Science.gov

Sample records for abnormal vascular remodeling

  1. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  2. Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD)

    PubMed Central

    O'Neill, Kalisha D.; Chen, Xianming; Moorthi, Ranjani N.; Gattone, Vincent H.; Allen, Matthew R.; Moe, Sharon M.

    2013-01-01

    Patients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses. Expression of these vascular miRNAs miR-125b, miR-145, and miR-155 was decreased in the thoracic aorta in CKD rats compared to normal rats, with concordant changes in target genes of RUNX2, angiotensin II type I receptor (AT1R), and myocardin. Furthermore, the expression of miR-155 was negatively correlated with the quantity of calcification in the aorta, a process known to be preceded by vascular de-differentiation in these animals. We then examined the mechanisms of miRNA regulation in primary VSMC and found decreased expression of miR-125b, 145, and 155 in VSMC from rats with CKD compared to normal littermates but no alteration in DROSHA or DICER, indicating that the low levels of expression is not due to altered intracellular processing. Finally, overexpression of miR-155 in VSMC from CKD rats inhibited AT1R expression and decreased cellular proliferation supporting a direct effect of miR-155 on VSMC. In conclusion, we have found ex vivo and in vitro evidence for decreased expression of these vascular miRNA in CKD, suggesting that alterations in miRNAs may lead to the synthetic state of VSMC found in CKD. The decreased levels in the circulation may reflect decreased vascular release but more studies are needed to confirm this relationship. PMID:23717629

  3. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  4. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  5. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  6. Maternal uterine vascular remodeling during pregnancy.

    PubMed

    Osol, George; Mandala, Maurizio

    2009-02-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.

  7. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  8. Progenitor cells in pulmonary vascular remodeling.

    PubMed

    Yeager, Michael E; Frid, Maria G; Stenmark, Kurt R

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow-derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow-derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  9. Remodeling and vascular spaces in bone.

    PubMed

    Eriksen, Erik Fink; Eghbali-Fatourechi, Guiti Z; Khosla, Sundeep

    2007-01-01

    In recent years, we have come to appreciate that the close association between bone and vasculature plays a pivotal role in the regulation of bone remodeling and fracture repair. In 2001, Hauge et al. characterized a specialized vascular structure, the bone remodeling compartment (BRC), and showed that the outer lining of this compartment was made up of flattened cells, displaying all the characteristics of lining cells in bone. A decrease in bone turnover leads to a decrease in surfaces covered with remodeling compartments, whereas increased turnover causes an increase. Immunoreactivity for all major osteotropic growth factors and cytokines including osteoprotegerin (OPG) and RANKL has been shown in the cells lining the BRC, which makes the BRC the structure of choice for coupling between resorption and formation. The secretion of these factors inside a confined space separated from the bone marrow would facilitate local regulation of the remodeling process without interference from growth factors secreted by blood cells in the marrow space. The BRC creates an environment where cells inside the structure are exposed to denuded bone, which may enable direct cellular interactions with integrins and other matrix factors known to regulate osteoclast/osteoblast activity. However, the denuded bone surface inside the BRC also constitutes an ideal environment for the seeding of bone metastases, known to have high affinity for bone matrix. Reduction in BRC space brought about by antiresorptive therapies such as bisphosphonates reduce the number of skeletal events in advanced cancer, whereas an increase in BRC space induced by remodeling activators like PTH may increase the bone metastatic burden. The BRC has only been characterized in detail in trabecular bone; there is, however, evidence that a similar structure may exist in cortical bone, but further characterization is needed.

  10. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  11. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia

    PubMed Central

    Alvira, Cristina M.

    2016-01-01

    In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized. PMID:27243014

  12. Obstruction-induced pulmonary vascular remodeling.

    PubMed

    Chow, Ming-Jay; Zou, Yu; He, Huamei; McGowan, Francis X; Zurakowski, David; Zhang, Yanhang

    2011-11-01

    Pulmonary obstruction occurs in many common forms of congenital heart disease. In this study, pulmonary artery (PA) banding is used as a model for pulmonary stenosis. Significant remodeling of the vascular bed occurs as a result of a prolonged narrowing of the PAs, and here we quantify the biophysical and molecular changes proximal and distal to the obstruction. Main and branch PAs are harvested from banded and sham rabbits and their mechanical properties are assessed using a biaxial tensile tester. Measurements defined as initial and stiff slopes are taken, assuming a linear region at the start and end of the J-shaped stress-strain curves, along with a transitional knee point. Collagen, elastin assays, Movat's pentachrome staining, and Doppler protocols are used to quantify biochemical, structural, and physiological differences. The banded main PAs have significantly greater initial slopes while banded branch PAs have lower initial slopes; however, this change in mechanical behavior cannot be explained by the assay results as the elastin content in both main and branch PAs is not significantly different. The stiff slopes of the banded main PAs are higher, which is attributed to the significantly greater amounts of insoluble collagen. Shifting of the knee points reveals a decreased toe region in the main PAs but an opposite trend in the branch PAs. The histology results show a loss of integrity of the media, increase in ground substance, and dispersion of collagen in the banded tissue samples. This indicates other structural changes could have led to the mechanical differences in banded and normal tissue. PMID:22168741

  13. Biomechanics of vascular mechanosensation and remodeling

    PubMed Central

    Baeyens, Nicolas; Schwartz, Martin A.

    2016-01-01

    Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling. PMID:26715421

  14. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.

    PubMed Central

    Rudic, R D; Shesely, E G; Maeda, N; Smithies, O; Segal, S S; Sessa, W C

    1998-01-01

    The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external carotid artery ligation, mice with targeted disruption of the endothelial nitric oxide synthase gene (eNOS) did not remodel their ipsilateral common carotid arteries whereas wild-type mice did. Rather, the eNOS mutant mice displayed a paradoxical increase in wall thickness accompanied by a hyperplastic response of the arterial wall. These findings demonstrate a critical role for endogenous NO as a negative regulator of vascular smooth muscle proliferation in response to a remodeling stimulus. Furthermore, our data suggests that a primary defect in the NOS/NO pathway can promote abnormal remodeling and may facilitate pathological changes in vessel wall morphology associated with complex diseases such as hypertension and atherosclerosis. PMID:9466966

  15. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension.

  16. Iron chelation inhibits the development of pulmonary vascular remodeling

    PubMed Central

    Wong, Chi-Ming; Preston, Ioana R.; Hill, Nicholas S.; Suzuki, Yuichiro J.

    2012-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Since iron is an important regulator of ROS biology, the present study examined the effect of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  17. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    PubMed Central

    Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype. PMID:27213345

  18. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    PubMed Central

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  19. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    PubMed Central

    Nicolosi, Pier Andrea; Tombetti, Enrico; Maugeri, Norma; Rovere-Querini, Patrizia; Brunelli, Silvia; Manfredi, Angelo A.

    2016-01-01

    Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc). The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment. PMID:27069480

  20. New aspects of vascular remodelling: the involvement of all vascular cell types.

    PubMed

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  1. Vascular remodeling in the growth hormone transgenic mouse.

    PubMed

    Dilley, R J; Schwartz, S M

    1989-11-01

    Using mice transgenic for the growth hormone gene (TGHM), we have studied the effects of a systemic elevation of growth hormone on vascular growth with the aim of investigating the role of vascular mass changes in producing hypertension. In contrast to human acromegaly or gigantism, there was no elevation of blood pressure in TGHM, but there were significant increases in vascular wall mass. In accordance with a presumably increased perfusion of larger organs, the medial cross-sectional areas of thoracic aorta and mesenteric resistance vessels were greater in the TGHM. These differences could be normalized in the aorta by body weight and in the mesenteric vessel by small intestine weight. Furthermore, the brain was not significantly heavier in the TGHM, and their carotid and cerebral vessels also were not larger. Wall-to-lumen ratios were similar in the aorta, carotid, and middle cerebral arteries suggesting that wall stress was the controlling factor in wall thickness. Surprisingly, the mesenteric vessels had increased wall-to-lumen ratio, which was similar to that seen in hypertensive vascular remodeling but in a normotensive animal. In an attempt to explain this finding it was noted that the pattern of mesenteric vascular networks and even organized structure within the vessel wall itself appeared to be fixed, perhaps by genetic mechanisms. Thus, vascular network structure may be a potentially limiting factor in the ability of the vessel wall to remodel and may have been responsible for the greater wall-to-lumen ratio in TGHM mesenteric vessels. A similar situation in human acromegaly or gigantism could result in a circulation marginally able to correct for other demands on blood flow resulting in about one third of cases being hypertensive. PMID:2805241

  2. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  3. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  4. Antenatal hypoxia and pulmonary vascular function and remodeling.

    PubMed

    Papamatheakis, Demosthenes G; Blood, Arlin B; Kim, Joon H; Wilson, Sean M

    2013-09-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.

  5. Pulmonary vascular remodelling in a high-altitude Aymara Indian

    NASA Astrophysics Data System (ADS)

    Heath, Donald; Williams, David

    1991-12-01

    A histological study of the pulmonary vasculature in a young male high-altitude Aymara Indian revealed four aspects of interest. There was muscularization of the terminal portion of the pulmonary arterial tree to involve pulmonary arterioles as small as 15 μm in diameter, thus forming a basis for the slightly increased pulmonary vascular resistance of native highlanders. Intimal longitudinal muscle was found in pulmonary arteries and arterioles and thought to be due to chronic alveolar hypoxia. Inner muscular tubes similar to those found in chronic obstructive lung disease were present. Pulmonary veins and venules also showed intimal muscularization suggesting that alveolar hypoxia affects vascular smooth muscle cells per se irrespective of their situation. The nature of the remodelling in a pulmonary blood vessel depends on a combination of hypoxia and haemodynamics.

  6. Tie1 controls angiopoietin function in vascular remodeling and inflammation.

    PubMed

    Korhonen, Emilia A; Lampinen, Anita; Giri, Hemant; Anisimov, Andrey; Kim, Minah; Allen, Breanna; Fang, Shentong; D'Amico, Gabriela; Sipilä, Tuomas J; Lohela, Marja; Strandin, Tomas; Vaheri, Antti; Ylä-Herttuala, Seppo; Koh, Gou Young; McDonald, Donald M; Alitalo, Kari; Saharinen, Pipsa

    2016-09-01

    The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability. PMID:27548530

  7. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  8. Systemic and Pulmonary Vascular Remodelling in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Muñoz-Esquerre, Mariana; López-Sánchez, Marta; Escobar, Ignacio; Huertas, Daniel; Penín, Rosa; Molina-Molina, María; Manresa, Frederic; Dorca, Jordi; Santos, Salud

    2016-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is associated with subclinical systemic atherosclerosis and pulmonary vascular remodelling characterized by intimal hyperplasia and luminal narrowing. We aimed to determine differences in the intimal thickening of systemic and pulmonary arteries in COPD subjects and smokers. Secondary aims include comparisons with a non-smokers group; determining the clinical variables associated with systemic and pulmonary intimal thickening, and the correlations between systemic and pulmonary remodelling changes. Methods All consecutive subjects undergoing lung resection were included and divided into 3 groups: 1) COPD, 2) smokers, and 3) non-smokers. Sections of the 5th intercostal artery and muscular pulmonary arteries were measured by histo-morphometry. Four parameters of intimal thickening were evaluated: 1) percentage of intimal area (%IA), 2) percentage of luminal narrowing, 3) intimal thickness index, and 4) intima-to-media ratio. Results In the adjusted analysis, the systemic arteries of COPD subjects showed greater intimal thickening (%IA) than those of smokers (15.6±1.5% vs. 14.2±1.6%, p = 0.038). In the pulmonary arteries, significant differences were observed for %IA between the 2 groups (37.3±2.2% vs. 29.3±2.3%, p = 0.016). Among clinical factors, metabolic syndrome, gender and COPD status were associated with the systemic intimal thickening, while only COPD status was associated with pulmonary intimal thickening. A correlation between the %IA of the systemic and pulmonary arteries was observed (Spearman’s rho = 0.46, p = 0.008). Conclusions Greater intimal thickening in systemic and pulmonary arteries is observed in COPD patients than in smokers. There is a correlation between systemic and pulmonary vascular remodelling in the overall population. PMID:27046203

  9. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Su, Jie; Xu, Han-Ting; Yu, Jing-Jing; Gao, Jian-Li; Lei, Jing; Yin, Qiao-Shan; Li, Bo; Pang, Min-Xia; Su, Min-Xia; Mi, Wen-Jia; Chen, Su-Hong; Lv, Gui-Yuan

    2015-01-01

    Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs) and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II-) induced proliferation and migration of vascular smooth muscle cells (VSMCs). Dichlorofluorescein diacetate (DCFH-DA) staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA) protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS. PMID:26495010

  10. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice.

    PubMed

    Su, Xinming; Ren, Yuan; Yu, Na; Kong, Lingfei; Kang, Jian

    2016-09-01

    Asthma is a chronic obstructive disease which is characterized by recurring airway inflammation, reversible airway obstruction, airway hyper responsiveness and vascular remodeling. Thymoquinone (TQ), an active ingredient isolated from Nigella sativa, was reported to exhibit anti-inflammation and anti-proliferation of in various cancer cells as well as epithelial cells. The aim of this study was to evaluate the effect of TQ on the inflammation, neoangiogenesis and vascular remodeling induced by Ovalbumin (OVA) in asthma mice in vivo and the anti-angiogenesis effects of TQ in VEGF-induced human umbilical vein endothelial cells (HUVECs) in vitro. Our results revealed that TQ inhibited the production of inflammatory factors interleukin-4/-5 (IL-4/-5) by enzyme-linked immunesorbent assay (ELISA). Immunohistochemistry analysis showed that the increase of platelet endothelial cell adhesion molecule-1, which is also known as CD31 and α-smooth muscle actinalpha (α-SMA) expression in asthma mice challenged by OVA was suppressed by TQ. Moreover, TQ suppressed the activation of VEGFR2-PI3K-Akt pathway and up-regulated the expression of Slit glycoprotein-2 (Slit-2) both in vivo and in vitro with the inhibition of tube information in HUVEC cells. Meanwhile immunofluorescence analysis showed that Slit-2 and Roundabout-4 (Robo-4) were co-expressing after TQ treatment in OVA-challenged asthma mice. Our study demonstrates that TQ attenuated the inflammatory reaction by antagonizing IL-4/-5 while the anti-neoangiogenesis effect of TQ is mediated by inhibition of vascular endothelial growth factor (VEGF) expression through VEGFR2/PI3K/Akt signaling pathway, which supports a potential role for TQ in ameliorating asthma. PMID:27240137

  11. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture.

    PubMed

    Bennett, M R

    1999-02-01

    Apoptosis (programmed cell death) of vascular smooth muscle cells (VSMCs) has recently been identified as an important process in a variety of human vascular diseases, including atherosclerosis, arterial injury, and restenosis after angioplasty. VSMC apoptosis is regulated by interactions between the local cell-cell and cytokine environment within the arterial wall, and the expression of pro- and anti-apoptotic proteins by the cell, including death receptors, proto-oncogenes and tumour suppressor genes. This review summarises our current knowledge of the occurrence and mechanisms underlying VSMC apoptosis in atherosclerosis and arterial remodelling.

  12. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model

    PubMed Central

    Chen, Yu-cai; Yuan, Tian-yi; Zhang, Hui-fang; Wang, Dan-shu; Yan, Yu; Niu, Zi-ran; Lin, Yi-huang; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. Methods: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg−1·d−1) or a positive control bosentan (30 mg·kg−1·d−1) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. Results: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. Conclusion: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH. PMID:27180980

  13. Physical determinants of vascular network remodeling during tumor growth.

    PubMed

    Welter, M; Rieger, H

    2010-10-01

    The process in which a growing tumor transforms a hierarchically organized arterio-venous blood vessel network into a tumor specific vasculature is analyzed with a theoretical model. The physical determinants of this remodeling involve the morphological and hydrodynamic properties of the initial network, generation of new vessels (sprouting angiogenesis), vessel dilation (circumferential growth), vessel regression, tumor cell proliferation and death, and the interdependence of these processes via spatio-temporal changes of blood flow parameters, oxygen/nutrient supply and growth factor concentration fields. The emerging tumor vasculature is non-hierarchical, compartmentalized into well-characterized zones, displays a complex geometry with necrotic zones and "hot spots" of increased vascular density and blood flow of varying size, and transports drug injections efficiently. Implications for current theoretical views on tumor-induced angiogenesis are discussed.

  14. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling.

    PubMed

    Whiteford, J R; De Rossi, G; Woodfin, A

    2016-01-01

    Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders. PMID:27572130

  15. In vivo bioluminescence imaging of vascular remodeling after stroke

    PubMed Central

    Adamczak, Joanna M.; Schneider, Gabriele; Nelles, Melanie; Que, Ivo; Suidgeest, Ernst; van der Weerd, Louise; Löwik, Clemens; Hoehn, Mathias

    2014-01-01

    Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short therapeutic window following the infarct. Currently research is focusing on spontaneous regenerative processes during the sub-acute and chronic phase. Angiogenesis, the formation of new blood vessels from pre-existing ones, was observed in stroke patients, correlates with longer survival and positively affects the formation of new neurons. Angiogenesis takes place in the border zones of the infarct, but further insight into the temporal profile is needed to fully apprehend its therapeutic potential and its relevance for neurogenesis and functional recovery. Angiogenesis is a multistep process, involving extracellular matrix degradation, endothelial cell proliferation, and, finally, new vessel formation. Interaction between vascular endothelial growth factor and its receptor 2 (VEGFR2) plays a central role in these angiogenic signaling cascades. In the present study we investigated non-invasively the dynamics of VEGFR2 expression following cerebral ischemia in a mouse model of middle cerebral artery occlusion (MCAO). We used a transgenic mouse expressing firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal profile of VEGFR2 expression after stroke as a biomarker for VEGF/VEGFR2 signaling. We measured each animal repetitively up to 2 weeks after stroke and found increased VEGFR2 expression starting 3 days after the insult with peak values at 7 days. These were paralleled by increased VEGFR2 protein levels and increased vascular volume in peri-infarct areas at 14 days after the infarct, indicating that signaling via VEGFR2 leads to successful vascular remodeling. This study describes VEGFR2-related signaling is active at least up to 2 weeks after the infarct and results in increased vascular volume. Further, this study presents a novel strategy for the non-invasive evaluation of angiogenesis-based therapies. PMID:25249937

  16. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials

    PubMed Central

    Liu, Jialing; Wang, Yongting; Akamatsu, Yosuke; Lee, Chih Cheng; Stetler, R Anne; Lawton, Michael T.; Yang, Guo-Yuan

    2014-01-01

    The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke. PMID:24291532

  17. Novel Paradigms for Dialysis Vascular Access: Upstream Hemodynamics and Vascular Remodeling in Dialysis Access Stenosis

    PubMed Central

    Ene-Iordache, Bogdan

    2013-01-01

    Summary Failure of hemodialysis access is caused mostly by venous intimal hyperplasia, a fibro-muscular thickening of the vessel wall. The pathogenesis of venous neointimal hyperplasia in primary arteriovenous fistulae consists of processes that have been identified as upstream and downstream events. Upstream events are the initial events producing injury of the endothelial layer (surgical trauma, hemodynamic shear stress, vessel wall injury due to needle punctures, etc.). Downstream events are the responses of the vascular wall at the endothelial injury that consist of a cascade of processes including leukocyte adhesion, migration of smooth muscle cells from the media to the intimal layer, and proliferation. In arteriovenous fistulae, the stenoses occur in specific sites, consistently related to the local hemodynamics determined by the vessel geometry and blood flow pattern. Recent findings that the localization of these sites matches areas of disturbed flow may add new insights into the pathogenesis of neointimal hyperplasia in the venous side of vascular access after the creation of the anastomosis. The detailed study of fluid flow motion acting on the vascular wall in anastomosed vessels and in the arm vasculature at the patient-specific level may help to elucidate the role of hemodynamics in vascular remodeling and neointimal hyperplasia formation. These computational approaches may also help in surgical planning for the amelioration of clinical outcome. This review aims to discuss the role of the disturbed flow condition in acting as upstream event in the pathogenesis of venous intimal hyperplasia and in producing subsequent local vascular remodeling in autogenous arteriovenous fistulae used for hemodialysis access. The potential use of blood flow analysis in the management of vascular access is also discussed. PMID:23990161

  18. p21-activated kinase 1 participates in vascular remodeling in vitro and in vivo.

    PubMed

    Hinoki, Akinari; Kimura, Keita; Higuchi, Sadaharu; Eguchi, Kunie; Takaguri, Akira; Ishimaru, Kazuhiro; Frank, Gerald D; Gerthoffer, William T; Sommerville, Laura J; Autieri, Michael V; Eguchi, Satoru

    2010-01-01

    Vascular smooth muscle cell hypertrophy, proliferation, or migration occurs in hypertension, atherosclerosis, and restenosis after angioplasty, leading to pathophysiological vascular remodeling. Angiotensin II and platelet-derived growth factor are well-known participants of vascular remodeling and activate a myriad of downstream protein kinases, including p21-activated protein kinase (PAK1). PAK1, an effector kinase of small GTPases, phosphorylates several substrates to regulate cytoskeletal reorganization. However, the exact role of PAK1 activation in vascular remodeling remains to be elucidated. Here, we have hypothesized that PAK1 is a critical target of intervention for the prevention of vascular remodeling. Adenoviral expression of dominant-negative PAK1 inhibited angiotensin II-stimulated vascular smooth muscle cell migration. It also inhibited vascular smooth muscle cell proliferation induced by platelet-derived growth factor. PAK1 was activated in neointima of the carotid artery after balloon injury in the rat. Moreover, marked inhibition of the neointima hyperplasia was observed in a dominant-negative PAK1 adenovirus-treated carotid artery after the balloon injury. Taken together, these results suggest that PAK1 is involved in both angiotensin II and platelet-derived growth factor-mediated vascular smooth muscle cell remodeling, and inactivation of PAK1 in vivo could be effective in preventing pathophysiological vascular remodeling.

  19. Intrapulmonary vascular remodeling: MSCT-based evaluation in COPD and alpha-1 antitrypsin deficient subjects

    NASA Astrophysics Data System (ADS)

    Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves

    2016-03-01

    Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.

  20. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  1. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  2. IASH: PAK1 participates in vascular remodeling in vitro and in vivo

    PubMed Central

    Hinoki, Akinari; Kimura, Keita; Higuchi, Sadaharu; Eguchi, Kunie; Takaguri, Akira; Ishimaru, Kazuhiro; Frank, Gerald D.; Gerthoffer, William T.; Sommerville, Laura J.; Autieri, Michael V.; Eguchi, Satoru

    2009-01-01

    Vascular smooth muscle cell hypertrophy, proliferation or migration occurs in hypertension, atherosclerosis and restenosis after angioplasty leading to pathophysiological vascular remodeling. Angiotensin II and platelet-derived growth factor are well known participants of vascular remodeling, and activate a myriad of downstream protein kinases including PAK1. PAK1, an effector kinase of small GTPases, phosphorylates several substrates to regulate cytoskeletal reorganization. However, the exact role of PAK1 activation in vascular remodeling remains to be elucidated. Here, we have hypothesized that PAK1 is a critical target of intervention for prevention of vascular remodeling. Adenoviral expression of dominant-negative PAK1 inhibited both angiotensin II- and platelet-derived growth factor-stimulated vascular smooth muscle cell migration. It also inhibited vascular smooth muscle cell proliferation induced by platelet-derived growth factor. PAK1 was activated in neointima of the carotid artery after balloon injury in rat. Moreover, marked inhibition of the neointima hyperplasia was observed in dominant-negative PAK1 adenovirus treated carotid artery after the balloon injury. Taken together, these results suggest that PAK1 is involved in both angiotensin II and platelet-derived growth factor mediated VSMC remodeling, and inactivation of PAK1 in vivo could be effective in preventing pathophysiological vascular remodeling. PMID:19901155

  3. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  4. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves.

    PubMed

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-04-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  5. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    PubMed Central

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-01-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  6. Pulmonary vascular development goes awry in congenital lung abnormalities.

    PubMed

    Kool, Heleen; Mous, Daphne; Tibboel, Dick; de Klein, Annelies; Rottier, Robbert J

    2014-12-01

    Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease. PMID:25424472

  7. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors

    PubMed Central

    Pruthi, Dafina; McCurley, Amy; Aronovitz, Mark; Galayda, Carol; Karumanchi, S. Ananth; Jaffe, Iris Z.

    2014-01-01

    Objective Vascular remodeling occurs after endothelial injury resulting in smooth muscle cell (SMC) proliferation and vascular fibrosis. We previously demonstrated that the blood pressure-regulating hormone aldosterone enhances vascular remodeling in mice at sites of endothelial injury in a placental growth factor (PlGF)-dependent manner. We now test the hypothesis that SMC mineralocorticoid receptors (MR) directly mediate the remodeling effects of aldosterone and further explore the mechanism. Approach and Results A wire-induced carotid injury model was performed in wild type (WT) mice and mice with inducible SMC-specific deletion of MR (SMC-MR-KO). Aldosterone did not affect re-endothelialization after injury in WT mice. Deletion of SMC-MR prevented the 79% increase in SMC proliferation induced by aldosterone after injury in MR-Intact littermates. Moreover, both injury-induced and aldosterone-enhanced vascular fibrosis were attenuated in SMC-MR-KO mice. Further exploration of the mechanism revealed that aldosterone-induced vascular remodeling is prevented by blockade of the PlGF-specific receptor, VEGFR1, in vivo. Immunohistochemistry of carotid vessels shows that the induction of VEGFR1 expression in SMC after vascular injury is attenuated by 72% in SMC-MR-KO mice. Moreover, aldosterone induction of vascular PlGF mRNA expression and protein release are also prevented in vessels lacking SMC-MR. Conclusions These studies reveal that SMC-MR is necessary for aldosterone-induced vascular remodeling independent of renal effects on blood pressure. SMC-MR contributes to induction of SMC VEGFR1 in the area of vascular injury and to aldosterone-enhanced vascular PlGF expression and hence the detrimental effects of aldosterone are prevented by VEGFR1-blockade. This study supports exploring MR antagonists and VEGFR1-blockade to prevent pathological vascular remodeling induced by aldosterone. PMID:24311380

  8. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling

    PubMed Central

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington’s epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington’s theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality. PMID:25973327

  9. Direct Role for Smooth Muscle Cell Mineralocorticoid Receptors in Vascular Remodeling: Novel Mechanisms and Clinical Implications

    PubMed Central

    Koenig, Jenny B.; Jaffe, Iris Z.

    2014-01-01

    The mineralocorticoid receptor (MR) is a key regulator of blood pressure. MR-antagonist drugs are used to treat hypertension and heart failure, resulting in decreased mortality by mechanisms that are not completely understood. In addition to the kidney, MR is also expressed in the smooth muscle cells (SMCs) of the vasculature, where it is activated by the hormone aldosterone and affects the expression of genes involved in vascular function at the cellular and systemic levels. Following vascular injury due to mechanical or physiological stresses, vessels undergo remodeling resulting in SMC hypertrophy, migration, and proliferation, as well as vessel fibrosis. Exuberant vascular remodeling is associated with poor outcomes in cardiovascular patients. This review compiles recent findings on the specific role of SMC-MR in the vascular remodeling process. The development and characterization of a SMC-specific MR-knockout mouse has demonstrated a direct role for SMC-MR in vascular remodeling. Additionally, several novel mechanisms contributing to SMC-MR-mediated vascular remodeling have been identified and are reviewed here, including Rho-kinase signaling, placental growth factor signaling through vascular endothelial growth factor type 1 receptor, and galectin signaling. PMID:24633842

  10. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy. PMID:26602431

  11. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia.

    PubMed

    Mourani, Peter M; Abman, Steven H

    2015-12-01

    Despite advances in the care of preterm infants, these infants remain at risk bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, showing that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities. Several epidemiologic studies have delineated the incidence of PH in preterm infants and the impact on outcomes. These studies have also highlighted gaps in the understanding of PVD in BPD. PMID:26593082

  12. Abnormalities of vascular structure and function in pediatric hypertension.

    PubMed

    Urbina, Elaine M

    2016-07-01

    Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage.

  13. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling.

    PubMed

    Qian, Lingling; Li, Xiaoyu; Fang, Ru; Wang, Zhuoyun; Xu, Yiming; Zhang, Hanwen; Bai, Hui; Yang, Qing; Zhu, Xudong; Ben, Jingjing; Xu, Yong; Chen, Qi

    2014-08-01

    Class A scavenger receptor (SR-A) is a multifunctional molecule that participates in macrophage-mediated inflammation. Here we evaluated the role of SR-A in angiotensin II (Ang II)-induced hypertensive vascular remodeling. Chronic infusion of Ang II leads to an increased systolic blood pressure both in SR-A knockout (SR-A(-/-)) and wild type (SR-A(+/+)) mice with no significant difference between these two groups. SR-A(-/-) hypertensive mice, however, exhibited a marked augmentation of arterial wall thickening and vascular cell proliferation compared with SR-A(+/+) hypertensive mice. M1 macrophage markers were increased whereas M2 macrophage markers were decreased in vascular tissues of SR-A(-/-) mice. Co-culture experiments revealed that more pro-inflammatory cytokines like TNF-α were produced by SR-A(-/-) peritoneal macrophages leading to a stronger proliferation of primary vascular smooth muscle cells in vitro. In addition, SR-A(-/-) macrophages were more prone to lipopolysaccharide-induced M1 differentiation while resisting interleukin-4-induced M2 differentiation. Importantly, transplantation of SR-A(-/-) bone marrow into SR-A(+/+) mice significantly augmented Ang II-induced vascular remodeling. These results show that SR-A is critical for Ang II-induced vascular remodeling by regulating macrophage polarization. Therefore, SR-A may be a useful therapeutic target for the intervention of hypertensive vascular remodeling. PMID:24875449

  14. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome

    PubMed Central

    Belperio, John A.; Keane, Michael P.; Burdick, Marie D.; Gomperts, Brigitte; Xue, Ying Ying; Hong, Kurt; Mestas, Javier; Ardehali, Abbas; Mehrad, Borna; Saggar, Rajan; Lynch, Joseph P.; Ross, David J.; Strieter, Robert M.

    2005-01-01

    Angiogenesis and vascular remodeling support fibroproliferative processes; however, no study has addressed the importance of angiogenesis during fibro-obliteration of the allograft airway during bronchiolitis obliterans syndrome (BOS) that occurs after lung transplantation. The ELR+ CXC chemokines both mediate neutrophil recruitment and promote angiogenesis. Their shared endothelial cell receptor is the G-coupled protein receptor CXC chemokine receptor 2 (CXCR2). We found that elevated levels of multiple ELR+ CXC chemokines correlated with the presence of BOS. Proof-of-concept studies using a murine model of BOS not only demonstrated an early neutrophil infiltration but also marked vascular remodeling in the tracheal allografts. In addition, tracheal allograft ELR+ CXC chemokines were persistently expressed even in the absence of significant neutrophil infiltration and were temporally associated with vascular remodeling during fibro-obliteration of the tracheal allograft. Furthermore, in neutralizing studies, treatment with anti-CXCR2 Abs inhibited early neutrophil infiltration and later vascular remodeling, which resulted in the attenuation of murine BOS. A more profound attenuation of fibro-obliteration was seen when CXCR2–/– mice received cyclosporin A. This supports the notion that the CXCR2/CXCR2 ligand biological axis has a bimodal function during the course of BOS: early, it is important for neutrophil recruitment and later, during fibro-obliteration, it is important for vascular remodeling independent of neutrophil recruitment. PMID:15864347

  15. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  16. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight.

  17. Aqueous garlic extracts prevent oxidative stress and vascular remodeling in an experimental model of metabolic syndrome.

    PubMed

    Vazquez-Prieto, Marcela Alejandra; González, Roxana Elizabeth; Renna, Nicolás Federico; Galmarini, Claudio Rómulo; Miatello, Roberto Miguel

    2010-06-01

    The organosulfur profile and the effect on oxidative stress and vascular remodeling in fructose-fed rats (FFR) were evaluated in Fuego INTA and Morado INTA garlic cultivars. Wistar rats were fed either normal rat chow (control) or the same diet plus 10% fructose in drinking water. During the last 6 weeks of a 12 week period of the corresponding diet, a subgroup of control and FFR received an aqueous extract of Fuego INTA and Morado INTA. Fuego INTA showed higher levels of total thiosulfinates, allicin, and pungency than Morado INTA. FFR showed an increase of systolic blood pressure, aortic NAD(P)H oxidase activity, plasma thiobarbituric acid reactive substances, and vascular remodeling that was significantly reduced after both garlic administrations. The beneficial effect was slightly higher when Fuego INTA was administered. Both aqueous garlic extracts prevent oxidative stress and vascular remodeling in rats with metabolic syndrome, suggesting the existence of slight differences among cultivars.

  18. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  19. Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype

    PubMed Central

    Coll-Bonfill, Núria; Peinado, Victor I.; Pisano, María V.; Párrizas, Marcelina; Blanco, Isabel; Evers, Maurits; Engelmann, Julia C.; García-Lucio, Jessica; Tura-Ceide, Olga; Meister, Gunter

    2016-01-01

    Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. Conclusions Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases. PMID:27441378

  20. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling.

    PubMed

    Makanya, Andrew N; Hlushchuk, Ruslan; Djonov, Valentin G

    2009-01-01

    New blood vessels arise initially as blood islands in the process known as vasculogenesis or as new capillary segments produced through angiogenesis. Angiogenesis itself encompasses two broad processes, namely sprouting (SA) and intussusceptive (IA) angiogenesis. Primordial capillary plexuses expand through both SA and IA, but subsequent growth and remodeling are achieved through IA. The latter process proceeds through transluminal tissue pillar formation and subsequent vascular splitting, and the direction taken by the pillars delineates IA into overt phases, namely: intussusceptive microvascular growth, intussusceptive arborization, and intussusceptive branching remodeling. Intussusceptive microvascular growth circumscribes the process of initiation of pillar formation and their subsequent expansion with the result that the capillary surface area is greatly enhanced. In contrast, intussusceptive arborization entails formation of serried pillars that remodel the disorganized vascular meshwork into the typical tree-like arrangement. Optimization of local vascular branching geometry occurs through intussusceptive branching remodeling so that the vasculature is remodeled to meet the local demand. In addition, IA is important in creation of the local organ-specific angioarchitecture. While hemodynamic forces have proven direct effects on IA, with increase in blood flow resulting in initiation of pillars, the preponderant mechanisms are unclear. Molecular control of IA has so far not been unequivocally elucidated but interplay among several factors is probably involved. Future investigations are strongly encouraged to focus on interactions among angiogenic growth factors, angiopoetins, and related receptors. PMID:19194777

  1. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC “contractile” phenotype to the “synthetic” phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  2. βA3/A1-crystallin is required for proper astrocyte template formation and vascular remodeling in the retina

    PubMed Central

    Sinha, Debasish; Valapala, Mallika; Bhutto, Imran; Patek, Bonnie; Zhang, Cheng; Hose, Stacey; Yang, Fang; Cano, Marisol; Stark, Walter J.; Lutty, Gerard A.; Zigler, J. Samuel; Wawrousek, Eric F.

