR, polydimethylsiloxane (PDMS) and oxidized PDMS (ox-PDMS) disks were implanted in TSP2-null and control mice. Growth of TSP2-null and control skin fibroblasts in vitro also was evaluated on both types of disks. Normal fibroblasts grew as a monolayer on both surfaces, but attachment of the cells to ox-PDMS was weak and sensitive to movement. TSP2-null fibroblasts grew as aggregates on both surfaces, and their attachment was further compromised on ox-PDMS. After a 4-week implantation period, both types of PDMS elicited a similar FBR with a collagenous capsule in both TSP2-null and control mice. However, strikingly, the collagenous capsule that formed in TSP2-null mice was highly vascularized and thicker than that formed in normal mice. In addition, abnormally shaped collagen fibers were observed in capsules from mutant mice. These observations indicate that the presence or absence of an extracellular matrix component, TSP2, can influence the nature of the FBR, in particular its vascularity. The expression of TSP2 therefore could represent a molecular target for local inhibitory measures when vascularization of the tissue surrounding an implanted device is desired. PMID:10200282

  4. Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis.

    PubMed

    Grayson, Peter C; Tomasson, Gunnar; Cuthbertson, David; Carette, Simon; Hoffman, Gary S; Khalidi, Nader A; Langford, Carol A; McAlear, Carol A; Monach, Paul A; Seo, Philip; Warrington, Kenneth J; Ytterberg, Steven R; Merkel, Peter A

    2012-02-01

    To assess the utility of the vascular physical examination to detect arteriographic lesions in patients with established large vessel vasculitis (LVV), including Takayasu's arteritis (TAK) and giant cell arteritis (GCA). In total, 100 patients (TAK = 68, GCA = 32) underwent standardized physical examination and angiography of the carotid, subclavian, and axillary arteries. Sensitivity and specificity were calculated for the association between findings on physical examination focusing on the vascular system (absent pulse, bruit, and blood pressure difference) and arteriographic lesions defined as stenosis, occlusion, or aneurysm. We found 67% of patients had at least 1 abnormality on physical examination (74% TAK, 53% GCA). Arteriographic lesions were seen in 76% of patients (82% TAK, 63% GCA). Individual physical examination findings had poor sensitivity (range 14%-50%) and good-excellent specificity (range 71%-98%) to detect arteriographic lesions. Even when considering physical examination findings in combination, at least 30% of arteriographic lesions were missed. Specificity improved (range 88%-100%) if individual physical examination findings were compared to a broader region of vessels rather than specific anatomically correlated vessels and if ≥ 1 physical examination findings were combined. In patients with established LVV, physical examination alone is worthwhile to detect arterial disease but does not always localize or reveal the full extent of arteriographic lesions. Abnormal vascular system findings on physical examination are highly associated with the presence of arterial lesions, but normal findings on physical examination do not exclude the possibility of arterial disease. Serial angiographic assessment is advisable to monitor arterial disease in patients with established LVV.

  5. Pediatric head and neck lesions: assessment of vascularity by MR digital subtraction angiography.

    PubMed

    Chooi, Weng Kong; Woodhouse, Neil; Coley, Stuart C; Griffiths, Paul D

    2004-08-01

    Pediatric head and neck lesions can be difficult to characterize on clinical grounds alone. We investigated the use of dynamic MR digital subtraction angiography as a noninvasive adjunct for the assessment of the vascularity of these abnormalities. Twelve patients (age range, 2 days to 16 years) with known or suspected vascular abnormalities were studied. Routine MR imaging, time-of-flight MR angiography, and MR digital subtraction angiography were performed in all patients. The dynamic sequence was acquired in two planes at one frame per second by using a thick section (6-10 cm) selective radio-frequency spoiled fast gradient-echo sequence and an IV administered bolus of contrast material. The images were subtracted from a preliminary mask sequence and viewed as a video-inverted cine loop. In all cases, MR digital subtraction angiography was successfully performed. The technique showed the following: 1) slow flow lesions (two choroidal angiomas, eyelid hemangioma, and scalp venous malformation); 2) high flow lesions that were not always suspected by clinical examination alone (parotid hemangioma, scalp, occipital, and eyelid arteriovenous malformations plus a palatal teratoma); 3) a hypovascular tumor for which a biopsy could be safely performed (Burkitt lymphoma); and 4) a hypervascular tumor of the palate (cystic teratoma). Our early experience suggests that MR digital subtraction angiography can be reliably performed in children of all ages without complication. The technique provided a noninvasive assessment of the vascularity of each lesion that could not always have been predicted on the basis of clinical examination or routine MR imaging alone.

  6. Association of Vascular Physical Examination Findings and Arteriographic Lesions in Large Vessel Vasculitis

    PubMed Central

    GRAYSON, PETER C.; TOMASSON, GUNNAR; CUTHBERTSON, DAVID; CARETTE, SIMON; HOFFMAN, GARY S.; KHALIDI, NADER A.; LANGFORD, CAROL A.; McALEAR, CAROL A.; MONACH, PAUL A.; SEO, PHILIP; WARRINGTON, KENNETH J.; YTTERBERG, STEVEN R.; MERKEL, PETER A.

    2013-01-01

    Objective To assess the utility of the vascular physical examination to detect arteriographic lesions in patients with established large vessel vasculitis (LVV), including Takayasu’s arteritis (TAK) and giant cell arteritis (GCA). Methods In total, 100 patients (TAK = 68, GCA = 32) underwent standardized physical examination and angiography of the carotid, subclavian, and axillary arteries. Sensitivity and specificity were calculated for the association between findings on physical examination focusing on the vascular system (absent pulse, bruit, and blood pressure difference) and arteriographic lesions defined as stenosis, occlusion, or aneurysm. Results We found 67% of patients had at least 1 abnormality on physical examination (74% TAK, 53% GCA). Arteriographic lesions were seen in 76% of patients (82% TAK, 63% GCA). Individual physical examination findings had poor sensitivity (range 14%–50%) and good-excellent specificity (range 71%–98%) to detect arteriographic lesions. Even when considering physical examination findings in combination, at least 30% of arteriographic lesions were missed. Specificity improved (range 88%–100%) if individual physical examination findings were compared to a broader region of vessels rather than specific anatomically correlated vessels and if ≥ 1 physical examination findings were combined. Conclusion In patients with established LVV, physical examination alone is worthwhile to detect arterial disease but does not always localize or reveal the full extent of arteriographic lesions. Abnormal vascular system findings on physical examination are highly associated with the presence of arterial lesions, but normal findings on physical examination do not exclude the possibility of arterial disease. Serial angiographic assessment is advisable to monitor arterial disease in patients with established LVV. PMID:22174204

  7. Detection of eardrum abnormalities using ensemble deep learning approaches

    NASA Astrophysics Data System (ADS)

    Senaras, Caglar; Moberly, Aaron C.; Teknos, Theodoros; Essig, Garth; Elmaraghy, Charles; Taj-Schaal, Nazhat; Yua, Lianbo; Gurcan, Metin N.

    2018-02-01

    In this study, we proposed an approach to report the condition of the eardrum as "normal" or "abnormal" by ensembling two different deep learning architectures. In the first network (Network 1), we applied transfer learning to the Inception V3 network by using 409 labeled samples. As a second network (Network 2), we designed a convolutional neural network to take advantage of auto-encoders by using additional 673 unlabeled eardrum samples. The individual classification accuracies of the Network 1 and Network 2 were calculated as 84.4%(+/- 12.1%) and 82.6% (+/- 11.3%), respectively. Only 32% of the errors of the two networks were the same, making it possible to combine two approaches to achieve better classification accuracy. The proposed ensemble method allows us to achieve robust classification because it has high accuracy (84.4%) with the lowest standard deviation (+/- 10.3%).

  8. Neuroplasticity in Human Alcoholism

    PubMed Central

    Fein, George; Cardenas, Valerie A.

    2015-01-01

    Alcoholism is characterized by a lack of control over excessive alcohol consumption despite significant negative consequences. This impulsive and compulsive behavior may be related to functional abnormalities within networks of brain regions responsible for how we make decisions. The abnormalities may result in strengthened networks related to appetitive drive—or the need to fulfill desires—and simultaneously weakened networks that exercise control over behaviors. Studies using functional magnetic resonance imaging (fMRI) in abstinent alcoholics suggest that abstinence is associated with changes in the tone of such networks, decreasing resting tone in appetitive drive networks, and increasing resting tone in inhibitory control networks to support continued abstinence. Identifying electroencephalographic (EEG) measures of resting tone in these networks initially identified using fMRI, and establishing in longitudinal studies that these abstinence-related changes in network tone are progressive would motivate treatment initiatives to facilitate these changes in network tone, thereby supporting successful ongoing abstinence. PMID:26259093

  9. Progression of Diabetic Capillary Occlusion: A Model

    PubMed Central

    Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.

    2016-01-01

    An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722

  10. Intrapulmonary vascular remodeling: MSCT-based evaluation in COPD and alpha-1 antitrypsin deficient subjects

    NASA Astrophysics Data System (ADS)

    Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves

    2016-03-01

    Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.

  11. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  12. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    PubMed

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These topological abnormalities and disconnections might be potential biomarkers of cognitive impairments in patients with OSA.

  13. COMPARISON OF REAL-TIME MICROVASCULAR ABNORMALITIES IN PEDIATRIC AND ADULT SICKLE CELL ANEMIA PATIENTS

    PubMed Central

    Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph

    2010-01-01

    The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552

  14. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.

    PubMed

    Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L

    2013-12-01

    Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal-visual networks in patients relative to control subjects. We found abnormal functional connectivity within and across resting-state networks in children with frontal lobe epilepsy. Impairment in functional connectivity was associated with impaired neuropsychological function.

  15. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  16. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  17. Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans.

    PubMed

    Bruner, Emiliano; Mantini, Simone; Perna, Agostino; Maffei, Carlotta; Manzi, Giorgio

    2005-01-01

    The middle meningeal vascular network leaves its traces on the endocranial surface because of the tight relationship between neurocranial development and brain growth. Analysing the endocast of fossil specimens, it is therefore possible to describe the morphology of these structures, leading inferences on the cerebral physiology and metabolism in extinct human groups. In this paper, general features of the meningeal vascular traces are described for specimens included in the Homo erectus, Homo neanderthalensis, and Homo sapiens hypodigms. The complexity of the arterial network is quantified by its fractal dimension, calculated through the box-counting method. Modern humans show significant differences from the other two taxa because of the anterior vascular dominance and the larger fractal dimension. Neither the fractal dimension nor the anterior development are merely associated with cranial size increase. Considering the differences between Neanderthals and modern humans, these results may be interpreted in terms of phylogeny, cerebral functions, or cranial structural network.

  18. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. © 2014 Wiley Periodicals, Inc.

  20. Vascular Abnormalities Associated with Thermal and Electrical Trauma,

    DTIC Science & Technology

    1992-01-01

    Knippenberg, R,W.: Temporal relationships among immunologic alterations in a guinea pig model of thermal injury. J. Infect, Dis., 153:1098, 1986. 7...decompression venous access to 72 hr in thermally injured patients of the stomach and alimentation provided either by is supported by the documented

  1. Down Syndrome: A Cardiovascular Perspective

    ERIC Educational Resources Information Center

    Vis, J. C.; Duffels, M. G. J.; Winter, M. M.; Weijerman, M. E.; Cobben, J. M.; Huisman, S. A.; Mulder, B. J. M.

    2009-01-01

    This review focuses on the heart and vascular system in patients with Down syndrome. A clear knowledge on the wide spectrum of various abnormalities associated with this syndrome is essential for skillful management of cardiac problems in patients with Down syndrome. Epidemiology of congenital heart defects, cardiovascular aspects and…

  2. Morning glory disk anomaly with ipsilateral capillary hemangioma, agenesis of the internal carotid artery, and Horner syndrome: a variant of PHACES syndrome?

    PubMed

    Puvanachandra, Narman; Heran, Manraj K; Lyons, Christopher J

    2008-10-01

    We describe a 6-week-old girl with a right upper lid capillary hemangioma, ipsilateral morning glory disk anomaly, microphthalmos, Mittendorf dot, and Horner syndrome. The ipsilateral internal carotid artery was also found to be absent. To our knowledge, this is the first patient to be reported with this group of findings. We suggest that this represents an overlap between morning glory disk and intracranial vascular abnormalities, a recognized association, and PHACES syndrome (posterior fossa malformations, hemangiomas, arterial anomalies, cardiac defects, eye, and sternal abnormalities). We discuss the common embryological basis for these abnormalities, which point to a widespread but highly variable disorder of mesodermal differentiation.

  3. Anomalous vascularization in a Wnt medulloblastoma: a case report.

    PubMed

    Di Giannatale, Angela; Carai, Andrea; Cacchione, Antonella; Marrazzo, Antonio; Dell'Anna, Vito Andrea; Colafati, Giovanna Stefania; Diomedi-Camassei, Francesca; Miele, Evelina; Po, Agnese; Ferretti, Elisabetta; Locatelli, Franco; Mastronuzzi, Angela

    2016-07-15

    Medulloblastoma is the most common malignant brain tumor in children. To date only few cases of medulloblastoma with hemorrhages have been reported in the literature. Although some studies speculate on the pathogenesis of this anomalous increased vascularization in medulloblastoma, the specific mechanism is still far from clearly understood. A correlation between molecular medulloblastoma subgroups and hemorrhagic features has not been reported, although recent preliminary studies described that WNT-subtype tumors display increased vascularization and hemorrhaging. Herein, we describe a child with a Wnt-medulloblastoma presenting as cerebellar-vermian hemorrhagic lesion. Brain magnetic resonance imaging (MRI) showed the presence of a midline posterior fossa mass with a cystic hemorrhagic component. The differential diagnosis based on imaging included cavernous hemangioma, arteriovenous malformation and traumatic lesion. At surgery, the tumor appeared richly vascularized as documented by the preoperative angiography. The case we present showed that Wnt medulloblastoma may be associated with anomalous vascularization. Further studies are needed to elucidate if there is a link between the hypervascularization and the Wnt/β-catenin signaling activation and if this abnormal vasculature might influence drug penetration contributing to good prognosis of this medulloblastoma subgroup.