    2013-01-01

    Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for βA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express βA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant βA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that βA3/A1-crystallin is essential for normal astrocyte function in the retina. PMID:22427112

  3. The thermoregulatory-vascular remodeling hypothesis: an explanation for essential hypertension.

    PubMed

    Blankfield, Robert P

    2006-01-01

    The supposition that temperature homeostasis has precedence over blood pressure homeostasis, that vascular remodeling ensues, that hypertension is the consequence and that sodium chloride ingestion sets the sequence in motion, constitutes the thermoregulatory-vascular remodeling hypothesis. Because the cardiovascular system plays a role in both temperature and blood pressure regulation, the ingestion of sodium chloride creates conflict between temperature homeostasis and blood pressure homeostasis. Vasodilatation would lower the blood pressure following the ingestion of sodium chloride, but increased blood flow to the cutaneous circulation would increase heat loss and decrease core body temperature. Regional vasodilatation that does not involve the cutaneous circulation could lower the blood pressure without lowering the core temperature, but if temperature homeostasis has precedence over blood pressure homeostasis, and if regional vasodilatation incompletely restores blood pressure homeostasis, then elevations in blood pressure may persist following the ingestion of sodium chloride. The kidneys gradually excrete the excess sodium chloride, thereby normalizing the blood pressure, but prolonged elevations in blood pressure lead to vascular remodeling, sustained increases in peripheral resistance, and a higher baseline blood pressure. Following countless sodium chloride ingestions, essential hypertension develops. The thermoregulatory-vascular remodeling hypothesis predicts that antihypertensive medications that are vasodilators will accelerate heat loss due to increased blood flow to the cutaneous circulation. As a result, either core body temperature will decrease or there will be a compensatory increase in the metabolic rate. This prediction could be tested experimentally. The main clinical implication of the thermoregulatory-vascular remodeling hypothesis is that avoiding the ingestion of sodium chloride is the key to preventing essential hypertension.

  4. Liposomal prednisolone inhibits vascular inflammation and enhances venous outward remodeling in a murine arteriovenous fistula model

    PubMed Central

    Wong, ChunYu; Bezhaeva, Taisiya; Rothuizen, Tonia C.; Metselaar, Josbert M.; de Vries, Margreet R.; Verbeek, Floris P. R.; Vahrmeijer, Alexander L.; Wezel, Anouk; van Zonneveld, Anton-Jan; Rabelink, Ton J.; Quax, Paul H. A.; Rotmans, Joris I.

    2016-01-01

    Arteriovenous fistulas (AVF) for hemodialysis access have a 1-year primary patency rate of only 60%, mainly as a result of maturation failure that is caused by insufficient outward remodeling and intimal hyperplasia. The exact pathophysiology remains unknown, but the inflammatory vascular response is thought to play an important role. In the present study we demonstrate that targeted liposomal delivery of prednisolone increases outward remodeling of the AVF in a murine model. Liposomes accumulate in the post-anastomotic area of the venous outflow tract in which the vascular pathology is most prominent in failed AVFs. On a histological level, we observed a reduction of lymphocytes and granulocytes in the vascular wall. In addition, a strong anti-inflammatory effect of liposomal prednisolone on macrophages was demonstrated in vitro. Therefore, treatment with liposomal prednisolone might be a valuable strategy to improve AVF maturation. PMID:27460883

  5. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  6. Antagonism of Stem Cell Factor/c-kit Signaling Attenuates Neonatal Chronic Hypoxia-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Young, Karen C; Torres, Eneida; Hehre, Dorothy; Wu, Shu; Suguihara, Cleide; Hare, Joshua M.

    2015-01-01

    Background Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. Methods Neonatal FVB/NJ mice treated with non-immune IgG (PL), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1- Kit W− v/ +) and their congenic controls, were exposed to normoxia (FiO2=0.21) or hypoxia (FiO2=0.12) for two weeks. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation and remodeling were evaluated. Results As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. Conclusion SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH. PMID:26705118

  7. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction.

  8. Vascular growth and remodeling coupled with fluid simulation in patient specific geometry

    NASA Astrophysics Data System (ADS)

    Wu, Jiacheng; Shadden, Shawn C.

    2014-11-01

    In this talk, we propose a computational framework to couple vascular growth and remodeling (G&R) with fluid simulation in 3D patient specific geometry. Hyperelastic and anisotropic properties are considered for the vessel wall material. A constrained mixture model is used to represent multiple constituents in the vessel wall. The coupled simulation is divided into two time scales, the longer time scale for G&R and the shorter time scale for fluid dynamics simulation. G&R is simulated to determine the boundary of the fluid domain, the fluid simulation in turn generates wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, fluid is only simulated when G&R causes significant vascular geometric change. This coupled model can be used to study the influence of the stress-mediated law parameters on the stability of the vascular tissue growth, and predict progression of vascular diseases such as aneurysm expansion.

  9. Gax regulates human vascular smooth muscle cell phenotypic modulation and vascular remodeling

    PubMed Central

    Zheng, Hui; Hu, Zhenlei; Zhai, Xinming; Wang, Yongyi; Liu, Jidong; Wang, Weijun; Xue, Song

    2016-01-01

    Abnormal phenotypic modulation of vascular smooth muscle cells (VSMCs) is a hallmark of cardiovascular diseases such as atherosclerosis, hypertension and restenosis after angioplasty. Transcription factors have emerged as critical regulators for VSMCs function, and recently we verified inhibiting transcription factor Gax was important for controlling VSMCs proliferation and migration. This study aimed to determine its role in phenotypic modulation of VSMCs. Western blot revealed that overexpression of Gax increased expression of VSMCs differentiation marker genes such as calponin and SM-MHC 11. Then, Gax overexpression potently suppressed proliferation and migration of VSMCs with or without platelet-derived growth factor-induced-BB (PDGF-BB) stimuli whereas Gax silencing inhibited these processes. Furthermore, cDNA array analysis indicated that Rap1A gene was the downstream target of Gax in human VSMCs. And overexpression of Gax significantly inhibited expression of Rap1A in VSMCs with or without PDGF-BB stimuli. Moreover, overexpression of Rap1A decreased expression of VSMCs differentiation marker genes and increased proliferation and migration of VSMCs with or without PDGF-BB stimuli. Finally, Gax overexpression significantly inhibited the neointimal formation in carotid artery injury of mouse models, specifically through maintaining VSMCs contractile phenotype by decreasing Rap1A expression. In conclusion, these results indicated that Gax was a regulator of human VSMCs phenotypic modulation by targeting Rap1A gene, which suggested that targeting Gax or its downstream targets in human VSMCs may provide an attractive approach for the prevention and treatment of cardiovascular diseases. PMID:27508012

  10. Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension.

    PubMed

    Belo, V A; Guimarães, Danielle A; Castro, Michele Mazzaron

    2015-01-01

    For vascular remodeling in hypertension, it is essential that vascular smooth muscle cells (VSMCs) reshape in order to proliferate and migrate. The extracellular matrix (ECM) needs to be degraded to favor VSMC migration. Many proteases, including matrix metalloproteinases (MMPs), contribute to ECM proteolysis and VSMC migration. Bioactive peptides, hemodynamic forces and reactive oxygen-nitrogen species regulate MMP-2 expression and activity. Increased MMP-2 activity contributes to hypertension-induced maladaptive arterial changes and sustained hypertension. New ECM is synthesized to supply VSMCs with bioactive mediators, which stimulate hypertrophy. MMP-2 stimulates the interaction of VSMCs with newly formed ECM, which triggers intracellular signaling via integrins to induce a phenotypic switch and persistent migration. VSMCs switch from a contractile to a synthetic phenotype in order to migrate and contribute to vascular remodeling in hypertension. MMPs also disrupt growth factors bound to ECM, thus contributing to their capacity to regulate VSMC migration. This review sheds light on the proteolytic effects of MMP-2 on ECM and non-ECM substrates in the vasculature and how these effects contribute to VSMC migration in hypertension. The inhibition of MMP activity as a therapeutic target may make it possible to reduce arterial maladaptation caused by hypertension and prevent the resulting fatal cardiovascular events. PMID:26731549

  11. Variation in Cardiac Pulse Frequencies Modulates vSMC Phenotype Switching During Vascular Remodeling.

    PubMed

    Tosun, Zehra; McFetridge, Peter S

    2015-03-01

    In vitro perfusion systems have exposed vascular constructs to mechanical conditions that emulate physiological pulse pressure and found significant improvements in graft development. However, current models maintain constant, or set pulse/shear mechanics that do not account for the natural temporal variation in frequency. With an aim to develop clinically relevant small diameter vascular grafts, these investigations detail a perfusion culture model that incorporates temporal pulse pressure variation. Our objective was to test the hypothesis that short-term variation in heart rate, such as changes in respiratory activity, plays a significant role in vascular remodeling and graft development. The pulse rate of a healthy volunteer was logged to model the effect of daily activities on heart rate. Vascular bioreactors were used to deliver perfusion conditions based on modeled frequencies of temporal pulse variability, termed Physiologically Modeled Pulse Dynamics (PMPD). Acellular scaffolds derived from the human umbilical vein were seeded with human vascular smooth muscle cells and perfused under defined pulsatile conditions. vSMC exposed to constant pulse frequencies expressed a contractile phenotype, while exposure to PMPD drove cells to a synthetic state with continued cell proliferation, increased tensile strength and stiffness as well as diminished vasoactivity. Results show the temporal variation associated with normal heart physiology to have a profound effect on vascular remodeling and vasoactive function. While these models are representative of vascular regeneration further investigation is required to understanding these and other key regulators in vSMC phenotype switching in non-pathological or wound healing states. This understanding has important clinical implications that may lead to improved treatments that enhance vessel regeneration. PMID:26577103

  12. Plasma concentrations of endothelin in patients with abnormal vascular reactivity

    SciTech Connect

    Predel, H.G.; Meyer-Lehnert, H.; Baecker, A.; Stelkens, H.; Kramer, H.J. )

    1990-01-01

    We measured circulating concentrations of endothelin in healthy subjects and in patients with abnormal vascular reactivity. Endothelin concentrations were determined by radioimmunoassay after extraction of plasma using Sep-Pak C-18 cartridges in healthy subjects, in patients with diabetes mellitus type I, in patients with mild to moderate essential hypertension and in non-dialyzed patients with stable chronic renal failure. Plasma concentrations were similar in healthy controls, in diabetics and in hypertensive patients averaging 5.0{plus minus}0.6 pg/ml, 4.7{plus minus}0.2 pg/ml and 6.5{plus minus}1.0 pg/ml, respectively. In contrast, plasma concentrations of endothelin were markedly elevated in patients with chronic renal failure averaging 16.6{plus minus}2.9 pg/ml. No correlations were observed between serum creatinine concentrations ranging from 124 to 850 {mu}mol/l or blood pressure and plasma concentrations of endothelin. Bicycle ergometric exercise in six healthy subjects and an acute modest i.v. saline load of 1,000 ml of 0.45% NaCl administered within 60 min in six patients with mild essential hypertension did not affect plasma concentrations of endothelin.

  13. Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension

    PubMed Central

    Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B.; Sicard, Delphine; Chrobak, Izabela; Coronata, Anna Maria F.; Velandia, Margarita M. Suárez; Vitali, Sally; Colas, Romain A.; Norris, Paul C.; Marinković, Aleksandar; Liu, Xiaoli; Ma, Jun; Rose, Chase D.; Lee, Seon-Jin; Comhair, Suzy A.A.; Erzurum, Serpil C.; McDonald, Jacob D.; Serhan, Charles N.; Walsh, Stephen R.; Tschumperlin, Daniel J.; Fredenburgh, Laura E.

    2016-01-01

    Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2–derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH. PMID:27347562

  14. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice.

    PubMed

    Chetty, Anne; Cao, Gong-Jie; Sharda, Azeem; Tsay, Theresia; Nielsen, Heber C

    2016-01-01

    The temporal origins of childhood asthma are incompletely understood. We hypothesize that allergen sensitization which begins in early infancy causes IgE-mediated airway and vascular remodeling, and airway hyper-responsiveness. Mice were sensitized with ovalbumin (OVA) without or with anti-IgE antibody from postnatal day (P) 10 through P42. We studied airway resistance in response to Methacholine (MCh) challenge, bronchoalveolar lavage fluid (BAL) inflammatory cell content, immunohistochemistry for inflammation, alpha-smooth muscle actin (alpha-SMA) and platelet/endothelial cell adhesion molecule (PECAM) proteins, and Western blotting for vascular endothelial growth factor (VEGF) protein. Compared to controls, mice treated with OVA had increased airway resistance (baseline: 192% of control; MCH 12 mg/mL 170% of control; P less than 0.0.5). OVA treatment also increased lung alpha-SMA, VEGF and PECAM compared to controls. Inflammatory cells in the BAL and perivascular and peribronchiolar inflammatory cell infiltrates increased over controls with OVA exposure. These changes were counteracted by anti-IgE treatment. We conclude that mice sensitized in early infancy develop an IgE-mediated hyper-reactive airway disease with airway and vascular remodeling. Preventive approaches in early infancy of at-risk individuals may reduce childhood asthma. PMID:27100345

  15. Vascular growth and remodeling in compensatory lung growth following right lobectomy.

    PubMed

    Le Cras, Timothy D; Fernandez, Lucas G; Pastura, Patricia A; Laubach, Victor E

    2005-03-01

    Studies in animal models have shown that, following lobectomy (LBX), there is compensatory growth in the remaining lung. The vascular growth response following right LBX (R-LBX) is poorly understood. To test the hypothesis that arterial growth and remodeling occur in response to LBX, in proportion to the amount of right lung tissue removed, two (24% of lung mass; R-LBX2 group) or three right lobes (52% of lung mass; R-LBX3 group) were removed via thoracotomy from adult rats. Sham control animals underwent thoracotomy only. Arteriograms were generated 3 wk after surgery. The areas of the left lung arteriogram, arterial branching, length of arterial branches, arterial density, and arterial-to-alveolar ratios were measured. To determine whether R-LBX causes vascular remodeling and pulmonary hypertension, muscularization of arterioles and right ventricular hypertrophy were assessed. Lung weight and volume indexes were greater in R-LBX3. Arterial area of the left lung increased 26% in R-LBX2 and 47% in R-LBX3. The length of large arteries increased in R-LBX3 and to a lesser extent in R-LBX2. The ratio of distal pulmonary arteries to alveoli was similar after R-LBX2 compared with sham but was 30% lower in R-LBX3. Muscularization of arterioles increased after R-LBX3, but not in R-LBX2. Right ventricular hypertrophy increased 50-70% in R-LBX3, but not in R-LBX2. Whereas removal of three right lung lobes induced arterial growth in the left lungs of adult rats, which was proportionate to the number of lobes removed, the ratio of distal pulmonary arteries to alveoli was not normal, and vascular remodeling and pulmonary hypertension developed.

  16. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling.

    PubMed

    Roh, Jason D; Sawh-Martinez, Rajendra; Brennan, Matthew P; Jay, Steven M; Devine, Lesley; Rao, Deepak A; Yi, Tai; Mirensky, Tamar L; Nalbandian, Ani; Udelsman, Brooks; Hibino, Narutoshi; Shinoka, Toshiharu; Saltzman, W Mark; Snyder, Edward; Kyriakides, Themis R; Pober, Jordan S; Breuer, Christopher K

    2010-03-01

    Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are the earliest tissue-engineered vascular grafts (TEVGs) to be used clinically. These TEVGs transform into living blood vessels in vivo, with an endothelial cell (EC) lining invested by smooth muscle cells (SMCs); however, the process by which this occurs is unclear. To test if the seeded BMCs differentiate into the mature vascular cells of the neovessel, we implanted an immunodeficient mouse recipient with human BMC (hBMC)-seeded scaffolds. As in humans, TEVGs implanted in a mouse host as venous interposition grafts gradually transformed into living blood vessels over a 6-month time course. Seeded hBMCs, however, were no longer detectable within a few days of implantation. Instead, scaffolds were initially repopulated by mouse monocytes and subsequently repopulated by mouse SMCs and ECs. Seeded BMCs secreted significant amounts of monocyte chemoattractant protein-1 and increased early monocyte recruitment. These findings suggest TEVGs transform into functional neovessels via an inflammatory process of vascular remodeling.

  17. Possible role of lysophosphatidic acid in rat model of hypoxic pulmonary vascular remodeling

    PubMed Central

    2014-01-01

    Abstract Pulmonary hypertension is characterized by cellular and structural changes in the vascular wall of pulmonary arteries. We hypothesized that lysophosphatidic acid (LPA), a bioactive lipid, is implicated in this vascular remodeling in a rat model of hypoxic pulmonary hypertension. Exposure of Wistar rats to 10% O2 for 3 weeks induced an increase in the mean serum levels of LPA, to 40.9 (log-detransformed standard deviations: 23.4–71.7) μM versus 21.6 (11.0–42.3) μM in a matched control animal group (P = 0.037). We also observed perivascular LPA immunohistochemical staining in lungs of hypoxic rats colocalized with the secreted lysophospholipase D autotaxin (ATX). Moreover, ATX colocalized with mast cell tryptase, suggesting implication of these cells in perivascular LPA production. Hypoxic rat lungs expressed more ATX transcripts (2.4-fold) and more transcripts of proteins implicated in cell migration: β2 integrin (1.74-fold), intracellular adhesion molecule 1 (ICAM-1; 1.84-fold), and αM integrin (2.70-fold). Serum from the hypoxic group of animals had significantly higher chemoattractant properties toward rat primary lung fibroblasts, and this increase in cell migration could be prevented by the LPA receptor 1 and 3 antagonists. LPA also increased adhesive properties of human pulmonary artery endothelial cells as well as those of human peripheral blood mononuclear cells, via the activation of LPA receptor 1 or 3 followed by the stimulation of gene expression of ICAM-1, β-1, E-selectin, and vascular cell adhesion molecule integrins. In conclusion, chronic hypoxia increases circulating and tissue levels of LPA, which might induce fibroblast migration and recruitment of mononuclear cells in pulmonary vasculature, both of which contribute to pulmonary vascular remodeling. PMID:25621161

  18. Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome

    PubMed Central

    Villegas, Leah R.; Kluck, Dylan; Field, Carlie; Oberley-Deegan, Rebecca E.; Woods, Crystal; Yeager, Michael E.; El Kasmi, Karim C.; Savani, Rashmin C.; Bowler, Russell P.

    2013-01-01

    Abstract Aims: Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O2•−), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)–mediated inflammation. Results: Mice (C57/BL6) were exposed to hypobaric hypoxic conditions, while subcutaneous injections of MnTE-2-PyP (5 mg/kg) or phosphate-buffered saline (PBS) were given 3× weekly for up to 35 days. SOD mimetic-treated groups demonstrated protection against increased right ventricular systolic pressure, indirect measurements of pulmonary artery pressure, and RV hypertrophy. Vascular remodeling was assessed by Ki67 staining to detect vascular cell proliferation, α-smooth muscle actin staining to analyze small vessel muscularization, and hyaluronan (HA) measurements to assess extracellular matrix modulation. Activation of the NALP3 inflammasome pathway was measured by NALP3 expression, caspase-1 activation, and interleukin 1-beta (IL-1β) and IL-18 production. Hypoxic exposure increased PH, vascular remodeling, and NALP3 inflammasome activation in PBS-treated mice, while mice treated with MnTE-2-PyP showed an attenuation in each of these endpoints. Innovation: This study is the first to demonstrate activation of the NALP3 inflammasome with cleavage of caspase-1 and release of active IL-1 β and IL-18 in chronic hypoxic PH, as well as its attenuation by the SOD mimetic, MnTE-2-PyP. Conclusion: The ability of the SOD mimetic to scavenge extracellular O2•− supports our previous observations in EC-SOD-overexpressing mice that implicate extracellular oxidant/antioxidant imbalance in hypoxic PH

  19. Assessment of Maternal Vascular Remodeling During Pregnancy in the Mouse Uterus.

    PubMed

    Kieckbusch, Jens; Gaynor, Louise M; Colucci, Francesco

    2015-12-05

    The placenta mediates the exchange of factors such as gases and nutrients between mother and fetus and has specific demands for supply of blood from the maternal circulation. The maternal uterine vasculature needs to adapt to this temporary demand and the success of this arterial remodeling process has implications for fetal growth. Cells of the maternal immune system, especially natural killer (NK) cells, play a critical role in this process. Here we describe a method to assess the degree of remodeling of maternal spiral arteries during mouse pregnancy. Hematoxylin and eosin-stained tissue sections are scanned and the size of the vessels analysed. As a complementary validation method, we also present a qualitative assessment for the success of the remodeling process by immunohistochemical detection of smooth muscle actin (SMA), which normally disappears from within the arterial vascular media at mid-gestation. Together, these methods enable determination of an important parameter of the pregnancy phenotype. These results can be combined with other endpoints of mouse pregnancy to provide insight into the mechanisms underlying pregnancy-related complications.

  20. High-mobility group box-1 induces vascular remodelling processes via c-Jun activation

    PubMed Central

    Zabini, Diana; Crnkovic, Slaven; Xu, Hui; Tscherner, Maria; Ghanim, Bahil; Klepetko, Walter; Olschewski, Andrea; Kwapiszewska, Grazyna; Marsh, Leigh M

    2015-01-01

    Extracellular high-mobility group box-1 (HMGB1) acts as a signalling molecule during inflammation, cell differentiation and angiogenesis. Increased abundance of HMGB1 is associated with several pathological disorders such as cancer, asthma and chronic obstructive pulmonary disease (COPD). In this study, we investigated the relevance of HMGB1 in the pathological remodelling present in patients with idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension (PH) associated with COPD. Remodelled vessels present in COPD with PH and IPAH lung samples were often surrounded by HMGB1-positive cells. Increased HMGB1 serum levels were detected in both patient populations compared to control samples. The effects of physiological HMGB1 concentrations were then examined on cellular responses in vitro. HMGB1 enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC) and primary human arterial endothelial cells (PAEC). HMGB1 stimulated p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation. Furthermore, activation of the downstream AP-1 complex proteins c-Fos and c-Jun was observed. Silencing of c-Jun ablated the HMGB1-induced proliferation in PASMC. Thus, an inflammatory component such as HMGB1 can contribute to PASMC and PAEC proliferation and therefore potentially to vascular remodelling and PH pathogenesis. PMID:25726846

  1. Assessment of Maternal Vascular Remodeling During Pregnancy in the Mouse Uterus

    PubMed Central

    Kieckbusch, Jens; Gaynor, Louise M.; Colucci, Francesco

    2015-01-01

    The placenta mediates the exchange of factors such as gases and nutrients between mother and fetus and has specific demands for supply of blood from the maternal circulation. The maternal uterine vasculature needs to adapt to this temporary demand and the success of this arterial remodeling process has implications for fetal growth. Cells of the maternal immune system, especially natural killer (NK) cells, play a critical role in this process. Here we describe a method to assess the degree of remodeling of maternal spiral arteries during mouse pregnancy. Hematoxylin and eosin-stained tissue sections are scanned and the size of the vessels analysed. As a complementary validation method, we also present a qualitative assessment for the success of the remodeling process by immunohistochemical detection of smooth muscle actin (SMA), which normally disappears from within the arterial vascular media at mid-gestation. Together, these methods enable determination of an important parameter of the pregnancy phenotype. These results can be combined with other endpoints of mouse pregnancy to provide insight into the mechanisms underlying pregnancy-related complications. PMID:26710086

  2. A Rat Carotid Balloon Injury Model to Test Anti-vascular Remodeling Therapeutics.

    PubMed

    Petrasheskaya, Natalia; Tae, Hyun-Jin; Ahmet, Ismayil; Talan, Mark I; Lakatta, Edward G; Lin, Li

    2016-01-01

    The rat carotid balloon injury is a well-established surgical model that has been used to study arterial remodeling and vascular cell proliferation. It is also a valuable model system to test, and to evaluate therapeutics and drugs that negate maladaptive remodeling in the vessel. The injury, or barotrauma, in the vessel lumen caused by an inflated balloon via an inserted catheter induces subsequent neointimal growth, often leading to hyperplasia or thickening of the vessel wall that narrows, or obstructs the lumen. The method described here is sufficiently sensitive, and the results can be obtained in relatively short time (2 weeks after the surgery). The efficacy of the drug or therapeutic against the induced-remodeling can be evaluated either by the post-mortem pathological and histomorphological analysis, or by ultrasound sonography in live animals. In addition, this model system has also been used to determine the therapeutic window or the time course of the administered drug. These studies can leadto the development of a better administrative strategy and a better therapeutic outcome. The procedure described here provides a tool for translational studies that bring drug and therapeutic candidates from bench research to clinical applications. PMID:27684727

  3. Improved Recellularization of Ex Vivo Vascular Scaffolds using Directed Transport Gradients to Modulate ECM Remodeling

    PubMed Central

    Tosun, Zehra; McFetridge, Peter S.

    2015-01-01

    The regeneration of functional, clinically viable, tissues from acellular ex vivo tissues has been problematic largely due to poor nutrient transport conditions that limit cell migration and integration. Compounding these issues are subcellular pore sizes that necessarily requires extracellular matrix (ECM) remodeling in order for cells to migrate and regenerate the tissue. The aim of the present work was to create a directed growth environment that allows cells to fully populate an ex vivo-derived vascular scaffold and maintain viability over extended periods. Three different culture conditions using single (one nutrient source) or dual perfusion bioreactor systems (two nutrients sources) were designed to assess the effect of pressure and nutrient gradients under either low (50/30 mmHg) or high (120/80) relative pressure conditions. Human myofibroblasts were seeded to the ablumenal periphery of an ex vivo-derived vascular scaffold using a collagen/hydrogel cell delivery system. After 30 days culture, total cell density was consistent between groups; however, significant variation was noted in cell distribution and construct mechanics as a result of differing perfusion conditions. The most aggressive transport gradient was developed by the single perfusion low-pressure circuits and resulted in a higher proportion of cells migrating across the scaffold toward the vessel lumen (nutrient source). These investigations illustrate the influence of directed nutrient gradients where precisely controlled perfusion conditions significantly affects cell migration, distribution and function, resulting in pronounced effects on construct mechanics during early remodeling events. PMID:23613430

  4. The Fractal-based Analysis of the Regulation of Vascular Remodeling in the Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Smith, Genee S.

    2004-01-01

    Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.

  5. Hemodynamic evidence of vascular remodeling in combined post- and precapillary pulmonary hypertension

    PubMed Central

    Brittain, Evan L.; Wells, Quinn S.; Farber-Eger, Eric H.; Halliday, Stephen J.; Doss, Laura N.; Xu, Meng; Wang, Li; Harrell, Frank E.; Yu, Chang; Robbins, Ivan M.; Newman, John H.; Hemnes, Anna R.

    2016-01-01

    Abstract Although commonly encountered, patients with combined postcapillary and precapillary pulmonary hypertension (Cpc-PH) have poorly understood pulmonary vascular properties. The product of pulmonary vascular resistance and compliance, resistance-compliance (RC) time, is a measure of pulmonary vascular physiology. While RC time is lower in postcapillary PH than in precapillary PH, the RC time in Cpc-PH and the effect of pulmonary wedge pressure (PWP) on RC time are unknown. We tested the hypothesis that Cpc-PH has an RC time that resembles that in pulmonary arterial hypertension (PAH) more than that in isolated postcapillary PH (Ipc-PH). We analyzed the hemodynamics of 282 consecutive patients with PH referred for right heart catheterization (RHC) with a fluid challenge from 2004 to 2013 (cohort A) and 4,382 patients who underwent RHC between 1998 and 2014 for validation (cohort B). Baseline RC time in Cpc-PH was higher than that in Ipc-PH and lower than that in PAH in both cohorts (P < 0.001). In cohort A, RC time decreased after fluid challenge in patients with Ipc-PH but not in those with PAH or Cpc-PH (P < 0.001). In cohort B, the inverse relationship of pulmonary vascular compliance and resistance, as well as that of RC time and PWP, in Cpc-PH was similar to that in PAH and distinct from that in Ipc-PH. Our findings demonstrate that patients with Cpc-PH have pulmonary vascular physiology that resembles that of patients with PAH more than that of Ipc-PH patients. Further study is warranted to identify determinants of vascular remodeling and assess therapeutic response in this subset of PH. PMID:27683608

  6. Hemodynamic evidence of vascular remodeling in combined post- and precapillary pulmonary hypertension.

    PubMed

    Assad, Tufik R; Brittain, Evan L; Wells, Quinn S; Farber-Eger, Eric H; Halliday, Stephen J; Doss, Laura N; Xu, Meng; Wang, Li; Harrell, Frank E; Yu, Chang; Robbins, Ivan M; Newman, John H; Hemnes, Anna R

    2016-09-01

    Although commonly encountered, patients with combined postcapillary and precapillary pulmonary hypertension (Cpc-PH) have poorly understood pulmonary vascular properties. The product of pulmonary vascular resistance and compliance, resistance-compliance (RC) time, is a measure of pulmonary vascular physiology. While RC time is lower in postcapillary PH than in precapillary PH, the RC time in Cpc-PH and the effect of pulmonary wedge pressure (PWP) on RC time are unknown. We tested the hypothesis that Cpc-PH has an RC time that resembles that in pulmonary arterial hypertension (PAH) more than that in isolated postcapillary PH (Ipc-PH). We analyzed the hemodynamics of 282 consecutive patients with PH referred for right heart catheterization (RHC) with a fluid challenge from 2004 to 2013 (cohort A) and 4,382 patients who underwent RHC between 1998 and 2014 for validation (cohort B). Baseline RC time in Cpc-PH was higher than that in Ipc-PH and lower than that in PAH in both cohorts (P < 0.001). In cohort A, RC time decreased after fluid challenge in patients with Ipc-PH but not in those with PAH or Cpc-PH (P < 0.001). In cohort B, the inverse relationship of pulmonary vascular compliance and resistance, as well as that of RC time and PWP, in Cpc-PH was similar to that in PAH and distinct from that in Ipc-PH. Our findings demonstrate that patients with Cpc-PH have pulmonary vascular physiology that resembles that of patients with PAH more than that of Ipc-PH patients. Further study is warranted to identify determinants of vascular remodeling and assess therapeutic response in this subset of PH. PMID:27683608

  7. Hemodynamic evidence of vascular remodeling in combined post- and precapillary pulmonary hypertension

    PubMed Central

    Brittain, Evan L.; Wells, Quinn S.; Farber-Eger, Eric H.; Halliday, Stephen J.; Doss, Laura N.; Xu, Meng; Wang, Li; Harrell, Frank E.; Yu, Chang; Robbins, Ivan M.; Newman, John H.; Hemnes, Anna R.

    2016-01-01

    Abstract Although commonly encountered, patients with combined postcapillary and precapillary pulmonary hypertension (Cpc-PH) have poorly understood pulmonary vascular properties. The product of pulmonary vascular resistance and compliance, resistance-compliance (RC) time, is a measure of pulmonary vascular physiology. While RC time is lower in postcapillary PH than in precapillary PH, the RC time in Cpc-PH and the effect of pulmonary wedge pressure (PWP) on RC time are unknown. We tested the hypothesis that Cpc-PH has an RC time that resembles that in pulmonary arterial hypertension (PAH) more than that in isolated postcapillary PH (Ipc-PH). We analyzed the hemodynamics of 282 consecutive patients with PH referred for right heart catheterization (RHC) with a fluid challenge from 2004 to 2013 (cohort A) and 4,382 patients who underwent RHC between 1998 and 2014 for validation (cohort B). Baseline RC time in Cpc-PH was higher than that in Ipc-PH and lower than that in PAH in both cohorts (P < 0.001). In cohort A, RC time decreased after fluid challenge in patients with Ipc-PH but not in those with PAH or Cpc-PH (P < 0.001). In cohort B, the inverse relationship of pulmonary vascular compliance and resistance, as well as that of RC time and PWP, in Cpc-PH was similar to that in PAH and distinct from that in Ipc-PH. Our findings demonstrate that patients with Cpc-PH have pulmonary vascular physiology that resembles that of patients with PAH more than that of Ipc-PH patients. Further study is warranted to identify determinants of vascular remodeling and assess therapeutic response in this subset of PH.

  8. Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects.

    PubMed

    Sakurada, Takumi; Ishizawa, Keisuke; Imanishi, Masaki; Izawa-Ishizawa, Yuki; Fujii, Shoko; Tominaga, Erika; Tsuneishi, Teppei; Horinouchi, Yuya; Kihira, Yoshitaka; Ikeda, Yasumasa; Tomita, Shuhei; Aihara, Ken-ichi; Minakuchi, Kazuo; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2013-01-01

    Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22(phox), CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca(2+) increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.

  9. Qingxuan Jiangya Decoction Reverses Vascular Remodeling by Inducing Vascular Smooth Muscle Cell Apoptosis in Spontaneously Hypertensive Rats.

    PubMed

    Xiao, Fei; He, Fei; Chen, Hongwei; Lin, Shan; Shen, Aling; Chen, Youqin; Chu, Jianfeng; Peng, Jun

    2016-01-01

    Qingxuan Jiangya Decoction (QXJYD), a traditional Chinese medicine formula prescribed by academician Ke-ji Chen, has been used in China to clinically treat hypertension for decades of years. However, the molecular mechanisms of its action remain largely unknown. In this study, we examined the therapeutic efficacy of QXJYD against elevated systolic blood pressure in the spontaneously hypertensive rat (SHR) model, and investigated the underlying molecular mechanisms. We found that oral administration of QXJYD significantly reduced the elevation of systolic blood pressure in SHR but had no effect on body weight change. Additionally, QXJYD treatment significantly decreased the media thickness and ratio of media thickness/lumen diameter in the carotid arteries of SHR. Moreover, QXJYD remarkably promoted apoptosis of vascular smooth muscle cells and reduced the expression of anti-apoptotic B-cell leukemia/lymphoma 2. Furthermore, QXJYD significantly decreased the plasma Angiotensin II level in SHR. Collectively, our findings suggest that reversing vascular remodeling via inducing VSMC apoptosis could be one of the mechanisms whereby QXJYD treats hypertension. PMID:27455221

  10. Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells.

    PubMed

    Ozasa, Yukako; Akazawa, Hiroshi; Qin, Yingjie; Tateno, Kaoru; Ito, Kaoru; Kudo-Sakamoto, Yoko; Yano, Masamichi; Yabumoto, Chizuru; Naito, Atsuhiko T; Oka, Toru; Lee, Jong-Kook; Minamino, Tohru; Nagai, Toshio; Kobayashi, Yoshio; Komuro, Issei

    2013-10-01

    Notch signaling is involved in an intercellular communication mechanism that is essential for coordinated cell fate determination and tissue morphogenesis. The biological effects of Notch signaling are context-dependent. We investigated the functional and hierarchical relationship between angiotensin (Ang) II receptor signaling and Notch signaling in vascular smooth muscle cells (VSMCs). A fluorogenic substrate assay revealed directly that the enzymatic activity of γ-secretase was enhanced after 10 min of Ang II stimulation in HEK293 cells expressing Ang II type 1 receptor. Notch cleavage by γ-secretase was consistently induced and peaked at 10 min after Ang II stimulation, and the Ang II-stimulated increase in Notch intracellular domain production was significantly suppressed by treatment with the γ-secretase inhibitor DAPT. Treatment with DAPT also significantly reduced the Ang II-stimulated proliferation and migration of human aortic VSMCs, as revealed by BrdU incorporation and the Boyden chamber assay, respectively. Systemic administration of the γ-secretase inhibitor dibenzazepine reduced Ang II-induced medial thickening and perivascular fibrosis in the aortas of wild-type mice. These findings suggest that the hierarchical Ang II receptor-Notch signaling pathway promotes the proliferation and migration of VSMCs, and thereby contributes to the progression of vascular remodeling. PMID:23719127

  11. Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention.

    PubMed

    Qiao, Lina; Xie, Liang; Shi, Kun; Zhou, Tongfu; Hua, Yimin; Liu, Hanmin

    2012-01-01

    Pulmonary hypertension (PH) is a fatal disease that lacks an effective therapy. Notch signaling pathway plays a crucial role in the angiogenesis and vascular remodeling. However, its roles in vascular remodeling in PH have not been well studied. In the current study, using hypoxia-induced PH model in rat, we examined the expression of Notch and its downstream factors. Then, we used vessel strip culture system and γ-secretase inhibitor DAPT, a Notch signaling inhibitor to determine the effect of Notch signaling in vascular remodeling and its potential therapeutic value. Our results indicated that Notch 1-4 were detected in the lung tissue with variable levels in different cell types such as smooth muscle cells and endothelial cells of pulmonary artery, bronchia, and alveoli. In addition, following the PH induction, all of Notch1, Notch3, Notch4 receptor, and downstream factor, HERP1 in pulmonary arteries, mRNA expressions were increased with a peak at 1-2 weeks. Furthermore, the vessel wall thickness from rats with hypoxia treatment increased after cultured for 8 days, which could be decreased approximately 30% by DAPT, accompanied with significant increase of expression level of apoptotic factors (caspase-3 and Bax) and transformation of vascular smooth muscle cell (VSMC) phenotype from synthetic towards contractile. In conclusion, the current study suggested Notch pathway plays an important role in pulmonary vascular remodeling in PH and targeting Notch signaling pathway could be a valuable approach to design new therapy for PH. PMID:23251561

  12. Remodeling of hepatic vascular changes after specific chemotherapy of schistosomal periportal fibrosis.

    PubMed

    Andrade, Zilton A; Baptista, Ana Paula; Santana, Thaynã Souto

    2006-09-01

    Hepatosplenic schistosomiasis was the first human disease in which the possibility of extensive long standing hepatic fibrosis being degraded and removed has been demonstrated. When such changes occurred, the main signs of portal hypertension (splenomegaly, esophageal varices) progressively disappeared, implying that a profound vascular remodeling was concomitantly occurring. Hepatic vascular alterations associated with advanced schistosomiasis have already been investigated. Obstruction of the intrahepatic portal vein branches, plus marked angiogenesis and compensatory hyperplasia and hypertrophy of the arterial tree are the main changes present. However, there are no data revealing how these vascular changes behave during the process of fibrosis regression. Here the mouse model of pipestem fibrosis was used in an investigation about these vascular alterations during the course of the infection, and also after treatment and cure of the disease. Animals representing the two polar hepatic forms of the infection were included: (1) "isolated granulomas" characterized by isolated periovular granulomas sparsely distributed throughout the hepatica parenchyma; and (2) 'pipestem fibrosis' with periovular granulomas and fibrosis being concentrated within portal spaces, before and after treatment, were studied by means of histological and vascular injection-corrosion techniques. Instances of widespread portal vein obstruction of several types were commonly found in the livers of the untreated animals. These obstructive lesions were soon repaired, and completely disappeared four months following specific treatment of schistosomiasis. Treatment was accomplished by the simultaneous administration of praziquantel and oxamniquine. The most impressive results were revealed by the technique of injection of colored masses into the portal system, followed by corrosion in strong acid. The vascular lesions of non-treated pipestem fibrosis were represented in the plastic casts by

  13. Apoptosis and regulation of Bax and Bcl-X proteins during human neonatal vascular remodeling.

    PubMed

    Kim, H S; Hwang, K K; Seo, J W; Kim, S Y; Oh, B H; Lee, M M; Park, Y B

    2000-04-01

    To verify that apoptosis is one of the possible mechanisms of neonatal vascular remodeling during the transition from fetal to neonatal circulation, we assayed for apoptosis and evaluated the expression of apoptosis-regulatory proteins in umbilical vessel versus ascending aorta, ductus arteriosus (DA) versus adjacent pulmonary artery and aorta, or aorta versus its branching arteries. Twenty-two umbilical cords (UCs), 6 DAs with adjacent aortas and pulmonary arteries, and 4 aortic arches with their branching great arteries were obtained from neonates. Smooth muscle cell (SMC) apoptosis in umbilical vessels was identified in all UCs. The expressions of Bax and Bcl-X were stronger in umbilical artery than in the neonatal aorta, but Bcl-2 was weak in both arteries in immunohistochemistry. In the immunoblot analysis of UCs, the expression of the proapoptotic short isoform of Bcl-X was stronger than in other tissue, and caspase-3 was selectively activated, whereas it was not in the other components of the cardiovascular system. In contrast, the expression patterns of the FasAg and Fas ligand were similar in umbilical artery and aorta. Regulation of Bcl-2 family proteins was also observed in other vascular sites at which SMCs undergo apoptosis on hemodynamic changes during birth, such as the DA and the branching points of the great arteries from the aortic arch. Apoptosis is involved in the regression of human umbilical vessels and the DA and in the remodeling of the branching great arteries during the neonatal period, when Bcl-2 family proteins are likely to play a key role.

  14. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.

  15. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  16. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  17. Chronic Hyperhomocysteinemia Causes Vascular Remodeling by Instigating Vein Phenotype in Artery†

    PubMed Central

    Basu, Poulami; Qipshidze, Natia; Sen, Utpal; Givvimani, Srikanth; Munjal, Charu; Mishra, Paras K.; Tyagi, Suresh C.

    2011-01-01

    In the present study we tested the hypothesis whether hyperhomocysteinemia, an elevated homocysteine level, induces venous phenotype in artery. To test our hypothesis, we employed wild type (WT) and cystathionine β-synthase+/− (CBS+/−) mice treatment with or without folic acid (FA). Aortic blood flow and velocity were significantly lower in CBS+/− mice compared to WT. Aortic lumen diameter was significantly decreased in CBS+/− mice, whereas FA treatment normalized it. Medial thickness and collagen were significantly increased in CBS+/− aorta, whereas elastin / collagen ratio was significantly decreased. Superoxide and gelatinase activity was significantly high in CBS +/− aorta vs WT. Western blot showed significant increase in MMP-2, -9,-12, TIMP-2 and decrease in TIMP-4 in aorta. RT-PCR revealed significant increase of vena cava marker EphB4, MMP-13 and TIMP-3 in aorta. We summarize that chronic HHcy causes vascular remodeling that transduces changes in vascular wall in a way that artery expresses vein phenotype. PMID:21838575

  18. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling

    PubMed Central

    Rodriguez-Menocal, Luis; Faridi, Mohd Hafeez; Martinez, Laisel; Shehadeh, Lina A.; Duque, Juan C.; Wei, Yuntao; Mesa, Annia; Pena, Angela; Gupta, Vineet; Pham, Si M.

    2014-01-01

    Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation. PMID:24414074

  19. Progesterone inhibits vascular remodeling and attenuates monocrotaline-induced pulmonary hypertension in estrogen-deficient rats.

    PubMed

    Tofovic, P S; Zhang, X; Petrusevska, G

    2009-07-01

    (Full text is available at http://www.manu.edu.mk/prilozi). Pulmonary arterial hypertension (PH) is predominantly a disease of young females. Yet, little is known regarding the effects of female sex hormones in PH. Female rats develop less severe PH compared to male rats, and ovariectomy (OVX) exacerbates PH. Although OVX rats treated with estradiol develop less severe disease, the role of progesterone in OVX-induced exacerbation of disease has not been examined. Progesterone was shown to dilate pulmonary vessels and to inhibit proliferation of endothelial and vascular smooth muscle cells. Therefore, we hypothesized that progesterone may confer protective effects in experimental PH. A total of 30 female rats were ovariectomized and OVX rats were randomly administered either saline (OVX-Control group, n = 7), monocrotaline (60mg/kg i.p.; OVX-MCT group; n = 12), or MCT plus progesterone (30microg/kg/h via osmotic minipumps; OVX-MCT+P group; n = 11). After 32 days animals were instrumented for in situ (open chest) measurements of right ventricle (RV) peak systolic (RVSP) and end diastolic (RVEDP) pressures, and tissue samples were obtained for morphometric and histological analysis. Administration of MCT elevated RVSP (22.2 +/- 1.1 vs. 46.7 +/- 2.4 mmHg) and RVEDP (1.51 +/- 0.86 vs. 11.9+/-2.2 mmHg), increased RV/left ventricle + septum (RV/LV+S) ratio (0.256 +/- 0.010 vs. 0.582 +/- 0.033, OVX vs. OVX-MCT), and induced media hypertrophy of small size pulmonary arteries. In ovariectomized pulmonary hypertensive rats, treatment with progesterone attenuated the severity of disease (OVX-MCT+P group: RVSP = 36.6 +/- 2.3 mmHg; RV/LV+S = 0.468 +/- 0.025; RVEDP = 7.5 +/-1.5 mmHg), attenuated vascular remodeling (media % index: 28.2 +/- 1.1 vs. 34.2 +/- 1.3), and reduced mortality (9% vs. 25%; OVX-MCT+P vs. OVX-MCT). This study provides the first evidence that in estrogen-deficient rats, progesterone has protective effects in MCT-induced PH. Further evaluation of the role of

  20. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling.

    PubMed

    Saito, Shigeru; Nakashima, Akitoshi

    2014-03-01

    Shallow trophoblast invasion and impaired vascular remodeling of spiral arteries have been recognized in early-onset preeclampsia. Placentation and vascular remodeling are multistep processes, and hypoxia, placental oxidative stress, excessive or atypical maternal immune response to trophoblasts, exaggerated inflammation, and increased production of anti-angiogenic factors such as the soluble form of the vascular endothelial growth factor (VEGF) receptor (sFlt-1) and soluble endoglin (sENG) may play a role in poor placentation in preeclampsia. Recent findings suggest that autophagy plays an important role in extravillous trophoblast (EVT) invasion and vascular remodeling under hypoxia, and sENG inhibits EVT invasion and vascular remodeling by the inhibition of autophagy under hypoxic conditions. In this review, we discuss the relationship between inadequate autophagy and poor placentation in preeclampsia.

  1. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    PubMed

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  2. The Effects of Protein Regulators on the Vascular Remodeling of Japanese Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Deshpande, Arati

    2004-01-01

    Contributing to NASA s mission, the Microgravity Fluid Physics research program conducts experiments to promote space exploration and improvement of processes and products on Earth. One of the projects through this program deals with the affect of regulators on vascular remodeling and angiogenesis. This project is being led by Dr. Patricia Parsons-Wingerter. To perform the experiments, protein regulators are tested on the chorioallantoic membrane (CAM) of the Japanese quail embryos. The different types of regulators used can be broken down into two major groups of stimulators, and inhibitors. Stimulators increase the rate of blood vessel growth and inhibitors decrease of blood vessel growth. The specified regulator proteins include thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), these are just the ones used in this specific experiment; other various protein regulators can also be used. The novel vessel tortuosity factor (TF) is a special kind of stimulator because it stimulates vessel tortuosity and curvature, rather than actual blood vessel growth. These regulators are being tested on Japanese quail embryos. The Japanese quail embryos naturally form a chorioallantoic membrane (CAM) from which blood flow, vascular remodeling, and angiogenesis can be observed. Chorioallantoic membranes are also easier to use because they are two dimensional when mounted onto a slide for examination. The analysis of the affect of the regulators on the CAM can be studied through PIVPROC; the program is used to analyze the altered blood flow in response to application of TF. Regulators are being thoroughly studied because cardiovascular alterations are the second highest, NASA-defined, risk categories in human space exploration. This research done on the quail is extending to even more projects that will be done on lab animals such as mice and also in human clinical studies like the diabetic retina. Not only will this research be beneficial to further space

  3. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  4. Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure

    PubMed Central

    Ashikaga, Hiroshi; Omens, Jeffrey H.; Covell, James W.

    2010-01-01

    To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 ± 2 wk (means ± SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 ± 0.030; P < 0.05), whereas the apical site did not [P = not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 ± 0.003 at 2 wk and 0.054 ± 0.021 at final; both P < 0.05), which contributed to a significant increase in wall thickness at the final study (0.181 ± 0.047; P < 0.05), whereas the apical site did not (P = NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture. PMID:15242833

  5. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    SciTech Connect

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  6. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  7. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-01

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. PMID:26645582

  8. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD

    PubMed Central

    Soltani, Amir; Walters, Eugene Haydn; Reid, David W; Shukla, Shakti Dhar; Nowrin, Kaosia; Ward, Chris; Muller, H Konrad; Sohal, Sukhwinder Singh

    2016-01-01

    Background This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). Methods Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. Results There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. Conclusion Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression. PMID:27703346

  9. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars

    PubMed Central

    Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring. PMID:27227960

  10. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars.

    PubMed

    Domergue, Sophie; Bony, Claire; Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring.

  11. Cathepsin K Deficiency Prevents the Aggravated Vascular Remodeling Response to Flow Cessation in ApoE-/- Mice

    PubMed Central

    Lutgens, Suzanne P. M.; Wijnands, Erwin; Johnson, Jason; Schurgers, Leon J.; Liu, Cong-Lin; Daemen, Mat J. A. P.; Cleutjens, Kitty B. J. M.; Shi, Guo-Ping; Biessen, Erik A. L.; Heeneman, Sylvia

    2016-01-01

    Cathepsin K (catK) is a potent lysosomal cysteine protease involved in extracellular matrix (ECM) degradation and inflammatory remodeling responses. Here we have investigated the contribution of catK deficiency on carotid arterial remodeling in response to flow cessation in apoE-/- and wild type (wt) background. Ligation-induced hyperplasia is considerably aggravated in apoE-/- versus wt mice. CatK protein expression was significantly increased in neointimal lesions of apoE-/- compared with wt mice, suggesting a role for catK in intimal hyperplasia under hyperlipidemic conditions. Surprisingly, CatK deficiency completely blunted the augmented hyperplastic response to flow cessation in apoE-/-, whereas vascular remodeling in wt mice was unaffected. As catK deficiency did neither alter lesion collagen content and elastic laminae fragmentation in vivo, we focused on effects of catK on (systemic) inflammatory responses. CatK deficiency significantly reduced circulating CD3 T-cell numbers, but increased the regulatory T cell subset in apoE-/- but not wt mice. Moreover, catK deficiency changed CD11b+Ly6G-Ly6C high monocyte distribution in apoE-/- but not wt mice and tended to favour macrophage M2a polarization. In conclusion, catK deficiency almost completely blunted the increased vascular remodeling response of apoE-/- mice to flow cessation, possibly by correcting hyperlipidemia-associated pro-inflammatory effects on the peripheral immune response. PMID:27636705

  12. Chronic allergic inflammation causes vascular remodeling and pulmonary hypertension in BMPR2 hypomorph and wild-type mice.

    PubMed

    Mushaben, Elizabeth M; Hershey, Gurjit Khurana; Pauciulo, Michael W; Nichols, William C; Le Cras, Timothy D

    2012-01-01

    Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.

  13. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease.

    PubMed

    Ma, Wanli; Han, Weihong; Greer, Peter A; Tuder, Rubin M; Toque, Haroldo A; Wang, Kevin K W; Caldwell, R William; Su, Yunchao

    2011-11-01

    Pulmonary hypertension is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Several growth factors, including EGF, PDGF, and TGF-β1, are involved in pulmonary vascular remodeling during pulmonary hypertension. However, increased knowledge of the downstream signaling cascades is needed if effective clinical interventions are to be developed. In this context, calpain provides an interesting candidate therapeutic target, since it is activated by EGF and PDGF and has been reported to activate TGF-β1. Thus, in this study, we examined the role of calpain in pulmonary vascular remodeling in two rodent models of pulmonary hypertension. These data showed that attenuated calpain activity in calpain-knockout mice or rats treated with a calpain inhibitor resulted in prevention of increased right ventricular systolic pressure, right ventricular hypertrophy, as well as collagen deposition and thickening of pulmonary arterioles in models of hypoxia- and monocrotaline-induced pulmonary hypertension. Additionally, inhibition of calpain in vitro blocked intracellular activation of TGF-β1, which led to attenuated Smad2/3 phosphorylation and collagen synthesis. Finally, smooth muscle cells of pulmonary arterioles from patients with pulmonary arterial hypertension showed higher levels of calpain activation and intracellular active TGF-β. Our data provide evidence that calpain mediates EGF- and PDGF-induced collagen synthesis and proliferation of pulmonary artery smooth muscle cells via an intracrine TGF-β1 pathway in pulmonary hypertension. PMID:22005303

  14. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.

  15. Levofloxacin decreased chest wall mechanical inhomogeneities and airway and vascular remodeling in rats with induced hepatopulmonary syndrome.

    PubMed

    Gaio, Eduardo; Amado, Veronica; Rangel, Leonardo; Huang, Wilson; Storck, Rodrigo; Melo-Silva, César Augusto

    2013-12-01

    The administration of antibiotics decreases bacterial translocation, reduces the activity of nitric oxide synthase and improves the gas exchange of hepatopulmonary syndrome (HPS) in rats. We hypothesized that levofloxacin could reduce HPS-induced respiratory mechanical inhomogeneities and airway and pulmonary vascular remodeling. We assessed the respiratory mechanical properties and lung tissue structure in 24 rats assigned to the control, HPS (eHPS) and HPS+levofloxacin (eHPS+L) groups. The administration of levofloxacin reduced the HPS-induced chest wall but not the lung mechanical inhomogeneities. The eHPS airway proportion of elastic fibers increased 20% but was similar between the control and eHPS+L groups. The eHPS vascular collagen increased 25% in eHPS but was similar between the control and eHPS+L groups. Compared to the control group, the vascular proportion of elastic fibers of the eHPS and eHPS+L groups increased by 60% and 16%, respectively. The administration of levofloxacin decreased the HPS-induced chest wall mechanical inhomogeneities and airway and vascular remodeling. PMID:23994178

  16. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye

    PubMed Central

    Jia, Yali; Bailey, Steven T.; Hwang, Thomas S.; McClintic, Scott M.; Pennesi, Mark E.; Flaxel, Christina J.; Lauer, Andreas K.; Wilson, David J.; Hornegger, Joachim; Fujimoto, James G.; Huang, David

    2015-01-01

    Retinal vascular diseases are important causes of vision loss. A detailed evaluation of the vascular abnormalities facilitates diagnosis and treatment in these diseases. Optical coherence tomography (OCT) angiography using the highly efficient split-spectrum amplitude decorrelation angiography algorithm offers an alternative to conventional dye-based retinal angiography. OCT angiography has several advantages, including 3D visualization of retinal and choroidal circulations (including the choriocapillaris) and avoidance of dye injection-related complications. Results from six illustrative cases are reported. In diabetic retinopathy, OCT angiography can detect neovascularization and quantify ischemia. In age-related macular degeneration, choroidal neovascularization can be observed without the obscuration of details caused by dye leakage in conventional angiography. Choriocapillaris dysfunction can be detected in the nonneovascular form of the disease, furthering our understanding of pathogenesis. In choroideremia, OCT's ability to show choroidal and retinal vascular dysfunction separately may be valuable in predicting progression and assessing treatment response. OCT angiography shows promise as a noninvasive alternative to dye-based angiography for highly detailed, in vivo, 3D, quantitative evaluation of retinal vascular abnormalities. PMID:25897021

  17. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed. PMID:25724169

  18. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells.

    PubMed

    Savant, Soniya; La Porta, Silvia; Budnik, Annika; Busch, Katrin; Hu, Junhao; Tisch, Nathalie; Korn, Claudia; Valls, Aida Freire; Benest, Andrew V; Terhardt, Dorothee; Qu, Xianghu; Adams, Ralf H; Baldwin, H Scott; Ruiz de Almodóvar, Carmen; Rodewald, Hans-Reimer; Augustin, Hellmut G

    2015-09-22

    Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.

  19. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction

    PubMed Central

    Labrousse-Arias, David; Castillo-González, Raquel; Rogers, Natasha M.; Torres-Capelli, Mar; Barreira, Bianca; Aragonés, Julián; Cogolludo, Ángel; Isenberg, Jeffrey S.; Calzada, María J.

    2016-01-01

    Aims Hypoxic conditions stimulate pulmonary vasoconstriction and vascular remodelling, both pathognomonic changes in pulmonary arterial hypertension (PAH). The secreted protein thrombospondin-1 (TSP1) is involved in the maintenance of lung homeostasis. New work identified a role for TSP1 in promoting PAH. Nonetheless, it is largely unknown how hypoxia regulates TSP1 in the lung and whether this contributes to pathological events during PAH. Methods and results In cell and animal experiments, we found that hypoxia induces TSP1 in lungs, pulmonary artery smooth muscle cells and endothelial cells, and pulmonary fibroblasts. Using a murine model of constitutive hypoxia, gene silencing, and luciferase reporter experiments, we found that hypoxia-mediated induction of pulmonary TSP1 is a hypoxia-inducible factor (HIF)-2α-dependent process. Additionally, hypoxic tsp1−/− pulmonary fibroblasts and pulmonary artery smooth muscle cell displayed decreased migration compared with wild-type (WT) cells. Furthermore, hypoxia-mediated induction of TSP1 destabilized endothelial cell–cell interactions. This provides genetic evidence that TSP1 contributes to vascular remodelling during PAH. Expanding cell data to whole tissues, we found that, under hypoxia, pulmonary arteries (PAs) from WT mice had significantly decreased sensitivity to acetylcholine (Ach)-stimulated endothelial-dependent vasodilation. In contrast, hypoxic tsp1−/− PAs retained sensitivity to Ach, mediated in part by TSP1 regulation of pulmonary Kv channels. Translating these preclinical studies, we find in the lungs from individuals with end-stage PAH, both TSP1 and HIF-2α protein expression increased in the pulmonary vasculature compared with non-PAH controls. Conclusions These findings demonstrate that HIF-2α is clearly implicated in the TSP1 pulmonary regulation and provide new insights on its contribution to PAH-driven vascular remodelling and vasoconstriction. PMID:26503986

  20. Efficacy of losartan for improving insulin resistance and vascular remodeling in hemodialysis patients.

    PubMed

    Sun, Fang; Song, Yan; Liu, Jing; Ma, Li-Jie; Shen, Yang; Huang, Jing; Zhou, Yi-Lun

    2016-01-01

    Insulin resistance and vascular remodeling are prevalent and predict cardiovascular mortality in hemodialysis patients. Angiotensin II (Ang II) may be involved in both pathogenesis. In the present study, we investigated the effects of the Ang II receptor blocker losartan on insulin resistance, arterial stiffness, and carotid artery structure in hemodialysis patients. Seventy-two hemodialysis patients were randomly assigned to receive either losartan 50 mg qd (n = 36) or β-blocker bisoprolol 5 mg qd (n = 36). At the start and at month 12, ambulatory blood pressure (BP) monitoring, aortic pulse wave velocity (PWV) measurements, and carotid artery ultrasound were performed, and homeostasis model assessment index of insulin resistance (HOMA-IR) was determined. During the study period, bioimpedance method was used to evaluate volume status every 3 months. Home-monitored BPs were measured at least monthly. Ambulatory BP decreased significantly and similarly by either losartan or bisoprolol. Decreases in PWVs in losartan group at the end of month 12 were significantly greater than changes in PWV in bisoprolol group (0.9 ± 0.3 vs. 0.4 ± 0.5 m/s, P = 0.021). Common carotid artery intima-media cross-sectional area decreased significantly only in patients treated with losartan (20.3 ± 4.9 vs. 19.1 ± 5.1 mm(2) , P = 0.001), and HOMA-IR was also reduced in losartan group only (1.9 ± 1.0 vs. 1.7 ± 0.8, P = 0.003). Multiple regression analysis showed significant correlations between changes in PWV and changes in HOMA-IR. With comparable BP-lowering efficacy, losartan achieved better improvement in insulin sensitivity, arterial stiffness, and carotid artery hypertrophy in hemodialysis patients. The regression of arterial stiffness may be in part through attenuation in insulin resistance.

  1. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA. PMID:24048981

  2. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    PubMed

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  3. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    PubMed

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P < 0.01) and end-systolic (8.6 ± 0.5 vs. 9.6 ± 0.6 mm, P < 0.01) dimensions and attenuated MI-induced increases in LV end-diastolic pressure. Cross-sectional areas of cardiomyocytes were smaller in ST rats and associated with a significant reduction in myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  4. Interferon-γ promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β2.

    PubMed

    Chrobak, Izabela; Lenna, Stefania; Stawski, Lukasz; Trojanowska, Maria

    2013-08-01

    Systemic sclerosis (SSc) is a complex disease characterized by vascular alterations, activation of the immune system and tissue fibrosis. Previous studies have implicated activation of the interferon pathways in the pathogenesis of SSc. The goal of this study was to determine whether interferon type I and/or type II could play a pathogenic role in SSc vasculopathy. Human dermal microvascular endothelial cells (HDMVECs) and fibroblasts were obtained from foreskins of healthy newborns. The RT Profiler PCR Array System was utilized to screen for EndoMT genes. Treatment with IFN-α or IFN-γ downregulated Fli1 and VE-cadherin. In contrast, IFN-α and IFN-γ exerted opposite effects on the expression of α-SMA, CTGF, ET-1, and TGFβ2, with IFN-α downregulating and IFN-γ upregulating this set of genes. Blockade of TGFβ signaling normalized IFN-γ-mediated changes in Fli1, VE-cadherin, CTGF, and ET-1 levels, whereas upregulation of α-SMA and TGFβ2 was not affected. Bosentan treatment was more effective than TGFβ blockade in reversing the actions of IFN-γ, including downregulation of α-SMA and TGFβ2, suggesting that activation of the ET-1 pathway plays a main role in the IFN-γ responses in HDMECs. IFN-γ induced expression of selected genes related to endothelial-to-mesenchymal transition (EndoMT), including Snail1, FN1, PAI1, TWIST1, STAT3, RGS2, and components of the WNT pathway. The effect of IFN-γ on EndoMT was mediated via TGFβ2 and ET-1 signaling pathways. This study demonstrates distinct effects of IFN-α and IFN-γ on the biology of vascular endothelial cells. IFN-γ may contribute to abnormal vascular remodeling and fibrogenesis in SSc, partially via induction of EndoMT.

  5. A Theoretical Model for F-actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch

    PubMed Central

    Na, S.; Meininger, G.A.; Humphrey, J.D.

    2007-01-01

    A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30 minutes. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2 minutes of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30 minutes of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of “tensional homeostasis” whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity. PMID:17240401

  6. Pancytopenia in a Patient with Rendu-Osler-Weber Syndrome and Uncommon Vascular Abnormalities

    PubMed Central

    Gasbarrini, Antonio

    2016-01-01

    Rendu-Osler-Weber syndrome, or hereditary hemorrhagic teleangiectasia (HHT), is a rare autosomal dominant vascular disorder, characterized by multiple mucocutaneous teleangiectases with recurrent nasal and gastrointestinal bleedings and/or solid-organ arteriovenous shunts. We describe the first case to our knowledge of pancytopenia in a 53-year-old patient, with a known history of HHT and recurrent nasal and gastrointestinal bleedings, who was found to have a major splenic artery aneurysm and other uncommon vascular abnormalities. In the absence of other evident causes of pancytopenia, hypersplenism was diagnosed. The patient underwent coil embolization of the splenic artery aneurysm, followed by rapid and sustained increase of white blood cell and platelet count. Splenic artery aneurysms are extremely uncommon in HHT as only anecdotal cases have been reported to date. However, we believe that the aneurysm critically contributed to the progression of splenomegaly and the development of pancytopenia. PMID:27803822

  7. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  8. Hemangiomas, angiosarcomas, and vascular malformations represent the signaling abnormalities of pathogenic angiogenesis.

    PubMed

    Arbiser, J L; Bonner, M Y; Berrios, R L

    2009-11-01

    Angiogenesis is a major factor in the development of benign, inflammatory, and malignant processes of the skin. Endothelial cells are the effector cells of angiogenesis, and understanding their response to growth factors and inhibitors is critical to understanding the pathogenesis and treatment of skin disease. Hemangiomas, benign tumors of endothelial cells, represent the most common tumor of childhood. In our previous studies, we have found that tumor vasculature in human solid tumors expresses similarities in signaling to that of hemangiomas, making the knowledge of signaling in hemangiomas widely applicable. These similarities include expression of reactive oxygen, NFkB and akt in tumor vasculature. Furthermore, we have studied malignant vascular tumors, including hemangioendothelioma and angiosarcoma and have shown distinct signaling abnormalities in these tumors. The incidence of these tumors is expected to rise due to environmental insults, such as radiation and lumpectomy for breast cancer, dietary and industrial carcinogens (hepatic angiosarcoma), and chronic ultraviolet exposure and potential Agent Orange exposure. I hypothesize that hemangiomas, angiosarcomas, and vascular malformations represent the extremes of signaling abnormalities seen in pathogenic angiogenesis. PMID:19925405

  9. Mechanisms of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease.

    PubMed Central

    Dantzker, D R; Bower, J S

    1979-01-01

    We have examined the mechanisms of abnormal gas exchange in seven patients with chronic obliteration of the pulmonary vascular bed secondary to recurrent pulmonary emboli or idiopathic pulmonary hypertension. All of the patients had a widened alveolar-arterial oxygen gradient and four were significantly hypoxemic with arterial partial presssures of oxygen less than 80 torr. Using the technique of multiple inert gas elimination, we found that ventilation-perfusion (VA/Q) relationships were only minimally abnormal with a mean of 10% (range, 2--19%) of cardiac output perfusing abnormal units. These units consisted of shunt and units with VA/Q ratios less than 0.1. In addition, the dead space was found to be normal in each patient. There was no evidence for diffusion impairment, and the widened alveolar-arterial oxygen gradient was completely explained by VA/ inequality. Significant hypoxemia occurred only when VA/Q inequality was combined with a low mixed venous oxygen content. PMID:479367

  10. Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia

    PubMed Central

    Morancho, Anna; Ma, Feifei; Barceló, Verónica; Giralt, Dolors; Montaner, Joan; Rosell, Anna

    2015-01-01

    Endothelial progenitor cells (EPCs) are being investigated for advanced therapies, and matrix metalloproteinase 9 (MMP9) has an important role in stroke recovery. Our aim was to determine whether tissue MMP9 influences the EPC-induced angiogenesis after ischemia. Wild-type (WT) and MMP9-deficient mice (MMP9/KO) were subjected to cerebral ischemia and treated with vehicle or outgrowth EPCs. After 3 weeks, we observed an increase in the peri-infarct vessel density in WT animals but not in MMP9/KO mice; no differences were found in the vehicle-treated groups. Our data suggest that tissue MMP9 has a crucial role in EPC-induced vascular remodeling after stroke. PMID:26219597

  11. Antenatal Saireito (TJ-114) Can Improve Pulmonary Hypoplasia and Pulmonary Vascular Remodeling in Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Kotani, Tomomi; Sumigama, Seiji; Mano, Yukio; Nakano, Tomoko; Imai, Kenji; Li, Hua; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-09-01

    Congenital diaphragmatic hernia (CDH) can induce lung hypoplasia and pulmonary hypertension and is associated with high mortality. The purpose of this study is to examine the efficacy and safety of antenatal Saireito (TJ-114), a traditional Japanese herbal medicine, in a rat CDH model. Sprague-Dawley rats were exposed to an herbicide (nitrofen, 100 mg) on embryonic day 9 (E9) to induce CDH, and antenatal Saireito (2000 mg/kg/day) was orally administered from E10 to E20. On E21, fetuses were delivered. Antenatal Saireito significantly decreased the incidence of CDH (p < 0.01), increased lung volume (p < 0.01), improved alveolarization and pulmonary artery remodeling using histological analysis, and improved respiratory function using gasometric analysis (pH; p < 0.05, and PCO2 ; p < 0.01). In addition, antenatal Saireito significantly decreased endothelin-1 and endothelin receptor A expression in the pulmonary arteries. Taken together, our results demonstrated that antenatal Saireito can improve fetal pulmonary hypoplasia and pulmonary vascular remodeling and, as a result, can improve respiratory function in a rat CDH model. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27221220

  12. Possible role of NFκB in the embryonic vascular remodeling and the endothelial mesenchymal transition process

    PubMed Central

    Carrillo, Luz M; De Sanctis, Juan B; Candelle, Daniel

    2008-01-01

    The NFκB family of transcription factors, particularly the activated p50/p65 heterodimer, is expressed in vascular cells during intimal thickening formation when hemodynamic conditions are altered. Here, we report that p50, p65, IκBα and IKKα display different spatial and temporal patterns of expression and distribution during both chicken embryo aortic wall remodeling and intimal thickening development. Additionally, we show that both p50 and p65 were located in the nucleus of some mesenchymal cells expressing α-smooth muscle actin which are present in the spontaneous intimal thickening observed at embryonic days 12–14 of development. We also demonstrated that both NFκB subunits are present in monolayers of primary embryonic aortic endothelial cells attached to fibronectin and stimulated with complete medium. This study demonstrates for the first time the presence of activated NFκB during the remodeling of the embryonic aortic wall and the formation of intimal thickening, providing evidence that suggest a possible role for this transcription factor in the EndoMT process. PMID:19262121

  13. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  14. Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling.