  4. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  5. Pulmonary physiology during pulmonary embolism.

    PubMed

    Elliott, C G

    1992-04-01

    Acute pulmonary thromboembolism produces a number of pathophysiologic derangements of pulmonary function. Foremost among these alterations is increased pulmonary vascular resistance. For patients without preexistent cardiopulmonary disease, increased pulmonary vascular resistance is directly related to the degree of vascular obstruction demonstrated on the pulmonary arteriogram. Vasoconstriction, either reflexly or biochemically mediated, may contribute to increased pulmonary vascular resistance. Acute pulmonary thromboembolism also disturbs matching of ventilation and blood flow. Consequently, some lung units are overventilated relative to perfusion (increased dead space), while other lung units are underventilated relative to perfusion (venous admixture). True right-to-left shunting of mixed venous blood can occur through the lungs (intrapulmonary shunt) or across the atrial septum (intracardiac shunt). In addition, abnormalities of pulmonary gas exchange (carbon monoxide transfer), pulmonary compliance and airway resistance, and ventilatory control may accompany pulmonary embolism. Thrombolytic therapy can reverse the hemodynamic derangements of acute pulmonary thromboembolism more rapidly than anticoagulant therapy. Limited data suggest a sustained benefit of thrombolytic treatment on the pathophysiologic alterations of pulmonary vascular resistance and pulmonary gas exchange produced by acute pulmonary emboli.

  6. Patterning vascular networks in vivo for tissue engineering applications.

    PubMed

    Chaturvedi, Ritika R; Stevens, Kelly R; Solorzano, Ricardo D; Schwartz, Robert E; Eyckmans, Jeroen; Baranski, Jan D; Stapleton, Sarah Chase; Bhatia, Sangeeta N; Chen, Christopher S

    2015-05-01

    The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined "cords," which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.

  7. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.

    PubMed

    Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago

    2018-03-02

    Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).

  8. Prediction of forced expiratory volume in pulmonary function test using radial basis neural networks and k-means clustering.

    PubMed

    Manoharan, Sujatha C; Ramakrishnan, Swaminathan

    2009-10-01

    In this work, prediction of forced expiratory volume in pulmonary function test, carried out using spirometry and neural networks is presented. The pulmonary function data were recorded from volunteers using commercial available flow volume spirometer in standard acquisition protocol. The Radial Basis Function neural networks were used to predict forced expiratory volume in 1 s (FEV1) from the recorded flow volume curves. The optimal centres of the hidden layer of radial basis function were determined by k-means clustering algorithm. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal, restrictive and obstructive cases. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases. Prediction accuracy was more in obstructive abnormality when compared to restrictive cases. It appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  9. Fenestrations and Various Duplications of the Posterior Communicating Artery in the Prenatal and Postnatal Periods.

    PubMed

    Trandafilović, Milena; Vasović, Ljiljana; Vlajković, Slobodan; Đorđević, Gordana; Stojanović, Borisav; Mladenović, Marija

    2016-07-01

    The 2 paired arteries-the posterior communicating arteries (PCoAs) and the precommunicating parts of the posterior cerebral arteries-form the so-called posterior segment of the cerebral arterial circle on the base of the brain. A number of (ab)normal morphologic features were described in the literature (e.g., unusual kinking, or extreme elongations, hypoplasia, duplications, fenestrations, the infundibular widening, or aplasia of the PCoA in the prenatal and/or postnatal periods). The aim of this study was to analyze an incidence of various fenestrations and duplications of the PCoA, and describe their general features and their association with other vascular abnormalities. The research was performed on the brains of 200 human fetuses and 377 adult cadavers of both genders and different ages using microdissection and macrodissection methods. There were 0.34% cases with PCoA fenestrations and 3.12% cases with various PCoA duplications. Their morphologic features were described and compared with the similar PCoA abnormalities recorded in the scientific literature. There was no association between the PCoA and either duplication or aneurysm in adult cases. After thorough examination, the fenestrations and duplications of the PCoA are distinguished as 2 special forms of vascular abnormalities, and the PCoA duplications are characterized as partial and total. Furthermore, whereas the low incidence of a fenestration of the PCoA suggests it to be a sufficiently rare phenomenon, the duplications of the PCoA trunk are fairly frequent, especially concerning its terminal segment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Remote thalamic microstructural abnormalities related to cognitive function in ischemic stroke patients.

    PubMed

    Fernández-Andújar, Marina; Doornink, Fleur; Dacosta-Aguayo, Rosalía; Soriano-Raya, Juan José; Miralbell, Júlia; Bargalló, Núria; López-Cancio, Elena; Pérez de la Ossa, Natalia; Gomis, Meritxell; Millán, Mònica; Barrios, Maite; Cáceres, Cynthia; Pera, Guillem; Forés, Rosa; Clemente, Imma; Dávalos, Antoni; Mataró, Maria

    2014-11-01

    Ischemic stroke can lead to a continuum of cognitive sequelae, ranging from mild vascular cognitive impairment to vascular dementia. These cognitive deficits can be influenced by the disruption of cortico-subcortical circuits. We sought to explore remote thalamic microstructural abnormalities and their association with cognitive function after ischemic stroke. Seventeen patients with right hemispheric ischemic stroke and 17 controls matched for age, sex, and years of education were included. All participants underwent neurological, neuropsychological, and diffusion tensor image examination. Patients were assessed 3 months poststroke. Voxel-wise analysis was used to study thalamic diffusion differences between groups. Mean fractional anisotropy (FA) and mean diffusivity (MD) values in significant thalamic areas were calculated for each subject and correlated with cognitive performance. Stroke patients showed lower FA values and higher MD values in specific areas of both the left and right thalamus compared with controls. In patients, decreased FA values were associated with lower verbal fluency performance in the right thalamus (R(2) = 0.45, β = 0.74) and the left thalamus (R(2) = 0.57, β = 0.77) after adjusting for diabetes mellitus. Moreover, increased MD values were associated with lower verbal fluency performance in the right thalamus (R(2) = 0.27, β = -0.54) after adjusting for diabetes mellitus. In controls, thalamic FA and MD values were not related to any cognitive function. Our findings support the hypothesis that ischemic stroke lesions are associated with remote thalamic diffusion abnormalities, and that these abnormalities can contribute to cognitive dysfunction 3 months after a cerebrovascular event. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  12. [Hepatopulmonary syndrome and portopulmonary hypertension].

    PubMed

    Marcu, Cristina; Schiffer, Eduardo; Aubert, John-David; Vionnet, Julien; Yerly, Patrick; Deltenre, Pierre; Marot, Astrid

    2017-08-30

    Hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH) are two frequent pulmonary complications of liver disease. Portal hypertension is a key element in the pathogenesis of both disorders, which are however distinct in terms of pathogenesis, diagnosis and treatment. HPS corresponds to an abnormal arterial oxygenation in relation with the development of intrapulmonary vascular dilatations. POPH is a pulmonary arterial hypertension in the setting of portal hypertension and elevated pulmonary vascular resistance. As both diseases are associated with an increased risk of morbidity and mortality, it is important to screen and evaluate the severity of these two disorders particularly in liver transplant candidates.

  13. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    PubMed

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  14. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease

    PubMed Central

    Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130

  15. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing

    PubMed Central

    Babczyk, Patrick; Conzendorf, Clelia; Klose, Jens; Schulze, Margit; Harre, Kathrin; Tobiasch, Edda

    2014-01-01

    This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade. PMID:26237251

  16. Altered functional and effective connectivity in anticorrelated intrinsic networks in children with benign childhood epilepsy with centrotemporal spikes.

    PubMed

    Luo, Cheng; Yang, Fei; Deng, Jiayan; Zhang, Yaodan; Hou, Changyue; Huang, Yue; Cao, Weifang; Wang, Jianjun; Xiao, Ruhui; Zeng, Nanlin; Wang, Xiaoming; Yao, Dezhong

    2016-06-01

    There are 2 intrinsic networks in the human brain: the task positive network (TPN) and task negative network (alternately termed the default mode network, DMN) in which inverse correlations have been observed during resting state and event-related functional magnetic resonance imaging (fMRI). The antagonism between the 2 networks might indicate a dynamic interaction in the brain that is associated with development.To evaluate the alterations in the relations of the 2 networks in children with benign childhood epilepsy with centrotemporal spikes (BECTS), resting state fMRI was performed in 17 patients with BECTS and 17 healthy controls. The functional and effective connectivities of 29 nodes in the TPN and DMN were analyzed. Positive functional connectivity (FC) within the networks and negative FC between the 2 networks were observed in both groups.The patients exhibited increased FC within both networks, particularly in the frontoparietal nodes such as the left superior frontal cortex, and enhanced antagonism between the 2 networks, suggesting abnormal functional integration of the nodes of the 2 networks in the patients. Granger causality analysis revealed a significant difference in the degree of outflow to inflow in the left superior frontal cortex and the left ventral occipital lobe.The alterations observed in the combined functional and effective connectivity analyses might indicate an association of an abnormal ability to integrate information between the DMN and TPN and the epileptic neuropathology of BECTS and provide preliminary evidence supporting the occurrence of abnormal development in children with BECTS.

  17. Molecular parallels between neural and vascular development.

    PubMed

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  18. Engineering clinically relevant volumes of vascularized bone

    PubMed Central

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-01-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. PMID:25877690

  19. Network Disruption and Cerebrospinal Fluid Amyloid-Beta and Phospho-Tau Levels in Mild Cognitive Impairment.

    PubMed

    Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando

    2015-07-15

    Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities on neural function in mild cognitive impairment. Disruption in functional connectivity between several pairs of cortical regions associated with abnormal levels of biomarkers, cognitive deficits, or with impaired axonal integrity of hippocampal tracts. Amyloid deposition and tau protein-related neuronal injury in early Alzheimer's disease are associated with synaptic dysfunction and a dual pattern of cortical network disorganization (i.e., desynchronization and hypersynchronization) that affects key regions of the default mode network and temporal areas. Copyright © 2015 the authors 0270-6474/15/3510326-06$15.00/0.

  20. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia.

    PubMed

    Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R; Aranda, Jacob; Grant, Maria B; Chaqour, Brahim

    2015-09-18

    The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia*

    PubMed Central

    Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R.; Aranda, Jacob; Grant, Maria B.; Chaqour, Brahim

    2015-01-01

    The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3′-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. PMID:26242736

  2. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  3. Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Han, Joo-Hui; Kim, Yohan; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Song, Gyu-Yong; Cuong, Nguyen Manh; Kim, Young Ho

    2015-01-01

    The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis. PMID:26330754

  4. Evidence for Post-Translational Processing of Vascular Endothelial (VE)-Cadherin in Brain Tumors: Towards a Candidate Biomarker

    PubMed Central

    Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François

    2013-01-01

    Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106

  5. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications

    NASA Technical Reports Server (NTRS)

    Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.

  7. Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold

    PubMed Central

    2015-01-01

    Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072

  8. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  9. New therapies for vascular anomalies of the gastrointestinal tract.

    PubMed

    Fox, Victor L

    2018-06-01

    Vascular anomalies are a morphologically and biologically diverse group of vascular channel abnormalities that are often congenital but may evolve or change over time in the developing child. Classification is based on a combination of physical and biological properties and clinical behavior that differentiate primarily between tumors and malformations and includes a few provisionally unclassified lesions. Anomalies of the gastrointestinal (GI) tract may present clinically with GI bleeding, abdominal pain, high-output cardiac failure, and malabsorption. This review focuses on new therapies for the treatment of GI bleeding. Important new pharmacological therapies include treatment of hemangioma with non-selective and selective beta-antagonist agents, propranolol and atenolol, and treatment of blue rubber bleb nevus syndrome and cutaneo-visceral angiomatosis with thrombocytopenia (also known as multifocal lymphangioendotheliomatosis with thrombocytopenia) with sirolimus, an inhibitor of the mammalian target of rapamycin. Therapeutic endoscopy may offer an effective alternative to bowel resection for colonic varices and other focal vascular anomalies of the GI tract that fail to respond to pharmacological therapy.

  10. Tissue vascularization through 3D printing: Will technology bring us flow?

    PubMed

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  11. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity.

    PubMed

    Svensson, W E; Pandian, A J; Hashimoto, H

    2010-10-01

    The aim of this study was to evaluate the use of vascular morphology, around and within the B-mode region of abnormality, for improving the diagnostic accuracy of two of the most common solid breast pathologies. The B-mode and Doppler images of 117 breast cancers and 366 fibroadenomas and lesions with a fibroadenoma-like appearance were reviewed retrospectively and the morphology of the vascular pattern was evaluated. The ratio of external to internal color Doppler, the external vascular pattern and the connecting vessels to internal vessels were assessed and differentiated into benign and malignant vascular patterns. These patterns were correlated with the histological diagnosis. Vascularity was demonstrated in 95 % of cancers and in 46 % of benign lesions with a trend to increasing vascularity in cancers. This provided poor specificity for excluding cancer in fibroadenomas. Variations in vascular pattern were recorded. The observed benign vascular patterns were avascularity, vascularity in the periphery and peripheral marginal vessels connecting with internal vascularity. The observed malignant vascular patterns were radially aligned external vessels with internal vessels being more numerous than external vessels which connected to radial vessels. (Fisher exact test p < 0.0001). Analysis of the vascular morphology improved the sensitivity for identifying cancers from 97 % (B-mode) to 99 % (B-mode and color Doppler) with a minimal reduction in specificity (93.7 to 92.6 %) or accuracy (94.6 to 94.2 %). The presence of vascularity within a lesion, by itself, is no longer a good predictor of malignancy because of the increase in Doppler sensitivity associated with improvements in ultrasound technology. The color Doppler ultrasound vascular pattern morphology improves the accuracy and sensitivity of B-mode image diagnosis, breast cancers and fibroadenomas with a minimal loss of specificity. Any breast lesion with radial rather than marginal connecting vessels should be regarded with suspicion. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  13. Maternal hemodynamics, fetal biometry and Dopplers in pregnancies followed up for suspected fetal growth restriction.