    PubMed

    Yalcin, Huseyin C

    2014-12-01

    During cardiogenesis, congenital heart defects (CHDs), generally start as local tissue abnormalities without underlying genetic causes, suggesting abnormal hemodynamics may be an important source. Due to the scarcity of experimental techniques that permits the formation of minimally-invasive and well-controlled cardiac perturbations, experimental investigation of embryonic development of CHD via in-vivo models is difficult. In this study, in order to investigate the relationship between abnormal mechanical signaling and embryonic CHD development, a previously developed laser-based technique was adopted to alter chicken embryonic cardiovascular development. The technique incorporates two-photon fluorescence microscopy to visualize deep tissue while femtosecond-pulsed laser photodisruption is used to ablate targeted tissue. Vitelline vessel remodeling under abnormal hemodynamics was the prime concern of the study. In order to alter the hemodynamics, blood flowing inside 50-300 µm diameter Hamburger-Hamilton 24 embryonic vessels was selectively ablated. Red blood cells in the blood and endothelial cells of the vessel walls were damaged as a result of ablation. Cellular injuries led to micro-occlusions in the vessels. Several micro-occlusions formed stable clots, resulting in a complete cessation of blood flow in the targeted vessels. By measuring blood velocities in the surrounding vessels via line scanning technique, the subsequent redistribution of blood flow in the immediate upstream and downstream vessels was revealed. The network was analyzed after 24 h, and it was found to be degraded. Degradation of the entire network can be attributed to the abnormalities in hemodynamics within the vessels. For studying embryonic development of heart defects under disturbed flow conditions, the present study can be extended to clot a blood vessel inside the embryo or a vitelline vessel in the vicinity of the heart. These results demonstrate that, laser-based noninvasive

  15. Fasudil, a Rho-kinase inhibitor, prevents intima-media thickening in a partially ligated carotid artery mouse model: Effects of fasudil in flow-induced vascular remodeling

    PubMed Central

    Zhang, Xiangyu; Zhang, Tao; Gao, Fu; Li, Qingle; Shen, Chenyang; Li, Yankui; Li, Wei; Zhang, Xiaoming

    2015-01-01

    Vascular remodeling in response to hemodynamic alterations is a physiological process that requires coordinated signaling between endothelial, inflammatory and vascular smooth muscle cells (VSMCs). Extensive experimental and clinical studies have indicated the critical role of the Ras homolog gene family, member A/Rho-associated kinase (ROCK) signaling pathway in the pathogenesis of cardiovascular disease, where ROCK activation has been demonstrated to promote inflammation and remodeling through inducing the expression of proinflammatory cytokines and adhesion molecules in endothelial cells and VSMCs. However, the role of ROCK in flow-induced vascular remodeling has not been fully defined. The current study aimed to investigate the effect of the ROCK signaling pathway in flow-induced vascular remodeling by comparing the responses to partial carotid artery ligation in mice treated with fasudil (a ROCK inhibitor) and untreated mice. Intima-media thickness and neointima formation were evaluated by morphology. VSMC proliferation and inflammation of the vessel wall were assessed by immunohistochemistry. In addition, the expression levels of ROCK and the downstream effectors of ROCK, myosin light chain (MLC) and phosphorylated-MLC (p-MLC), were quantified by western blot analysis. Following a reduction in blood flow, ROCK1 and p-MLC expression increased in the untreated left common carotid arteries (LCA). Fasudil-treated mice developed a significantly smaller intima-media thickness compared with the untreated mice. Quantitative immunohistochemistry of the fasudil-treated LCA indicated that there was a reduction in proliferation when compared with untreated vessels. There were fewer CD45+ cells observed in the fasudil-treated LCA compared with the untreated LCA. In conclusion, the expression of ROCK was enhanced in flow-induced carotid artery remodeling and ROCK inhibition as a result of fasudil treatment may attenuate flow-induced carotid artery remodeling. PMID:26458725

  16. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling.

    PubMed

    Heise, Rebecca L; Link, Patrick A; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  17. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling

    PubMed Central

    Heise, Rebecca L.; Link, Patrick A.; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  18. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment.

    PubMed

    Milbreta, Ulla; von Boxberg, Ysander; Mailly, Philippe; Nothias, Fatiha; Soares, Sylvia

    2014-05-01

    Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study. Immediately after a spinal cord hemisection at thoracic level 8-9, we injected ChABC intrathecally at the sacral level, repeated three times until 10 days post-injury. Our results show an effective cleavage of CSPG glycosaminoglycan chains and stimulation of axonal remodeling within the injury site, accompanied by an extended period of astrocyte remodeling (up to 4 weeks). Interestingly, ChABC treatment favored an orientation of astrocytic processes directed toward the injury, in close association with axons at the lesion entry zone, suggesting a correlation between axon and astrocyte remodeling. Further, during the first weeks post-injury, ChABC treatment affected the morphology of laminin-positive blood vessel basement membranes and vessel-independent laminin deposits: hypertrophied blood vessels with detached or duplicated basement membrane were more numerous than in lesioned untreated animals. In contrast, at later time points, laminin expression increased and became more directly associated with newly formed blood vessels, the size of which tended to be closer to that found in intact tissue. Our data reinforce the idea that ChABC injection in combination with other synergistic treatments is a promising therapeutic strategy for SCI repair.

  19. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension

    PubMed Central

    Hernanz, R; Martínez-Revelles, S; Palacios, R; Martín, A; Cachofeiro, V; Aguado, A; García-Redondo, L; Barrús, M T; de Batista, P R; Briones, A M; Salaices, M; Alonso, M J

    2015-01-01

    Background and Purpose Toll-like receptor 4 (TLR4) signalling contributes to inflammatory cardiovascular diseases, but its role in hypertension and the associated vascular damage is not known. We investigated whether TLR4 activation contributed to angiotensin II (AngII)-induced hypertension and the associated vascular structural, mechanical and functional alterations. Experimental Approach AngII was infused (1.44 mg·kg−1·day−1, s.c.) for 2 weeks in C57BL6 mice, treated with a neutralizing anti-TLR4 antibody or IgG (1 μg·day−1); systolic BP (SBP) and aortic cytokine levels were measured. Structural, mechanical and contractile properties of aortic and mesenteric arterial segments were measured with myography and histology. RT-PCR and Western blotting were used to analyse these tissues and cultured vascular smooth muscle cells (VSMC) from hypertensive rats (SHR). Key Results Aortic TLR4 mRNA levels were raised by AngII infusion. Anti-TLR4 antibody treatment of AngII-treated mice normalised: (i) increased SBP and TNF-α, IL-6 and CCL2 levels; (ii) vascular structural and mechanical changes; (iii) altered aortic phenylephrine- and ACh-induced responses; (iv) increased NOX-1 mRNA levels, superoxide anion production and NAD(P)H oxidase activity and effects of catalase, apocynin, ML-171 and Mito-TEMPO on vascular responses; and (v) reduced NO release and effects of L-NAME on phenylephrine-induced contraction. In VSMC, the MyD88 inhibitor ST-2825 reduced AngII-induced NAD(P)H oxidase activity. The TLR4 inhibitor CLI-095 reduced AngII-induced increased phospho-JNK1/2 and p65 NF-κB subunit nuclear protein expression. Conclusions and Implications TLR4 up-regulation by AngII contributed to the inflammation, endothelial dysfunction, vascular remodelling and stiffness associated with hypertension by mechanisms involving oxidative stress. MyD88-dependent activation and JNK/NF-κB signalling pathways participated in these alterations. PMID:25712370

  20. C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling

    PubMed Central

    Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis

    2015-01-01

    Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013

  1. Evidence of intra-hepatic vascular proliferation remodeling early after cure in experimental schistosomiasis mansoni: an immunohistochemical descriptive study.

    PubMed

    Abdel Fattah, Nashwa S; Ahmed, Naglaa S

    2012-01-01

    Experimental studies have demonstrated the occurrence of angiogenesis, blood vessels formation from pre-existing vessels, in the initial phase of bilharzial granuloma formation and during fibrosis progression in chronic hepatic schistosomiasis. Paradoxically, a recent work demonstrated an occurrence of angiogenesis during fibrosis regression months after curative treatment. Studies regarding the in situ kinetics of blood vessels in the phase of granuloma resolution and liver tissue healing early after treatment are lacking. The current work compared the kinetics of blood vessels by immunohistochemical staining using CD34, vascular endothelial growth factor (VEGF) and actin in the livers of normal control mice, Schistosoma mansoni infected mice and mice 2 weeks after curative treatment. The present study demonstrated a process of angiogenesis remodeling in the liver in the curative phase of hepatic schistosomiasis during the stage of granuloma resolution. Such finding raises the evidence of the importance and potential beneficial effect of vascular proliferation in the process of healing and restoration of liver tissue functions. Thus, blocking of angiogenesis may not represent the appropriate therapeutic target for the early treatment of schistosomal liver fibrosis.

  2. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    NASA Astrophysics Data System (ADS)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  3. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway.

    PubMed

    Bihl, Ji C; Zhang, Cheng; Zhao, Yuhui; Xiao, Xiang; Ma, Xiaotang; Chen, Yusen; Chen, Shuzhen; Zhao, Bin; Chen, Yanfang

    2015-10-01

    Angiotensin (Ang)-(1-7) is a potential vasoprotective peptide. In the present study, we investigated its counteractive effects to Ang II on vascular smooth muscle cells (VSMCs) and intracerebral hemorrhagic stroke (ICH) through inflammatory mechanism. In in vitro experiments, human brain VSMCs (HBVSMCs) were treated with vehicle, Ang II, Ang II+Ang-(1-7), Ang II+A-779 or Ang II+Ang-(1-7)+A-779 (Mas receptor antagonist). HBVSMC proliferation, migration and apoptosis were determined by methyl thiazolyltetrazolium, wound healing assay and flow cytometry, respectively. In in vivo experiments, C57BL/6 mice were divided into vehicle, Ang II, Ang II+Ang-(1-7), Ang II+A-779 or Ang II+Ang-(1-7)+A-779 groups before they were subjected to collagenase-induced ICH or sham surgery. Hemorrhage volume and middle cerebral artery (MCA) remodeling were determined by histological analyses. Levels of NFκB, inhibitor of κBα (IκBα), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein 1 (MCP-1) and interleukin (IL-8) were measured by western blot or ELISA. We found that 1) Ang II increased HBVSMC migration, proliferation and apoptosis, and increased the blood pressure (BP), neurological deficit score, MCA remodeling and hemorrhage volume in ICH mice. 2) Ang-(1-7) counteracted these effects of Ang II, which was independent of BP, with the down-regulation of NFκB, up-regulation of IκBα, and decreased levels of TNF-α, MCP-1 and IL-8. 3) The beneficial effects of Ang-(1-7) could be abolished by A-779. In conclusion, Ang-(1-7) counteracts the effects of Ang II on ICH via modulating NFκB inflammation pathway in HBVSMCs and cerebral microvessels.

  4. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  5. Coupled simulation of vascular growth and remodeling, hemodynamics and stress-mediated mechanotransduction

    NASA Astrophysics Data System (ADS)

    Wu, Jiacheng; Shadden, Shawn C.

    2015-11-01

    A computational framework to couple vascular G&R, blood flow simulation and stress-mediated mechanotransduction is derived for patient specific geometry. A hyperelastic constitutive relation is considered for vascular material and vessel wall is modeled via constrained mixture theory. The coupled simulation is divided into three time scales - G&R (weeks-years), hemodynamics (seconds) and stress-mediated mechanotransduction (much less than 1 second). G&R is simulated and vessel wall deformation (and tension) is computed to obtain the current vessel geometry, which defines the new boundary for blood flow. Hemodynamics are then simulated in the updated domain to calculate WSS field. A system of ODE's is derived based on conservation law and phenomenological models to describe the signaling pathways from mechanical stimuli (WSS, wall tension) to mass production rate of vascular constituents, which, in turn, changes the kinetics of G&R. To reduce computation cost, blood flow is only simulated when G&R causes significant change to geometry, and steady state response of the ODE system for mechanotransduction is used to characterize the influence of WSS and wall tension on G&R, due to separation of three time scales.

  6. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    PubMed Central

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities. PMID

  7. Estradiol improves pulmonary hemodynamics and vascular remodeling in perinatal pulmonary hypertension.

    PubMed

    Parker, T A; Ivy, D D; Galan, H L; Grover, T R; Kinsella, J P; Abman, S H

    2000-02-01

    Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs. PMID:10666122

  8. Abnormalities associated with progressive aortic vascular dysfunction in chronic kidney disease

    PubMed Central

    Ameer, Omar Z.; Boyd, Rochelle; Butlin, Mark; Avolio, Alberto P.; Phillips, Jacqueline K.

    2015-01-01

    Increased stiffness of large arteries in chronic kidney disease (CKD) has significant clinical implications. This study investigates the temporal development of thoracic aortic dysfunction in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Animals aged 12 and 18 weeks were studied alongside age-matched Lewis controls (total n = 94). LPK rodents had elevated systolic blood pressure, left ventricular hypertrophy and progressively higher plasma creatinine and urea. Relative to Lewis controls, LPK exhibited reduced maximum aortic vasoconstriction (Rmax) to noradrenaline at 12 and 18 weeks, and to K+ (12 weeks). Sensitivity to noradrenaline was greater in 18-week-old LPK vs. age matched Lewis (effective concentration 50%: 24 × 10−9 ± 78 × 10−10 vs. 19 × 10−8 ± 49 × 10−9, P < 0.05). Endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation was diminished in LPK, declining with age (12 vs. 18 weeks Rmax: 80 ± 8% vs. 57 ± 9% and 92 ± 6% vs. 70 ± 9%, P < 0.05, respectively) in parallel with the decline in renal function. L-Arginine restored endothelial function in LPK, and L-NAME blunted acetylcholine relaxation in all groups. Impaired nitric oxide synthase (NOS) activity was recovered with L-Arginine plus L-NAME in 12, but not 18-week-old LPK. Aortic calcification was increased in LPK rats, as was collagen I/III, fibronectin and NADPH-oxidase subunit p47 (phox) mRNAs. Overall, our observations indicate that the vascular abnormalities associated with CKD are progressive in nature, being characterized by impaired vascular contraction and relaxation responses, concurrent with the development of endothelial dysfunction, which is likely driven by evolving deficits in NO signaling. PMID:26042042

  9. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  10. Host-derived neoangiogenesis with short-term immunosuppression allows incorporation and remodeling of vascularized diaphyseal allogeneic rabbit femur transplants.

    PubMed

    Giessler, Goetz A; Zobitz, Mark; Friedrich, Patricia F; Bishop, Allen T

    2009-06-01

    The purpose of this study was to demonstrate that living bone allotransplants can incorporate, remodel, and maintain mechanical properties without long-term immunosuppression in a fashion comparable to living autotransplants. For this, viability is maintained by repair of nutrient vessels and neovascularization from implanted host-derived vasculature. Microsurgically revascularized femoral diaphysis allotransplants were transferred from young male New-Zealand-White (NZW) into 4 groups of male Dutch-Belted (DB) rabbits. Short-term immunosuppression by tacrolimus (IS, groups 4 and 5) and host-derived neovascularization (NV) from implanted fascial flaps was used to maintain viability (groups 3 and 5) as independent variables. Group 2 received neither IS nor NV. Vascularized pedicled autotransplants were orthotopically transplanted in group 1. After 16 weeks, transplants were evaluated using radiologic, histologic, biomechanical, and histomorphometric parameters. Vascularized bone allotransplants treated with both short-term IS and host-derived NV (group 5) healed in a fashion similar to pedicled autotransplants (group 1). Their radiographic scores were higher than other groups. Groups with patent fascial flaps (3 and 5) showed significantly greater neoangiogenesis than ligated controls (2 and 4). Tacrolimus administration did not affect neoangiogenesis. Elastic modulus and ultimate stress were significantly greater in autogenous bone than in allotransplanted femora. Biomechanical properties were not significantly different among allotransplants. Bone turnover was decreased with IS, but increased with NV by the implanted fascial flaps. Living allogeneic femoral allotransplants treated with short-term IS and host-derived neoangiogenesis can lead to stable transplant incorporation in this rabbit model. The combination of both factors optimizes bone healing. Transplant mineralization is improved with neoangiogenesis but diminished with IS.

  11. Early origins of adult disease: low birth weight and vascular remodeling.

    PubMed

    Visentin, Silvia; Grumolato, Francesca; Nardelli, Giovanni Battista; Di Camillo, Barbara; Grisan, Enrico; Cosmi, Erich

    2014-12-01

    Cardiovascular diseases (CVD) and diabetes still represent the main cause of mortality and morbidity in the industrialized world. Low birth weight (LBW), caused by intrauterine growth restriction (IUGR), was recently known to be associated with increased rates of CVD and non-insulin dependent diabetes in adult life (Barker's hypothesis). Well-established animal models have shown that environmentally induced IUGR (diet, diabetes, hormone exposure, hypoxia) increases the risk of a variety of diseases later in life with similar phenotypic outcomes in target organs. This suggests that a range of disruptions in fetal and postnatal growth may act through common pathways to regulate the developmental programming and produce a similar adult phenotype. The identification of all involved signaling cascades, underlying the physiopathology of these damages in IUGR fetuses, with their influence on adult health, is still far from satisfactory. The endothelium may be important for long-term remodeling and in the control of elastic properties of the arterial wall. Several clinical and experimental studies showed that IUGR fetuses, neonates, children and adolescents present signs of endothelial dysfunction, valuated by aorta intima media thickness, carotid intima media thickness and stiffness, central pulse wave velocity, brachial artery flow-mediated dilation, laser Doppler skin perfusion and by the measure of arterial blood pressure. In utero identification of high risk fetuses and long-term follow-up are necessary to assess the effects of interventions aimed at preventing pregnancy-induced hypertension, reducing maternal obesity, encouraging a healthy life style and preventing childhood obesity on adult blood pressure and cardiovascular disease in later life.

  12. Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis

    PubMed Central

    2009-01-01

    Background The aim of the present study was to explore the occurrence of fibrocytes in tissue and to investigate whether the appearance of fibrocytes may be linked to structural changes of the parenchyme and vasculature in the lungs of patients with obliterative bronchiolitis (OB) following lung or bone marrow transplantation. Methods Identification of parenchyme, vasculature, and fibrocytes was done by histological methods in lung tissue from bone marrow or lung-transplanted patients with obliterative bronchiolitis, and from controls. Results The transplanted patients had significantly higher amounts of tissue in the alveolar parenchyme (46.5 ± 17.6%) than the controls (21.7 ± 7.6%) (p < 0.05). The patients also had significantly increased numbers of fibrocytes identified by CXCR4/prolyl4-hydroxylase, CD45R0/prolyl4-hydroxylase, and CD34/prolyl4-hydroxylase compared to the controls (p < 0.01). There was a correlation between the number of fibrocytes and the area of alveolar parenchyma; CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.05) and CD34/prolyl 4-hydroxylase (p < 0.05). In the pulmonary vessels, there was an increase in the endothelial layer in patients (0.31 ± 0.13%) relative to the controls (0.037 ± 0.02%) (p < 0.01). There was a significant correlation between the number of fibrocytes and the total area of the endothelial layer CXCR4/prolyl 4-hydroxylase (p < 0.001), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). The percent areas of the lumen of the vessels were significant (p < 0.001) enlarged in the patient with OB compared to the controls. There was also a correlation between total area of the lumen and number of fibrocytes, CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). Conclusion Our results indicate that fibrocytes are associated with pathological remodelling processes in patients with OB and that tissue

  13. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  14. Prognostic heterogeneity of diastolic abnormalities along left ventricular remodeling continuum according to survival rates and laser polarimetry of blood

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Ivashchuk, O. I.; Kolomoiets, M. Y.; Mikhaliev, K. O.; Chursina, T. Y.

    2011-09-01

    The results of examination of 35 arterial hypertension and coronary heart disease patients are presented. The clinical, paraclinical and echocardiographic examinations were performed, and the parameters of prognosis (survival) according to Seattle Heart Failure Model, as well as the optical (polarimetric) properties of erythrocytic suspension were determined. The group of patients under examination was stratified by patterns of remodeling of left ventricle (LV). It was determined that increasing of anisotropy of erythrocytic suspension along LV remodeling patterns continuum correlates with aggravation of structural and functional state of LV and is associated with unfavorable prognosis.

  15. Prognostic heterogeneity of diastolic abnormalities along left ventricular remodeling continuum according to survival rates and laser polarimetry of blood

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Ivashchuk, O. I.; Kolomoiets, M. Y.; Mikhaliev, K. O.; Chursina, T. Y.

    2012-01-01

    The results of examination of 35 arterial hypertension and coronary heart disease patients are presented. The clinical, paraclinical and echocardiographic examinations were performed, and the parameters of prognosis (survival) according to Seattle Heart Failure Model, as well as the optical (polarimetric) properties of erythrocytic suspension were determined. The group of patients under examination was stratified by patterns of remodeling of left ventricle (LV). It was determined that increasing of anisotropy of erythrocytic suspension along LV remodeling patterns continuum correlates with aggravation of structural and functional state of LV and is associated with unfavorable prognosis.

  16. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    PubMed Central

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  17. Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a Magnetic Resonance Albumin-Binding Contrast Agent

    PubMed Central

    Phinikaridou, Alkystis; Lorrio, Silvia; Zaragoza, Carlos; Botnar, René M.

    2015-01-01

    Background— Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3−/−) and wild-type (WT) mice in vivo. Methods and Results— WT and NOS3−/− mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s−1) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm2) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3−/− mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s−1]=15 days: NOS3−/−4.02 [interquartile range, IQR, 3.77–4.41] versus WT2.39 [IQR, 2.35–2.92]; 30 days: NOS3−/−4.23 [IQR, 3.94–4.68] versus WT2.64 [IQR, 2.33–2.80]). Similarly, vessel wall enhancement was higher in NOS3−/− but recovered in WT mice (area [mm2]=15 days: NOS3−/−5.20 [IQR, 4.68–6.80] versus WT2.13 [IQR, 0.97–3.31]; 30 days: NOS3−/−7.35 [IQR, 5.66–8.61] versus WT1.60 [IQR, 1.40–3.18]). Ex vivo histological studies corroborated the MRI findings. Conclusions— We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an

  18. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanism(s) controlling cell migration during vascular morphogenesis in vivo remain largely undefined. To address this within a physiological context, we used retinaldehyde dehydrogenase-2 (Raldh2) null mouse embryos and demonstrate that retinoic acid (RA) deficiency results in abnorm...

  19. Abnormalities in hyperpolarized (129)Xe magnetic resonance imaging and spectroscopy in two patients with pulmonary vascular disease.

    PubMed

    Dahhan, Talal; Kaushik, Shiv S; He, Mu; Mammarappallil, Joseph G; Tapson, Victor F; McAdams, Holman P; Sporn, Thomas A; Driehuys, Bastiaan; Rajagopal, Sudarshan

    2016-03-01

    The diagnosis of pulmonary vascular disease (PVD) is usually based on hemodynamic and/or clinical criteria. Noninvasive imaging of the heart and proximal vasculature can also provide useful information. An alternate approach to such criteria in the diagnosis of PVD is to image the vascular abnormalities in the lungs themselves. Hyperpolarized (HP) (129)Xe magnetic resonance imaging (MRI) is a novel technique for assessing abnormalities in ventilation and gas exchange in the lungs. We applied this technique to two patients for whom there was clinical suspicion of PVD. Two patients who had significant hypoxemia and dyspnea with no significant abnormalities on computed tomography imaging or ventilation-perfusion scan and only mild or borderline pulmonary arterial hypertension at catheterization were evaluated. They underwent HP (129)Xe imaging and subsequently had tissue diagnosis obtained from lung pathology. In both patients, HP (129)Xe imaging demonstrated normal ventilation but markedly decreased gas transfer to red blood cells with focal defects on imaging, a pattern distinct from those previously described for idiopathic pulmonary fibrosis or obstructive lung disease. Pathology on both patients later demonstrated severe PVD. These findings suggest that HP (129)Xe MRI may be useful in the diagnosis of PVD and monitoring response to therapy. Further studies are required to determine its sensitivity and specificity in these settings. PMID:27162620

  20. Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration.

    PubMed

    Kabara, Maki; Kawabe, Jun-ichi; Matsuki, Motoki; Hira, Yoshiki; Minoshima, Akiho; Shimamura, Kohei; Yamauchi, Atsushi; Aonuma, Tatsuya; Nishimura, Masato; Saito, Yukihiro; Takehara, Naofumi; Hasebe, Naoyuki

    2014-12-01

    Adventitial microvessels, vasa vasorum in the vessel walls, have an active role in the vascular remodeling, although its mechanisms are still unclear. It has been reported that microvascular pericytes (PCs) possess mesenchymal plasticity. Therefore, microvessels would serve as a systemic reservoir of stem cells and contribute to the tissues remodeling. However, most aspects of the biology of multipotent PCs (mPCs), in particular of pathological microvessels are still obscure because of the lack of appropriate methods to detect and isolate these cells. In order to examine the characteristics of mPCs, we established immortalized cells residing in adventitial capillary growing at the injured vascular walls. We recently developed in vivo angiogenesis to observe adventitial microvessels using collagen-coated tube (CCT), which also can be used as an adventitial microvessel-rich tissue. By using the CCT, CD146- or NG2-positive cells were isolated from the adventitial microvessels in the injured arteries of mice harboring a temperature-sensitive SV40 T-antigen gene. Several capillary-derived endothelial cells (cECs) and PCs (cPCs) cell lines were established. cECs and cPCs maintain a number of key endothelial and PC features. Co-incubation of cPCs with cECs formed capillary-like structure in Matrigel. Three out of six cPC lines, termed capillary mPCs demonstrated both mesenchymal stem cell- and neuronal stem cell-like phenotypes, differentiating effectively into adipocytes, osteoblasts, as well as schwann cells. mPCs differentiated to ECs and PCs, and formed capillary-like structure on their own. Transplanted DsRed-expressing mPCs were resident in the capillary and muscle fibers and promoted angiogenesis and myogenesis in damaged skeletal muscle. Adventitial mPCs possess transdifferentiation potential with unique phenotypes, including the reconstitution of capillary-like structures. Their phenotype would contribute to the pathological angiogenesis associated with vascular

  1. From the Cover: Zinc Deficiency Worsens and Supplementation Prevents High-Fat Diet Induced Vascular Inflammation, Oxidative Stress, and Pathological Remodeling.

    PubMed

    Chen, Jun; Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Dai, Xiaozhen; Kong, Maiying; Cai, Lu; Wang, Yuehui; Shi, Bingyin; Tan, Yi

    2016-09-01

    Obesity has become a common public health problem in the world and raises the risk of various cardiovascular diseases. Zinc is essential for multiple organs in terms of normal structure and function. The present study investigated the effects of high fat diet (HFD) induced obesity on the aorta in mice, and evaluated whether it can be affected by zinc deficiency or supplementation. Four-week-old male C57BL/6J mice were fed HFD with varied amounts of zinc (deficiency, adequate and supplementation) for 3 and 6 months. Results showed that HFD feeding induced a time-dependent aortic remodeling, demonstrated by increased vessel wall thickness, tunica cell proliferation and fibrotic responses, and inflammatory response, reflected by increased expression of inflammatory cytokines (tumor necrosis factor-α and vascular cell adhesion molecule 1). HFD feeding also caused aortic oxidative damage, reflected by 3-nitrotyrosine and 4-hydroxy-2-nonenal accumulation, and down-regulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and function, shown by down-regulation of its downstream antioxidants, catalase, NAD(P)H dehydrogenase (quinone 1), and metallothionein expression. The vascular effects of obesity-induced by HFD was exacerbated by zinc deficiency but significantly improved by zinc supplementation. In addition, down-regulation of Nrf2 function and associated antioxidants expression were also worsened by zinc deficiency but improved by zinc supplementation. These results suggest that HFD induces aortic remodeling, which can be exacerbated by zinc deficiency and improved by zinc supplementation. PMID:27370414

  2. Motion-related vascular abnormalities at the craniocervical junction: illustrative case series and literature review.

    PubMed

    Ravindra, Vijay M; Neil, Jayson A; Mazur, Marcus D; Park, Min S; Couldwell, William T; Taussky, Philipp

    2015-04-01

    The craniocervical junction (CCJ) functions within a complicated regional anatomy necessary to protect and support vital neurovascular structures. In select instances, vascular pathology can be attributed to this complicated interplay of motion and structure found within this narrow space. The authors report 3 cases of complex vascular pathology related to motion at the CCJ and detail the management of these cases. Two cases involved posterior circulation vascular compression syndromes, and one case involved a vascular anomaly and its relation to aneurysm formation and rupture. The patient in Case 1 was a 66-year-old man with a history of syncopal episodes resulting from the bilateral vertebral artery becoming occluded when he rotated his head. Successful microsurgical decompression at the skull base resulted in patent bilateral vertebral artery V3 segments upon head movement in all directions. The patient in Case 2 was a 53-year-old woman who underwent elective resection of a right temporal meningioma and who experienced postoperative drowsiness, dysphagia, and mild right-arm ataxia. Subsequent MRI demonstrated bilateral posterior inferior cerebel-lar artery (PICA) strokes. Cerebral angiography showed a single PICA, of extradural origin, supplying both cerebellar hemispheres. The PICA exhibited dynamic extradural compression when the patient rotated her head; the bilateral PICA strokes were due to head rotation during surgical positioning. In Case 3, a 37-year-old woman found unconscious in her home had diffuse subarachnoid hemorrhage and evidence of a right PICA aneurysm. A right far-lateral craniectomy was performed for aneurysm clipping, and she was found to have a dissecting aneurysm with an associated PICA originating extradurally. There was a shearing phenomenon of the extradural PICA along the dura of the foramen magnum, and this microtraumatic stress imposed on the vessel resulted in a dissecting aneurysm. This series of complex and unusual cases

  3. Abnormal thallium kinetics in postoperative coarctation of the aorta: evidence for diffuse hypertension-induced vascular pathology

    SciTech Connect

    Kimball, B.P.; Shurvell, B.L.; Mildenberger, R.R.; Houle, S.; McLaughlin, P.R.

    1986-03-01

    After operative correction of congenital coarctation of the aorta, patients continue to have excess cardiovascular mortality, including manifestations of ischemic heart disease. Previous morphologic studies support the concept of direct hypertensive vascular injury in these patients. To determine whether abnormalities of myocardial perfusion were present in an asymptomatic group of patients with coarctation repair, 18 men and 9 women with a mean age of 26 years (range 19 to 41) were studied between 2 and 25 years after operative correction. Stress electrocardiography and quantitative thallium imaging by a circumferential profile technique were used. These patients were compared with a normal group, statistically defined as having a less than 1% prevalence of significant obstructive coronary artery disease. The postoperative coarctation group demonstrated a reduction in global thallium redistribution in each view analyzed. As compared with findings in the control subjects, thallium washout in the anterior view (41.9 versus 48.6%, p = 0.02) and left anterior oblique projection (40.5 versus 48.2%, p = 0.007) was significantly diminished. Although the postoperative coarctation group had a lower thallium redistribution rate in the lateral view (41.4 versus 46.3%, p = 0.09) this difference did not reach statistical significance because of the intrinsic variability of this projection. Plots of the median percent thallium washout revealed independence from circumferential profile angle, indicating global abnormalities in perfusion. No correlation between clinical variables and thallium kinetics could be established, suggesting marked individual variability in the development of this vascular lesion. The observation of abnormal thallium kinetics in patients with coarctation repair may have consequences for long-term follow-up and therapy.

  4. Hindlimb Suspension as a Model to Study Ophthalmic Complications in Microgravity Status Report: Optimization of Rat Retina Flat Mounts Staining to Study Vascular Remodeling

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Zanello, Susana B.

    2014-01-01

    Preliminary data from a prior tissue-sharing experiment has suggested that early growth response protein-1 (Egr1), a transcription factor involved in various stress responses in the vasculature, is induced in the rat retina after 14 days of hindlimb suspension (HS) and may be evidence that mechanical stress is occurring secondary to the cephalad fluid shift. This mechanical stress could cause changes in oxygenation of the retina, and the subsequent ischemia- or inflammation-driven hypoxia may lead to microvascular remodeling. This microvascular remodeling process can be studied using image analysis of retinal vessels and can be then be quantified by the VESsel GENeration Analysis (VESGEN) software, a computational tool that quantifies remodeling patterns of branching vascular trees and capillary or vasculogenic networks. Our project investigates whether rodent HS is a valid model to study the effects of simulated-weightlessness on ocular structures and their relationship with intracranial pressure (ICP). One of the hypotheses to be tested is that HS-induced cephalad fluid shift is accompanied by vascular engorgement that produces changes in retinal oxygenation, leading to oxidative stress, hypoxia, microvascular remodeling, and cellular degeneration. We have optimized the procedure to obtain flat mounts of rat retina, staining of the endothelial lining in vasculature and acquisition of high quality images suitable for VESGEN analysis. Briefly, eyes were fixed in 4% paraformaldehyde for 24 hours and retinas were detached and then mounted flat on microscope slides. The microvascular staining was done with endothelial cell-specific isolectin binding, coupled to Alexa-488 fluorophore. Image acquisition at low magnification and high resolution was performed using a new Leica SP8 confocal microscope in a tile pattern across the X,Y plane and multiple sections along the Z-axis. This new confocal microscope has the added capability of dye separation using the Linear

  5. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  6. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  7. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

    PubMed

    Li, Qian; Mao, Min; Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  8. Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice.

    PubMed

    Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2016-01-01

    In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6(-/-) mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6(-/-) and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6(-/-) mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6(-/-) mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6(-/-) mice on a HFD as compared with IL-6(-/-) mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243

  9. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. PMID:25656991

  10. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  11. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities.

    PubMed

    Kathuria, Sonam; Mahadevan, Nanjaian; Balakumar, Pitchai

    2013-02-01

    Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating

  12. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed Central

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-01-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  13. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-12-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection. PMID:27625829

  14. Cases of limb-body wall complex: Early amnion rupture, vascular disruption, or abnormal splitting of the embryo?

    PubMed

    Crespo, Frank; Pinar, Halit; Kostadinov, Stefan

    2012-12-01

    We report two cases of limb-body wall complex (LBWC), also known as body stalk anomaly, a rare form of body wall defect incompatible with life. The first case was identified during a level II ultrasound examination performed at 7 wk gestational age. The delivery was by breech extraction at 39 wk and 4 days. The second case was delivered by spontaneous vaginal delivery at 35 wk and 5 days. Karyotype analysis was normal in both fetuses. The phenotype of LBWC is variable, but commonly identified features include: exencephaly, limb defects, and either facial clefts or thoraco-abdominoschisis. The exact etiology remains uncertain, as the disorder has been regarded as sporadic with low recurrence. Vascular disruption during early embryogenesis, early amnion rupture, abnormal splitting of the embryo, and failure of amnion fusion have been implicated in the pathogenesis of LBWC. A role for possible gene mutation and maternal use of alcohol, tobacco, or illicit drugs has also been suggested. Detailed ultrasonography along with biochemical screening may allow for early detection.

  15. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury

    PubMed Central

    Krum, Janette M.; Mani, Nina; Rosenstein, Jeffrey M.

    2008-01-01

    Following trauma to the brain significant changes occur in both the astroglial and vascular components of the neuropil. Angiogenesis is required to re-establish metabolic support and astrocyte activation encompasses several functions including scar formation and the production of growth factors. VEGF has seminal involvement in the process of brain repair and is upregulated during many pathological events. VEGF signaling is regulated mainly through its two primary receptors: flk-1 (KDR/VEGF-R2) is expressed on vascular endothelium and some neurons and flt-1 (VEGF-R1) in the CNS, is expressed predominantly by activated astrocytes. Using an injury model of chronic minipump infusion of neutralizing antibodies (NA) to block VEGF receptor signaling, this study takes advantage of these differences in VEGF receptor distribution in order to understand the role the cytokine plays after brain injury. Infusion of NA to flk-1 caused a significant decrease in vascular proliferation and increased endothelial cell degeneration compared to control IgG infusions but had no effect on astrogliosis. By contrast infusion of NA to flt-1 significantly decreased astroglial mitogenicity and scar formation and caused some increase in endothelial degeneration. Neutralization of the flt-1 receptor function, but not flk-1, caused significant reduction in the astroglial expression of the growth factors, CNTF and FGF by seven days. These data suggest that after CNS injury, endogenous VEGF upregulation (by astrocytes) induces angiogenesis and, by autocrine signaling, increases both astrocyte proliferation and facilitates expression of growth factors. It is likely that VEGF plays an important role in aspects of astroglial scar formation. PMID:18482723

  16. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert; Dewachter, Laurence

    2015-04-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. PMID:25617377

  17. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert; Dewachter, Laurence

    2015-04-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH.

  18. Upregulation of MicroRNA-214 Contributes to the Development of Vascular Remodeling in Hypoxia-induced Pulmonary Hypertension Via Targeting CCNL2

    PubMed Central

    Liu, HaiTao; Tao, Yin; Chen, Mai; Yu, Jin; Li, Wei-Jie; Tao, Ling; Li, Yan; Li, Fei

    2016-01-01

    Hypoxia-induced pulmonary hypertension (PH), which is characterized by vascular remodeling of blood vessels, is a significant complication of chronic obstructive pulmonary disease (COPD). In this study, we screened 13 candidate miRNAs in pulmonary artery smooth muscle cells (PASMCs) harvested from COPD patients with PH (n = 18) and normal controls (n = 15) and found that the expression of miR-214 was differentially expressed between these two groups. Additionally, cyclin L2 (CCNL2) was validated as a target of miR-214 in PASMCs using a luciferase assay. Based on real-time PCR, immunohistochemistry and western blot, the expression of CCNL2 was substantially downregulated in PASMCs from COPD patients with PH compared with those from normal controls. Moreover, the relationship between miRNA and mRNA expression was confirmed using real-time PCR and western blot in PASMCs transfected with miR-214 mimics. Furthermore, the introduction of miR-214 significantly promoted the proliferation of PASMCs by suppressing cell apoptosis, and this effect was mediated by the downregulation of CCNL2. Exposure of PASMCs to hypoxia significantly increased the expression of miR-214, decreased the expression of CCNL2, and promoted cell proliferation. However, these effects were significantly attenuated by the introduction of miR-214 inhibitors, which significantly downregulated miR-214 expression and upregulated CCNL2 expression. PMID:27381447

  19. Impairment of the accumulation of decidual T cells, NK cells, and monocytes, and the poor vascular remodeling of spiral arteries, were observed in oocyte donation cases, regardless of the presence or absence of preeclampsia.

    PubMed

    Nakabayashi, Yasushi; Nakashima, Akitoshi; Yoshino, Osamu; Shima, Tomoko; Shiozaki, Arihiro; Adachi, Tomoko; Nakabayashi, Masao; Okai, Takashi; Kushima, Miki; Saito, Shigeru

    2016-04-01

    In oocyte donation (OD) pregnancies, a fetus is a complete allograft to the maternal host and OD pregnancies are an independent risk factor for preeclampsia. Immunocompetent cells contribute to spiral artery remodeling and the failure of this process could contribute to the pathophysiology of preeclampsia. Recent data have shown that impaired autophagy of extravillous trophoblasts (EVT) may induce poor vascular remodeling in preeclampsia. We have studied the distribution of T cells, NK cells and macrophages in the decidua basalis of 14 normotensive OD pregnancies, 5 preeclamptic OD cases, 16 normotensive pregnancy cases, and 13 preeclamptic cases in natural pregnancy or autologous oocyte IVF-ET (NP/IVF). The populations of decidual CD3(+)T cells, CD8(+)T cells, CD4(+)T cells, Foxp3(+)Treg cells, CD56(+)NK cells, and CD68(+) macrophages in preeclampsia were significantly smaller than those in normal pregnancy in NP/IVF. Those frequencies in normotensive OD pregnancies or preeclamptic cases in OD pregnancies were similar to those in preeclamptic cases in NP/IVF. Impaired vascular remodeling was observed in OD pregnancies, regardless of the presence or absence of preeclampsia. The expression of p62, an impaired autophagy marker in EVT of normotensive or preeclamptic OD pregnancies, was significantly higher than that in normal pregnancies in NP/IVF. Immunological change in the decidua basalis and impairment of autophagy in EVT may induce impairment of spiral artery remodeling in OD pregnancies. PMID:26282090

  20. microRNAs and Cardiovascular Remodeling.

    PubMed

    Ono, Koh

    2015-01-01

    Heart failure (HF) is associated with significant morbidity and mortality attributable largely to structural changes in the heart and with associated cardiac dysfunction. Remodeling is defined as alteration of the mass, dimensions, or shape of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remodeling) in response to hemodynamic load and/or cardiovascular injury in association with neurohormonal activation. Remodeling may be described as physiologic or pathologic; alternatively, remodeling may be classified as adaptive or maladaptive. The importance of remodeling as a pathogenic mechanism has been controversial because factors leading to remodeling as well as the remodeling itself may be major determinants of patients' prognosis. The basic mechanisms of cardiovascular remodeling, and especially the roles of microRNAs in HF progression and vascular diseases, will be reviewed here.

  1. Clinical Implications and Pathogenesis of Esophageal Remodeling in Eosinophilic Esophagitis

    PubMed Central

    Hirano, Ikuo; Aceves, Seema S.

    2014-01-01

    In eosinophilic esophagitis (EoE), remodeling changes are manifest histologically in both the epithelium as well as in the subepithelium where lamina propria (LP) fibrosis, expansion of the muscularis propria and increased vascularity occur. The major clinical symptoms and complications of EoE are largely consequences of esophageal remodeling. Important mediators of the process include IL-5, IL-13, TGFβ1, mast cells, fibroblasts and eosinophils. Methods to detect remodeling effects include upper endoscopy, histopathology, barium esophagram, endoscopic ultrasonography, esophageal manometry, and functional luminal imaging. These modalities provide evidence of organ dysfunction that include focal and diffuse esophageal strictures, expansion of the mucosa and subepithelium, esophageal motor abnormalities and reduced esophageal distensibility. Complications of food impaction and perforations of the esophageal wall have been associated with reduction in esophageal caliber and increased esophageal mural stiffness. The therapeutic benefits of topical corticosteroids and elimination diet therapy in resolving mucosal eosinophilic inflammation of the esophagus are evident. Available therapies, however, have demonstrated variable ability to reverse existing remodeling changes of the esophagus. Systemic therapies that include novel, targeted biologic agents have the potential of addressing subepithelial remodeling. Esophageal dilation remains a useful, adjunctive therapeutic maneuver in symptomatic adults with esophageal stricture. As novel treatments emerge, it is essential that therapeutic endpoints account for the fundamental contributions of esophageal remodeling to overall disease activity. PMID:24813517

  2. Development of Abnormal Hemispheric Vascular Networks Mimicking Cerebral Proliferative Angiopathy in a Child Originally Diagnosed with Deep-Seated Arteriovenous Fistula.

    PubMed

    Sakata, Hiroyuki; Fujimura, Miki; Sato, Kenichi; Niizuma, Kuniyasu; Endo, Hidenori; Tominaga, Teiji

    2016-10-01

    Cerebral proliferative angiopathy (CPA), which is characterized by diffuse vascular abnormalities with intermingled normal brain parenchyma, is a rare clinical entity distinct from classical cerebral arteriovenous malformations. Its pathology at initial state and subsequent course of progression has totally been undetermined. We herein presented a case of a child who was initially diagnosed with deep-seated arteriovenous fistula (AVF), and ultimately developed symptomatic CPA-like vascular lesion over a long period of clinical follow-up. A 7-month-old boy was incidentally found to have an AVF in the right basal ganglia and conservatively followed up. Serial magnetic resonance angiograms revealed the gradual proliferation and enlargement of pial and medullary vessels surrounding the AVF. Seven years later, he had a transient ischemic attack followed by intraventricular hemorrhage. A catheter angiogram showed a diffuse large vascular malformation composed of 2 distinct structures, including AVF in the right basal ganglia and the surrounding proliferated pial and medullary arteries in the right hemisphere. Single-photon emission computed tomography with N-isopropyl[123I]-p-iodoamphetamine revealed apparent hemodynamic compromise on the right hemisphere. Targeted embolization of the pseudoaneurysm originating from the right A1 perforator was performed to prevent rebleeding without complications. The patient had no further cerebrovascular events. Perinidal hypoperfusion induced by a deep-seated AVF could be one of the underlying pathologies of progressive angiogenic activity. This is the first case showing the development of abnormal hemispheric vascular networks mimicking CPA, which offers insight into the pathogenesis of this new entity.

  3. Gender differences in cardiac hypertrophic remodeling.

    PubMed

    Patrizio, Mario; Marano, Giuseppe

    2016-01-01

    Cardiac remodeling is a complex process that occurs in response to different types of cardiac injury such as ischemia and hypertension, and that involves cardiomyocytes, fibroblasts, vascular smooth muscle cells, vascular endothelial cells, and inflammatory cells. The end result is cardiomyocyte hypertrophy, fibrosis, inflammation, vascular, and electrophysiological remodeling. This paper reviews a large number of studies on the influence of gender on pathological cardiac remodeling and shows how sex differences result in different clinical outcomes and therapeutic responses, with males which generally develop greater cardiac remodeling responses than females. Although estrogens appear to have an important role in attenuating adverse cardiac remodeling, the mechanisms through which gender modulates myocardial remodeling remain to be identified. PMID:27364397

  4. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes

    PubMed Central

    Biessels, G. J.; de Valk, H.; Algra, A.; Rutten, G. E. H. M.; van der Grond, J.; Kappelle, L. J.

    2007-01-01

    Aims/hypothesis The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. Methods The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesions (WML), cortical and subcortical atrophy, and infarcts. Data on glucose metabolism, vascular risk factors and micro- and macrovascular disease were collected. Results Patients with type 2 diabetes had more cortical (p < 0.001) and subcortical (p < 0.01) atrophy and deep WML (p = 0.02) than the control group and their cognitive performance was worse. In multivariate regression analyses within the type 2 diabetes group, hypertension (p < 0.05) and a history of vascular events (p < 0.01) were associated with worse cognitive performance, while statin use was associated (p < 0.05) with better performance. Retinopathy and brain infarcts on MRI were associated with more severe cortical atrophy (both p < 0.01) and statin use with less atrophy (p < 0.05). Insulin level and brain infarcts were associated with more severe WML and statin use with less severe WML (all p < 0.05). Conclusions/interpretation Type 2 diabetes is associated with modest impairments in cognition, as well as atrophy and vascular lesions on MRI. This ‘diabetic encephalopathy’ is a multifactorial condition, for which atherosclerotic (macroangiopathic) vascular disease is an important determinant. Chronic hyperglycaemia, hyperinsulinaemia and hypertension may play additional roles. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0792-z) contains details of the Utrecht Diabetic Encephalopathy Study Group, which are available to

  5. Disrupted pulmonary vascular development and pulmonary hypertension in transgenic mice overexpressing transforming growth factor-alpha.

    PubMed

    Le Cras, Timothy D; Hardie, William D; Fagan, Karen; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2003-11-01

    Pulmonary vascular disease plays a major role in morbidity and mortality in infant and adult lung diseases in which increased levels of transforming growth factor (TGF)-alpha and its receptor EGFR have been associated. The aim of this study was to determine whether overexpression of TGF-alpha disrupts pulmonary vascular development and causes pulmonary hypertension. Lung-specific expression of TGF-alpha in transgenic mice was driven with the human surfactant protein (SP)-C promoter. Pulmonary arteriograms and arterial counts show that pulmonary vascular development was severely disrupted in TGF-alpha mice. TGF-alpha mice developed severe pulmonary hypertension and vascular remodeling characterized by abnormally extensive muscularization of small pulmonary arteries. Pulmonary vascular development was significantly improved and pulmonary hypertension and vascular remodeling were prevented in bi-transgenic mice expressing both TGF-alpha and a dominant-negative mutant EGF receptor under the control of the SP-C promoter. Vascular endothelial growth factor (VEGF-A), an important angiogenic factor produced by the distal epithelium, was decreased in the lungs of TGF-alpha adults and in the lungs of infant TGF-alpha mice before detectable abnormalities in pulmonary vascular development. Hence, overexpression of TGF-alpha caused severe pulmonary vascular disease, which was mediated through EGFR signaling in distal epithelial cells. Reductions in VEGF may contribute to the pathogenesis of pulmonary vascular disease in TGF-alpha mice.

  6. The Effects of Antidepressants “Fluoxetine and Imipramine” on Vascular Abnormalities and Toll Like Receptor-4 Expression in Diabetic and Non-Diabetic Rats Exposed to Chronic Stress

    PubMed Central

    Habib, Mohamed; Shaker, Safaa; El-Gayar, Nesreen; Aboul-Fotouh, Sawsan

    2015-01-01

    Several studies reveal that diabetes doubles the odds of comorbid depression with evidence of a pro-inflammatory state underlying its vascular complications. Indeed, little information is available about vascular effects of antidepressant drugs in diabetes. Method: We investigated the effect of chronic administration of fluoxetine “FLU” and imipramine “IMIP” on behavioral, metabolic and vascular abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS). Results: Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP in a comparable manner. Diabetic and non-diabetic rats exposed to CRS exhibited abnormalities in glucose homeostasis, lipid profile and vascular function, manifested by decreased endothelium-dependent relaxation, increased systolic blood pressure and histopathological atherosclerotic changes. Vascular and metabolic dysfunctions were associated with significant increase in aortic expression of TLR-4, and pro-inflammatory cytokines (TNF-α and IL-1ß). FLU ameliorated these metabolic, vascular and inflammatory abnormalities, while IMIP induced either no change or even worsening of some parameters. Conclusion: FLU has favorable effect over IMIP on metabolic, vascular and inflammatory aberrations associated with DM and CRS in Wistar rats, clarifying the preference of FLU over IMIP in management of comorbid depression in diabetic subjects. PMID:25826421

  7. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension

    PubMed Central

    Farha, Samar; Lichtin, Alan; Graham, Brian; George, Deepa; Aldred, Micheala; Hazen, Stanley L.; Loyd, James; Tuder, Rubin

    2012-01-01

    Hematopoietic myeloid progenitors released into the circulation are able to promote vascular remodeling through endothelium activation and injury. Endothelial injury is central to the development of pulmonary arterial hypertension (PAH), a proliferative vasculopathy of the pulmonary circulation, but the origin of vascular injury is unknown. In the present study, mice transplanted with BM-derived CD133+ progenitor cells from patients with PAH, but not from healthy controls, exhibited morbidity and/or death due to features of PAH: in situ thrombi and endothelial injury, angioproliferative remodeling, and right ventricular hypertrophy and failure. Myeloid progenitors from patients with heritable and/or idiopathic PAH all produced disease in xenografted mice. Analyses of hematopoietic transcription factors and colony formation revealed underlying abnormalities of progenitors that skewed differentiation toward the myeloid-erythroid lineage. The results of the present study suggest a causal role for hematopoietic stem cell abnormalities in vascular injury, right ventricular hypertrophy, and morbidity associated with PAH. PMID:22745307

  8. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development.

    PubMed

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4',6'-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.

  9. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development

    PubMed Central

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma. PMID:26492318

  10. Altered Matrix Metalloproteinase-2 and -9 Expression/Activity Links Placental Ischemia and Anti-angiogenic sFlt-1 to Uteroplacental and Vascular Remodeling and Collagen Deposition in Hypertensive Pregnancy

    PubMed Central

    Li, Wei; Mata, Karina M.; Mazzuca, Marc Q.; Khalil, Raouf A.

    2014-01-01

    Preeclampsia is a complication of pregnancy manifested as maternal hypertension and often fetal growth restriction. Placental ischemia could be an initiating event, but the linking mechanisms leading to hypertension and growth restriction are unclear. We have shown an upregulation of matrix metalloproteinases (MMPs) during normal pregnancy (Norm-Preg). To test the role of MMPs in hypertensive-pregnancy (HTN-Preg), maternal and fetal parameters, MMPs expression, activity and distribution, and collagen and elastin content were measured in uterus, placenta and aorta of Norm-Preg rats and in rat model of reduced uteroplacental perfusion pressure (RUPP). Maternal blood pressure was higher, and uterine, placental and aortic weight, and the litter size and pup weight were less in RUPP than Norm-Preg rats. Western blots and gelatin zymography revealed decreases in amount and gelatinase activity of MMP-2 and MMP-9 in uterus, placenta and aorta of RUPP compared with Norm-Preg rats. Immunohistochemistry confirmed reduced MMPs in uterus, placenta and aortic media of RUPP rats. Collagen, but not elastin, was more abundant in uterus, placenta and aorta of RUPP than Norm-Preg rats. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1) decreased MMPs in uterus, placenta and aorta of Norm-Preg rats, and vascular endothelial growth factor (VEGF) reversed the decreases in MMPs in tissues of RUPP rats. Thus placental ischemia and anti-angiogenic sFlt-1 decrease uterine, placental and vascular MMP-2 and MMP-9, leading to increased uteroplacental and vascular collagen, and growth-restrictive remodeling in HTN-Preg. Angiogenic factors and MMP activators may reverse the decrease in MMPs and enhance growth-permissive remodeling in preeclampsia. PMID:24704473

  11. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding. PMID:12270009

  12. Long-lasting intestinal bleeding in an old patient with multiple mucosal vascular abnormalities and Glanzmann's thrombasthenia: 3-year pharmacological management.

    PubMed

    Coppola, A; De Stefano, V; Tufano, A; Nardone, G; Amoriello, A; Cerbone, A M; Di Minno, G

    2002-09-01

    A 75-year-old woman with Glanzmann's thrombasthenia was admitted because of persistent melaena. Endoscopic examination showed multiple angiodysplastic lesions, with active bleeding in small and large bowel. Electro-coagulation of some lesions, octreotide, conjugated oestrogens and selective embolization of jejunal vessels did not change transfusion requirements. After 8 month-transfusions, ethinylestradiol + norethisterone in association with octreotide was started, leading to no transfusion over the following 9 months. Bleeding recurred after withdrawing octreotide and substituting ethinylestradiol + norgestrel for the ethinylestradiol + norethisterone combination. Re-introduction of octreotide did not improve bleeding; however, a reduction of transfusion requirement was observed when the ethinylestradiol + norethisterone pill was re-administered. The association of octreotide and of an oestrogen-progesterone combination was helpful in the difficult management of recurrent bleeding in this patient with diffuse gastrointestinal vascular abnormalities and a severe condition predisposing to bleeding.

  13. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma.

  14. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma. PMID:27068508

  15. Abnormal peripheral circulation in type 2 diabetic patients with normal ankle-brachial index associates with coronary atherosclerosis, large artery stiffness, and peripheral vascular resistance.

    PubMed

    Tsuchiya, Masanobu; Suzuki, Eiji; Egawa, Katsuya; Nishio, Yoshihiko; Maegawa, Hiroshi; Morikawa, Shigehiro; Inubushi, Toshiro; Kashiwagi, Atsunori

    2005-12-01

    We tested the hypothesis that impaired peripheral circulation in diabetes arises from different aspects of vascular abnormalities even when accompanied by a normal ankle-brachial index (ABI>0.9). One hundred fourteen type 2 diabetic patients with normal ABI and 33 age-matched non-diabetic subjects consecutively admitted to our hospital were enrolled. The Agatston coronary artery calcium score (CACS), as a marker of coronary atherosclerosis, was obtained using electron-beam computed tomography. An automatic device was used to measure brachial-ankle pulse wave velocity (baPWV) as an index of arterial distensibility. Total flow volume and resistive index (RI), as a marker of peripheral vascular resistance, at the popliteal artery were evaluated using gated two-dimensional cine-mode phase-contrast magnetic resonance imaging. Diabetic patients had baPWV (P<0.001) and RI (P<0.001) higher than those in the non-diabetic subjects, indicating that those parameters are characteristically altered in diabetic patients. When diabetic patients were grouped into three subgroups according to their levels of total flow volume, those with the lowest range showed the highest log-transformed CACS (P<0.001), baPWV (P<0.001), and RI (P<0.001) among the groups. Total flow volume was negatively correlated with log-transformed CACS (P<0.001), baPWV (P<0.001), and RI (P<0.001). Waveform at the popliteal artery could be clearly separated into systolic and early and late diastolic blood flows, which were negatively correlated with log-transformed CACS (P<0.001), RI (P<0.001), and baPWV (P<0.001), respectively. These results suggest that impaired peripheral circulation in diabetes is attributable to coronary atherosclerosis, large artery stiffness, and peripheral vascular resistance even when ABI is normal.

  16. Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure overload in the rat.

    PubMed Central

    Isoyama, S; Ito, N; Kuroha, M; Takishima, T

    1989-01-01

    Using an experimental model of ascending aortic banding in the rat, we examined whether coronary circulation abnormalities in hypertrophied hearts are reversible after debanding. 4-wk banding produced significant increases in in vivo left ventricular (LV) pressure (194 +/- 13 vs. 114 +/- 9 mmHg in shamoperated controls) and LV dry wt/body wt (48 +/- 5% above controls). In isolated hearts perfused with Krebs-Henseleit buffer, coronary flow rate (CFR) was estimated under nonworking conditions. During maximal vasodilation after 1 min-ischemia, CFR at a coronary perfusion pressure (CPP) of 100 mmHg and CFR/myocardidial mass at CPPs of 100 and 150 mmHg decreased significantly (72 +/- 5%; 53 +/- 4 and 61 +/- 4% of controls). 1 or 4 wk after debanding, LV systolic pressures were similar to control values, and the degree of myocardial hypertrophy decreased to levels 23 +/- 6 (P less than 0.01) and 11 +/- 6% (P less than 0.01) above their control values, respectively. At 1 wk there was no significant increase in CFR/myocardial mass, compared to values in the banded group (67 +/- 8 vs. 53 +/- 4% of controls at 100 mmHg and 67 +/- 9 vs. 61 +/- 4% at 150 mmHg of CPP). At 4 wk, CFR and the ratio had increased toward normal. Thus, decreased coronary perfusion in hypertrophied hearts is completely reversible. Images PMID:2525568

  17. Reduced Expression of the Extracellular Calcium-Sensing Receptor (CaSR) Is Associated with Activation of the Renin-Angiotensin System (RAS) to Promote Vascular Remodeling in the Pathogenesis of Essential Hypertension

    PubMed Central

    Wang, La-mei; Tang, Na; Zhong, Hua; Liu, Yong-min; Li, Zhen; Feng, Qian; He, Fang

    2016-01-01

    The proliferation of vascular smooth muscle cells (VSMCs), remodeling of the vasculature, and the renin-angiotensin system (RAS) play important roles in the development of essential hypertension (EH), which is defined as high blood pressure (BP) in which secondary causes, such as renovascular disease, are absent. The calcium-sensing receptor (CaSR) is involved in the regulation of BP. However, the underlying mechanisms by which the CaSR regulates BP are poorly understood. In the present study, the role of the CaSR in EH was investigated using male spontaneously hypertensive rats (SHRs) and rat and human plasma samples. The percentages of medial wall thickness to external diameter (WT%), total vessel wall cross-sectional area to the total area (WA%) of thoracic arteries, as well as the percentage of wall area occupied by collagen to total vessel wall area (CA%) were determined. Tissue protein expression and plasma concentrations of the CaSR, cyclic adenosine monophosphate (cAMP), renin, and angiotensin II (Ang II) were additionally assessed. WT%, WA%, and CA% were found to increase with increasing BP, whereas the plasma concentration of CaSR was found to decrease. With increasing BP, the levels of smooth muscle actin and calponin decreased, whereas those of osteopontin and proliferating cell nuclear antigen increased. The CaSR level negatively correlated with the levels of cAMP and Ang II, but positively correlated with those of renin. Our data suggest that reduced expression of the CaSR is correlated with activation of the RAS, which induces increased vascular remodeling and VSMC proliferation, and thereby associated with EH in the SHR model and in the Han Chinese population. Our findings provide new insights into the pathogenesis of EH. PMID:27391973

  18. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension

    PubMed Central

    Galambos, Csaba; Minic, Angela D.; Bush, Douglas; Nguyen, Dominique; Dodson, Blair; Seedorf, Gregory; Abman, Steven H.

    2016-01-01

    Background and Aims Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. Methods Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. Results The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. Conclusions We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and

  19. Vascular ring (image)

    MedlinePlus

    Vascular ring is a term used to describe a number of abnormal formations of the aorta, the large artery ... the pulmonary artery. The abnormal vessel(s) forms a ring, which encircles and may press down on the ...

  20. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor

    PubMed Central

    Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K.; Mallat, Ziad

    2016-01-01

    Background— In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results— We generated double-deficient mice for Mertk and Mfge8 (Mertk−/−/Mfge8−/−) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk−/−), or Mfge8-deficient (Mfge8−/−) animals, Mertk−/−/Mfge8−/− mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6CHigh and Low monocytes and macrophages. In parallel, Mertk−/−/Mfge8−/− bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6CHigh and Ly6CHow monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6CHigh/Ly6CLow monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre+/VEGFAfl/fl mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions— After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the

  1. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    PubMed

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  2. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    PubMed Central

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  3. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats - In relation with arterial remodeling.

    PubMed

    Hayashi, Kozaburo; Shimizu, Emiko

    2016-05-01

    Hypertension (HT) was induced in Wistar rats aged 16 and 48 weeks by a deoxycortico-sterone acetate (DOCA)-salt procedure. Common carotid arteries were resected 16 weeks after, and their histological specimens were selectively stained for observations of collagen, elastin, and vascular smooth muscle (VSM) cells. Then, the fractions of collagen and elastin and their radial distributions, and the size and number of VSM cells were determined with an image analyzer. These results were compared with the results from age-matched, non-treated, normotensive (NT) animals and also with those from our previous biomechanical studies. In both age groups, there were no significant differences in the fractions of collagen and elastin, and the ratio of collagen to elastin content between HT and NT arteries. These results correspond well with our previous biomechanical results, which showed no significant difference in wall elasticity between HT and NT vessels. Moreover, in the innermost layer out of 4 layers bordered with thick elastic lamellae, the fraction of collagen was significantly greater in HT arteries than in NT ones, which is attributable to HT-related stress concentration in the layer. VSM cells were significantly hypertrophied and their content was increased by HT, although their total number in the media remained unchanged. The increased size and content of cells correspond to the enhancement of vascular tone and contractility in HT arteries. PMID:26987272

  4. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats - In relation with arterial remodeling.

    PubMed

    Hayashi, Kozaburo; Shimizu, Emiko

    2016-05-01

    Hypertension (HT) was induced in Wistar rats aged 16 and 48 weeks by a deoxycortico-sterone acetate (DOCA)-salt procedure. Common carotid arteries were resected 16 weeks after, and their histological specimens were selectively stained for observations of collagen, elastin, and vascular smooth muscle (VSM) cells. Then, the fractions of collagen and elastin and their radial distributions, and the size and number of VSM cells were determined with an image analyzer. These results were compared with the results from age-matched, non-treated, normotensive (NT) animals and also with those from our previous biomechanical studies. In both age groups, there were no significant differences in the fractions of collagen and elastin, and the ratio of collagen to elastin content between HT and NT arteries. These results correspond well with our previous biomechanical results, which showed no significant difference in wall elasticity between HT and NT vessels. Moreover, in the innermost layer out of 4 layers bordered with thick elastic lamellae, the fraction of collagen was significantly greater in HT arteries than in NT ones, which is attributable to HT-related stress concentration in the layer. VSM cells were significantly hypertrophied and their content was increased by HT, although their total number in the media remained unchanged. The increased size and content of cells correspond to the enhancement of vascular tone and contractility in HT arteries.

  5. Chronic intrauterine pulmonary hypertension increases main pulmonary artery stiffness and adventitial remodeling in fetal sheep

    PubMed Central

    Morgan, Matthew R.; Galambos, Csaba; Hunter, Kendall S.; Abman, Steven H.

    2014-01-01

    Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome that is characterized by high pulmonary vascular resistance due to changes in lung vascular growth, structure, and tone. PPHN has been primarily considered as a disease of the small pulmonary arteries (PA), but proximal vascular stiffness has been shown to be an important predictor of morbidity and mortality in other diseases associated with pulmonary hypertension (PH). The objective of this study is to characterize main PA (MPA) stiffness in experimental PPHN and to determine the relationship of altered biomechanics of the MPA with changes in extracellular matrix (ECM) content and orientation of collagen and elastin fibers. MPAs were isolated from control and PPHN fetal sheep model and were tested by planar biaxial testing to measure stiffness in circumferential and axial vessel orientations. Test specimens were fixed for histological assessments of the vascular wall ECM constituents collagen and elastin. MPAs from PPHN sheep had increased mechanical stiffness (P < 0.05) and altered ECM remodeling compared with control MPA. A constitutive mathematical model and histology demonstrated that PPHN vessels have a smaller contribution of elastin and a greater role for collagen fiber engagement compared with the control arteries. We conclude that exposure to chronic hemodynamic stress in late-gestation fetal sheep increases proximal PA stiffness and alters ECM remodeling. We speculate that proximal PA stiffness further contributes to increased right ventricular impedance in experimental PPHN, which contributes to abnormal transition of the pulmonary circulation at birth. PMID:25326575

  6. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  7. Effect of nucleoprotein factor-kB (NF-κB) in endothelial cells during high blood flow-associated pulmonary vascular remodeling on vasoactive substances adrenomedullin and prostacyclin

    PubMed Central

    Yang, Jie; Wang, Weina; Dong, Meng; Yu, Xiaoxiao; Luo, Qiong

    2015-01-01

    The aim of this study was to investigate the role of nucleoprotein factor-kB (NF-κB) on the production and secretion of vasoactive substances adrenomedullin (ADM) and prostacyclin (PGI2) by endothelial cells in a high blood flow, pulmonary hypertension in vivo model. Fifty male Wistar rats were randomly divided into four groups: 15 rats received shunt surgery (Tn group); 15 rats received shunt surgery + NF-κB inhibitor [pyrrolidine dithiocarbamate (PDTC)] (Ti group); 10 rats received sham surgery (Co group); and 10 rats were negative controls (Cn group). A left to right shunt pulmonary hypertension model was established in groups Tn and Ti. Rats in the Ti group received an intraperitoneal injection of PDTC (120 mg/kg·d) one hour before the operation for 2 weeks, and rats in the Co group were processed in the same fashion as that of the experimental groups, except that they did not undergo surgery. After 12 weeks, pulmonary artery systolic pressure was measured by cardiac catheterization, pulmonary arterial endothelial cells were isolated, and NF-κB, ADM and PGI2 protein expressions were measured in the endothelium using immunohistochemistry. ADM and PGI2 expressions were significantly lower in the Tn group relative to those of the Cn group (P<0.01) but no difference in the Ti group (P>0.05). Expressions in the Co and Cn groups were not significantly different (P>0.05). Heightened NF-κB activity in pulmonary arterial endothelial cells during high blood flow can suppress the synthesis and secretion of ADM and PGI2, potentially leading to vascular remodeling and pulmonary hypertension. PMID:26550335

  8. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  9. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  10. [Metalloproteases, vascular remodeling and atherothrombotic syndromes].

    PubMed

    Rodríguez, José A; Orbe, Josune; Páramo, José A

    2007-09-01

    Defects in the synthesis and breakdown of the extracellular matrix (ECM) are now seen as key processes in the development of atherosclerosis and its thrombotic complications. Correlations have been observed between circulating levels of ECM biomarkers and the clinical manifestations of and risk factors for atherosclerosis. Several matrix metalloproteinases (MMPs), endopeptidases that can degrade the ECM, such as MMP-9 and MMP-10, play important roles in the pathophysiology of atherothrombosis and contribute to the expansion of abdominal aortic aneurysms. Moreover, they may also be useful biomarkers of atherosclerotic risk and serve as predictors of coronary and cerebrovascular disease recurrence. Although at present the effect of tissue inhibitors of MMPs (TIMPs) on cardiovascular disease prognosis is still uncertain, the ECM could be a promising therapeutic target in atherothrombotic disease, and several MMP inhibitors are currently undergoing clinical trials.

  11. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  12. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  13. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    PubMed Central

    Cassandro, Ettore; Cassandro, Claudia; Sequino, Giuliano; Scarpa, Alfonso; Petrolo, Claudio; Chiarella, Giuseppe

    2015-01-01

    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests. PMID:26693371

  14. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension. PMID:27530043

  15. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  16. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling.