    PubMed

    Roberts, Llinos A; Ling, Hua Zen; Poon, Liona; Nicolaides, Kypros H; Kametas, Nikos A

    2018-04-01

    To assess whether in a cohort of patients with small for gestational age (SGA) foetuses with estimated fetal weight ≤10 th percentile, maternal hemodynamics, fetal biometry and Dopplers at presentation, can predict the subsequent development of abnormal fetal Dopplers or delivery with birthweight <3 rd percentile. The study population comprised of 86 singleton pregnancies with SGA fetuses presenting at a median gestational age of 32 (range 26-35) weeks. We measured maternal cardiac function with a non-invasive transthoracic bioreactance monitor (NICOM, Cheetah), mean arterial pressure, fetal biometry, umbilical artery (UA), middle cerebral artery (MCA) and uterine artery (UT) pulsatility index (PI) and the deepest vertical pool (DVP) of amniotic fluid. Z-scores of these variables were calculated based on reported reference ranges and the values were compared between those with evidence of abnormal fetal Dopplers at presentation (group 1), those that developed abnormal Dopplers in subsequent visits (group 2) and those who did not develop abnormal Dopplers throughout pregnancy (group 3). Abnormal fetal Dopplers were defined as UAPI >95 th percentile, or MCA PI <5 th percentile. Differences in measured variables at presentation were also compared between pregnancies delivering a baby with birthweight <3 rd and ≥3 rd percentile. Multivariate logistic regression analysis was used to determine significant predictors of birthweight <3 rd percentile and evolution from normal fetal Dopplers to abnormal fetal Dopplers in groups 2 and 3. In the study population 14 (16%) cases were in group 1, 19 (22%) in group 2 and 53 (62%) in group 3. The birthweight was <3 rd percentile in 39 (45%) cases and ≥3 rd percentile in 47 (55%). In the study groups, compared to normal populations, there was decreased cardiac output and stroke volume and increased peripheral vascular resistance and mean arterial pressure (MAP) and the deviations from normal were most marked in group 1. Pregnancies with a birthweight <3 rd , compared to those ≥3 rd percentile, had higher deviations from normal in fetal biometry, maternal cardiac output, stroke volume, heart rate and peripheral vascular resistance and UT-PI. Multivariate logistic regression analysis demonstrated that in the prediction of birth weight ≤3 rd percentile, maternal hemodynamics provided significant improvement to the prediction provided by maternal demographics, fetal biometry and UT-PI, UA-PI and MCA-PI (difference between AUCs 0.18, 95% CI 0.06-0.29, p=0.002). In contrast, there was no significant independent contribution from maternal hemodynamics in the prediction of subsequent abnormal fetal Dopplers. In pregnancies with SGA fetuses there is decreased maternal cardiac output and stroke volume and increased peripheral vascular resistance and MAP and the deviations from normal are most marked in cases of redistribution in the fetal circulation and reduced amniotic fluid volume. This article is protected by copyright. All rights reserved.

  14. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    PubMed

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Magnitude of dyslipedemia and its association with micro and macro vascular complications in type 2 diabetes: a hospital based study from Bikaner (Northwest India).

    PubMed

    Agrawal, R P; Sharma, Poornima; Pal, Mahender; Kochar, A; Kochar, D K

    2006-08-01

    Type 2 diabetes is not only associated with hyperglycemia but also with disorders of lipid metabolism. The aim of this study was to investigate the association of dyslipedemia with micro and macro vascular complications of diabetes. Population based cross sectional study included 4067 diabetic patients who visited hospital during January 2000 to December 2002. Lipid profile was estimated by semi autoanalyser, Retinopathy was assessed by fundoscopy, Nephropathy by microalbuminurea, coronary artery disease (CAD) by electro cardiogram (ECG) changes, peripheral vascular disease (PVD) by doppler study and neuropathy by clinical examinations. The association of dyslipedemia with micro and macro vascular complications was assessed by regression analysis. The prevalence of dyslipedemia is high in diabetic population with high serum cholesterol >240mg/dl was seen in 15%, serum triglycerides >160mg/dl was seen in 42.41%, raised LDL >130mg/dl in 45.26%, VLDL >40mg/dl in 24.09% and low levels of HDL-C <40mg/dl were seen in 52.27%. On regression analysis, CAD had strong correlation with high levels of VLDL (0.76), triglycerides (0.82), LDL (0.23) and low HDL (-0.81). Similar association was seen with PVD. Diabetic retinopathy and nephropathy were found to have significant correlation with low HDL (-0.43) and raised LDL (0.37), respectively. Neuropathy was not found to have any significant correlation with lipid profile abnormalities. Lipid profile abnormalities are very common in type 2 diabetes and it has great influence on CAD and PVD. Hence, appropriate preventive and treatment strategies should be considered timely.

  16. Abnormalities in the Regulators of Angiogenesis in Patients with Scleroderma

    PubMed Central

    HUMMERS, LAURA K.; HALL, AMY; WIGLEY, FREDRICK M.; SIMONS, MICHAEL

    2014-01-01

    Objective To determine plasma levels of regulators of angiogenesis in patients with scleroderma and to correlate those levels with manifestations of scleroderma-related vascular disease. Methods Plasma levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), matrix metalloproteinase-9 (MMP-9), endostatin, pro-MMP-1, hepatocyte growth factor (HGF), placental growth factor (PlGF), and FGF-4 were examined by ELISA in a cross-sectional study of 113 patients with scleroderma and 27 healthy controls. Simple and multivariate regression models were used to look for associations between factor levels and clinical disease characteristics. Results There were marked differences in the levels of pro-angiogenic growth factors between patients with scleroderma and controls, with significant elevations of VEGF, PDGF, FGF-2, and PlGF among patients with scleroderma (p < 0.0001). Levels of MMP were also higher in scleroderma patients compared to controls (MMP-9 and pro-MMP-1) (p < 0.0001). Levels of the pro-angiogenic and anti-fibrotic factor, HGF, were noted to be lower in patients with scleroderma, but had a positive correlation with right ventricular systolic pressure (RVSP) as measured by echocardiogram (p < 0.0001) and the Raynaud Severity Score (p = 0.05). Endostatin (an anti-angiogenic factor) was notably higher in patients with scleroderma (p < 0.0001) and also correlated positively with RVSP (p = 0.023). Conclusion These results demonstrate striking abnormalities in the circulating regulators of angiogenesis in patients with scleroderma. The levels of some factors correlate with measures of vascular disease among patients with scleroderma. Dysregulated angiogenesis may play a role in the development of scleroderma vascular disease. PMID:19228661

  17. Blood vessel classification into arteries and veins in retinal images

    NASA Astrophysics Data System (ADS)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  18. Inflammation and premature aging in advanced chronic kidney disease.

    PubMed

    Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-10-01

    Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.

  19. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less

  20. Gastroschisis, destructive brain lesions, and placental infarction in the second trimester suggest a vascular pathogenesis.

    PubMed

    Folkerth, Rebecca D; Habbe, Donald M; Boyd, Theonia K; McMillan, Kristin; Gromer, Jessica; Sens, Mary Ann; Elliott, Amy J

    2013-01-01

    The cause and pathogenesis of gastroschisis are uncertain. We report the autopsy and placental pathology of a stillbirth at 20 gestational weeks, in which gastroschisis was accompanied by destructive lesions in the cerebral cortex and brainstem, as well as cardiac calcification, consistent with ischemic injury during the 2nd trimester. An important potential underlying mechanism explaining the fetal abnormalities is the presence of infarcts in the placenta, indicative at this gestational age of maternal vascular underperfusion. The association of gastroschisis with ischemic lesions in the brain, heart, and placenta in this case supports the concept that gastroschisis, at least in some instances, may result from vascular event(s) causing disruption of the fetal abdominal wall and resulting in the extrusion of the abdominal organs, as well as hypoxic-ischemic brain and cardiac injury.

  1. Association Between Increased Vascular Density and Loss of Protective RAS in Early-Stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K . V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The prevailing paradigm of NPDR progression is that vessels drop out prior to abnormal, vision-impairing regrowth at late-stage proliferative diabetic retinopathy (DR). However, surprising results for our previous preliminary study 1 with NASA's VESsel GENeration Analysis (VESGEN) software showed that vessels proliferated considerably during moderate NPDR compared to drop out at both mild and severe NPDR. Validation of our hypothesis will support development of successful early-stage regenerative therapies such as vascular repair by circulating angiogenic cells (CACs). The renin-angiotensin system (RAS)is implicated in the pathogenesis of DR and in the function of CACs, a critical bone marrow-derived population that is instrumental in vascular repair.

  2. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    PubMed

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. VEGF can protect against blood brain barrier dysfunction, dendritic spine loss and spatial memory impairment in an experimental model of diabetes.

    PubMed

    Taylor, Stephanie L; Trudeau, Dustin; Arnold, Brendan; Wang, Joshua; Gerrow, Kim; Summerfeldt, Kieran; Holmes, Andrew; Zamani, Akram; Brocardo, Patricia S; Brown, Craig E

    2015-06-01

    Clinical and experimental studies have shown a clear link between diabetes, vascular dysfunction and cognitive impairment. However, the molecular underpinnings of this association remain unclear. Since vascular endothelial growth factor (VEGF) signaling is important for maintaining vascular integrity and function, we hypothesized that vascular and cognitive impairment in the diabetic brain could be related to a deficiency in VEGF signaling. Here we show that chronic hyperglycemia (~8weeks) in a mouse model of type 1 diabetes leads to a selective reduction in the expression of VEGF and its cognate receptor (VEGF-R2) in the hippocampus. Correlating with this, diabetic mice showed selective deficits in spatial memory in the Morris water maze, increased vessel area, width and permeability in the dentate gyrus/CA1 region of the hippocampus and reduced spine densities in CA1 neurons. Chronic low dose infusion of VEGF in diabetic mice was sufficient to restore VEGF signaling, protect them from memory deficits, as well as vascular and synaptic abnormalities in the hippocampus. These findings suggest that a hippocampal specific reduction in VEGF signaling and resultant vascular/neuronal defects may underlie early manifestations of cognitive impairment commonly associated with diabetes. Furthermore, restoring VEGF signaling may be a useful strategy for preserving hippocampal-related brain circuitry in degenerative vascular diseases. Copyright © 2015. Published by Elsevier Inc.

  4. A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development

    PubMed Central

    Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.

    2003-01-01

    Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999

  5. Fractal Branching in Vascular Trees and Networks by VESsel GENeration Analysis (VESGEN)

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2016-01-01

    Vascular patterning offers an informative multi-scale, fractal readout of regulatory signaling by complex molecular pathways. Understanding such molecular crosstalk is important for physiological, pathological and therapeutic research in Space Biology and Astronaut countermeasures. When mapped out and quantified by NASA's innovative VESsel GENeration Analysis (VESGEN) software, remodeling vascular patterns become useful biomarkers that advance out understanding of the response of biology and human health to challenges such as microgravity and radiation in space environments.

  6. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.

    PubMed

    Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin

    2017-09-13

    Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  8. Molecular Parallels between Neural and Vascular Development

    PubMed Central

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177

  9. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  11. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    PubMed

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Abnormalities of the umbilico-portal venous system in Down syndrome: a report of two new patients.

    PubMed

    Pipitone, Salvatore; Garofalo, Caterina; Corsello, Giovanni; Mongiovì, Maurizio; Piccione, Maria; Maresi, Emiliano; Sperandeo, Velio

    2003-08-01

    Congenital anomalies of the umbilical and portal venous system are rare vascular malformations which are often associated with anomalies of the heart and gastrointestinal tract. Association with chromosomal disorders has been sporadically reported. We now report on two patients with trisomy 21 and congenital anomalies of the umbilico-portal system. A male fetus showed absence of the intrahepatic portal vein (PV) and ductus venosus with a direct communication between portal sinus and inferior vena cava exhibiting an umbilicosystemic total shunt during the fetal life and a portosystemic total shunt after birth. A female infant showed absence of the intrahepatic PV and a total portocaval shunt. Both patients also had heart defects. As previously documented in other reports, our cases demonstrated that this association may be causally-related to the chromosomal aberration. In addition, the umbilico-portal venous system abnormalities seems to be the most frequent congenital vascular malformation in Down syndrome. A presumptive pathogenetic mechanism could be a trisomy 21-related altered angiogenesis of the vitelloumbilical plexus. Copyright 2003 Wiley-Liss, Inc.

  13. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models.

    PubMed

    Soleimani, Shirin; Shamsi, Milad; Ghazani, Mehran Akbarpour; Modarres, Hassan Pezeshgi; Valente, Karolina Papera; Saghafian, Mohsen; Ashani, Mehdi Mohammadi; Akbari, Mohsen; Sanati-Nezhad, Amir

    2018-03-05

    Emerging evidence shows that endothelial cells are not only the building blocks of vascular networks that enable oxygen and nutrient delivery throughout a tissue but also serve as a rich resource of angiocrine factors. Endothelial cells play key roles in determining cancer progression and response to anti-cancer drugs. Furthermore, the endothelium-specific deposition of extracellular matrix is a key modulator of the availability of angiocrine factors to both stromal and cancer cells. Considering tumor vascular network as a decisive factor in cancer pathogenesis and treatment response, these networks need to be an inseparable component of cancer models. Both computational and in vitro experimental models have been extensively developed to model tumor-endothelium interactions. While informative, they have been developed in different communities and do not yet represent a comprehensive platform. In this review, we overview the necessity of incorporating vascular networks for both in vitro and in silico cancer models and discuss recent progresses and challenges of in vitro experimental microfluidic cancer vasculature-on-chip systems and their in silico counterparts. We further highlight how these two approaches can merge together with the aim of presenting a predictive combinatorial platform for studying cancer pathogenesis and testing the efficacy of single or multi-drug therapeutics for cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  14. Hot spots, indicator taxa, complementarity and optimal networks of taiga.