    PubMed

    Su, Judy Y; Vo, Anhkiet C

    2007-03-22

    The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2. 2-AG ether effects were completely abolished by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A), and partially blocked by (-)-1.3-dimethoxy-2-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918). In contrast, abn-CBD effects were completely abolished by O-1918, and only partially blocked by AM251, and SR141716A. Both 2-AG ether and abn-CBD effects were partially blocked by pertussis toxin, an inhibitor of Gi/o proteins. PD98059, an inhibitor of mitogen activated protein kinase kinase (MEK), completely abolished the relaxation, but only partially blocked the increased phosphorylation of ERK1/2 by 2-AG ether. In contrast, abn-CBD-induced relaxation was partially blocked and the increased phosphorylation of ERK1/2 was abolished by PD98059. These findings suggest that 2-AG ether and abn-CBD-induced vascular smooth muscle relaxation are mediated by the cannabinoid CB1 receptor, and the abn-CBD receptor, respectively, and are modulated by cross-talk between the receptors. These responses occur mainly by coupling to pertussis toxin sensitive G proteins, but also, in part independent of these G proteins, which have been classically thought to initiate MEK/ERK1/2 signaling to relax vascular smooth muscle.

  17. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    PubMed Central

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-01-01

    Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease. PMID:27729629

  18. Pathological Ventricular Remodeling: Mechanisms: Part 1 of 2

    PubMed Central

    Xie, Min; Burchfield, Jana S.; Hill, Joseph A.

    2013-01-01

    Despite declines in heart failure morbidity and mortality with current therapies, re-hospitalization rates remain distressingly high, impacting substantially on individuals, society, and the economy. As a result, the need for new therapeutic advances and novel medical devices is urgent. Disease-related left ventricular remodeling is a complex process involving cardiac myocyte growth and death, vascular rarefaction, fibrosis, inflammation, and electrophysiological remodeling. As these events are highly inter-related, targeting one single molecule or process may not be sufficient. Here, we review molecular and cellular mechanisms governing pathological ventricular remodeling. PMID:23877061

  19. Physiological remodelling of the maternal uterine circulation during pregnancy.

    PubMed

    Mandala, Maurizio; Osol, George

    2012-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodelling of the entire maternal uterine vasculature. The main focus of this MiniReview is to provide information on upstream (pre-placental) maternal uterine vascular remodelling that facilitates gestational increases in uterine blood flow. Consideration of the three-dimensional pattern of remodelling (circumferential enlargement versus axial elongation), changes in vessel biomechanical properties, and underlying mechanisms [shear stress, nitric oxide, vascular endothelial growth factor (VEGF)/placental growth factor (PlGF), the renin-angiotensin system] and pathways (local versus systemic; venoarterial exchange) are provided using the rat as the principal animal model, although findings from other species are incorporated wherever possible to provide a comparative perspective. The process of maternal gestational uterine vascular remodelling involves a number of cellular processes and mechanisms, including trophoblast invasion, hyperplasia and hypertrophy, and changes in extracellular matrix composition. In addition, changes in cellular function, e.g. the secretory and contractile properties of smooth muscle and an up-regulation of endothelial vasodilatory influences may contribute to uteroplacental blood flow increases through changes in tone as well as in structure. Future studies aimed at better understanding the inter-relationship between changes in vessel structure (remodelling) and function (reactivity) would likely generate new mechanistic insights into the fascinating process of maternal gestational uterine vascular adaptation and provide a more physiological perspective of the underlying cellular processes involved in its regulation.

  20. Leukemia Inhibitory Factor (LIF) Inhibition during Mid-Gestation Impairs Trophoblast Invasion and Spiral Artery Remodelling during Pregnancy in Mice

    PubMed Central

    Winship, Amy; Correia, Jeanne; Zhang, Jian-Guo; Nicola, Nicos A.; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF) has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown. We hypothesized that LIF would be required for normal trophoblast invasion and spiral artery remodeling in mice. Both LIF and its receptor (LIFRα) co-localized with cytokeratin-positive invasive endovascular extravillous trophoblasts (EVT) in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via administration of our unique LIFRα antagonist, PEGLA, resulted in abnormal trophoblast invasion and impaired spiral artery remodeling compared to PEG control. PEGLA-treated mouse decidual vessels were characterized by retention of α-smooth muscle actin (αSMA)-positive vascular smooth muscle cells (VSMCs), while PEG control decidual vessels were remodelled by cytokeratin-positive trophoblasts. LIF blockade did not alter F4/80-positive decidual macrophage numbers between treatment groups, but resulted in down-regulation of decidual transcript levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10), which are important immune cell activation factors that promote spiral artery remodeling during pregnancy. Our data suggest that LIF plays an important role in trophoblast invasion in vivo and may facilitate trophoblast-decidual-immune cell cross talk to enable adequate spiral artery remodeling. PMID:26479247

  1. Leukemia Inhibitory Factor (LIF) Inhibition during Mid-Gestation Impairs Trophoblast Invasion and Spiral Artery Remodelling during Pregnancy in Mice.

    PubMed

    Winship, Amy; Correia, Jeanne; Zhang, Jian-Guo; Nicola, Nicos A; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF) has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown. We hypothesized that LIF would be required for normal trophoblast invasion and spiral artery remodeling in mice. Both LIF and its receptor (LIFRα) co-localized with cytokeratin-positive invasive endovascular extravillous trophoblasts (EVT) in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via administration of our unique LIFRα antagonist, PEGLA, resulted in abnormal trophoblast invasion and impaired spiral artery remodeling compared to PEG control. PEGLA-treated mouse decidual vessels were characterized by retention of α-smooth muscle actin (αSMA)-positive vascular smooth muscle cells (VSMCs), while PEG control decidual vessels were remodelled by cytokeratin-positive trophoblasts. LIF blockade did not alter F4/80-positive decidual macrophage numbers between treatment groups, but resulted in down-regulation of decidual transcript levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10), which are important immune cell activation factors that promote spiral artery remodeling during pregnancy. Our data suggest that LIF plays an important role in trophoblast invasion in vivo and may facilitate trophoblast-decidual-immune cell cross talk to enable adequate spiral artery remodeling. PMID:26479247

  2. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  3. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  4. Differentiation of Multipotent Vascular Stem Cells Contributes to Vascular Diseases

    PubMed Central

    Tang, Zhenyu; Wang, Aijun; Yuan, Falei; Yan, Zhiqiang; Liu, Bo; Chu, Julia S.; Helms, Jill A.

    2012-01-01

    It is generally accepted that the de-differentiation of smooth muscle cells (SMCs) from contractile to proliferative/synthetic phenotype has an important role during vascular remodeling and diseases. Here we provide evidence that challenges this theory. We identify a new type of multipotent vascular stem cell (MVSC) in blood vessel wall. MVSCs express markers including Sox17, Sox10 and S100β, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell (MSC)-like cells that subsequently differentiate into SMCs. On the other hand, we use lineage tracing with smooth muscle myosin heavy chain as a marker to show that MVSCs and proliferative or synthetic SMCs do not arise from the de-differentiation of mature SMCs. Upon vascular injuries, MVSCs, instead of SMCs, become proliferative, and MVSCs can differentiate into SMCs and chondrogenic cells, thus contributing to vascular remodeling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of MVSCs, rather than the de-differentiation of SMCs, contributes to vascular remodeling and diseases. PMID:22673902

  5. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia

    PubMed Central

    Narayanan, Nithya; Pushpakumar, Sathnur Basappa; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; James, Dexter; Bratcher, Adrienne P.; Tyagi, Suresh C.

    2014-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with hypertension and is an independent risk factor for aortic pathologies. HHcy is known to cause an imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), leading to the accumulation of collagen in the aorta and resulting in stiffness and development of hypertension. Although the exact mechanism of extracellular matrix (ECM) remodeling is unclear, emerging evidence implicates epigenetic regulation involving DNA methylation. Our purpose was to investigate whether 5-aza-2′-deoxycytidine (Aza), a DNA methyltransferase (DNMT1) inhibitor, reduces high blood pressure (BP) by regulating aortic ECM remodeling in HHcy. Wild-type and cystathionine β-synthase (CBS)+/− HHcy mice were treated with Aza (0.5 mg/kg body weight). In HHcy mice, Aza treatment normalized the plasma homocysteine (Hcy) level and BP. Thoracic and abdominal aorta ultrasound revealed a reduction in the resistive index and wall-to-lumen ratio. Vascular response to phenylephrine, acetylcholine, and sodium nitroprusside improved after Aza in HHcy mice. Histology showed a marked reduction in collagen deposition in the aorta. Aza treatment decreased the expression of DNMT1, MMP9, TIMP1, and S-adenosyl homocysteine hydrolase (SAHH) and upregulated methylene tetrahydrofolate reductase (MTHFR). We conclude that reduction of DNA methylation by Aza in HHcy reduces adverse aortic remodeling to mitigate hypertension.—Narayanan, N., Pushpakumar, S. B., Givvimani, S., Kundu, S., Metreveli, N., James, D., Bratcher, A. P., Tyagi, S. C. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. PMID:24739303

  6. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  7. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  8. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  9. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  10. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... Just like the skin, the fingernails tell a lot about your health: ... the fingernail. These lines can occur after illness, injury to ...

  11. Vascular Hyperpermeability and Aging

    PubMed Central

    Oakley, Ryan; Tharakan, Binu

    2014-01-01

    Vascular hyperpermeability, the excessive leakage of fluid and proteins from blood vessels to the interstitial space, commonly occurs in traumatic and ischemic injuries. This hyperpermeability causes tissue vasogenic edema, which often leads to multiple organ failure resulting in patient death. Vascular hyperpermeability occurs most readily in small blood vessels as their more delicate physical constitution makes them an easy target for barrier dysfunction. A single layer of endothelial cells, linked to one another by cell adhesion molecules, covers the interior surface of each blood vessel. The cell adhesion molecules play a key role in maintaining barrier functions like the regulation of permeability. Aging is a major risk factor for microvascular dysfunction and hyperpermeability. Apart from age-related remodeling of the vascular wall, endothelial barrier integrity and function declines with the advancement of age. Studies that address the physiological and molecular basis of vascular permeability regulation in aging are currently very limited. There have been many cellular and molecular mechanisms proposed to explain aging-related endothelial dysfunction but their true relationship to barrier dysfunction and hyperpermeability is not clearly known. Among the several mechanisms that promote vascular dysfunction and hyperpermeability, the following are considered major contributors: oxidative stress, inflammation, and the activation of apoptotic signaling pathways. In this review we highlighted (a) the physiological, cellular and molecular changes that occur in the vascular system as a product of aging; (b) the potential mechanisms by which aging leads to barrier dysfunction and vascular hyperpermeability in the peripheral and the blood-brain barrier; (c) the mechanisms by which the age-related increases in oxidative stress, inflammatory markers and apoptotic signaling etc. cause endothelial dysfunction and their relationship to hyperpermeability; and (d) the

  12. Vascular Cures

    MedlinePlus

    ... Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular Disease Fibromuscular Dysplasia High ...

  13. Challenges of targeting vascular stability in acute kidney injury.

    PubMed

    Basile, David P

    2008-08-01

    Acute kidney injury following folate administration is characterized by a vascular remodeling that is initially proliferative but subsequently results in vascular endothelial loss. Interventions directed toward promoting endothelial growth may preserve vascular structure and therefore renal function. However, angiopoietin-1 therapy in the setting of folate-induced acute kidney injury resulted in an expanded fibrotic response despite apparent preservation of the vasculature, indicating that renal repair responses are complex and vascular-directed therapies should be approached with caution.

  14. [Vascular parkinsonism].

    PubMed

    Marxreiter, F; Winkler, J

    2016-07-01

    Parkinsonism may result from cerebral vascular disorders that feature white matter lesions and small vessel pathology. Vascular Parkinsonism typically presents as lower body Parkinsonism with predominant gait impairment. Urinary incontinence and cognitive decline are additional features of the disease. There is a considerable overlap between vascular Parkinsonism and vascular dementia. We review the clinical characteristics of vascular Parkinsonism and discuss the current treatment approaches, as well as the role of brain imaging for the diagnostic workup. . PMID:27299942

  15. Bioactive Factors in Uteroplacental and Systemic Circulation Link Placental Ischemia to Generalized Vascular Dysfunction in Hypertensive Pregnancy and Preeclampsia

    PubMed Central

    Shah, Dania A.; Khalil, Raouf A.

    2015-01-01

    Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca2+, protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia. PMID:25916268

  16. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia.

    PubMed

    Shah, Dania A; Khalil, Raouf A

    2015-06-15

    Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca(2+), protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia. PMID:25916268

  17. Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    NASA Astrophysics Data System (ADS)

    Karau, Kelly L.; Molthen, Robert C.; Johnson, Roger H.; Dhyani, Anita H.; Haworth, Steven T.; Dawson, Christopher A.

    2001-05-01

    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This 'self-consistency' property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns.

  18. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  19. Novel concepts in airway inflammation and remodelling in asthma.

    PubMed

    Saglani, Sejal; Lloyd, Clare M

    2015-12-01

    The hallmark pathological features of asthma include airway eosinophilic inflammation and structural changes (remodelling) which are associated with an irreversible loss in lung function that tracks from childhood to adulthood. In parallel with changes in function, pathological abnormalities occur early, during the pre-school years, are established by school age and subsequently remain (even though symptoms may remit for periods during adulthood). Given the equal importance of inflammation and remodelling in asthma pathogenesis, there is a significant disparity in studies undertaken to investigate the contribution of each. The majority focus on the role of inflammation, and although novel therapeutics such as those targeted against T-helper cell type 2 (Th2) mediators have arisen, it is apparent that targeting inflammation alone has not allowed disease modification. Therefore, unless airway remodelling is addressed for future therapeutic strategies, it is unlikely that we will progress towards a cure for asthma. Having acknowledged these limitations, the focus of this review is to highlight the gaps in our current knowledge about the mechanisms underlying airway remodelling, the relationships between remodelling, inflammation and function, remodelling and clinical phenotypes, and the importance of utilising innovative and realistic pre-clinical models to uncover effective, disease-modifying therapeutic strategies. PMID:26541520

  20. Remodeling of Cell-Cell Junctions in Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (AC) is a primary myocardial disorder characterized by a high incidence of ventricular arrhythmias often preceding the onset of ventricular remodeling and dysfunction. Approximately 50% of patients diagnosed with AC have one or more mutations in genes encoding desmosomal proteins, although non-desmosomal genes have also been associated with the disease. Increasing evidence implicates remodeling of intercalated disk proteins reflecting abnormal responses to mechanical load and aberrant cell signaling pathways in the pathogenesis of AC. This review summarizes recent advances in understanding disease mechanisms in AC that have come from studies of human myocardium and experimental models. PMID:24460198

  1. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  2. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  3. Radiologic atlas of pulmonary abnormalities in children

    SciTech Connect

    Singleton, E.B.; Wagner, M.L.; Dutton, R.V.

    1988-01-01

    This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.

  4. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  5. Increased presence of capillaries next to remodeling sites in adult human cancellous bone.

    PubMed

    Kristensen, Helene Bjoerg; Andersen, Thomas Levin; Marcussen, Niels; Rolighed, Lars; Delaisse, Jean-Marie

    2013-03-01

    Vascularization is a prerequisite for osteogenesis in a number of situations, including bone development, fracture healing, and cortical bone remodeling. It is unknown whether a similar link exists between cancellous bone remodeling and vascularization. Here, we show an association between remodeling sites, capillaries, proliferative cells, and putative osteoblast progenitors. Iliac crest biopsies from normal human individuals were subjected to histomorphometry and immunohistochemistry to identify the respective positions of bone remodeling sites, CD34-positive capillaries, smooth muscle actin (SMA)-positive putative osteoblast progenitors, including pericytes, Ki67-positive proliferative cells, and bone remodeling compartment (BRC) canopies. The BRC canopy is a recently described structure separating remodeling sites from the bone marrow, consisting of CD56-positive osteoblasts at an early differentiation stage. We found that bone remodeling sites were associated with a significantly increased presence of capillaries, putative osteoblast progenitors, and proliferative cells in a region within 50 µm of the bone or the canopy surface. The increases were the highest above eroded surfaces and at the level of the light-microscopically assessed contact of these three entities with the bone or canopy surfaces. Between 51 and 100 µm, their densities leveled to that found above quiescent surfaces. Electron microscopy asserted the close proximity between BRC canopies and capillaries lined by pericytes. Furthermore, the BRC canopy cells were found to express SMA. These ordered distributions support the existence of an osteogenic-vascular interface in adult human cancellous bone. The organization of this interface fits the current knowledge on the mode of action of vasculature on osteogenesis, and points to the BRC canopy as a central player in this mechanism. We propose a model where initiation of bone remodeling coincides with the induction of proximity of the

  6. Perinatal increases in TGF-{alpha} disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis.

    PubMed

    Kramer, Elizabeth L; Deutsch, Gail H; Sartor, Maureen A; Hardie, William D; Ikegami, Machiko; Korfhagen, Thomas R; Le Cras, Timothy D

    2007-08-01

    Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated. TGF-alpha overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-alpha-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.

  7. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  8. Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling.

    PubMed

    Chow, Kelsey; Fessel, Joshua P; Kaoriihida-Stansbury; Schmidt, Eric P; Gaskill, Christa; Alvarez, Diego; Graham, Brian; Harrison, David G; Wagner, David H; Nozik-Grayck, Eva; West, James D; Klemm, Dwight J; Majka, Susan M

    2013-01-01

    Pulmonary vascular remodeling and oxidative stress are common to many adult lung diseases. However, little is known about the relevance of lung mesenchymal stem cells (MSCs) in these processes. We tested the hypothesis that dysfunctional lung MSCs directly participate in remodeling of the microcirculation. We employed a genetic model to deplete extracellular superoxide dismutase (EC-SOD) in lung MSCs coupled with lineage tracing analysis. We crossed (floxp)sod3 and mT/mG reporter mice to a strain expressing Cre recombinase under the control of the ABCG2 promoter. We demonstrated In vivo that depletion of EC-SOD in lung MSCs resulted in their contribution to microvascular remodeling in the smooth muscle actin positive layer. We further characterized lung MSCs to be multipotent vascular precursors, capable of myofibroblast, endothelial and pericyte differentiation in vitro. EC-SOD deficiency in cultured lung MSCs accelerated proliferation and apoptosis, restricted colony-forming ability, multilineage differentiation potential and promoted the transition to a contractile phenotype. Further studies correlated cell dysfunction to alterations in canonical Wnt/β-catenin signaling, which were more evident under conditions of oxidative stress. Our data establish that lung MSCs are a multipotent vascular precursor population, a population which has the capacity to participate in vascular remodeling and their function is likely regulated in part by the Wnt/β-catenin signaling pathway. These studies highlight an important role for microenviromental regulation of multipotent MSC function as well as their potential to contribute to tissue remodeling.

  9. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  10. ECG manifestations of left ventricular electrical remodeling.

    PubMed

    Estes, E Harvey

    2012-01-01

    Research and thinking about the electrocardiographic manifestations of left ventricular hypertrophy has been constrained by a limited conceptual model of the process: heart disease produces chamber enlargement (increased mass), which in turn produces an altered electrocardiogram. The process is much more complex than can be represented in this simple model. A more robust and intricate model is proposed, in which heart (and vascular) disease causes structural changes, electrical changes, biochemical changes, and others, all of which interact to produce electrical remodeling of ventricular myocardium. This electrical remodeling results in a variety of ECG changes. All of these changes interact, leading to an altered clinical course, and to premature death. It is suggested that research, based on this model, can provide new clues to the processes involved, and improve the prediction of clinical outcomes. New directions in research, in recording equipment, and in organizational activities are suggested to test this new model, and to improve the usefulness of the electrocardiogram as a research and diagnostic tool.

  11. Engineering clinically relevant volumes of vascularized bone.

    PubMed

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-05-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.

  12. Engineering clinically relevant volumes of vascularized bone

    PubMed Central

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-01-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. PMID:25877690

  13. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.

  14. Relationship between self-reported residential indoor remodeling and semen quality: a case-control study

    PubMed Central

    Miao, Mao-Hua; Li, Zheng; Li, De-Kun; Yan, Bei; Liang, Hong; Zhi, Er-Lei; Du, Hong-Wei; Yuan, Wei

    2015-01-01

    The present study examined the association between residential indoor remodeling and poor semen quality. Sperm donors aged 18–45 years old were recruited in Shanghai, China. Semen specimens were collected and analyzed. An in-person interview was conducted to obtain information on the history of indoor remodeling and potential confounders. A total of 70 participants with abnormal semen quality (case group) and 68 controls were examined. A total of 20 subjects reported indoor remodeling in the recent 24 months, and among them 17 subjects reported indoor remodeling in the recent 12 months. Compared with participants with no history of indoor remodeling, participants with a history of indoor remodeling in the recent 24 months were more than three times as likely to have poor sperm quality (adjusted odds ratio = 3.8, 95% confidence interval: 1.3–12.0) after controlling for potential confounders. The association was strengthened when the analysis was restricted to those who had indoor remodeling in the recent 12 months. Our findings provide preliminary evidence that indoor remodeling has an adverse effect on semen quality. PMID:25432500

  15. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  16. Vascular Diseases

    MedlinePlus

    ... heart and blood vessels, such as diabetes or high cholesterol Smoking Obesity Losing weight, eating healthy foods, being active and not smoking can help vascular disease. Other treatments include medicines and surgery.

  17. Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia

    PubMed Central

    Cai, Yujun; Nagel, David J.; Zhou, Qian; Cygnar, Katherine D.; Zhao, Haiqing; Li, Faqian; Pi, Xinchun; Knight, Peter A.; Yan, Chen

    2015-01-01

    Objective Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, post-angioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. Methods & Results We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. Additionally, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF-receptor-beta (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with LDL-receptor-related-protein-1 (LRP1) and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an LRP1-dependent manner. A transmembrane-adenylyl-cyclase (tmAC)-cAMP-PKA cascade modulated by PDE1C is critical in regulating PDGFRβ degradation. Conclusion These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome dependent PDGFRβ protein degradation via LRP1. PMID:25608528

  18. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473

  19. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations.

  20. Akt isoforms in vascular disease.

    PubMed

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-08-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease.

  1. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  2. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    PubMed Central

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula

    2016-01-01

    Background Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis. PMID:27096523

  3. Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy

    PubMed Central

    Gkretsi, Vasiliki; Stylianou, Andreas; Papageorgis, Panagiotis; Polydorou, Christiana; Stylianopoulos, Triantafyllos

    2015-01-01

    Solid tumor pathophysiology is characterized by an abnormal microenvironment that guides tumor progression and poses barriers to the efficacy of cancer therapies. Most common among tumor types are abnormalities in the structure of the tumor vasculature and stroma. Remodeling the tumor microenvironment with the aim to normalize any aberrant properties has the potential to improve therapy. In this review, we discuss structural abnormalities of the tumor microenvironment and summarize the therapeutic strategies that have been developed to normalize tumors as well as their potential to enhance therapy. Finally, we present different in vitro models that have been developed to analyze and better understand the effects of the tumor microenvironment on cancer cell behavior. PMID:26528429

  4. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  5. [Vascular dementia].

    PubMed

    Peters, N; Dichgans, M

    2010-10-01

    Vascular dementia (VaD) constitutes the second most frequent cause of dementia following Alzheimer's disease (AD). In contrast to AD, VaD encompasses a variety of conditions and dementia mechanisms including multiple and strategic infarcts, widespread white matter lesions and hemorrhages. The diagnosis of VaD is based on the patient history, the clinical evaluation and neuroimaging. Treatment of VaD should account for the underlying vascular condition and is directed towards the control of vascular risk factors and stroke prevention. The need for early diagnosis and preventive treatment has promoted the concept of vascular cognitive impairment (VCI). Harmonization standards for the description and study of VCI have recently been published. A common and distinct subtype of VaD is subcortical ischemic vascular dementia (SIVD) which is related to cerebral small vessel disease. SIVD is clinically characterized by impairment of executive functions and processing speed with relatively preserved memory. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic variant of SIVD, represents an important differential diagnosis and may serve as a model of SIVD.

  6. Two-photon imaging of collagen remodeling in RAFT tissue cultures

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Coleno, Mariah L.; Yomo, Tatsuro; Sun, Chung-Ho; Tromberg, Bruce J.

    2001-04-01

    Tissue remodeling is associated with both normal and abnormal processes including wound healing, fibrosis and cancer. In skin, abnormal remodeling causes permanent structural changes that can lead to hypertropic scarring and keloid formation. Normal remodeling, although fast and efficient in skin, is still imperfect, and a connective tissue scar remains at the wound site1. As a result, methods are needed to optimize tissue remodeling in vivo in all cases of wound repair. Since fibroblast-mediated contraction of engineered 3-D collagen based tissues (RAFTs) represents an in vitro model of the tissue contraction and collagen remodeling that occurs in vivo, RAFT tissue contraction studies combined with two-photon microscopy (TPM) studies are used to provide information on ways to improve tissue remodeling in vivo. In the RAFT models discussed here, tissue contraction is modulated either by application of exogenous growth factors or photodynamic therapy. During tissue contraction, TPM is used to image changes in Collagen Type I fibers in the RAFT skin models. Tissues are imaged at depth at day 15 after modulation. TPM signal analysis shows that RAFT tissues having the highest collagen density have the fastest rate of decay of fluorescent signal with depth.

  7. A gene-centric study of common carotid artery remodelling

    PubMed Central

    Harrison, Seamus C.; Zabaneh, Delilah; Asselbergs, Folkert W.; Drenos, Fotios; Jones, Gregory T.; Shah, Sonia; Gertow, Karl; Sennblad, Bengt; Strawbridge, Rona J.; Gigante, Bruna; Holewijn, Suzanne; De Graaf, Jacqueline; Vermeulen, Sita; Folkersen, Lasse; van Rij, Andre M.; Baldassarre, Damiano; Veglia, Fabrizio; Talmud, Philippa J.; Deanfield, John E.; Agu, Obi; Kivimaki, Mika; Kumari, Meena; Bown, Matthew J.; Nyyssönen, Kristiina; Rauramaa, Rainer; Smit, Andries J.; Franco-Cereceda, Anders; Giral, Philippe; Mannarino, Elmo; Silveira, Angela; Syvänen, Ann-Christine; de Borst, Gert J.; van der Graaf, Yolanda; de Faire, Ulf; Baas, Annette F.; Blankensteijn, Jan D.; Wareham, Nicholas J.; Fowkes, Gerry; Tzoulaki, Ionna; Price, Jacqueline F.; Tremoli, Elena; Hingorani, Aroon D.; Eriksson, Per; Hamsten, Anders; Humphries, Steve E.

    2013-01-01

    Background Expansive remodelling is the process of compensatory arterial enlargement in response to atherosclerotic stimuli. The genetic determinants of this process are poorly characterized. Methods Genetic association analyses of inter-adventitial common carotid artery diameter (ICCAD) in the IMPROVE study (n = 3427) using the Illumina 200k Metabochip was performed. Single nucleotide polymorphisms (SNPs) that met array-wide significance were taken forward for analysis in three further studies (n = 5704), and tested for association with Abdominal Aortic Aneurysm (AAA). Results rs3768445 on Chromosome 1q24.3, in a cluster of protein coding genes (DNM3, PIGC, C1orf105) was associated with larger ICCAD in the IMPROVE study. For each copy of the rare allele carried, ICCAD was on average 0.13 mm greater (95% CI 0.08–0.18 mm, P = 8.2 × 10−8). A proxy SNP (rs4916251, R2 = 0.99) did not, however, show association with ICCAD in three follow-up studies (P for replication = 0.29). There was evidence of interaction between carotid intima-media thickness (CIMT) and rs4916251 on ICCAD in two of the cohorts studies suggesting that it plays a role in the remodelling response to atherosclerosis. In meta-analysis of 5 case–control studies pooling data from 5007 cases and 43,630 controls, rs4916251 was associated with presence of AAA 1.10, 95% CI 1.03–1.17, p = 2.8 × 10−3, I2 = 18.8, Q = 0.30). A proxy SNP, rs4916251 was also associated with increased expression of PIGC in aortic tissue, suggesting that this may the mechanism by which this locus affects vascular remodelling. Conclusions Common variation at 1q24.3 is associated with expansive vascular remodelling and risk of AAA. These findings support a hypothesis that pathways involved in systemic vascular remodelling play a role in AAA development. PMID:23246012

  8. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice.

    PubMed

    Yu, Ying; Cai, Zhaohua; Cui, Mingli; Nie, Peng; Sun, Zhe; Sun, Shiqun; Chu, Shichun; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2015-12-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77‑deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  9. Dimethylfumarate attenuates restenosis after acute vascular injury by cell-specific and Nrf2-dependent mechanisms

    PubMed Central

    Oh, Chang Joo; Park, Sungmi; Kim, Joon-Young; Kim, Han-Jong; Jeoung, Nam Ho; Choi, Young-Keun; Go, Younghoon; Park, Keun-Gyu; Lee, In-Kyu

    2014-01-01

    Excessive proliferation of vascular smooth muscle cells (VSMCs) and incomplete re-endothelialization is a major clinical problem limiting the long-term efficacy of percutaneous coronary angioplasty. We tested if dimethylfumarate (DMF), an anti-psoriasis drug, could inhibit abnormal vascular remodeling via NF−E2-related factor 2 (Nrf2)-NAD(P)H quinone oxidoreductase 1 (NQO1) activity. DMF significantly attenuated neointimal hyperplasia induced by balloon injury in rat carotid arteries via suppression of the G1 to S phase transition resulting from induction of p21 protein in VSMCs. Initially, DMF increased p21 protein stability through an enhancement in Nrf2 activity without an increase in p21 mRNA. Later on, DMF stimulated p21 mRNA expression through a process dependent on p53 activity. However, heme oxygenase-1 (HO-1) or NQO1 activity, well-known target genes induced by Nrf2, were dispensable for the DMF induction of p21 protein and the effect on the VSMC proliferation. Likewise, DMF protected endothelial cells from TNF-α-induced apoptosis and the dysfunction characterized by decreased eNOS expression. With knock-down of Nrf2 or NQO1, DMF failed to prevent TNF-α-induced cell apoptosis and decreased eNOS expression. Also, CD31 expression, an endothelial specific marker, was restored in vivo by DMF. In conclusion, DMF prevented abnormal proliferation in VSMCs by G1 cell cycle arrest via p21 upregulation driven by Nrf2 and p53 activity, and had a beneficial effect on TNF-α-induced apoptosis and dysfunction in endothelial cells through Nrf2–NQO1 activity suggesting that DMF might be a therapeutic drug for patients with vascular disease. PMID:25009787

  10. Characterization of vascular tree architecture using the Tokunaga taxonomy

    NASA Astrophysics Data System (ADS)

    Galarreta-Valverde, Miguel A.; Zoghbi, Jihan M.; Pereira, Fabricio; Beregi, Jean-Paul; Mekkaoui, Choukri; Jackowski, Marcel P.

    2015-03-01

    The diagnosis of cardiovascular disease is usually assisted by resonance angiography (MRA) or computed tomography angiography (CTA) imaging. The identification of abnormal vascular architecture from angiographic three-dimensional images is therefore crucial to the diagnosis of cardiovascular disease. Automated detection and quantification of vascular structure and architecture thus holds significant clinical value. In this work, we employ a Lindenmayer system to represent vascular trees from angiographic images and describe a quantitative measure based on the Tokunaga taxonomy to differentiate vascular architectures. Synthetic vessel architectures with varying bifurcation patterns were compared and results showed that this architectural measure is proportional to the level of branching. In real MRA images, this measure was able to differentiate between normal and abnormal intracerebral vasculature containing an aneurysm. Hence, this methodology not only allows for compact representation of vascular architectures but also provides a quantitative metric of bifurcation complexity, which has the potential to characterize different types of vascular abnormalities.

  11. Vascular emergencies.

    PubMed

    Semashko, D C

    1997-01-01

    This article reviews the initial assessment and emergent management of several common as well as uncommon vascular emergencies. Aortic dissection, aneurysms, and arterial occlusive disease are familiar but challenging clinical entities. Less frequently encountered conditions are also discussed including an aortic enteric fistula, mesenteric venous thrombosis, phlegmasia alba dolens, and subclavian vein thrombosis.

  12. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  13. Special Report: The Rush to Remodel

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    As more and more districts scurry to remodel outdated buildings and individual rooms, the detailed how-to-do-it sometimes gets lost in the overall planning. This article furnishes specific help in ways to remodel economically. (Author/JN)

  14. Role of Elastin in Spontaneously Hypertensive Rat Small Mesenteric Artery Remodelling

    PubMed Central

    Briones, Ana M; González, José M; Somoza, Beatriz; Giraldo, Jesús; Daly, Craig J; Vila, Elisabet; Carmen González, M; McGrath, John C; Arribas, Silvia M

    2003-01-01

    Chronic hypertension is associated with resistance artery remodelling and mechanical alterations. However, the contribution of elastin has not been thoroughly studied. Our objective was to evaluate the role of elastin in vascular remodelling of mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR). MRA segments from Wistar Kyoto rats (WKY) and SHR were pressurised under passive conditions at a range of physiological pressures with pressure myography. Confocal microscopy was used to determine differences in the quantity and organisation of elastin in intact pressure-fixed arteries. To assess the contribution of elastin to MRA structure and mechanics, myograph-mounted vessels were studied before and after elastase incubation. When compared with WKY, MRA from SHR showed: (1) a smaller lumen, (2) decreased distensibility at low pressures, (3) a leftward shift of the stress-strain relationship, (4) redistribution of elastin within the internal elastic lamina (IEL) leading to smaller fenestrae but no change in fenestrae number or elastin amount. Elastase incubation (1) fragmented the structure of IEL in a concentration-dependent fashion, (2) abolished all the structural and mechanical differences between strains, and (3) decreased distensibility at low pressures. The study shows the overriding role of elastin in determining vascular dimensions and mechanical properties in a resistance artery. In addition, it informs hypertensive remodelling. MRA remodelling and increased stiffness are accompanied by elastin restructuring within the IEL and elastin degradation reverses structural and mechanical alterations of SHR MRA. Differences in elastin organisation are, therefore, a central element in small artery remodelling in hypertension. PMID:12844513

  15. The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development

    PubMed Central

    Neves, Hélia; Gomes, Andreia C.; Saavedra, Pedro; Carvalho, Catarina C.; Duarte, António; Cidadão, António; Parreira, Leonor

    2012-01-01

    Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis. PMID:22514637

  16. Exercise training as vascular medicine: direct impacts on the vasculature in humans.

    PubMed

    Green, Daniel J

    2009-10-01

    Exercise training decreases cardiovascular risk, but effects on traditional risk factors do not fully account for this benefit. Exercise directly impacts upon arterial shear stress, a stimulus to antiatherogenic adaptation in vascular function and remodeling. This review considers the impact of exercise training on vascular adaptation in large and small arteries in humans.

  17. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  18. The human tri-peptide GHK and tissue remodeling.

    PubMed

    Pickart, Loren

    2008-01-01

    Tissue remodeling follows the initial phase of wound healing and stops inflammatory and scar-forming processes, then restores the normal tissue morphology. The human peptide Gly-(L-His)-(L-Lys) or GHK, has a copper 2+ (Cu(2+)) affinity similar to the copper transport site on albumin and forms GHK-Cu, a complex with Cu(2+). These two molecules activate a plethora of remodeling related processes: (1) chemoattraction of repair cells such as macrophages, mast cells, capillary cells; (2) anti-inflammatory actions (suppression of free radicals, thromboxane formation, release of oxidizing iron, transforming growth factor beta-1, tumor necrosis factor alpha and protein glycation while increasing superoxide dismutase, vessel vasodilation, blocking ultraviolet damage to skin keratinocytes and improving fibroblast recovery after X-ray treatments); (3) increases protein synthesis of collagen, elastin, metalloproteinases, anti-proteases, vascular endothelial growth factor, fibroblast growth factor 2, nerve growth factor, neutrotropins 3 and 4, and erythropoietin; (4) increases the proliferation of fibroblasts and keratinocytes; nerve outgrowth, angiogenesis, and hair follicle size. GHK-Cu stimulates wound healing in numerous models and in humans. Controlled studies on aged skin demonstrated that it tightens skin, improves elasticity and firmness, reduces fine lines, wrinkles, photodamage and hyperpigmentation. GHK-Cu also improves hair transplant success, protects hepatic tissue from tetrachloromethane poisoning, blocks stomach ulcer development, and heals intestinal ulcers and bone tissue. These results are beginning to define the complex biochemical processes that regulate tissue remodeling. PMID:18644225

  19. Vascular sphingolipids in physiological and pathological adaptation.

    PubMed

    Bao, Jun-Xiang; Su, Yu-Ting; Cheng, Yao-Ping; Zhang, Hai-Jun; Xie, Xiao-Ping; Chang, Yao-Ming

    2016-01-01

    Sphingolipids (SLs) are compounds containing a long-chain fatty alcohol amine called sphingosine which exists in cellular membranes, cytoplasm, nucleus, interstitial fluid, blood and lymphatic circulation. SLs act as essential constituents of membranes of eukaryotic cells, so the seesaw of SLs will lead to structural alteration of membranes instigating cellular functional change. SLs also act as crucial signaling molecules taking effect intracellularly or extracellularly which regulates activity of downstream molecules determining cellular adaptation to numerous stimulus. This review aims to highlight the contribution of SLs to physiological and pathophysiological remodeling of vasculature. We will first provide a short overview on metabolism, trafficking and compartmentalization of SLs. Then the regulation of SLs on reactive oxygen species (ROS) formation, vascular tone modulation, endothelial barrier integrity, apoptosis and autophagy are summarized. Finally, we will discuss how the SLs are modulated contributing to vascular development, angiogenesis and vascular remodeling in pathological situations as hypertension, atherosclerosis, and aging. The compellingly regulative actions of SLs bring about copious therapeutic targets for potential pharmacological intervention on the diseases involving vascular maladaptation. PMID:27100498

  20. Brain Arterial Diameters as a Risk Factor for Vascular Events

    PubMed Central

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-01-01

    Background Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Methods and Results Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <−2 SDs were considered to have the smallest diameters, individuals with a BAR score >−2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. Conclusions The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. PMID:26251284

  1. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways.

    PubMed

    Meyer, Norbert; Akdis, Cezmi A

    2013-02-01

    Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.

  2. Signalling from dead cells drives inflammation and vessel remodelling.

    PubMed

    Bennett, Martin; Yu, Haixiang; Clarke, Murray

    2012-01-01

    Death of vascular smooth muscle cells (VSMCs) has been demonstrated in vessel development and in disease, most notably in atherosclerosis, but also after injury and remodelling. VSMC death promotes multiple features of vulnerable plaques, but also induces features of normal vessel ageing and cystic medial necrosis, including loss of VSMCs, elastin fragmentation and loss, increased glycosaminoglycans and speckled calcification. VSMC apoptosis in the absence of efficient phagocytosis also produces inflammation due to secondary necrosis; in contrast, VSMC apoptosis in normal vessels can be silent. We have investigated the consequences of VSMC apoptosis in both disease and during vessel remodelling. We find that VSMCs release specific cytokines dependent upon the mode of cell death; IL-1β predominates during apoptosis, whilst IL-1α predominates during necrosis. Both IL-1α and β promote release of further cytokines from adjacent live cells, in particular IL-6 and MCP-1. The balance of cytokines results in pathology with differing compositions, including inflammation or neointima formation/vascular repair, via direct promotion of VSMC proliferation and migration. Thus, VSMC death can promote either pathology or repair, depending upon the context and cytokine signalling.

  3. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

    PubMed Central

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A.V.; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L.

    2015-01-01

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  4. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling

    PubMed Central

    Sumida, Tomokazu; Naito, Atsuhiko T.; Nomura, Seitaro; Nakagawa, Akito; Higo, Tomoaki; Hashimoto, Akihito; Okada, Katsuki; Sakai, Taku; Ito, Masamichi; Yamaguchi, Toshihiro; Oka, Toru; Akazawa, Hiroshi; Lee, Jong-Kook; Minamino, Tohru; Offermanns, Stefan; Noda, Tetsuo; Botto, Marina; Kobayashi, Yoshio; Morita, Hiroyuki; Manabe, Ichiro; Nagai, Toshio; Shiojima, Ichiro; Komuro, Issei

    2015-01-01

    Hypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive. We have recently reported that complement C1q activates β-catenin signalling independent of Wnts. Here, we show a critical role of complement C1-induced activation of β-catenin signalling in hypertensive arterial remodelling. Activation of β-catenin and proliferation of VSMCs were observed after blood-pressure elevation, which were prevented by genetic and chemical inhibition of β-catenin signalling. Macrophage depletion and C1qa gene deletion attenuated the hypertension-induced β-catenin signalling, proliferation of VSMCs and pathological arterial remodelling. Our findings unveil the link between complement C1 and arterial remodelling and suggest that C1-induced activation of β-catenin signalling becomes a novel therapeutic target to prevent arteriosclerosis in patients with hypertension. PMID:25716000

  5. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response.

    PubMed

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A V; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L; Luttun, Aernout

    2015-09-28

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein-SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  6. PREDOMINANCE OF LOCAL OVER SYSTEMIC FACTORS IN UTERINE ARTERIAL REMODELING DURING PREGNANCY

    PubMed Central

    Fuller, Robert; Barron, Carolyn; Mandala, Maurizio; Gokina, Natalia; Osol, George

    2009-01-01

    This study utilized a rat model in which pregnancy was surgically restricted to one uterine horn to differentiate between local (fetoplacental) and systemic (endocrine) influences on uterine vascular remodeling during pregnancy. Sprague-Dawley rats with single horn pregnancies were studied on day 20/22 of gestation and compared to age-matched non-pregnant and late pregnant controls. The morphology (axial length, lumen diameter, wall thickness) of the main uterine artery and of smaller arcuate vessels showed that vascular growth was dramatically increased in the pregnant vs. non-pregnant horn, (p<0.05). Arcuate artery wall thickness increased in the non-pregnant horn (compared to non-pregnant controls, p<0.05), suggesting a limited role for systemic hormonal influences on vascular remodeling. Notably, animals with only one functional horn also compensated by increasing the average number of implantation sites per horn from 7.6 to 12.9, thereby maintaining essentially normal litter size without any reduction in fetal or placental weights. These results demonstrate unequivocally that local rather than systemic influences play the dominant role in uterine vascular gestational remodeling of both large and small uterine arteries, and reveal a significant adaptive process that maintains relatively normal fecundity in spite of surgical restriction of normal bilateral pregnancy. PMID:19164479

  7. VEGF receptors mediate hypoxic remodeling of adult ovine carotid arteries.

    PubMed

    Adeoye, Olayemi O; Bouthors, Vincent; Hubbell, Margaret C; Williams, James M; Pearce, William J

    2014-10-01

    Recent studies suggest that VEGF contributes to hypoxic remodeling of arterial smooth muscle, although hypoxia produces only transient increases in VEGF that return to normoxic levels despite sustained changes in arterial structure and function. To explore how VEGF might contribute to long-term hypoxic vascular remodeling, this study explores the hypothesis that chronic hypoxia produces sustained increases in smooth muscle VEGF receptor density that mediate long-term vascular effects of hypoxia. Carotid arteries from adult sheep maintained at sea level or altitude (3,820 m) for 110 days were harvested and denuded of endothelium. VEGF levels were similar in chronically hypoxic and normoxic arteries, as determined by immunoblotting. In contrast, VEGF receptor levels were significantly increased by 107% (VEGF-R1) and 156% (VEGF-R2) in hypoxic compared with normoxic arteries. In arteries that were organ cultured 24 h with 3 nM VEGF, VEGF replicated effects of hypoxia on abundances of smooth muscle α actin (SMαA), myosin light chain kinase (MLCK), and MLC20 and the effects of hypoxia on colocalization of MLC20 with SMαA, as measured via confocal microscopy. VEGF did not replicate the effects of chronic hypoxia on colocalization of MLCK with SMαA or MLCK with MLC20, suggesting that VEGF's role in hypoxic remodeling is highly protein specific, particularly for contractile protein organization. VEGF effects in organ culture were inhibited by VEGF receptor blockers vatalinib (240 nM) and dasatinib (6.3 nM). These findings support the hypothesis that long-term upregulation of VEGF receptors help mediate sustained effects of hypoxia on the abundance and colocalization of contractile proteins in arterial smooth muscle. PMID:25038104

  8. Tissue remodeling investigation in varicose veins

    PubMed Central

    Ghaderian, Sayyed Mohammad Hossein; Khodaii, Zohreh

    2012-01-01

    Although the etiology of varicose veins remains unknown, recent studies have focused on endothelial cell integrity and function because the endothelium regulates vessel tone and synthesizes many pro- and anti-inflammatory factors. The aim of this study was to investigate the evidence involving the endothelium in the development of varicose vein disease. In addition, tissue remodeling was investigated in varicose veins to determine the expression of different types of collagen. Tissue specimens of superficial varicose veins and control saphenous vein were used for immunohistochemical and transmission electron microscope (TEM). α-smooth muscle actin, and collagen I, III, IV antibodies were applied for immunohistochemical investigation. Findings of this study showed alterations of the intima, such as focal intimal discontinuity and denudation of endothelium; and the media, such as irregular arrangements of smooth muscle cells and collagen fibres in varicose veins. Our findings showed some changes in terms of distribution of types I, III and IV collagen in the intima and media of varicose vein walls compared with controls. These alterations to the media suggest that the pathological abnormality in varicose veins may be due to the loss of muscle tone as a result of the breakup of its regular structure by the collagen fibres. These findings only described some changes in terms of distribution of these types of collagen in the intima and media of varicose vein walls which may result in venous wall dysfunction in varicosis. PMID:24551759

  9. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  10. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  11. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  12. Chromatin remodeling in plant development.

    PubMed

    Jarillo, José A; Piñeiro, Manuel; Cubas, Pilar; Martínez-Zapater, José M

    2009-01-01

    Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

  13. [Research in Austria - the Ludwig Boltzmann Institute for Lung Vascular Research].

    PubMed

    Kovacs, G; Kleinschek, D; Kwapiszewska, G; Bálint, Z; Olschewski, H; Olschewski, A

    2016-05-01

    The Ludwig Boltzmann Institute for Lung Vascular Research was founded in 2010 and performs basic and clinical research on the field of chronic pulmonary vascular diseases. The major projects of the institute focus on the investigation of the pathomechanisms of pulmonary vascular remodeling, the development of novel non-invasive diagnostic techniques of pulmonary hypertension and the early detection of pulmonary vascular diseases. The institute closely cooperates with patient organizations and aims to contribute to the development of improved diagnostic and therapeutic approaches for patients with pulmonary vascular diseases. In this short overview the most important results of the first six years of the institute will be summarized. PMID:27168041

  14. [Research in Austria - the Ludwig Boltzmann Institute for Lung Vascular Research].

    PubMed

    Kovacs, G; Kleinschek, D; Kwapiszewska, G; Bálint, Z; Olschewski, H; Olschewski, A

    2016-05-01

    The Ludwig Boltzmann Institute for Lung Vascular Research was founded in 2010 and performs basic and clinical research on the field of chronic pulmonary vascular diseases. The major projects of the institute focus on the investigation of the pathomechanisms of pulmonary vascular remodeling, the development of novel non-invasive diagnostic techniques of pulmonary hypertension and the early detection of pulmonary vascular diseases. The institute closely cooperates with patient organizations and aims to contribute to the development of improved diagnostic and therapeutic approaches for patients with pulmonary vascular diseases. In this short overview the most important results of the first six years of the institute will be summarized.

  15. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin

    PubMed Central

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-01-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR

  16. Imperatorin derivative OW1 inhibits the upregulation of TGF-β and MMP-2 in renovascular hypertension-induced cardiac remodeling

    PubMed Central

    ZHOU, NAN; ZHU, YANING; ZHANG, PENG; ZHANG, YU; ZHOU, MINGYAO; WANG, TAO; HE, LANGCHONG

    2016-01-01

    Chronic hypertension induces vascular and cardiac remodeling. OW1 is a novel imperatorin derivative that was previously reported to inhibit vascular remodeling and improve kidney function affected by hypertension. In the present study, the effect of OW1 on the cardiac remodeling induced by hypertension was investigated. OW1 inhibited vascular smooth muscle cell (VSMC) proliferation and the phenotypic modulation of VSMCs induced by angiotensin II (Ang II). The OW1-induced vasodilatation of rat cardiac arteries was evaluated in vitro. Renovascular hypertensive rats were developed using the two-kidney one-clip method and treated with OW1 (40 or 80 mg/kg/day) or nifedipine (30 mg/kg per day) for 5 weeks. OW1 markedly reduced the systolic and diastolic blood pressure compared with that in the hypertension group or the respective baseline value during the first week. OW1 also reduced cardiac weight, and the concentrations of Ang II, aldosterone and transforming growth factor-β1 (TGF-β1). Histological examination demonstrated that OW1 exerted an inhibitory effect on vascular and cardiac remodeling. These inhibitory effects were associated with decreased cardiac levels of Ang II, matrix metalloproteinase-2 and TGF-β1 in the hypertensive rats. In summary, OW1 exhibited a clear antihypertensive effect. More importantly, it inhibited vascular and cardiovascular remodeling, which may reduce the risk of hypertension-induced cardiovascular diseases. These results have potential implications in the development of new antihypertensive drugs. PMID:27168797

  17. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  18. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  19. Remodeling of alveolar septa after murine pneumonectomy

    PubMed Central

    Ysasi, Alexandra B.; Wagner, Willi L.; Bennett, Robert D.; Ackermann, Maximilian; Valenzuela, Cristian D.; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A.

    2015-01-01

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends (“E”). Septal retraction, observed in 20–30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  20. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  1. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress.

    PubMed

    Liang, Ying; Wang, Jian; Gao, Haiqing; Wang, Quanzhen; Zhang, Jun; Qiu, Jie

    2016-10-01

    Arterial remodeling is a pathogenic occurrence during hypertension and, in turn, is closely associated with the development and complications of hypertension. Grape seed proanthocyanidin extract (GSPE) has been reported to exhibit a protective effect on cardiovascular disease, however its effect on arterial remodeling remains to be fully elucidated. In the present study, the effects of GSPE on arterial remodeling were analyzed by treating spontaneously hypertensive rats (SHRs) with GSPE (250 mg/kg·day). Arterial remodeling was quantified through morphological methods; thoracic aortas were stained with hematoxylin-eosin or sirius red‑victoria blue. The arterial ultrastructure was imaged using transmission electron microscopy. The content of nitric oxide (NO) and endothelin‑1 (ET‑1) were examined to determine endothelial function. Oxidative stress was assessed by malondialdehyde (MDA) levels and the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Administration of GSPE markedly alleviated hypertension‑induced arterial remodeling, which was not associated with blood pressure control. ET‑1 production was reduced, while NO production was increased in the GSPE group, which exhibited improved endothelial function. In addition, treatment with GSPE significantly ameliorated oxidative stress by improving SOD and CAT activities and reducing MDA formation. In conclusion, GSPE may attenuate hypertension‑induced arterial remodeling by repressing oxidative stress and is recommended as a potential anti‑arterial remodeling agent for patients with hypertensive vascular diseases. PMID:27601315

  2. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels.

    PubMed

    Pennisi, P; Signorelli, S S; Riccobene, S; Celotta, G; Di Pino, L; La Malfa, T; Fiore, C E

    2004-05-01

    Patients with vascular calcifications often have low bone mineral density (BMD), but it is still uncertain if osteoporosis and peripheral vascular disease (VD) are interrelated and linked by a common pathomechanism. Moreover, data on bone turnover in patients with advanced atherosclerosis are lacking. We measured BMD by dual-energy X-ray absorptiometry (DXA) and quantitative bone ultrasound (QUS), as well as the serum levels of osteocalcin (OC), bone-specific alkaline phosphatase (BAP), osteoprotegerin (OPG) and its ligand RANKL, and the urinary concentration of the C-terminal telopeptides of type I collagen (CrossLaps), in 36 patient (20 male and 16 female) with serious atherosclerotic involvement of the carotid and/or femoral artery to investigate the underlying mechanism of vascular and osseous disorders. Thirty age-matched and gender matched healthy individuals served as controls. After adjustment for age, BMD was significantly reduced at the lumbar spine in 23/36 (63%) patients (mean T score -1.71+/-1.42) and at the proximal femur in 34/36 (93%) patients (neck mean T score -2.5+/-0.88). Ten patients (27%) had abnormal QUS parameters. Gender and diabetes had no effect on the relationship between vascular calcification and bone density at any site measured. VD subjects had OC and BAP serum levels lower than controls (13.3+/-3.1 vs 27.7+/-3.3 ng/ml, P<0.01, and 8.4+/-2.3 vs 12.5+/-1.4 microg/l, P<0.01, respectively). Urinary CrossLaps excretion was not significantly different in patients with VD and in controls (257.9+/-138.9 vs 272.2+/-79.4 micro g/mmol Cr, respectively). Serum OPG and RANKL levels were similar in patients and in controls (3.5+/-1.07 vs 3.4+/-1.05 pmol/l, and 0.37+/-0.07 vs 0.36+/-0.06 pmol/l, respectively). We proved high occurrence of osteoporosis in VD, with evidence of age and gender independence. Negative bone remodelling balance would be a consequence of reduced bone formation, with no apparent increased activation of the OPG-RANKL system

  3. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  4. Remodeling of left circumflex coronary arterial tree in pacing-induced heart failure.

    PubMed

    Huo, Yunlong; Kassab, Ghassan S

    2015-08-15

    Congestive heart failure (CHF) is a very serious heart disease that manifests an imbalance between left ventricle supply and demand. Although the mechanical demand of the failing heart has been well characterized, the systematic remodeling of the entire coronary arterial tree that constitutes the supply of the myocardium is lacking. We hypothesize that the well-known increase in ventricle wall stress during CHF causes coronary vascular rarefaction to increase the vascular flow resistance, which in turn compromises the perfusion of the heart. Morphometric (diameters, length, and numbers) data of the swine left circumflex (LCx) arterial tree were measured in both CHF (n = 6) and control (n = 6) groups, from which a computer reconstruction of the entire LCx tree was implemented down to the capillary level to enable a hemodynamic analysis of coronary circulation. The vascular flow resistance was increased by ∼75% due to a significant decrease of vessel numbers (∼45%) and diameters in the first capillary segments (∼10%) of the LCx arterial tree after 3-4 wk of pacing. The structural remodeling significantly changed the wall shear stress in vessel segments of the entire LCx arterial tree of CHF animals. This study enhances our knowledge of coronary arterial tree remodeling in heart failure, which provides a deeper understanding of the deterioration of supply-demand relation in left ventricle.

  5. Remodeling of left circumflex coronary arterial tree in pacing-induced heart failure

    PubMed Central

    Huo, Yunlong

    2015-01-01

    Congestive heart failure (CHF) is a very serious heart disease that manifests an imbalance between left ventricle supply and demand. Although the mechanical demand of the failing heart has been well characterized, the systematic remodeling of the entire coronary arterial tree that constitutes the supply of the myocardium is lacking. We hypothesize that the well-known increase in ventricle wall stress during CHF causes coronary vascular rarefaction to increase the vascular flow resistance, which in turn compromises the perfusion of the heart. Morphometric (diameters, length, and numbers) data of the swine left circumflex (LCx) arterial tree were measured in both CHF (n = 6) and control (n = 6) groups, from which a computer reconstruction of the entire LCx tree was implemented down to the capillary level to enable a hemodynamic analysis of coronary circulation. The vascular flow resistance was increased by ∼75% due to a significant decrease of vessel numbers (∼45%) and diameters in the first capillary segments (∼10%) of the LCx arterial tree after 3-4 wk of pacing. The structural remodeling significantly changed the wall shear stress in vessel segments of the entire LCx arterial tree of CHF animals. This study enhances our knowledge of coronary arterial tree remodeling in heart failure, which provides a deeper understanding of the deterioration of supply-demand relation in left ventricle. PMID:26159756

  6. Uterine distension differentially affects remodelling and distensibility of the uterine vasculature in non-pregnant rats.

    PubMed

    Osol, George; Barron, Carolyn; Mandalà, Maurizio

    2012-01-01

    During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type.

  7. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  8. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  9. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  10. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  11. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  12. Chromatin Remodelers: From Function to Dysfunction.

    PubMed

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  13. Abnormal uterine bleeding.

    PubMed

    Jennings, J C

    1995-11-01

    Physicians who care for female patients cannot avoid the frequent complaint of abnormal uterine bleeding. Knowledge of the disorders that cause this problem can prevent serious consequences in many patients and improve the quality of life for many others. The availability of noninvasive and minimally invasive diagnostic studies and minimally invasive surgical treatment has revolutionized management of abnormal uterine bleeding. Similar to any other disorder, the extent to which a physician manages abnormal uterine bleeding depends on his or her own level of comfort. When limitations of either diagnostic or therapeutic capability are encountered, consultation and referral should be used to the best interest of patients.

  14. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  15. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  16. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  17. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  18. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  19. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor.

    PubMed

    Citterio, E; Van Den Boom, V; Schnitzler, G; Kanaar, R; Bonte, E; Kingston, R E; Hoeijmakers, J H; Vermeulen, W

    2000-10-01

    The Cockayne syndrome B protein (CSB) is required for coupling DNA excision repair to transcription in a process known as transcription-coupled repair (TCR). Cockayne syndrome patients show UV sensitivity and severe neurodevelopmental abnormalities. CSB is a DNA-dependent ATPase of the SWI2/SNF2 family. SWI2/SNF2-like proteins are implicated in chromatin remodeling during transcription. Since chromatin structure also affects DNA repair efficiency, chromatin remodeling activities within repair are expected. Here we used purified recombinant CSB protein to investigate whether it can remodel chromatin in vitro. We show that binding of CSB to DNA results in an alteration of the DNA double-helix conformation. In addition, we find that CSB is able to remodel chromatin structure at the expense of ATP hydrolysis. Specifically, CSB can alter DNase I accessibility to reconstituted mononucleosome cores and disarrange an array of nucleosomes regularly spaced on plasmid DNA. In addition, we show that CSB interacts not only with double-stranded DNA but also directly with core histones. Finally, intact histone tails play an important role in CSB remodeling. CSB is the first repair protein found to play a direct role in modulating nucleosome structure. The relevance of this finding to the interplay between transcription and repair is discussed. PMID:11003660

  20. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  1. Fibroblast cytoskeletal remodeling contributes to connective tissue tension.

    PubMed

    Langevin, Helene M; Bouffard, Nicole A; Fox, James R; Palmer, Bradley M; Wu, Junru; Iatridis, James C; Barnes, William D; Badger, Gary J; Howe, Alan K

    2011-05-01

    The visco-elastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the visco-elastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast's processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the visco-elastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular, and immune cell populations residing within connective tissue.

  2. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  3. FIBROBLAST CYTOSKELETAL REMODELING CONTRIBUTES TO CONNECTIVE TISSUE TENSION

    PubMed Central

    Langevin, Helene M.; Bouffard, Nicole A.; Fox, James R.; Palmer, Bradley M.; Wu, Junru; Iatridis, James C.; Barnes, William D.; Badger, Gary J.; Howe, Alan K.

    2011-01-01

    The viscoelastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the viscoelastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast’s processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the viscoelastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular and immune cell populations residing within connective tissue. PMID:20945345

  4. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease.

    PubMed

    Krishnamurthy, Varun K; Opoka, Amy M; Kern, Christine B; Guilak, Farshid; Narmoneva, Daria A; Hinton, Robert B

    2012-04-01

    Aortic valve disease (AVD) occurs in 2.5% of the general population and often requires surgical intervention. Aortic valve malformation (AVM) underlies the majority of cases, suggesting a developmental etiology. Elastin haploinsufficiency results in complex cardiovascular problems, and 20-45% of patients have AVM and/or AVD. Elastin insufficient (Eln+/-) mice demonstrate AVM and latent AVD due to abnormalities in the valve annulus region. The objective of this study was to examine extracellular matrix (ECM) remodeling and biomechanical properties in regional aortic valve tissue and determine the impact of early AVM on late AVD in the Eln+/- mouse model. Aortic valve ECM composition and remodeling from juvenile, adult, and aged stages were evaluated in Eln+/- mice using histology, ELISA, immunohistochemistry and gelatin zymography. Aortic valve tissue biomechanical properties were determined using micropipette aspiration. Cartilage-like nodules were demonstrated within the valve annulus region at all stages identifying a developmental abnormality preceding AVD. Interestingly, maladaptive ECM remodeling was observed in early AVM without AVD and worsened with late AVD, as evidenced by increased MMP-2 and MMP-9 expression and activity, as well as abnormalities in ADAMTS-mediated versican processing. Cleaved versican was increased in the valve annulus region of aged Eln+/- mice, and this abnormality correlated temporally with adverse alterations in valve tissue biomechanical properties and the manifestation of AVD. These findings identify maladaptive ECM remodeling in functional AVM as an early disease process with a progressive natural history, similar to that seen in human AVD, emphasizing the importance of the annulus region in pathogenesis. Combining molecular and engineering approaches provides complementary mechanistic insights that may be informative in the search for new therapeutic targets and durable valve bioprostheses.

  5. Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation

    PubMed Central

    Zhang, Rui; Zhu, Wan

    2015-01-01

    Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM. PMID:26463919

  6. Vascular tissue engineering: the next generation.

    PubMed

    Cleary, Muriel A; Geiger, Erik; Grady, Conor; Best, Cameron; Naito, Yuji; Breuer, Christopher

    2012-07-01

    It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency. PMID:22695236

  7. Digital vascular imaging and selective renin sampling in evaluation of vascular anatomy in renal transplant recipients.

    PubMed Central

    Khoury, G A; Irving, J D; Farrington, K; Varghese, Z; Persaud, J W; Sweny, P; Moorhead, J F; Fernando, O N

    1983-01-01

    Sixty-five renal transplant recipients underwent digital vascular imaging of the graft and simultaneous selective venous sampling for plasma renin activity. Renal artery stenosis was found in seven patients but did not appear to be functionally important. Diffuse intrarenal arterial attenuation was found in seven patients and was associated with impaired graft function and perfusion; it may indicate chronic rejection. Lower pole hypoperfusion was found in nine patients without impaired graft function or perfusion; its clinical relevance is uncertain. Aneurysmal dilatation of the main renal artery was found in two patients. Severe hypertension was common in patients with these three major abnormalities, but a causal association between the abnormality and hypertension could rarely be inferred. It may be the abnormalities on digital vascular imaging, especially diffuse intrarenal arterial attenuation and lower pole hypoperfusion, are secondary to severe hypertension. Digital vascular imaging with simultaneous selective venous sampling for plasma renin activity is useful in evaluating the vascular anatomy of the grafted kidney and in assessing any abnormality found. The combined procedure was well tolerated by all patients with no complications and no incidence of acute tubular dysfunction or proteinuria after the investigation. Images p1005-a PMID:6403169

  8. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling

    PubMed Central

    Merks, Roeland M.H.; Brodsky, Sergey V.; Goligorksy, Michael S.; Newman, Stuart A.; Glazier, James A.

    2008-01-01

    Vasculogenesis, the de novo growth of the primary vascular network from initially dispersed endothelial cells, is the first step in the development of the circulatory system in vertebrates. In the first stages of vasculogenesis, endothelial cells elongate and form a network-like structure, called the primary capillary plexus, which subsequently remodels, with the size of the vacancies between ribbons of endothelial cells coarsening over time. To isolate such intrinsic morphogenetic ability of endothelial cells from its regulation by long-range guidance cues and additional cell types, we use an in vitro model of human umbilical vein endothelial cells (HUVEC) in Matrigel. This quasi-two-dimensional endothelial cell culture model would most closely correspond to vasculogenesis in flat areas of the embryo like the yolk sac. Several studies have used continuum mathematical models to explore in vitro vasculogenesis: such models describe cell ensembles but ignore the endothelial cells’ shapes and active surface fluctuations. While these models initially reproduce vascular-like morphologies, they eventually stabilize into a disconnected pattern of vascular “islands.” Also, they fail to reproduce temporally correct network coarsening. Using a cell-centered computational model, we show that the endothelial cells’ elongated shape is key to correct spatiotemporal in silico replication of stable vascular network growth. We validate our simulation results against HUVEC cultures using time-resolved image analysis and find that our simulations quantitatively reproduce in vitro vasculogenesis and subsequent in vitro remodeling. PMID:16325173

  9. Plant Vascular Biology 2013: vascular trafficking.

    PubMed

    Ursache, Robertas; Heo, Jung-Ok; Helariutta, Ykä

    2014-04-01

    About 200 researchers from around the world attended the Third International Conference on Plant Vascular Biology (PVB 2013) held in July 2013 at the Rantapuisto Conference Center, in Helsinki, Finland (http://www.pvb2013.org). The plant vascular system, which connects every organ in the mature plant, continues to attract the interest of researchers representing a wide range of disciplines, including development, physiology, systems biology, and computational biology. At the meeting, participants discussed the latest research advances in vascular development, long- and short-distance vascular transport and long-distance signalling in plant defence, in addition to providing a context for how these studies intersect with each other. The meeting provided an opportunity for researchers working across a broad range of fields to share ideas and to discuss future directions in the expanding field of vascular biology. In this report, the latest advances in understanding the mechanism of vascular trafficking presented at the meeting have been summarized.

  10. SWI/SNF chromatin remodeling and human malignancies.

    PubMed

    Masliah-Planchon, Julien; Bièche, Ivan; Guinebretière, Jean-Marc; Bourdeaut, Franck; Delattre, Olivier

    2015-01-01

    The SWI/SNF complexes, initially identified in yeast 20 years ago, are a family of multi-subunit complexes that use the energy of adenosine triphosphate (ATP) hydrolysis to remodel nucleosomes. Chromatin remodeling processes mediated by the SWI/SNF complexes are critical to the modulation of gene expression across a variety of cellular processes, including stemness, differentiation, and proliferation. The first evidence of the involvement of these complexes in carcinogenesis was provided by the identification of biallelic, truncating mutations of the SMARCB1 gene in malignant rhabdoid tumors, a highly aggressive childhood cancer. Subsequently, genome-wide sequencing technologies have identified mutations in genes encoding different subunits of the SWI/SNF complexes in a large number of tumors. SWI/SNF mutations, and the subsequent abnormal function of SWI/SNF complexes, are among the most frequent gene alterations in cancer. The mechanisms by which perturbation of the SWI/SNF complexes promote oncogenesis are not fully elucidated; however, alterations of SWI/SNF genes obviously play a major part in cancer development, progression, and/or resistance to therapy.

  11. A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury

    PubMed Central

    Ho, Yen-Chun; Wu, Meng-Ling; Su, Chen-Hsuan; Chen, Chung-Huang; Ho, Hua-Hui; Lee, Guan-Lin; Lin, Wei-Shiang; Lin, Wen-Yu; Hsu, Yu-Juei; Kuo, Cheng-Chin; Wu, Kenneth K.; Yet, Shaw-Fang

    2016-01-01

    5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling. PMID:27146795

  12. Branding of vascular surgery.

    PubMed

    Perler, Bruce A

    2008-03-01

    The Society for Vascular Surgery surveyed primary care physicians (PCPs) to understand how PCPs make referral decisions for their patients with peripheral vascular disease. Responses were received from 250 PCPs in 44 states. More than 80% of the respondents characterized their experiences with vascular surgeons as positive or very positive. PCPs perceive that vascular surgeons perform "invasive" procedures and refer patients with the most severe vascular disease to vascular surgeons but were more than twice as likely to refer patients to cardiologists, believing they are better able to perform minimally invasive procedures. Nevertheless, PCPs are receptive to the notion of increasing referrals to vascular surgeons. A successful branding campaign will require considerable education of referring physicians about the totality of traditional vascular and endovascular care increasingly provided by the contemporary vascular surgical practice and will be most effective at the local grassroots level.

  13. Numerical Simulation of the Flow in Vascular Grafts for Surgical Applications

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Aliseda, Alberto

    2009-11-01

    Numerical simulation of the human blood vessels, is becoming an important tool in surgical planning and research. Accurate vascular simulations might grant physicians the predictive capability to perform pre-surgical planning. We focus our attention on the implantation of vascular grafts. The high rate of failure of this common vascular interaction is intimately related to the fluid mechanics in the affected region and the subsequent wall tissue remodeling. Here, we will present our current work in developing a methodology for the numerical simulation of vascular grafts which incorporates physiologically realistic geometries and flow boundary conditions. In particular, we seek to correlate the wall shear stress and its spatial (WSSG) and temporal (OSI) variability to wall remodeling as observed in patient specific longitudinal studies. The pulsatility (Remean= 800 , Repeak= 2000, Wo = 2) of the flow gives rise to additional fluid dynamics phenomena such as instability, flow separation, transition, and unsteadiness. Our goal is to describe and evaluate their effect on the wall physiology.