    PubMed Central

    Virolainen, K M; Ahlroth, P; Hyvärinen, E; Korkeamäki, E; Mattila, J; Päiivinen, J; Rintala, T; Suomi, T; Suhonen, J

    2000-01-01

    If hot spots for different taxa coincide, priority-setting surveys in a region could be carried out more cheaply by focusing on indicator taxa. Several previous studies show that hot spots of different taxa rarely coincide. However, in tropical areas indicator taxa may be used in selecting complementary networks to represent biodiversity as a whole. We studied beetles (Coleoptera), Heteroptera, polypores or bracket fungi (Polyporaceae) and vascular plants of old growth boreal taiga forests. Optimal networks for Heteroptera maximized the high overall species richness of beetles and vascular plants, but these networks were least favourable options for polypores. Polypores are an important group indicating the conservation value of old growth taiga forests. Random selection provided a better option. Thus, certain groups may function as good indicators for maximizing the overall species richness of some taxonomic groups, but all taxa should be examined separately. PMID:10885520

  15. Pericyte function in the physiological central nervous system.

    PubMed

    Muramatsu, Rieko; Yamashita, Toshihide

    2014-01-01

    Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study.

    PubMed

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I

    2013-04-01

    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  17. Frontal Hyperconnectivity Related to Discounting and Reversal Learning in Cocaine Subjects

    PubMed Central

    Camchong, Jazmin; MacDonald, Angus W; Nelson, Brent; Bell, Christopher; Mueller, Bryon A; Specker, Sheila; Lim, Kelvin O

    2011-01-01

    BACKGROUND Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesize that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks. METHODS Resting functional magnetic resonance imaging data were collected to look for FC differences between twenty-seven cocaine dependent individuals (CD) (5 females, age: M=39.73, SD=6.14) and twenty-four controls (5 females, age: M=39.76, SD = 7.09). Participants were assessed with delayed discounting and reversal learning tasks. Using seed-based FC measures, we examined FC in CD and controls within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC. RESULTS CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC and middle temporal gyrus when compared to controls. FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD. CONCLUSIONS The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and mentalizing. In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning. PMID:21371689

  18. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease

    PubMed Central

    Rask-Madsen, Christian; Kahn, C. Ronald

    2012-01-01

    Summary Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes. Recent advances in our understanding of the complex pathophysiology of insulin’s effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders. PMID:22895666

  19. Evidence for a possible role of oxygen free radicals in the abnormal functional arterial vasomotion in insulin dependent diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Caretta, F; Varano, R; Giugliano, D

    1990-01-01

    A functional arterial spasm, revealed by reduced post-ischemic response, is present in diabetic subjects with no overt evidence of vascular damage. The administration of three different antioxidant agents, vitamin C, thiopronine and glutathione, produces an increase of basal blood flow in both diabetic and normal subjects, and ameliorates significantly the vascular functional response in diabetes. These data suggest that free radicals may play a role in the regulation of arterial resistance in humans, and that a de-regulation of their action may be involved in the development of arterial dysfunction in diabetes.

  20. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    PubMed

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  1. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration

    PubMed Central

    Chavali, Venkata R.M.; Khan, Naheed W.; Cukras, Catherine A.; Bartsch, Dirk-Uwe; Jablonski, Monica M.; Ayyagari, Radha

    2011-01-01

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5+/−) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5+/−mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies. PMID:21349921

  2. Flt1/VEGFR1 heterozygosity causes transient embryonic edema.

    PubMed

    Otowa, Yasunori; Moriwaki, Kazumasa; Sano, Keigo; Shirakabe, Masanori; Yonemura, Shigenobu; Shibuya, Masabumi; Rossant, Janet; Suda, Toshio; Kakeji, Yoshihiro; Hirashima, Masanori

    2016-06-02

    Vascular endothelial growth factor-A is a major player in vascular development and a potent vascular permeability factor under physiological and pathological conditions by binding to a decoy receptor Flt1 and its primary receptor Flk1. In this study, we show that Flt1 heterozygous (Flt1(+/-)) mouse embryos grow up to adult without life-threatening abnormalities but exhibit a transient embryonic edema around the nuchal and back regions, which is reminiscent of increased nuchal translucency in human fetuses. Vascular permeability is enhanced and an intricate infolding of the plasma membrane and huge vesicle-like structures are seen in Flt1(+/-) capillary endothelial cells. Flk1 tyrosine phosphorylation is elevated in Flt1(+/-) embryos, but Flk1 heterozygosity does not suppress embryonic edema caused by Flt1 heterozygosity. When Flt1 mutants are crossed with Aspp1(-/-) mice which exhibit a transient embryonic edema with delayed formation and dysfunction of lymphatic vessels, only 5.7% of Flt1(+/-); Aspp1(-/-) mice survive, compared to expected ratio (25%). Our results demonstrate that Flt1 heterozygosity causes a transient embryonic edema and can be a risk factor for embryonic lethality in combination with other mutations causing non-lethal vascular phenotype.

  3. Features of the temperature response to a double cuff-occlusion of the upper limbs: remote ischemic preconditioning aspect

    NASA Astrophysics Data System (ADS)

    Sagaidachnyi, A. A.; Fomin, A. V.; Mayskov, D. I.; Skripal, A. V.; Usanov, D. A.

    2018-04-01

    The essence of the phenomenon of ischemic preconditioning is increasing myocardium resistance to long periods of ischemia that occurs after several short ischemia-reperfusion periods. The aim of this pilot study was to determine the temperature and vascular response in double brachial occlusions and to assess the prospects of using this maneuver for remote ischemic preconditioning. Infrared thermography-based measurements were used to assess hemodynamics both left and right hands during the baseline, ischemia and hyperemia periods. Double ischemia with a period of 2 min was implemented by a cuff compression of the brachial artery of the right hand. A study group was constituted of eight men and six women without cardiovascular abnormalities at the age of 22 to 35 years. As a result, we have determined that a temperature and vascular response to ischemia of right hand is accompanied by the vascular reaction of the contralateral left hand, especially after the inflation and deflation of the cuff. These vascular reactions are reproducible, systemic and appear to be at least neurological in nature. An experimental confirmation of the systemic vascular «training effect» after multiple brachial ischemia-reperfusion periods is a subject of further investigations.

  4. Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.

  5. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  7. [Simvastatin therapy and effect on hiperlipidemia and vascular status in nephrotic children with sustained dyslipidemia].

    PubMed

    Ksiazek, Joanna; Niemirska, Anna; Lipka, Maria; Wierzbicka, Aldona; Syczewska, Małgorzata; Grenda, Ryszard

    2009-03-01

    Dyslipidemia is common in nephrotic children and persistent lipid abnormalities are risk factor of late vascular complications. The aim of the study was evaluation of efficacy and safety of 12-months simvastatin therapy in nephrotic children with lipid profile abnormalities present despite clinical remission lasting for at least 8 weeks, including ultrasonographic assessment of carotid and femoral arteries. Overall 52 children (40 steroid-dependent and 12 steroid-resistant) were initially introduced to the study and 29 of them were treated with simvastatin. Normalisation of lipid profile was achieved in 19/29 (65.5%) and improvement in 9/29 (31%). Significant reduction in total cholesterol (p < 0.00001), LDL-C (p < 0.000003), VLDL- (p < 0.0123), oxy-LDL-C fractions (p < 0.0002) and triglycerides (TG) (p < 0.0005) serum concentration was achieved in non-proteinuric patients. Analysis of the intima-media thickness (IMT) of the common carotid (c) and superficial femoral (f) arteries values revealed positive correlation between baseline cIMT and VLDL-C (p = 0.038) and TG concentration (p = 0.008), as well as positive correlation between fIMT and baseline creatinine (p = 0.04) and LDL-C serum concentration (p = 0.032) after simvastatine treatment. Number of children with significant vessels pathology (Z-score > 2.0) was small. Increased cIMT was seen at baseline in 4 patients and in 5 after simvastatin treatment, however average and Z-score values in children under simvastatin treatment have decreased. Increased fIMT values were seen at baseline in 2 and in one case after simvastatin treatment. Tolerance of simvastation was very good in all cases but one. Simvastatin therapy was effective and safe in nephrotic non-proteinuric children with abnormal lipid profile. Fair estimation of impact of the 12-months simvastatin therapy on vascular status was not available due to limited number of children with significantly increased IMT at baseline.

  8. Nonselective inhibition of prostaglandin-endoperoxide synthase by naproxen ameliorates hepatic injury in animals with acute or chronic liver injury

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev

    2014-01-01

    The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607

  9. Intranetwork and internetwork connectivity in patients with Alzheimer disease and the association with cerebrospinal fluid biomarker levels.

    PubMed

    Weiler, Marina; de Campos, Brunno Machado; Teixeira, Camila Vieira de Ligo; Casseb, Raphael Fernandes; Carletti-Cassani, Ana Flávia Mac Knight; Vicentini, Jéssica Elias; Magalhães, Thamires Naela Cardoso; Talib, Leda Leme; Forlenza, Orestes Vicente; Balthazar, Marcio Luiz Figueredo

    2017-11-01

    In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks' functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anticorrelation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease.

  10. Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features.

    PubMed

    Shen, Qin; Rao, Qiu; Xia, Qiu-Yuan; Yu, Bo; Shi, Qun-Li; Zhang, Ru-Song; Zhou, Xiao-Jun

    2014-11-01

    Perivascular epithelioid cell tumors (PEComas) have been increasingly associated with gene rearrangement of the transcription factor E3 (TFE3). We present three cases of PEComa with a TFE3 gene abnormality detected by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Their clinical features, pathological morphology, and prognosis were investigated. Histologically, the tumors in these three cases showed predominantly epithelioid cells arranged in nests or sheets separated by a delicate vascular network, within two of the three cases nuclear atypia, mitotic figures, and necrosis. All three cases showed strong TFE3 and cathepsin K immunoreactivity and weak to strong reactivity for HMB45. One case of PEComa with TFE3 gene fusion exhibited a benign course. The other two cases of PEComa with both TFE3 translocation and X-chromosome polysomy were histologically malignant and showed aggressive growth. In summary, unusual cases of PEComa with TFE3 gene rearrangement might present malignant histological features and aggressive clinical behavior. Our results add cases to the literature and describe an association of polysomy with aggressive behavior.

  11. Adult neurogenesis and the vascular Nietzsche.

    PubMed

    Palmer, Theo D

    2002-06-13

    Adult neurogenesis is mediated by immature neural precursors that divide within the residual germinal matrices of the brain. In the paper by in this issue of Neuron, the "cause and effect" of adult neurogenesis takes a major step forward with the description of a vascular signaling network that influences neuronal precursor migration and fate.

  12. Ehlers-Danlos Syndrome Network C.A.R.E.S.

    MedlinePlus

    ... abnormal proteins that confer an inherited frailty of collagen (the normal protein "glue" of our tissues). In ... an inherited abnormality in a protein other than collagen that also normally plays a role in binding ...

  13. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  14. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    PubMed

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  15. Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.

    PubMed

    Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di

    2015-01-01

    Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.

  16. Morphological characterization of sprouting and intussusceptive angiogenesis by SEM in oral squamous cell carcinoma.

    PubMed

    Oliveira de Oliveira, Laura Beatriz; Faccin Bampi, Vinícius; Ferreira Gomes, Carolina; Braga da Silva, Jefferson Luis; Encarnação Fiala Rechsteiner, Sandra Mara

    2014-01-01

    The word angiogenesis indicates the formation of new vascular segments from existing vessels such as capillaries and venules. Blood vessel formation in tumors is the result of rapid, disorganized vascular growth through two distinct mechanisms: sprouting and intussusceptive angiogenesis. The objective of this study was to elucidate the morphological aspects of these two vascular growth mechanisms in oral squamous cell carcinoma induced in hamster buccal pouch. Eight Syrian golden hamsters had their right buccal pouch treated with DMBA 0.5% and 10% carbamide peroxide for 90 days in order to produce squamous cell carcinoma in this site. Next, buccal pouches of the animals were submitted to the vascular corrosion technique and then analyzed by scanning electron microscopy. The vascular figures of sprouts were observed in the entire vascular network of the buccal pouches, as opposed to the intussusceptive angiogenesis that was predominantly observed in the sub-epithelial network. It was possible to differentiate the figures of sprouts from artifacts by the analysis of the blind ending of these structures. Intussusceptive angiogenesis was identified by the presence of holes trespassing the lumen of the capillaries. Vascular expansion occurred through intussusceptive angiogenesis in two ways: by the fusion of the pillars to form a new capillary and, by increasing the girth of the pillar to form meshes. The method of corrosion associated with scanning electron microscopy proved to be an excellent tool to study the two types of angiogenesis in oral squamous cell carcinoma in the hamster buccal pouch. © 2013 Wiley Periodicals, Inc.

  17. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    PubMed

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  18. Engineering clinically relevant volumes of vascularized bone.

    PubMed

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-05-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  20. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    PubMed

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Abnormal Functional Activation and Connectivity in the Working Memory Network in Early-Onset Schizophrenia

    ERIC Educational Resources Information Center

    Kyriakopoulos, Marinos; Dima, Danai; Roiser, Jonathan P.; Corrigall, Richard; Barker, Gareth J.; Frangou, Sophia

    2012-01-01

    Objective: Disruption within the working memory (WM) neural network is considered an integral feature of schizophrenia. The WM network, and the dorsolateral prefrontal cortex (DLPFC) in particular, undergo significant remodeling in late adolescence. Potential interactions between developmental changes in the WM network and disease-related…

  2. Targeting Vascular Neural Network in Intracerebral Hemorrhage.

    PubMed

    Yin, Yi; Ge, Hongfei; Zhang, John H; Feng, Hua

    2017-01-01

    Intracerebral hemorrhage (ICH) is a common type of stroke associated with high mortality and morbidity. Recent randomized controlled trials could not prove that the current strategies are effective at improving the final outcome of the ICH patients. Here we want to explore potential intervention targets for ICH based on the framework of the vascular neural network (VNN). In this review, a brief history of the evolution of stroke pathophysiology from humoral theory to VNN is discussed. As current literature on pathophysiology of ICH is mainly focused on neuroprotection, here we want to evolve the central paradigm towards VNN. We stress mechanisms of vascular disruption and impaired blood flow harmony, which are clinically relevant but have received less attention in basic research. We propose that VNN could be a robust and practical paradigm in both ICH basic research and clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Use of 3D printer technology to facilitate surgical correction of a complex vascular anomaly with esophageal entrapment in a dog.

    PubMed

    Dundie, A; Hayes, G; Scrivani, P; Campoy, L; Fletcher, D; Ash, K; Oxford, E; Moïse, N S

    2017-04-01

    A 10 week old female intact Staffordshire terrier was presented with a total of five congenital cardio-thoracic vascular anomalies consisting of a patent ductus arteriosus (PDA) with an aneurysmic dilation, pulmonic stenosis, persistent right aortic arch, aberrant left subclavian artery and persistent left cranial vena cava. These abnormalities were identified with a combination of echocardiogram and computed tomography angiography (CTA). The abnormalities were associated with esophageal entrapment, regurgitation, and volume overload of the left heart with left atrial and ventricular enlargement. A 2 cm diameter aneurysmic dilation at the junction of the PDA, right aortic arch and aberrant left subclavian artery presented an unusual surgical challenge and precluded simple circumferential ligation and transection of the structure. A full scale three dimensional model of the heart and vasculature was constructed from the CTA and plasma sterilized. The model was used preoperatively to facilitate surgical planning and enhance intraoperative communication and coordination between the surgical and anesthesia teams. Intraoperatively the model facilitated spatial orientation, atraumatic vascular dissection, instrument sizing and positioning. A thoracoabdominal stapler was used to close the PDA aneurysm prior to transection. At the four-month postoperative follow-up the patient was doing well. This is the first reported application of new imaging and modeling technology to enhance surgical planning when approaching correction of complex cardiovascular anomalies in a dog. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  5. Characteristics of NO cycle coupling with urea cycle in non-hyperammonemic carriers of ornithine transcarbamylase deficiency.

    PubMed

    Nagasaka, Hironori; Yorifuji, Tohru; Egawa, Hiroto; Inui, Ayano; Fujisawa, Tomoo; Komatsu, Haruki; Tsukahara, Hirokazu; Uemoto, Shinji; Inomata, Yukihiro

    2013-07-01

    Urea cycle deficient patients with prominent hyperammonemic often exhibit abnormal production of nitric oxide (NO), which reduces vascular tone, along with amino acid abnormalities. However, information related to the metabolic changes in heterozygotes of ornithine transcarbamylase deficiency (OTCD) lacking overt hyperammonemia is quite limited. We examined vascular mediators and amino acids in non-hyperammonemic heterozygotes. Twenty-four heterozygous OTCD adult females without hyperammonemic bouts, defined as non-hyperammonemic carriers, were enrolled. We measured blood amino acids constituting urea cycle and nitric oxide (NO) cycle. Blood concentrations of nitrate/nitrite (NOx) as stable NO-metabolites, asymmetric dimethylarginine (ADMA) inhibiting NO synthesis, and endothelin-1 (ET-1) raising vascular tone were also determined. NOx concentrations were significantly lower in non-hyperammonemic carriers (p < 0.01). However, ADMA and ET-1 levels in this group were comparable to those in the age-matched control group. Arginine and citrulline levels were also significantly lower in non-hyperammonemic carriers than in controls (p < 0.01). Of the 24 non-hyperammonemic carriers, 10 often developed headaches. Their daily NOx and arginine levels were significantly lower than those in headache-free carriers (p < 0.05). In three carriers receiving oral l-arginine, blood NOx concentrations were significantly higher. In two of those three, the occurrence of headaches was decreased. These results suggest that NO cycle coupling with the urea cycle is altered substantially even in non-hyperammonemic OTCD carriers, predisposing them to headaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Pathogenesis of arteriovenous malformations in the absence of endoglin.

    PubMed

    Mahmoud, Marwa; Allinson, Kathleen R; Zhai, Zhenhua; Oakenfull, Rachael; Ghandi, Pranita; Adams, Ralf H; Fruttiger, Marcus; Arthur, Helen M

    2010-04-30

    Arteriovenous malformations (AVMs) result in anomalous direct blood flow between arteries and veins, bypassing the normal capillary bed. Depending on size and location, AVMs may lead to severe clinical effects including systemic cyanosis (pulmonary AVMs), hemorrhagic stroke (cerebral AVMs) and high output cardiac failure (hepatic AVMs). The factors leading to AVM formation are poorly understood, but patients with the familial disease hereditary hemorrhagic telangiectasia (HHT) develop AVMs at high frequency. As most HHT patients have mutations in ENG (endoglin) or ACVRL1 (activin receptor-like kinase 1), a better understanding of the role of these genes in vascular development is likely to reveal the etiology of AVM formation. Using a mouse with a conditional mutation in the Eng gene, we investigated the sequence of abnormal cellular events occurring during development of an AVM. In the absence of endoglin, subcutaneous Matrigel implants in adult mice were populated by reduced numbers of new blood vessels compared with controls, and resulted in local venous enlargement (venomegaly). To investigate abnormal vascular responses in more detail, we turned to the more readily accessible vasculature of the neonatal retina. Endoglin-deficient retinas exhibited delayed remodeling of the capillary plexus, increased proliferation of endothelial cells and localized AVMs. Muscularization of the resulting arteriovenous shunts appeared to be a secondary response to increased blood flow. AVMs develop when an angiogenic stimulus is combined with endoglin depletion. Moreover, AVM formation appears to result from the combination of delayed vascular remodeling and an inappropriate endothelial cell proliferation response in the absence of endoglin.

  7. Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin.

    PubMed

    Wipff, J; Avouac, J; Borderie, D; Zerkak, D; Lemarechal, H; Kahan, A; Boileau, C; Allanore, Y

    2008-07-01

    SSc is a CTD characterized by early generalized microangiopathy with disturbed angiogenesis. Soluble endoglin (sENG), a serum anti-angiogenic protein, has recently been described as a major actor in pre-eclampsia, another severe vascular disease with abnormal angiogenesis. The aim of this study was to investigate, in a cross-sectional study, sENG levels together with other serum vascular markers. Serum levels of sENG were assessed by ELISA in consecutive SSc patients and controls matched for age and sex. We also measured by ELISA serum levels of VEGF and asymmetric dimethylarginine (ADMA), as respective markers of angiogenesis and endothelial dysfunction. We included 235 unrelated subjects: 187 SSc patients and 48 controls. Higher concentrations of sENG (P = 0.002) and sVEGF (P < 0.0001) were found in SSc patients compared with controls whereas there was no difference for ADMA. In multivariate analysis, sENG levels were significantly increased in SSc patients with cutaneous ulcerations (P = 0.0003), positive for ACAs (P = 0.009) and with abnormal diffusing capacity for carbon monoxide divided by alveolar volume (P = 0.03). Soluble ENG levels negatively correlated with ADMA, but no relationship was found between sENG and sVEGF. This study shows increased values of sENG in a large SSc cohort and a relevant association with a vascular phenotype. The predictive value of the biomarker sENG and its potential role on cellular endothelial disturbances remain to be determined.

  8. Ehlers-Danlos Syndrome in Orthopaedics

    PubMed Central

    Shirley, Eric D.; DeMaio, Marlene; Bodurtha, Joanne

    2012-01-01

    Ehlers-Danlos syndrome is a heterogeneous connective tissue condition characterized by varying degrees of skin hyperextensibility, joint hypermobility, and vascular fragility. Joint dislocations, musculoskeletal pain, atrophic scars, easy bleeding, vessel/viscera rupture, severe scoliosis, and obstetric complications may occur. These manifestations are secondary to abnormal collagen, with specific molecular defects in types I, III, and V collagen; they may also be related to tenascin-X, which has been identified in some patients. Ehlers-Danlos syndrome has been classified into 6 types, with variable degrees of joint instability, skin hyperextensibility, wound healing difficulty, and vascular fragility. Diagnosis begins with recognition of the signs and symptoms of global hypermobility and referring appropriate patients for genetic consultation. It is important to accurately identify patients with Ehlers-Danlos syndrome to initiate appropriate musculoskeletal treatment, optimize anesthetic and postoperative management, perform appropriate vascular screening, and help families address their concerns with other families and advocacy groups. PMID:23016112

  9. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells.

    PubMed

    Rohringer, Sabrina; Hofbauer, Pablo; Schneider, Karl H; Husa, Anna-Maria; Feichtinger, Georg; Peterbauer-Scherb, Anja; Redl, Heinz; Holnthoner, Wolfgang

    2014-10-01

    Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.

  10. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

    PubMed

    Grothe, Michel J; Teipel, Stefan J

    2016-01-01

    Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology. © 2015 Wiley Periodicals, Inc.

  11. Imaging Keratitis-Icthyosis-Deafness (KID) syndrome with FDG-PET (F18-fluorodeoxiglucose-Positron Emission Tomography).

    PubMed

    Aparici, Carina Mari; Arcienega, Daniela; Cho, Eric; Hawkins, Randy

    2010-01-01

    Keratitis-Icthyosis-Deafness (KID) syndrome is a rare dysplasia characterized by vascularizing keratitis, congenital sensorineural hearing-loss, and progressive erythrokeratoderma. To our knowledge, this is the first KID syndrome imaged with FDG-PET in the literature. This paper is intended to help familiarize with the FDG abnormalities related to this rare entity.

  12. Abnormalities of vascular histology and collagen fiber configuration in patients with advanced chronic kidney disease.

    PubMed

    Allon, Michael; Litovsky, Silvio H; Tey, Jason Chieh Sheng; Sundberg, Chad A; Zhang, Yingying; Chen, Zhen; Fang, Yun; Cheung, Alfred K; Shiu, Yan-Ting

    2018-05-01

    Several histologic features have been identified in the upper-extremity arteries and veins of patients with advanced chronic kidney disease, which may affect arteriovenous fistula maturation. However, it is unclear whether these chronic kidney disease vascular features are abnormal. We obtained upper-extremity arterial and venous specimens from 125 advanced chronic kidney disease patients undergoing arteriovenous fistula creation and from 15 control subjects. We quantified medial fibrosis, micro-calcification, and intimal hyperplasia with appropriate histology stains. We characterized medial collagen fiber configuration in second-harmonic-generation microscopy images for the fiber anisotropy index and the dominant fiber direction. The advanced chronic kidney disease patients were significantly younger than control subjects (53 ± 14 years vs 76 ± 11 years, p < 0.001). After controlling for age, the chronic kidney disease patients had greater arterial medial fibrosis (69% ± 14% vs 51% ± 10%, p < 0.001) and greater arterial micro-calcification (3.03% ± 5.17% vs 0.01% ± 0.03%, p = 0.02), but less arterial intimal thickness (30 ± 25 µm vs 63 ± 25 µm, p < 0.001), as compared to control subjects. The anisotropy index of medial collagen fibers was lower in both arteries (0.24 ± 0.10 vs 0.44 ± 0.04, p < 0.001) and veins (0.28 ± 0.09 vs 0.53 ± 0.10, p < 0.001) in chronic kidney disease patients, indicating that orientation of the fibers was more disordered. The dominant direction of medial collagen fibers in chronic kidney disease patients was greater in the arteries (49.3° ± 23.6° vs 4.0° ± 2.0°, p < 0.001) and the veins (30.0° ± 19.6° vs 3.9° ± 2.1°, p < 0.001), indicating that the fibers in general were aligned more perpendicular to the lumen. Advanced chronic kidney disease is associated with several abnormalities in vascular histology and collagen fiber configuration. Future research is needed to investigate whether these abnormalities affect the maturation outcomes of arteriovenous fistulas.

  13. [Accuracy of placenta accreta prenatal diagnosis by ultrasound and MRI in a high-risk population].

    PubMed

    Daney de Marcillac, F; Molière, S; Pinton, A; Weingertner, A-S; Fritz, G; Viville, B; Roedlich, M-N; Gaudineau, A; Sananes, N; Favre, R; Nisand, I; Langer, B

    2016-02-01

    Main objective was to compare accuracy of ultrasonography and MRI for antenatal diagnosis of placenta accreta. Secondary objectives were to specify the most common sonographic and RMI signs associated with diagnosis of placenta accreta. This retrospective study used data collected from all potential cases of placenta accreta (patients with an anterior placenta praevia with history of scarred uterus) admitted from 01/2010 to 12/2014 in a level III maternity unit in Strasbourg, France. High-risk patients beneficiated antenatally from ultrasonography and MRI. Sonographic signs registered were: abnormal placental lacunae, increased vascularity on color Doppler, absence of the retroplacental clear space, interrupted bladder line. MRI signs registered were: abnormal uterine bulging, intraplacental bands of low signal intensity on T2-weighted images, increased vascularity, heterogeneous signal of the placenta on T2-weighed, interrupted bladder line, protrusion of the placenta into the cervix. Diagnosis of placenta accreta was confirmed histologically after hysterectomy or clinically in case of successful conservative treatment. Twenty-two potential cases of placenta accreta were referred to our center and underwent both ultrasonography and MRI. All cases of placenta accreta had a placenta praevia associated with history of scarred uterus. Sensibility and specificity for ultrasonography were, respectively, 0.92 and 0.67, for MRI 0.84 and 0.78 without significant difference (p>0.05). The most relevant signs associated with diagnosis of placenta accreta in ultrasonography were increased vascularity on color Doppler (sensibility 0.85/specificity 0.78), abnormal placental lacunae (sensibility 0.92/specificity 0.55) and loss of retroplacental clear space (sensibility 0.76/specificity 1.0). The most relevant signs in MRI were: abnormal uterine bulging (sensitivity 0.92/specificity 0.89), dark intraplacental bands on T2-weighted images (sensitivity 0.83/specificity 0.80) or placental heterogeneity (sensitivity 0.92/specificity 0.89). Association of two sonographic or MRI signs had the best sensitivity/specificity ratio. Ultrasonography and RMI represent two interesting and complementary diagnostic tools for antenatal diagnosis of placenta accreta. Because of its cost and accessibility, ultrasonography remains the first in line to be used for diagnosis. Use of an analytical grid for diagnosis of placenta accreta could be helpful. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    PubMed

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  15. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    PubMed Central

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. PMID:26758780

  16. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  17. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.

    PubMed

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-12

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  18. Brain vascular image segmentation based on fuzzy local information C-means clustering

    NASA Astrophysics Data System (ADS)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  19. Reimbursement Policies for Carotid Duplex Ultrasound that are Based on International Classification of Diseases Codes May Discourage Testing in High-Yield Groups.

    PubMed

    Go, Michael R; Masterson, Loren; Veerman, Brent; Satiani, Bhagwan

    2016-02-01

    To curb increasing volumes of diagnostic imaging and costs, reimbursement for carotid duplex ultrasound (CDU) is dependent on "appropriate" indications as documented by International Classification of Diseases (ICD) codes entered by ordering physicians. Historically, asymptomatic indications for CDU yield lower rates of abnormal results than symptomatic indications, and consensus documents agree that most asymptomatic indications for CDU are inappropriate. In our vascular laboratory, we perceived an increased rate of incorrect or inappropriate ICD codes. We therefore sought to determine if ICD codes were useful in predicting the frequency of abnormal CDU. We hypothesized that asymptomatic or nonspecific ICD codes would yield a lower rate of abnormal CDU than symptomatic codes, validating efforts to limit reimbursement in asymptomatic, low-yield groups. We reviewed all outpatient CDU done in 2011 at our institution. ICD codes were recorded, and each medical record was then reviewed by a vascular surgeon to determine if the assigned ICD code appropriately reflected the clinical scenario. CDU findings categorized as abnormal (>50% stenosis) or normal (<50% stenosis) were recorded. Each individual ICD code and group 1 (asymptomatic), group 2 (nonhemispheric symptoms), group 3 (hemispheric symptoms), group 4 (preoperative cardiovascular examination), and group 5 (nonspecific) ICD codes were analyzed for correlation with CDU results. Nine hundred ninety-four patients had 74 primary ICD codes listed as indications for CDU. Of assigned ICD codes, 17.4% were deemed inaccurate. Overall, 14.8% of CDU were abnormal. Of the 13 highest frequency ICD codes, only 433.10, an asymptomatic code, was associated with abnormal CDU. Four symptomatic codes were associated with normal CDU; none of the other high frequency codes were associated with CDU result. Patients in group 1 (asymptomatic) were significantly more likely to have an abnormal CDU compared to each of the other groups (P < 0.001, P < 0.001, P = 0.020, P = 0.002) and to all other groups combined (P < 0.001). Asymptomatic indications by ICD codes yielded higher rates of abnormal CDU than symptomatic indications. This finding is inconsistent with clinical experience and historical data, and we suggest that inaccurate coding may play a role. Limiting reimbursement for CDU in low-yield groups is reasonable. However, reimbursement policies based on ICD coding, for example, limiting payment for asymptomatic ICD codes, may impede use of CDU in high-yield patient groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  1. IR imaging of blood circulation of patients with vascular disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  2. Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images

    NASA Astrophysics Data System (ADS)

    Chan, Eric K. Y.; Pearce, John A.

    1989-05-01

    Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.

  3. Arterial complications of vascular Ehlers-Danlos syndrome.

    PubMed

    Eagleton, Matthew J

    2016-12-01

    Vascular Ehlers-Danlos syndrome (EDS) is a relatively rare genetic syndrome that occurs owing to disorders in the metabolism of fibrillary collagen. These defects affect the soft connective tissues resulting in abnormalities in the skin, joints, hollow organs, and blood vessels. Patients with these defects frequently present at a young age with spontaneous arterial complications involving the medium-sized arteries. Complications involving the hollow organs, such as spontaneous colonic perforation, are observed as well. Given the fragility of the soft tissue, open and endovascular intervention on patients with vascular EDS is fraught with high complication rates. A PubMed search was performed to identify manuscripts published related to vascular EDS. This search included more than 747 articles. These findings were cross-referenced using key terms, including endovascular, embolization, surgery, genetics, pathophysiology, connective tissue disorders, vascular complications, systematic review, type III collagen, and COL3A1. The references in key articles and review articles were evaluated for additional resources not identified in the PubMed search. Care must be taken to balance the risk of intervention vs the risk of continued observation. Life-threatening hemorrhage, however, mandates intervention. With careful, altered approaches to tissue handling, endovascular approaches may provide a safer option for managing the arterial complications observed in patients with vascular EDS. Additional hope may also be found in the use of pharmacologic agents that reduce the incidence and severity of the arterial complications. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects.

    PubMed

    Camchong, Jazmin; MacDonald, Angus W; Nelson, Brent; Bell, Christopher; Mueller, Bryon A; Specker, Sheila; Lim, Kelvin O

    2011-06-01

    Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine-dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesized that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks. Resting functional magnetic resonance imaging data were collected to look for FC differences between 27 CD (5 women, age: M = 39.73, SD = 6.14 years) and 24 control subjects (5 women, age: M = 39.76, SD = 7.09 years). Participants were assessed with delayed discounting and reversal learning tasks. With seed-based FC measures, we examined FC in CD and control subjects within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC. The CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC, and middle temporal gyrus when compared with control subjects. The FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD. The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and "mentalizing." In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Computed tomographic features of idiopathic fibrosing interstitial pneumonia: comparison with pulmonary fibrosis related to collagen vascular disease.

    PubMed

    Hwang, Jeong-Hwa; Misumi, Shigeki; Sahin, Hakan; Brown, Kevin K; Newell, John D; Lynch, David A

    2009-01-01

    To compare the computed tomographic (CT) features of idiopathic fibrosing interstitial pneumonia with those of pulmonary fibrosis related to collagen vascular disease (CVD). We reviewed the CT scans of 177 patients with diffuse interstitial pulmonary fibrosis, of which 97 had idiopathic fibrosing interstitial pneumonia and 80 had CVD. The CT images were systematically scored for the presence and extent of pulmonary and extrapulmonary abnormalities. Computed tomographic diagnosis of usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP) was assigned. A CT pattern of UIP was identified in 59 (60.8%) of patients with idiopathic fibrosing interstitial pneumonia compared with 15 (18.7%) of those patients with CVD; conversely, the CT diagnosis of NSIP was made in 51 (64%) of patients with CVD compared with 36 (37%) of patients with idiopathic disease (P < 0.01). In 113 patients who had lung biopsy, the CT diagnoses of UIP and NSIP were concordant with the histologic diagnoses in 36 of 50 patients and 34 of 41 patients, respectively. Pleural effusions, esophageal dilation, and pericardial abnormalities were more frequent in patients with CVD than in patients with idiopathic fibrosing interstitial pneumonia. Compared with patients with CVD, those patients with an idiopathic fibrosing interstitial pneumonia showed a higher prevalence of a UIP pattern and lower prevalence of an NSIP pattern as determined by CT. Identification of coexisting extrapulmonary abnormalities on CT can support a diagnosis of CVD.

  6. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system

    PubMed Central

    de Wijs-Meijler, Daphne P.; Duncker, Dirk J.; Tibboel, Dick; Schermuly, Ralph T.; Weissmann, Norbert; Merkus, Daphne; Reiss, Irwin K.M.

    2017-01-01

    Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called “fetal or perinatal programming.” Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future. PMID:28680565

  7. Red cell 2, 3-diphosphoglycerate levels among diabetic patents with and without vascular complications.

    PubMed

    Kanter, Y; Bessman, S P; Bessman, A

    1975-08-01

    There have been differences of opinion among authors concening in the levels of red cell 2,3-diphosphoglycerate (2,3-DPG) and nucleotides in nonacidotic diabetic patients. Our data suggest that abnormal levels of 2, 3-DPG in diabetic patients are related to the presence of vascular complications and not to the duration of the disease per sec. 2,3-DPG levels are normal in diabetic patients with no evidence of vascular complications (group A). In ambulatory patients with vascular complications (group B), significantly higher levels of 2,3-DPG are found than in normal subjects and patients in group A. In hospitalized diabetic patients with active peripheral vascular complications (group C), levels of 2,3-DPG are likewise significantly increased over those of normal subjects and patients of group A. 2,3-DPG was found to be significantly elevated in patients of group C as compared with group B. 2,3-DPG levels in venous blood from infected legs as compared with those of the peripheral venous blood were not significantly different, thereby ruling out local factors. There were no differences in the blood lactate levels in any of the group studied. The elevation of the 2,3-DPG levels may be a reflection of attempted red blood cell compensation for tissue hypoxia in the diabetic with vascular disease.

  8. Influence of vascular network design on gas transfer in lung assist device technology.

    PubMed

    Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P

    2011-01-01

    Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.

  9. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  10. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  11. Optical Coherence Tomography Angiography Reveals Mature, Tangled Vascular Networks in Eyes With Neovascular Age-Related Macular Degeneration Showing Resistance to Geographic Atrophy.

    PubMed

    Dansingani, Kunal K; Freund, K Bailey

    2015-10-01

    To demonstrate a vascular pattern seen on optical coherence tomography angiography (OCTA) that appears to correlate with reduced rates of geographic atrophy (GA) in eyes receiving long-term anti-vascular endothelial growth factor (VEGF) treatment for neovascular age-related macular degeneration (AMD). Non-consecutive, retrospective cohort study. Patients were included if they had received more than 50 anti-VEGF injections during a period of at least 4 years for neovascular AMD in at least one eye, with absence or minimal progression of GA. Clinical charts and imaging were reviewed retrospectively; study eyes underwent OCTA. Nine eyes of eight patients were included. Mean age was 82 years, and mean follow-up of study eyes 9.1 years; study eyes received a mean of 65.8 injections. OCTA revealed tangled networks of neovessels associated with type 1 lesions. With prolonged anti-VEGF treatment, GA appears to occur less commonly in eyes with type 1 neovascularization. OCTA shows mature tangled vessels with substantial flow within type 1 lesions. Mature, tangled networks may be associated with a decreased likelihood of developing GA despite the presence of choriocapillaris atrophy. Copyright 2015, SLACK Incorporated.

  12. MicroRNAs in vascular tissue engineering and post-ischemic neovascularization☆

    PubMed Central

    Caputo, Massimo; Saif, Jaimy; Rajakaruna, Cha; Brooks, Marcus; Angelini, Gianni D.; Emanueli, Costanza

    2015-01-01

    Increasing numbers of paediatric patients with congenital heart defects are surviving to adulthood, albeit with continuing clinical needs. Hence, there is still scope for revolutionary new strategies to correct vascular anatomical defects. Adult patients are also surviving longer with the adverse consequences of ischemic vascular disease, especially after acute coronary syndromes brought on by plaque erosion and rupture. Vascular tissue engineering and therapeutic angiogenesis provide new hope for these patients. Both approaches have shown promise in laboratory studies, but have not yet been able to deliver clear evidence of clinical success. More research into biomaterials, molecular medicine and cell and molecular therapies is necessary. This review article focuses on the new opportunities offered by targeting microRNAs for the improved production and greater empowerment of vascular cells for use in vascular tissue engineering or for increasing blood perfusion of ischemic tissues by amplifying the resident microvascular network. PMID:25980937

  13. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons

    NASA Astrophysics Data System (ADS)

    Tang, Guoning; Xu, Kesheng; Jiang, Luoluo

    2011-10-01

    The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.

  14. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.

    PubMed

    Mahou, Redouan; Zhang, David K Y; Vlahos, Alexander E; Sefton, Michael V

    2017-07-01

    Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable carrier to deliver cells and generate blood vessels in a subcutaneous implantation site. The SIPN was prepared by reacting a blend of vinyl sulfone-terminated polyethylene glycol (PEG-VS) and sodium polymethacrylate (PMAA-Na) with dithiothreitol. The swelling of SIPN was sensitive to the PMAA-Na content but only small differences in gelation time, permeability and stiffness were noted. SIPN containing 20 mol% PMAA-Na generated a vascular network in the surrounding tissues, with 2-3 times as many vessels as was obtained with 10 mol% PMAA-Na or PEG alone. Perfusion studies showed that the generated vessels were perfused and connected to the host vasculature as early as seven days after transplantation. Islets embedded in SIPN were viable and responsive to glucose stimulation in vitro. In a proof of concept study in a streptozotocin-induced diabetic mouse model, a progressive return to normoglycemia was observed and the presence of insulin positive islets was confirmed when islets were embedded in SIPN prior to delivery. Our approach proposes a biomaterial-mediated strategy to deliver cells while enhancing vascularization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The vascular basement membrane in the healthy and pathological brain.

    PubMed

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  16. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  17. Altered affective, executive and sensorimotor resting state networks in patients with pediatric mania

    PubMed Central

    Wu, Minjie; Lu, Lisa H.; Passarotti, Alessandra M.; Wegbreit, Ezra; Fitzgerald, Jacklynn; Pavuluri, Mani N.

    2013-01-01

    Background The aim of the present study was to map the pathophysiology of resting state functional connectivity accompanying structural and functional abnormalities in children with bipolar disorder. Methods Children with bipolar disorder and demographically matched healthy controls underwent resting-state functional magnetic resonance imaging. A model-free independent component analysis was performed to identify intrinsically interconnected networks. Results We included 34 children with bipolar disorder and 40 controls in our analysis. Three distinct resting state networks corresponding to affective, executive and sensorimotor functions emerged as being significantly different between the pediatric bipolar disorder (PBD) and control groups. All 3 networks showed hyperconnectivity in the PBD relative to the control group. Specifically, the connectivity of the dorsal anterior cingulate cortex (ACC) differentiated the PBD from the control group in both the affective and the executive networks. Exploratory analysis suggests that greater connectivity of the right amygdala within the affective network is associated with better executive function in children with bipolar disorder, but not in controls. Limitations Unique clinical characteristics of the study sample allowed us to evaluate the pathophysiology of resting state connectivity at an early state of PBD, which led to the lack of generalizability in terms of comorbid disorders existing in a typical PBD population. Conclusion Abnormally engaged resting state affective, executive and sensorimotor networks observed in children with bipolar disorder may reflect a biological context in which abnormal task-based brain activity can occur. Dual engagement of the dorsal ACC in affective and executive networks supports the neuroanatomical interface of these networks, and the amygdala’s engagement in moderating executive function illustrates the intricate interplay of these neural operations at rest. PMID:23735583

  18. Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.

    PubMed

    Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal

    2018-07-01

    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.

  19. Ehlers-Danlos syndrome associated with fatal spontaneous vascular rupture in a dog.

    PubMed

    Uri, M; Verin, R; Ressel, L; Buckley, L; McEwan, N

    2015-01-01

    A 7-month-old male cross breed dog was presented with hyperextensible skin and atrophic scarring. A diagnosis of Ehlers-Danlos syndrome was made based on clinical signs, histopathology and electron microscopy. Two weeks after presentation, the dog died suddenly. Post-mortem examination revealed haemothorax and rupture of the left subclavian artery. Histological findings, including Goldner's modified Masson's trichrome staining and transmission electron microscopy of the subclavian artery, revealed abnormalities in the structure and arrangement of collagen fibrils, suggesting that the defective collagen formation extended to the vasculature. To the authors' knowledge, this is the first report of Ehlers-Danlos syndrome with vascular involvement in animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Embolic Strokes of Unknown Source and Cryptogenic Stroke: Implications in Clinical Practice

    PubMed Central

    Nouh, Amre; Hussain, Mohammed; Mehta, Tapan; Yaghi, Shadi

    2016-01-01

    Up to a third of strokes are rendered cryptogenic or of undetermined etiology. This number is specifically higher in younger patients. At times, inadequate diagnostic workups, multiple causes, or an under-recognized etiology contributes to this statistic. Embolic stroke of undetermined source, a new clinical entity particularly refers to patients with embolic stroke for whom the etiology of embolism remains unidentified despite through investigations ruling out established cardiac and vascular sources. In this article, we review current classification and discuss important clinical considerations in these patients; highlighting cardiac arrhythmias and structural abnormalities, patent foramen ovale, paradoxical sources, and potentially under-recognized, vascular, inflammatory, autoimmune, and hematologic sources in relation to clinical practice. PMID:27047443

  1. Vascular defects and sensorineural deafness in a mouse model of Norrie disease.

    PubMed

    Rehm, Heidi L; Zhang, Duan-Sun; Brown, M Christian; Burgess, Barbara; Halpin, Chris; Berger, Wolfgang; Morton, Cynthia C; Corey, David P; Chen, Zheng-Yi

    2002-06-01

    Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.

  2. Mechanically induced intercellular calcium communication in confined endothelial structures.

    PubMed

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin

    2013-03-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  4. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    PubMed

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  5. Like a slippery fish, a little slime is a good thing: the glycocalyx revealed.

    PubMed

    Biddle, Chuck

    2013-12-01

    The glycocalyx is a dynamic network of multiple membrane-bound complexes lining the vascular endothelium. Its role in maintaining vascular homeostasis includes regulating vascular permeability as well as a range of vital functions, such as mechanotransduction, hemostasis, modulation of inflammatory processes, and serving as an antiatherogenic. Revisionist thinking about the Starling principle is discussed in terms of the major influence of the glycocalyx on capillary and tissue fluid homeostasis. The clinical and pathophysiologic threats to the glycocalyx are reviewed as well as strategies to maintain its integrity.

  6. Gender differences in brain activity and the relationship between brain activity and differences in prevalence rates between male and female major depressive disorder patients: a resting-state fMRI study.

    PubMed

    Yao, Zhijian; Yan, Rui; Wei, Maobin; Tang, Hao; Qin, Jiaolong; Lu, Qing

    2014-11-01

    We examined the gender-difference effect on abnormal spontaneous neuronal activity of male and female major depressive disorder (MDD) patients using the amplitude of low-frequency fluctuation (ALFF) and the further clarified the relationship between the abnormal ALFF and differences in MDD prevalence rates between male and female patients. Fourteen male MDD patients, 13 female MDD patients and 15 male and 15 female well matched healthy controls (HCs) completed this study. The ALFF approach was used, and Pearson correlation was conducted to observe a possible clinical relevance. There were widespread differences in ALFF values between female and male MDD patients, including some important parts of the frontoparietal network, auditory network, attention network and cerebellum network. In female MDD patients, there was a positive correlation between average ALFF values of the left postcentral gyrus and the severity of weight loss symptom. The gender-difference effect leading to abnormal brain activity is an important underlying pathomechanism for different somatic symptoms in MDD patients of different genders and is likely suggestive of higher MDD prevalence rates in females. The abnormal ALFF resulting from the gender-difference effect might improve our understanding of the differences in prevalence rates between male and female MDD patients from another perspective. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Antiplatelet regimens in the long-term secondary prevention of transient ischaemic attack and ischaemic stroke: an updated network meta-analysis

    PubMed Central

    Niu, Peng-Peng; Guo, Zhen-Ni; Jin, Hang; Xing, Ying-Qi; Yang, Yi

    2016-01-01

    Objective To examine the comparative efficacy and safety of different antiplatelet regimens in patients with prior non-cardioembolic ischaemic stroke or transient ischaemic attack. Design Systematic review and network meta-analysis. Data sources As on 31 March 2015, all randomised controlled trials that investigated the effects of antiplatelet agents in the long-term (≥3 months) secondary prevention of non-cardioembolic transient ischaemic attack or ischaemic stroke were searched and identified. Outcome measures The primary outcome measure of efficacy was serious vascular events (non-fatal stroke, non-fatal myocardial infarction and vascular death). The outcome measure of safety was any bleeding. Results A total of 36 randomised controlled trials (82 144 patients) were included. Network meta-analysis showed that cilostazol was significantly more effective than clopidogrel (OR 0.77, 95% credible interval 0.60–0.98) and low-dose (75–162 mg daily) aspirin (0.69, 0.55–0.86) in the prevention of serious vascular events. Aspirin (50 mg daily) plus dipyridamole (400 mg daily) and clopidogrel reduced the risk of serious vascular events compared with low-dose aspirin; however, the difference was not statistically significant. Furthermore, low-dose aspirin was as effective as higher daily doses. Cilostazol was associated with a significantly lower bleeding risk than most of the other regimens. Moreover, aspirin plus clopidogrel was associated with significantly more haemorrhagic events than other regimens. Direct comparisons showed similar results as the network meta-analysis. Conclusions Cilostazol was significantly more effective than aspirin and clopidogrel alone in the long-term prevention of serious vascular events in patients with prior non-cardioembolic ischaemic stroke or transient ischaemic attack. Cilostazol was associated with a significantly lower bleeding risk than low-dose aspirin (75–162 mg daily) and aspirin (50 mg daily) plus dipyridamole (400 mg daily). Low-dose aspirin was as effective as higher daily doses. However, further large, randomised, controlled, head-to-head trials are needed, especially in non-Asian ethnic groups. PMID:26988347

  8. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    PubMed Central

    Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260

  9. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  10. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  11. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    PubMed

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  12. Doppler ultrasonography in living donor liver transplantation recipients: Intra- and post-operative vascular complications

    PubMed Central

    Abdelaziz, Omar; Attia, Hussein

    2016-01-01

    Living-donor liver transplantation has provided a solution to the severe lack of cadaver grafts for the replacement of liver afflicted with end-stage cirrhosis, fulminant disease, or inborn errors of metabolism. Vascular complications remain the most serious complications and a common cause for graft failure after hepatic transplantation. Doppler ultrasound remains the primary radiological imaging modality for the diagnosis of such complications. This article presents a brief review of intra- and post-operative living donor liver transplantation anatomy and a synopsis of the role of ultrasonography and color Doppler in evaluating the graft vascular haemodynamics both during surgery and post-operatively in accurately defining the early vascular complications. Intra-operative ultrasonography of the liver graft provides the surgeon with useful real-time diagnostic and staging information that may result in an alteration in the planned surgical approach and corrections of surgical complications during the procedure of vascular anastomoses. The relevant intra-operative anatomy and the spectrum of normal and abnormal findings are described. Ultrasonography and color Doppler also provides the clinicians and surgeons early post-operative potential developmental complications that may occur during hospital stay. Early detection and thus early problem solving can make the difference between graft survival and failure. PMID:27468207

  13. Vascular Procr+ stem cells: Finding new branches while looking for the roots.

    PubMed

    Gur-Cohen, Shiri; Lapidot, Tsvee

    2016-10-01

    Generation and growth of the blood vasculature network is a highly synchronized process, requiring coordinated efforts of endothelial cells and pericytes to maintain blood vessel integrity and regeneration. In a recent paper published in Cell Research, Yu et al. identified and characterized bipotent Procr-expressing vascular endothelial stem cells, which give rise to both endothelial cells and pericytes.

  14. Intranetwork and internetwork connectivity in patients with Alzheimer disease and the association with cerebrospinal fluid biomarker levels

    PubMed Central

    Weiler, Marina; de Campos, Brunno Machado; de Ligo Teixeira, Camila Vieira; Casseb, Raphael Fernandes; Mac Knight Carletti-Cassani, Ana Flávia; Vicentini, Jéssica Elias; Magalhães, Thamires Naela Cardoso; Talib, Leda Leme; Forlenza, Orestes Vicente; Balthazar, Marcio Luiz Figueredo

    2017-01-01

    Background In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). Methods We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks’ functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. Results Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anti-correlation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. Limitations The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. Conclusion We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease. PMID:28375076

  15. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant

    NASA Astrophysics Data System (ADS)

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang

    2016-08-01

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.

  16. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant.

    PubMed

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F; Hao, Shougang

    2016-08-23

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.

  17. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant

    PubMed Central

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang

    2016-01-01

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant−soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet−dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant−soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated. PMID:27503883

  18. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and sPECAM-1 [9.3 (6.2-11.1) vs 6.1 (5.4-7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this.

  19. Imaging Keratitis-Icthyosis-Deafness (KID) syndrome with FDG-PET (F18-fluorodeoxiglucose-Positron Emission Tomography)

    PubMed Central

    Aparici, Carina Mari; Arcienega, Daniela; Cho, Eric; Hawkins, Randy

    2010-01-01

    Keratitis-Icthyosis-Deafness (KID) syndrome is a rare dysplasia characterized by vascularizing keratitis, congenital sensorineural hearing-loss, and progressive erythrokeratoderma. To our knowledge, this is the first KID syndrome imaged with FDG-PET in the literature. This paper is intended to help familiarize with the FDG abnormalities related to this rare entity. PMID:22470741

  20. Congenital supratentorial meningeal arteriovenous malformation with hemangioma and massive arachnoid cell hyperplasia.

    PubMed

    Nabeel, Alnaghmoosh; Lach, Boleslaw; Al-Shail, Essam; Patay, Zoltan

    2005-11-01

    We describe the clinical, radiological and pathological findings of concurrent, congenital leptomeningeal arteriovenous malformation with hemangioma diagnosed in a newborn by prenatal and immediately postnatal magnetic resonance imaging. Vascular abnormalities were accompanied by massive arachnoidal cell hyperplasia reminiscent of meningioma. To the best of our knowledge, this is the first case of such a lesion reported in the literature.

  1. A novel non-contrast-enhanced MRA using silent scan for evaluation of brain arteriovenous malformation: A case report and review of literature.

    PubMed

    Moon, Jin Il; Baek, Hye Jin; Ryu, Kyeong Hwa; Park, Hyun

    2017-11-01

    Brain arteriovenous malformations (AVMs) are congenital vascular abnormalities involving abnormal connections between arteries and veins. In clinical practice, imaging studies help evaluate feeding arteries, niduses, draining venous systems, and coexisting complications in patients with brain AVM. They also have an impact on decision-making regarding clinical management. We applied a novel non-contrast-enhanced MR angiography (MRA) technique, termed "silent MRA," for evaluating an incidental brain AVM. Here, we describe the clinical case with radiological review and highlight the technical background and clinical usefulness of silent MRA. A 60-year-old woman underwent neuroimaging study including MRA to evaluate intracranial cause of headache. The brain AVM, including its nidus and draining veins, was conspicuously delineated on silent MRA images; these findings correlated well with conventional angiographic findings. The patient did not receive interventional or surgical treatment. The patient is being followed up regularly at the outpatient department. The silent MRA can be a suitable imaging modality for repeated follow-up evaluation for not only brain AVMs but also various intracranial vascular diseases without the use of contrast materials.

  2. A rare case of hidebound disease with dental implications.

    PubMed

    Bali, Vikram; Dabra, Sarita; Behl, Ashima Bali; Bali, Rajiv

    2013-07-01

    Systemic sclerosis (also called as Scleroderma or hidebound disease) is a chronic sclerotic disease of unknown etiology which causes diffuse, increased deposition of extra cellular matrix in connective tissue with vascular abnormalities, resulting in tissue hypoxia. The disease is characterized by diffuse fibrosis; degenerative changes; and vascular abnormalities in the skin (scleroderma), articular structures, and internal organs. Aesthetic and facial dysfunctions are followed by important oral and facial manifestations. Most oral manifestations begin with tongue rigidity and facial skin changes. Bone resorption of mandibular angle and widening of periodontal ligament space on periapical radiographs are important radiological findings. Other systemic changes include the involvement of internal organs, which lead to serious complications as well as disorders in the cardiac muscle and Raynaud΄s phenomenon. This is a case report of 30-year-old female patient with the classical features of this disease. This case is reported for its rarity and variable expressivity. The main aim of this article is to describe thorough presentation of the case report, various forms of scleroderma, pathogenesis, oral, extraoral, periodontal manifestations of scleroderma, and its treatment options. A brief review of the literature, focusing on dental alterations is also presented.

  3. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling.

    PubMed

    Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min

    2016-09-02

    Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.

  4. Therapeutic approaches for portal biliopathy: A systematic review

    PubMed Central

    Franceschet, Irene; Zanetto, Alberto; Ferrarese, Alberto; Burra, Patrizia; Senzolo, Marco

    2016-01-01

    Portal biliopathy (PB) is defined as the presence of biliary abnormalities in patients with non-cirrhotic/non-neoplastic extrahepatic portal vein obstruction (EHPVO) and portal cavernoma (PC). The pathogenesis of PB is due to ab extrinseco compression of bile ducts by PC and/or to ischemic damage secondary to an altered biliary vascularization in EHPVO and PC. Although asymptomatic biliary abnormalities can be frequently seen by magnetic resonance cholangiopancreatography in patients with PC (77%-100%), only a part of these (5%-38%) are symptomatic. Clinical presentation includes jaundice, cholangitis, cholecystitis, abdominal pain, and cholelithiasis. In this subset of patients is required a specific treatment. Different therapeutic approaches aimed to diminish portal hypertension and treat biliary strictures are available. In order to decompress PC, surgical porto-systemic shunt or transjugular intrahepatic porto-systemic shunt can be performed, and treatment on the biliary stenosis includes endoscopic (Endoscopic retrograde cholangiopancreatography with endoscopic sphincterotomy, balloon dilation, stone extraction, stent placement) and surgical (bilioenteric anastomosis, cholecystectomy) approaches. Definitive treatment of PB often requires multiple and combined interventions both on vascular and biliary system. Liver transplantation can be considered in patients with secondary biliary cirrhosis, recurrent cholangitis or unsuccessful control of portal hypertension. PMID:28018098

  5. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in patients with behavioural variant frontotemporal dementia. These findings are consistent with a broader model in which the salience network modulates the activity of other large-scale networks, and suggest a revision to a previously proposed ‘dual-process’ account of moral reasoning. These findings also characterize network interactions underlying abnormal moral reasoning in frontotemporal dementia, which may serve as a model for the aberrant judgement and interpersonal behaviour observed in this disease and in other disorders of social function. More broadly, these findings link recent work on the dynamic interrelationships between large-scale brain networks to observable impairments in dementia syndromes, which may shed light on how diseases that target one network also alter the function of interrelated networks. PMID:23576128

  6. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    ERIC Educational Resources Information Center

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  7. Stressing out the Social Network.

    PubMed

    Kirkby, Lowry A; Sohal, Vikaas S

    2016-07-20

    In this issue of Neuron, Hultman et al. (2016) find that stress-induced abnormal social behavior reflects aberrant prefrontal regulation of downstream limbic networks. This illustrates how linking aberrant network dynamics to neuropsychiatric disorders may lead to new circuit-based therapeutic interventions. Copyright © 2016. Published by Elsevier Inc.

  8. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  9. Long-term Renal Function in Living Kidney Donors Who Had Histological Abnormalities at Donation.

    PubMed

    Fahmy, Lara M; Massie, Allan B; Muzaale, Abimereki D; Bagnasco, Serena M; Orandi, Babak J; Alejo, Jennifer L; Boyarsky, Brian J; Anjum, Saad K; Montgomery, Robert A; Dagher, Nabil N; Segev, Dorry L

    2016-06-01

    Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5-8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73 m decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (P < 0.01). In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, whereas no other subclinical histological abnormalities provided additional information.

  10. Long-Term Renal Function in Living Kidney Donors who had Histological Abnormalities at Donation

    PubMed Central

    Fahmy, Lara M.; Massie, Allan B.; Muzaale, Abimereki D.; Bagnasco, Serena M.; Orandi, Babak J.; Alejo, Jennifer L.; Boyarsky, Brian J.; Anjum, Saad K.; Montgomery, Robert A.; Dagher, Nabil N.; Segev, Dorry L.

    2016-01-01

    Background Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. Methods We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Results Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5–8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73m2 decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (p<0.01). Conclusions In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, while no other subclinical histological abnormalities provided additional information. PMID:27152920

  11. Whole brain resting-state analysis reveals decreased functional connectivity in major depression.

    PubMed

    Veer, Ilya M; Beckmann, Christian F; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J; Aleman, André; van Buchem, Mark A; van der Wee, Nic J; Rombouts, Serge A R B

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  12. Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression

    PubMed Central

    Veer, Ilya M.; Beckmann, Christian F.; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J.; Aleman, André; van Buchem, Mark A.; van der Wee, Nic J.; Rombouts, Serge A.R.B.

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder. PMID:20941370

  13. More randomized and resilient in the topological properties of functional brain networks in patients with major depressive disorder.

    PubMed

    Li, Huaizhou; Zhou, Haiyan; Yang, Yang; Wang, Haiyuan; Zhong, Ning

    2017-10-01

    Previous studies have reported the enhanced randomization of functional brain networks in patients with major depressive disorder (MDD). However, little is known about the changes of key nodal attributes for randomization, the resilience of network, and the clinical significance of the alterations. In this study, we collected the resting-state functional MRI data from 19 MDD patients and 19 healthy control (HC) individuals. Graph theory analysis showed that decreases were found in the small-worldness, clustering coefficient, local efficiency, and characteristic path length (i.e., increase of global efficiency) in the network of MDD group compared with HC group, which was consistent with previous findings and suggested the development toward randomization in the brain network in MDD. In addition, the greater resilience under the targeted attacks was also found in the network of patients with MDD. Furthermore, the abnormal nodal properties were found, including clustering coefficients and nodal efficiencies in the left orbital superior frontal gyrus, bilateral insula, left amygdala, right supramarginal gyrus, left putamen, left posterior cingulate cortex, left angular gyrus. Meanwhile, the correlation analysis showed that most of these abnormal areas were associated with the clinical status. The observed increased randomization and resilience in MDD might be related to the abnormal hub nodes in the brain networks, which were attacked by the disease pathology. Our findings provide new evidence to indicate that the weakening of specialized regions and the enhancement of whole brain integrity could be the potential endophenotype of the depressive pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering.

    PubMed

    Weigand, Annika; Beier, Justus P; Arkudas, Andreas; Al-Abboodi, Majida; Polykandriotis, Elias; Horch, Raymund E; Boos, Anja M

    2016-11-02

    A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.

  15. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration In Vivo

    PubMed Central

    Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.

    2015-01-01

    Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774

  16. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps.

    PubMed

    Zhang, Qixu; Johnson, Joshua A; Dunne, Lina W; Chen, Youbai; Iyyanki, Tejaswi; Wu, Yewen; Chang, Edward I; Branch-Brooks, Cynthia D; Robb, Geoffrey L; Butler, Charles E

    2016-04-15

    Using a perfusion decellularization protocol, we developed a decellularized skin/adipose tissue flap (DSAF) comprising extracellular matrix (ECM) and intact vasculature. Our DSAF had a dominant vascular pedicle, microcirculatory vascularity, and a sensory nerve network and retained three-dimensional (3D) nanofibrous structures well. DSAF, which was composed of collagen and laminin with well-preserved growth factors (e.g., vascular endothelial growth factor, basic fibroblast growth factor), was successfully repopulated with human adipose-derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs), which integrated with DSAF and formed 3D aggregates and vessel-like structures in vitro. We used microsurgery techniques to re-anastomose the recellularized DSAF into nude rats. In vivo, the engineered flap construct underwent neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant adipose tissue formation at 3months postoperatively. Our results indicate that DSAF co-cultured with hASCs and HUVECs is a promising platform for vascularized soft tissue flap engineering. This platform is not limited by the flap size, as the entire construct can be immediately perfused by the recellularized vascular network following simple re-integration into the host using conventional microsurgical techniques. Significant soft tissue loss resulting from traumatic injury or tumor resection often requires surgical reconstruction using autologous soft tissue flaps. However, the limited availability of qualitative autologous flaps as well as the donor site morbidity significantly limits this approach. Engineered soft tissue flap grafts may offer a clinically relevant alternative to the autologous flap tissue. In this study, we engineered vascularized soft tissue free flap by using skin/adipose flap extracellular matrix scaffold (DSAF) in combination with multiple types of human cells. Following vascular reanastomosis in the recipient site, the engineered products successful regenerated large-scale fat tissue in vivo. This approach may provide a translatable platform for composite soft tissue free flap engineering for microsurgical reconstruction. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder.

    PubMed

    Yang, Xun; Liu, Jin; Meng, Yajing; Xia, Mingrui; Cui, Zaixu; Wu, Xi; Hu, Xinyu; Zhang, Wei; Gong, Gaolang; Gong, Qiyong; Sweeney, John A; He, Yong

    2017-12-07

    Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. Copyright © 2017. Published by Elsevier Inc.

  18. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects.

    PubMed

    Mathew, Manoj; Tay, Eric; Cusi, Kenneth

    2010-02-16

    CVD in obesity and T2DM are associated with endothelial activation, elevated plasma vascular inflammation markers and a prothrombotic state. We examined the contribution of FFA to these abnormalities following a 48-hour physiological increase in plasma FFA to levels of obesity and diabetes in a group of healthy subjects. 40 non-diabetic subjects (age = 38 +/- 3 yr, BMI = 28 +/- 1 kg/m2, FPG = 95 +/- 1 mg/dl, HbA1c = 5.3 +/- 0.1%) were admitted twice and received a 48-hour infusion of normal saline or low-dose lipid. Plasma was drawn for intracellular (ICAM-1) and vascular (VCAM-1) adhesion molecules-1, E-selectin (sE-S), myeloperoxidase (MPO) and total plasminogen inhibitor-1 (tPAI-1). Insulin sensitivity was measured by a hyperglycemic clamp (M/I). Lipid infusion increased plasma FFA to levels observed in obesity and T2DM and reduced insulin sensitivity by 27% (p = 0.01). Elevated plasma FFA increased plasma markers of endothelial activation ICAM-1 (138 +/- 10 vs. 186 +/- 25 ng/ml), VCAM-1 (1066 +/- 67 vs. 1204 +/- 65 ng/ml) and sE-S (20 +/- 1 vs. 24 +/- 1 ng/ml) between 13-35% and by > or = 2-fold plasma levels of myeloperoxidase (7.5 +/- 0.9 to 15 +/- 25 ng/ml), an inflammatory marker of future CVD, and tPAI-1 (9.7 +/- 0.6 to 22.5 +/- 1.5 ng/ml), an indicator of a prothrombotic state (all p < or = 0.01). The FFA-induced increase was independent from the degree of adiposity, being of similar magnitude in lean, overweight and obese subjects. An increase in plasma FFA within the physiological range observed in obesity and T2DM induces markers of endothelial activation, vascular inflammation and thrombosis in healthy subjects. This suggests that even transient (48-hour) and modest increases in plasma FFA may initiate early vascular abnormalities that promote atherosclerosis and CVD.

  19. We Know More Than We Can Tell About Diabetes and Vascular Disease: The 2016 Edwin Bierman Award Lecture.

    PubMed

    Semenkovich, Clay F

    2017-07-01

    The Edwin Bierman Award Lecture is presented in honor of the memory of Edwin L. Bierman, MD, an exemplary scientist, mentor, and leader in the field of diabetes, obesity, hyperlipidemia, and atherosclerosis. The award and lecture recognizes a leading scientist in the field of macrovascular complications and contributing risk factors in diabetes. Clay F. Semenkovich, MD, the Irene E. and Michael M. Karl Professor and Chief of the Division of Endocrinology, Metabolism and Lipid Research at Washington University School of Medicine in St. Louis, St. Louis, MO, received the prestigious award at the American Diabetes Association's 76th Scientific Sessions, 10-14 June 2016, in New Orleans, LA. He presented the Edwin Bierman Award Lecture, "We Know More Than We Can Tell About Diabetes and Vascular Disease," on Sunday, 12 June 2016. Diabetes is a disorder of abnormal lipid metabolism, a notion strongly supported by the work of Edwin Bierman, for whom this eponymous lecture is named. This abnormal lipid environment continues to be associated with devastating vascular complications in diabetes despite current therapies, suggesting that our understanding of the pathophysiology of blood vessel disease in diabetes is limited. In this review, potential new insights into the nature of diabetic vasculopathy will be discussed. Recent observations suggest that while the concept of distinct macrovascular and microvascular complications of diabetes has been useful, vascular diseases in diabetes may be more interrelated than previously appreciated. Moreover, the intermediary metabolic pathway of de novo lipogenesis, which synthesizes lipids from simple precursors, is robustly sensitive to insulin and may contribute to these complications. De novo lipogenesis requires fatty acid synthase, and recent studies of this enzyme suggest that endogenously produced lipids are channeled to specific intracellular sites to affect physiology. These findings raise the possibility that novel approaches to treating diabetes and its complications could be based on altering the intracellular lipid milieu. © 2017 by the American Diabetes Association.

  20. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical

Top