  14. Brain arterial remodeling contribution to nonembolic brain infarcts in patients with HIV

    PubMed Central

    Goldman, James; Dwork, Andrew J.; Elkind, Mitchell S.V.; Marshall, Randolph S.; Morgello, Susan

    2015-01-01

    Background: Cerebrovascular disease is a cause of morbidity in HIV-infected populations. The relationship among HIV infection, brain arterial remodeling, and stroke is unclear. Methods: Large brain arteries (n = 1,878 segments) from 284 brain donors with and without HIV were analyzed to obtain media and wall thickness and lumen-to-wall ratio, and to determine the presence of atherosclerosis and dolichoectasia (arterial remodeling extremes). Neuropathologic assessment was used to characterize brain infarcts. Multilevel models were used to assess for associations between arterial characteristics and HIV. Associations between arterial characteristics and brain infarcts were examined in HIV+ individuals only. Results: Adjusting for vascular risk factors, HIV infection was associated with thicker arterial walls and smaller lumen-to-wall ratios. Cerebral atherosclerosis accounted for one-quarter of the brain infarcts in HIV+ cases, and was more common with aging, diabetes, a lower CD4 nadir, and a higher antemortem CD4 count. In contrast, a higher lumen-to-wall ratio was the only arterial predictor of unexplained infarcts in HIV+ cases. Dolichoectasia was more common in HIV+ cases with smoking and media thinning, and with protracted HIV infection and a detectable antemortem viral load. Conclusions: HIV infection may predispose to inward remodeling compared to uninfected controls. However, among HIV+ cases with protracted immunosuppression, outward remodeling is the defining arterial phenotype. Half of all brain infarcts in this sample were attributed to the extremes of brain arterial remodeling: atherosclerosis and dolichoectasia. Understanding the mechanisms influencing arterial remodeling will be important in controlling cerebrovascular disease in the HIV-infected population. PMID:26320196

  15. Uterine artery remodeling in pseudopregnancy is comparable to that in early pregnancy.

    PubMed

    van der Heijden, Olivier W H; Essers, Yvonne P G; Spaanderman, Marc E A; De Mey, Jo G R; van Eys, Guillaume J J M; Peeters, Louis L H

    2005-12-01

    During pregnancy, the lumenal diameter and wall mass of the uterine artery (UA) increase, most likely in response to the increased hemodynamic strain resulting from the chronically elevated uterine blood flow (UBF). In this remodeling process, the phenotype of vascular smooth-muscle cells (VSMC) is transiently altered to enable VSMC proliferation. These phenomena are already seen during early pregnancy, when the rise in UBF is still modest. This raises the question whether the newly instituted endocrine environment of pregnancy is involved in the onset of the pregnancy-related UA remodeling. We tested the hypothesis that the conceptus is not essential for the onset of UA remodeling of pregnancy. Six control and 18 pseudopregnant (Postcopulation Days 5, 11, and 17; n = 6 per subgroup) C57Bl/6 mice were killed and UAs were dissected and processed for either morphometric analysis or immunohistochemistry. The latter consisted of staining UA cross sections for the differentiation markers smooth muscle alpha-actin and smoothelin, and for the proliferation marker MKI67. We analyzed the UA changes in response to pseudopregnancy by ANOVA. Data are presented as mean +/- SD. By Day 11 of pseudopregnancy, the UA lumen was 25% wider and the media cross-sectional area 71% larger than in control mice. These differences were accompanied by reduced smoothelin expression and increased proliferation of UA medial VSMC. All UA morphological differences had returned or were in the process of returning to baseline values by Day 17 of pseudopregnancy. The structural and cellular aspects of UA remodeling as seen at midpregnancy are also seen in pseudopregnancy. These results support the concept that the conceptus does not contribute to the initiation of UA remodeling. We suggest that ovarian hormones trigger the onset of UA remodeling.

  16. [Hair shaft abnormalities].

    PubMed

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  17. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension

    PubMed Central

    Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.

    2015-01-01

    Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174

  18. Effect of Lysyl Oxidase Inhibition on Angiotensin II-Induced Arterial Hypertension, Remodeling, and Stiffness

    PubMed Central

    Eberson, Lance S.; Sanchez, Pablo A.; Majeed, Beenish A.; Tawinwung, Supannikar; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN. PMID:25875748

  19. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  20. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  1. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  2. [Pulmonary hypertension: from molecular pathophysiology to haemodynamic abnormalities].

    PubMed

    Duong-Quy, S; Rivière, S; Bei, Y; Duong-Ngo, C; Le-Dong, N N; Hua-Huy, T; Dinh-Xuan, A T

    2012-10-01

    Pulmonary hypertension (PH) is a complex disorder resulting from many etiologies that cause disturbances of normal pulmonary haemodynamics. Recent breakthroughs have led to a better understanding of the pathophysiology of the disease. In PH, haemodynamic disturbances are closely linked to structural changes and excessive remodeling of pulmonary vessels, leading to progressive narrowing of the pulmonary vascular lumen. Imbalances between pulmonary vasoconstrictors and vasodilators on the one hand, and factors favoring cell proliferation and apoptosis on the other hand, probably account for most cases of PH. This review aims to update readers with the current knowledge on the molecular physiopathology of PH and how this can progress the therapeutic of this disorder.

  3. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  4. [Bone remodelling using the boundary element method].

    PubMed

    Martínez, Gabriela; Cerrolaza, Miguel

    2003-01-01

    An algorithm for the mathematical representation of external bone remodeling is proposed. The Boundary element method is used for the numerical analysis of trabecular bone, together with the remodeling algorithm presented by Fridez. The versatility and power of the algorithm discussed herein are shown by some numerical examples. As well, the method converges very fast to the solution, which is one of the main advantages of the proposed numerical scheme.

  5. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II.

    PubMed

    Takayanagi, Takehiko; Forrester, Steven J; Kawai, Tatsuo; Obama, Takashi; Tsuji, Toshiyuki; Elliott, Katherine J; Nuti, Elisa; Rossello, Armando; Kwok, Hang Fai; Scalia, Rosario; Rizzo, Victor; Eguchi, Satoru

    2016-10-01

    Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.

  6. Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II.

    PubMed

    Takayanagi, Takehiko; Forrester, Steven J; Kawai, Tatsuo; Obama, Takashi; Tsuji, Toshiyuki; Elliott, Katherine J; Nuti, Elisa; Rossello, Armando; Kwok, Hang Fai; Scalia, Rosario; Rizzo, Victor; Eguchi, Satoru

    2016-10-01

    Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications. PMID:27480833

  7. Axl modulates immune activation of smooth muscle cells in vein graft remodeling.

    PubMed

    Batchu, Sri N; Xia, Jixiang; Ko, Kyung Ae; Doyley, Marvin M; Abe, Jun-Ichi; Morrell, Craig N; Korshunov, Vyacheslav A

    2015-09-15

    The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.

  8. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.

  9. Physiology and pathophysiology of bone remodeling.

    PubMed

    Raisz, L G

    1999-08-01

    The skeleton is a metabolically active organ that undergoes continuous remodeling throughout life. This remodeling is necessary both to maintain the structural integrity of the skeleton and to subserve its metabolic functions as a storehouse of calcium and phosphorus. These dual functions often come into conflict under conditions of changing mechanical forces or metabolic and nutritional stress. The bone remodeling cycle involves a complex series of sequential steps that are highly regulated. The "activation" phase of remodeling is dependent on the effects of local and systemic factors on mesenchymal cells of the osteoblast lineage. These cells interact with hematopoietic precursors to form osteoclasts in the "resorption" phase. Subsequently, there is a "reversal" phase during which mononuclear cells are present on the bone surface. They may complete the resorption process and produce the signals that initiate formation. Finally, successive waves of mesenchymal cells differentiate into functional osteoblasts, which lay down matrix in the "formation" phase. The effects of calcium-regulating hormones on this remodeling cycle subserve the metabolic functions of the skeleton. Other systemic hormones control overall skeletal growth. The responses to changes in mechanical force and repair of microfractures, as well as the maintenance of the remodeling cycle, are determined locally by cytokines, prostaglandins, and growth factors. Interactions between systemic and local factors are important in the pathogenesis of osteoporosis as well as the skeletal changes in hyperparathyroidism and hyperthyroidism. Local factors are implicated in the pathogenesis of the skeletal changes associated with immobilization, inflammation, and Paget disease of bone. PMID:10430818

  10. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  11. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease. PMID:22972531

  12. Pathogenesis of diabetic cerebral vascular disease complication

    PubMed Central

    Xu, Ren-Shi

    2015-01-01

    Diabetes mellitus is one of the most potent independent risk factors for the development of diabetic cerebral vascular disease (CVD). Many evidences suggested that hyperglycemia caused excess free fatty acids, the loss of endothelium-derived nitric oxide, insulin resistance, the prothrombotic state, endothelial dysfunction, the abnormal release of endothelial vasoactivators, vascular smooth muscle dysfunction, oxidative stress, and the downregulation of miRs participated in vessel generation and recovery as well as the balance of endotheliocytes. In turn, these abnormalities, mainly via phosphatidylinositol 3 kinase, mitogen-activated protein kinase, polyol, hexosamine, protein kinase C activation, and increased generation of advanced glycosylation end products pathway, play an important role in inducing diabetic CVD complication. A deeper comprehension of pathogenesis producing diabetic CVD could offer base for developing new therapeutic ways preventing diabetic CVD complications, therefore, in the paper we mainly reviewed present information about the possible pathogenesis of diabetic CVD complication. PMID:25685278

  13. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma

    PubMed Central

    Folestad, Erika; Rowley, Jessica E.; Noll, Elisa M.; Walker, Simone A.; Lloyd, Clare M.; Rankin, Sara M.; Pietras, Kristian; Eriksson, Ulf; Fuxe, Jonas

    2015-01-01

    Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRβ, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRβ inhibitor (CP-673451) to investigate the role of PDGFRβ signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRβ signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRβ signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma. PMID:25637607

  14. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  15. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  16. β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension

    PubMed Central

    Heerkens, Egidius H.J; Quinn, Lisa; Withers, Sarah B; Heagerty, Anthony M

    2014-01-01

    Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, this process was completed and accompanied by a significant increase in FAK phosphorylation compared with normotensive control animals. Phosphorylated (p)FAK Y397 was coimmunoprecipitated with both β1- and β3-integrin-specific antibodies. In contrast, only a fraction (<10-fold) was coprecipitated with the β3 integrin subunit in control vessels. Inhibition of eutrophic remodeling by cRGDfV treatment of TGR(mRen2)27 rats resulted in the development of smooth-muscle-cell hypertrophy and a significant further enhancement of FAK Y397 phosphorylation, but this time with exclusive coassociation of pFAK Y397 with integrin β1. We established that phosphorylation of FAK Y397 with association with β1 and β3 integrins occurs with pressure-induced eutrophic remodeling. Inhibiting this process leads to an adaptive hypertrophic vascular response induced by a distinct β1-mediated FAK phosphorylation pattern. PMID:25300309

  17. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma.

    PubMed

    Johnson, Jill R; Folestad, Erika; Rowley, Jessica E; Noll, Elisa M; Walker, Simone A; Lloyd, Clare M; Rankin, Sara M; Pietras, Kristian; Eriksson, Ulf; Fuxe, Jonas

    2015-04-01

    Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRβ, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRβ inhibitor (CP-673451) to investigate the role of PDGFRβ signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRβ signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRβ signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma. PMID:25637607

  18. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis.

    PubMed

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  19. Collagen vascular disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many ...

  20. Fluvastatin upregulates the α 1C subunit of CaV1.2 channel expression in vascular smooth muscle cells via RhoA and ERK/p38 MAPK pathways.

    PubMed

    Ouyang, Qiu-Fang; Han, Ying; Lin, Zhi-Hong; Xie, Hong; Xu, Chang-Sheng; Xie, Liang-Di

    2014-01-01

    Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis. And this process has been related to remodeling of L-type calcium channel (LTCC). We attempted to investigate whether fluvastatin has any effect on VSMC proliferation and LTCCα 1C subunit (LTCCα 1C) expression as well as the potential mechanisms involved. The VSMCs proliferation was assayed by osteopontin immunofluorescent staining and [(3)H]-thymidine incorporation. The cell cycle was detected by flow cytometric analysis. The activity of RhoA was determined with pull-down assay. MAPK activity and LTCCα 1C expression were assessed by western blotting. We demonstrated fluvastatin prevented the VSMCs dedifferentiating into a proliferative phenotype and induced cell cycle arrest in the G0/G1 phase in response to PDGF-BB stimulation. Fluvastatin dose-dependently reversed the downregulation of LTCCα 1C expression induced by PDGF-BB. Inhibition of ROCK, ERK, or p38 MAPK activation largely enhanced the upregulation effect of fluvastatin (P < 0.01). However, blockade of JNK pathway had no effect on LTCCα 1C expression. We concluded LTCCα 1C was a VSMC contractile phenotype marker gene. Fluvastatin upregulated LTCCα 1C expression, at least in part, by inhibiting ROCK, ERK1/2, and p38 MAPK activation. Fluvastatin may be a potential candidate for preventing or treating vascular diseases.

  1. Quantification of blood flow and topology in developing vascular networks.

    PubMed

    Kloosterman, Astrid; Hierck, Beerend; Westerweel, Jerry; Poelma, Christian

    2014-01-01

    Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25-500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules.

  2. Clinicopathologic abnormalities associated with snake envenomation in domestic animals.

    PubMed

    Goddard, Amelia; Schoeman, Johan P; Leisewitz, Andrew L; Nagel, Salome S; Aroch, Itamar

    2011-09-01

    Envenomation of domestic animals by snakes occurs frequently in certain geographic areas. However, reports describing clinical signs, clinicopathologic abnormalities, therapeutic approaches, and outcomes are sparse. This review summarizes various snake families, venom types associated with harmful snakes, and the significant hematologic, hemostatic, and biochemical abnormalities associated with envenomation. Hematologic abnormalities include RBC membrane abnormalities, hemolysis, hemoconcentration, leukogram changes, and platelet abnormalities, specifically thrombocytopenia. Coagulopathies associated with snake envenomation are well described in human medicine, and many studies have demonstrated properties of venoms that lead to both procoagulation and anticoagulation. As expected, similar abnormalities have been described in domestic animals. Biochemical abnormalities are associated with the effects of venom on tissues such as liver, skeletal and cardiac muscle, vascular endothelium, and kidney as well as effects on protein components and cholesterol. This comprehensive review of clinicopathologic abnormalities associated with envenomation and their relationships to characterized venom constituents should be useful both in the diagnosis and management of envenomation and should serve as a foundation for future research in this field.

  3. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  4. Changes in Vascularization of Human Breast Cancer Xenografts Responding to Antiestrogen Therapy1

    PubMed Central

    Kristensen, Claus A; Hamberg, Leena M; Hunter, George J; Roberge, Sylvie; Kierstead, Diane; Wolf, Gerald L; Jain, Rakesh K

    1999-01-01

    Abstract To elucidate the previously suggested vascular effect(s) of antiestrogen therapy, we studied the effect of estrogen withdrawal and tamoxifen on 1) vascular resistance, 2) glucose and oxygen consumption, and 3) vascular density in a perfused breast cancer line (ZR75-1). Furthermore, we examined ZR75-1 tumors by functional CT-scanning (fCT) to determine changes in parameters related to tumor capillary transfer constants and vascular volume fraction in response to antiestrogenic manipulations. The vascular resistance decreased significantly from 42.7 to 20.8 mmHg x min x g x ml-1 (P< .03) on day 9 after estrogen withdrawal, but not after 9 days of tamoxifen treatment. The estrogen-depleted tumors were significantly smaller than controls on day 9. There was no difference in nutrient consumption or vascular density in any of the experimental groups compared to controls. fCT showed an increase (P < .03) in vascular volume fraction during tumor growth, and this parameter was significantly lower after estrogen withdrawal when compared to controls (P < .05). Vascular resistance correlated with tumor size (R = 0.7, P < .0001), indicating that vascular resistance increases during tumor growth. The changes in vascular parameters after estrogen withdrawal indicate a vascular remodeling effect. This inhibition of vascular development by hormone deprivation may have important implications for future planning of multimodal treatment regimens. PMID:10935499

  5. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.

    PubMed

    Mandell, Erica; Powers, Kyle N; Harral, Julie W; Seedorf, Gregory J; Hunter, Kendall S; Abman, Steven H; Dodson, R Blair

    2015-12-15

    High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment.

  6. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.

    PubMed

    Mandell, Erica; Powers, Kyle N; Harral, Julie W; Seedorf, Gregory J; Hunter, Kendall S; Abman, Steven H; Dodson, R Blair

    2015-12-15

    High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment. PMID:26475735

  7. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  8. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  9. Neurogenic vascular headaches, food and chemical triggers.

    PubMed

    Trotsky, M B

    1994-04-01

    Recent evidence has demonstrated that neurogenic vascular headaches are a combination of neurological primary events and secondary vasomotor changes. The neurological events involve the hypothalamus and sensory cortex with sympathetic hypofunction and noradrenergic abnormalities. A platelet theory has been proposed but has not really been confirmed as a legitimate cause of the neurogenic vascular headaches. Food and chemicals in foods can act as a precipitating factor in the food-sensitive neurogenic vascular headache patient. In these patients evidence is now being demonstrated to confirm this, but larger patient studies are needed. The food-sensitive migraine patient and cluster headache patient must give a good history and food diary to go along with active challenges and provocative testing in order to determine the causative foods. Any concomitant allergies of inhalants or environmentals must also be treated. The treatment modalities of elimination and rotation diets or provocation neutralization may successfully control the headaches without the need for continuous medications.

  10. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa

    PubMed Central

    Oluleye, Sunday Tunji; Olusanya, Bolutife Ayokunu; Adeoye, Abiodun Moshood

    2016-01-01

    Background Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria. Patients and methods Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21). Results The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5%) patients. In all, 175 (19.4%) patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%), of which branch retinal vein occlusion, 43 (4.7%), and central retinal vein occlusion, 30 (3.3%), were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%), and central retinal artery occlusion, 17 (1.9%), were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6%) patients, hypertensive choroidopathy in seven (0.8%) patients, and hemorrhagic choroidal detachment in five (0.6%) patients. Left ventricular (LV) geometry was abnormal in 85 (55.5%) patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%), 26 (17.2%), and 15 (9.7%) patients, respectively. LV hypertrophy was found in 42 (27%) patients, while 60 (39%) patients had increased relative wall thickness. In this study, bivariate analysis showed a correlation between LV relative wall thickness and severity of retinopathy in both eyes

  11. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A(2) release. The thromboxane A(2) pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The "Timing Hypothesis," which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  12. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed Central

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A2 release. The thromboxane A2 pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The “Timing Hypothesis,” which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  13. Structural abnormalities of small resistance arteries in essential hypertension.

    PubMed

    Rizzoni, Damiano; Agabiti-Rosei, Enrico

    2012-06-01

    Regardless of the mechanisms that initiate the increase in blood pressure, the development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, the small arteries smooth muscle cells are restructured around a smaller lumen, and there is no net growth of the vascular wall, while in some secondary forms of hypertension, a hypertrophic remodeling may be detected. Also, in non-insulin-dependent diabetes mellitus, a hypertrophic remodeling of subcutaneous small arteries is present. The results from our own group have suggested that indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive patients, over and above all other known cardiovascular risk factors. Therefore, the regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure, both in human and in animal models of genetic and experimental hypertension. A complete normalization of small resistance artery structure is demonstrated in hypertensive patients, after long-term and effective therapy with ACE inhibitors, angiotensin II receptor blockers and calcium antagonists. Few data are available in diabetic hypertensive patients; however, blockade of the renin-angiotensin system seems to be effective in this regard. In conclusion, there are several pieces of evidence that suggest that small resistance artery structure may be considered an intermediate endpoint in the evaluation of the effects of antihypertensive therapy; however, there are presently no data available about the prognostic impact of the regression of vascular structural alterations in hypertension and diabetes.

  14. Chromatin remodelling initiation during human spermiogenesis

    PubMed Central

    De Vries, Marieke; Ramos, Liliana; Housein, Zjwan; De Boer, Peter

    2012-01-01

    Summary During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT) are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC) complex of spermatids, suggesting a signalling route for triggering chromatin remodelling. PMID:23213436

  15. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  16. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries.

    PubMed

    Wang, Mingyi; Shah, Ajay M

    2015-06-01

    The aging population is increasing dramatically. Aging-associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.

  17. Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome.

    PubMed

    Ullrich, N J; Silvera, V M; Campbell, S E; Gordon, L B

    2012-09-01

    HGPS is a rare syndrome of segmental premature aging. Our goal was to expand the scope of structural bone and soft-tissue craniofacial abnormalities in HGPS through CT or MR imaging. Using The Progeria Research Foundation Medical and Research Database, 98 imaging studies on 25 patients, birth to 14.1 years of age, were comprehensively reviewed. Eight newly identified abnormalities involving the calvaria, skull base, and soft tissues of the face and orbits were present with prevalences between 43% and 100%. These included J-shaped sellas, a mottled appearance and increased vascular markings of the calvaria, abnormally configured mandibular condyles, hypoplastic articular eminences, small zygomatic arches, prominent parotid glands, and optic nerve kinking. This expanded craniofacial characterization helps link disease features and improves our ability to evaluate how underlying genetic and cellular abnormalities culminate in a disease phenotype.

  18. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  19. Vascular restoration therapy and bioresorbable vascular scaffold

    PubMed Central

    Wang, Yunbing; Zhang, Xingdong

    2014-01-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article. PMID:26816624

  20. Multifocal vascular lesions.

    PubMed

    Levin, Laura E; Lauren, Christine T

    2016-03-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations. PMID:27607324

  1. Initiation of vascular development.

    PubMed

    Ohashi-Ito, Kyoko; Fukuda, Hiroo

    2014-06-01

    The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.

  2. Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat.

    PubMed

    Mancini, Massimiliano; Petretto, Enrico; Kleinert, Christina; Scavone, Angela; De, Tisham; Cook, Stuart; Silhavy, Jan; Zidek, Vaclav; Pravenec, Michal; d'Amati, Giulia; Camici, Paolo G

    2013-01-01

    The mechanisms underlying coronary microvascular remodeling and dysfunction, which are critical determinants of abnormal myocardial blood flow regulation in human hypertension, are poorly understood. The spontaneously hypertensive rat (SHR) exhibits many features of human hypertensive cardiomyopathy. We demonstrate that remodeling of intramural coronary arterioles is apparent in the SHR already at 4 weeks of age, i.e. before the onset of systemic hypertension. To uncover possible genetic determinants of coronary microvascular remodeling, we carried out detailed histological and histomorphometric analysis of the heart and coronary vasculature in 30 weeks old SHR, age-matched Brown Norway (BN-Lx) parentals and BXH/HXB recombinant inbred (RI) strains. Using previously mapped expression quantitative trait loci (eQTLs), we carried out a genome-wide association analysis between genetic determinants of cardiac gene expression and histomorphometric traits. This identified 36 robustly mapped eQTLs in the heart which were associated with medial area of intramural coronary arterioles [false discovery rate (FDR) ~5%]. Transcripts, which were both under cis-acting genetic regulation and significantly correlated with medial area (FDR <5%), but not with blood pressure indices, were prioritized and four candidate genes were identified (Rtel1, Pla2g5, Dnaja4 and Rcn2) according to their expression levels and biological functions. Our results demonstrate that genetic factors play a role in the development of coronary microvascular remodeling and suggest blood pressure independent candidate genes for further functional experiments.

  3. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  4. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  5. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease

    PubMed Central

    Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd

    2013-01-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696

  6. Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins.

    PubMed

    Huang, Cheng-chen; Wang, Tai-Chuan; Lin, Bo-Hung; Wang, Yi-Wen; Johnson, Stephen L; Yu, John

    2009-08-15

    Capillary plexuses form during both vasculogenesis and angiogenesis and are remodeled into mature vessel types and patterns which are delicately orchestrated with the sizes and shapes of other tissues and organs. We isolated a zebrafish mutation named prp (for persistent plexus) that causes persistent formation of vascular plexuses in the caudal fins and consequent mispatterning of bony fin rays and the fin shape. Detailed analyses revealed that the prp mutation causes a significant reduction in the size and dramatic structural defects in collagen II-rich extracellular matrices called actinotrichia of both embryonic finfolds and adult fins. prp was mapped to chromosome 19 and found to encode the zebrafish collagen9alpha1 (col9alpha1) gene which is abundantly expressed in developing finfolds. A point mutation resulting in a leucine-to-histidine change was detected in the thrombospondin domain of the col9alpha1 gene in prp. Morpholino-mediated knockdown of col9alpha1 phenocopied the prp small-finfold phenotype in wild-type embryos, and an injection of plasmids containing the col9alpha1 cDNA into prp embryos locally restored the finfold size. Furthermore, we found that osteoblasts in prp mutants were mispatterned apparently following the abnormal vascular plexus pattern, demonstrating that blood vessels play an important role in the patterning of bony rays in zebrafish caudal fins. PMID:19501583

  7. Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension

    PubMed Central

    Landskroner, Kyle; Bauer, Yasmina; Vercauteren, Magali; Rey, Markus; Renault, Berengère; Studer, Rolf; Vezzali, Enrico; Freti, Diego; Hadana, Hakim; Schläpfer, Manuela; Cattaneo, Christophe; Bortolamiol, Céline; Weber, Edgar; Whitby, Brian R.; Delahaye, Stéphane; Wanner, Daniel; Steiner, Pauline; Nayler, Oliver; Hess, Patrick; Clozel, Martine

    2015-01-01

    Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan. PMID:26230396

  8. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  9. Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model.

    PubMed

    Chatziprodromou, I; Tricoli, A; Poulikakos, D; Ventikos, Y

    2007-01-01

    We have developed a computational simulation model for investigating an often postulated hypothesis connected with aneurysm growth. This hypothesis involves a combination of two parallel and interconnected mechanisms: according to the first mechanism, an endothelium-originating and wall shear stress-driven apoptotic behavior of smooth muscle cells, leading to loss of vascular tone is believed to be important to the aneurysm behavior. Vascular tone refers to the degree of constriction experienced by a blood vessel relative to its maximally dilated state. All resistance and capacitance vessels under basal conditions exhibit some degree of smooth muscle contraction that determines the diameter, and hence tone, of the vessel. The second mechanism is connected to the arterial wall remodeling. Remodeling of the arterial wall under constant tension is a biomechanical process of rupture, degradation and reconstruction of the medial elastin and collagen fibers. In order to investigate these two mechanisms within a computationally tractable framework, we devise mechanical analogues that involve three-dimensional haemodynamics, yielding estimates of the wall shear stress and pressure fields and a quasi-steady approach for the apoptosis and remodeling of the wall. These analogues are guided by experimental information for the connection of stimuli to responses at a cellular level, properly averaged over volumes or surfaces. The model predicts aneurysm growth and can attribute specific roles to the two mechanisms involved: the smooth muscle cell-related loss of tone is important to the initiation of aneurysm growth, but cannot account alone for the formation of fully grown sacks; the fiber-related remodeling is pivotal for the latter.

  10. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    SciTech Connect

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.

  11. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  12. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  13. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  14. Amaurosis fugax associated with congenital vascular defect

    PubMed Central

    Giltner, John W; Thomas, Edward R; Rundell, William K

    2016-01-01

    A 68-year-old female with no significant past medical history presented with loss of vision in the lower half of her left eye that lasted <5 minutes. No abnormalities were found on ocular or physical exam. Computed tomography angiography and carotid ultrasound were performed, which confirmed the diagnosis as amaurosis fugax with two abnormalities leading to the transient retinal vessel occlusion. First, it was found that the patient has a congenital vascular anomaly, which consisted most notably of a right-sided aortic arch. This vascular anomaly also consisted of abnormal branching of the left subclavian and common carotid arteries, predisposing the patient to turbulent blood flow and increased risk of the formation of an atherosclerotic plaque at the origin of the common carotid artery. This is an abnormal location for a plaque leading to amaurosis fugax compared to the most common location at the carotid bifurcation. Endarterectomy was not performed because of the difficult location of the plaque and tortuosity of the vessel. Rather, medical intervention with antiplatelet and lipid-lowering therapy was initiated to lower the risk of future retinal or cerebral thromboembolic events. PMID:27445507

  15. Remodeling in vein expresses arterial phenotype in hyperhomocysteinemia

    PubMed Central

    Basu, Poulami; Qipshidze, Natia; Tyagi, Suresh C; Sen, Utpal

    2011-01-01

    Accumulating evidences suggest that homocysteine, a non-protein amino acid, is involved in vessel remodeling and blood flow at elevated level, although the exact mechanism is unclear. Here we hypothesized that homocysteine affects vein in such a way that vein develops arterial phenotype. We tested our hypothesis employing wild type (WT, C57BL/6J) and CBS+/- (cystathionine β-synthase heterozygote, a genetic model of hyperhomocysteinemia) supplemented with or without folic acid (FA, a homocysteine lowering agent). Vena cava blood flow was measured by ultrasound transonic flow probe. Tissue collagen and elastin were detected by histochemistry. Super oxide was detected by dihydroethidium (DHE) staining. Expressions of MMP-2, -9, -12, TIMP -2,-4, were measured by Western blot. MMP-13, TIMP-1, -3, and vein and aortic markers, EphB4 and EphrinB2, respectively were measured by RT-PCR. The results indicated relatively low blood flow and significant increase of collagen/elastin ratio in the CBS+/- mice compared to WT. Although FA treatment did not alter blood flow in CBS+/- mice, the collagen/elastin ratio was normalized. A relatively increased content of super oxide and gelatinase activity was observed in CBS+/- vena cava vs WT and normalized by FA treatment. Western blot analyses showed significant increase in MMP-9,-12 and decrease in TIMP-2, -4 expressions. Expressions of MMP-13, TIMP-1 and -3, Ephrin B2 were increased, whereas EphB4 was decreased with reverse change in FA treatment, with no change in MMP-13 and TIMP-1. We conclude that chronic HHcy causes vascular remodeling that expresses arterial phenotype in vein. PMID:22162783

  16. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  17. Molecular analysis of arterial remodeling: a novel application of infrared imaging

    NASA Astrophysics Data System (ADS)

    Herman, Brad C.; Kundi, Rishi; Yamanouchi, Dai; Kent, K. Craig; Liu, Bo; Pleshko, Nancy

    2009-02-01

    Arterial remodeling, i.e. changes in size and/or structure of arteries, plays an important role in vascular disease. Conflicting findings have been reported as to whether an abundance of collagen causes inward or outward remodeling, phenomena that result in either a smaller or larger lumen, respectively. We hypothesize that the amount, type and quality of collagen influence the remodeling response. Here, we create mechanical injury to the rat carotid artery using a balloon catheter, and this leads to inward remodeling. Treatment of the artery with Connective Tissue Growth Factor (CTGF) causes outward remodeling. We investigated the arterial composition in injured CTGF-treated and non-CTGF-treated and sham CTGF-treated and non-CTGF treated arteries 14 days post-injury (n = 7-8 per group) using infrared imaging. A Perkin Elmer Spotlight Spectrum 300 FT-IR microscope was used for data collection. Cross-sections of paraffinembedded arteries were scanned at 2 cm-1 spectral resolution with spatial resolution of 6.25 μm/pixel, and data analyzed using Malvern Instruments ISys 5.0. Post-injury, we found a nearly 50% reduction in the average 1338/AM2 area ratio (correlated to collagen helical integrity). The most dramatic change was a 600% increase in the 1660/1690 peak height ratio, which has previously been related to collagen crosslink maturity. In all cases, CTGF treatment resulted in the observed changes in peak parameters normalized back to control values. Overall, these preliminary studies demonstrate that infrared imaging can provide insight into the underlying molecular changes that contribute to arterial disease.

  18. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  19. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  20. A Multiscale Computational Framework to Understand Vascular Adaptation

    PubMed Central

    Garbey, Marc; Rahman, Mahbubur; Berceli, Scott A.

    2015-01-01

    The failure rate for vascular interventions (vein bypass grafting, arterial angioplasty/stenting) remains unacceptably high. Over the past two decades, researchers have applied a wide variety of approaches to investigate the primary failure mechanisms, neointimal hyperplasia and aberrant remodeling of the wall, in an effort to identify novel therapeutic strategies. Despite incremental progress, specific cause/effect linkages among the primary drivers of the pathology, (hemodynamic factors, inflammatory biochemical mediators, cellular effectors) and vascular occlusive phenotype remain lacking. We propose a multiscale computational framework of vascular adaptation to develop a bridge between theory and experimental observation and to provide a method for the systematic testing of relevant clinical hypotheses. Cornerstone to our model is a feedback mechanism between environmental conditions and dynamic tissue plasticity described at the cellular level with an agent based model. Our implementation (i) is modular, (ii) starts from basic mechano-biology principle at the cell level and (iii) facilitates the agile development of the model. PMID:25977733

  1. Microvascular Repair: Post-Angiogenesis Vascular Dynamics

    PubMed Central

    LeBlanc, Amanda J.; Krishnan, Laxminarayanan; Sullivan, Christopher J.; Williams, Stuart K.; Hoying, James B.

    2013-01-01

    Vascular compromise and the accompanying perfusion deficits cause or complicate a large array of disease conditions and treatment failures. This has prompted the exploration of therapeutic strategies to repair or regenerate vasculatures thereby establishing more competent microcirculatory beds. Growing evidence indicates that an increase in vessel numbers within a tissue does not necessarily promote an increase in tissue perfusion. Effective regeneration of a microcirculation entails the integration of new stable microvessel segments into the network via neovascularization. Beginning with angiogenesis, neovascularization entails an integrated series of vascular activities leading to the formation of a new mature microcirculation and includes vascular guidance and inosculation, vessel maturation, pruning, arterio-venous specification, network patterning, structural adaptation, intussusception, and microvascular stabilization. While the generation of new vessel segments is necessary to expand a network, without the concomitant neovessel remodeling and adaptation processes intrinsic to microvascular network formation, these additional vessel segments give rise to a dysfunctional microcirculation. While many of the mechanisms regulating angiogenesis have been detailed, a thorough understanding of the mechanisms driving post-angiogenesis activities specific to neovascularization has yet to be fully realized, but is necessary in order to develop effective therapeutic strategies for repairing compromised microcirculations as a means to treat disease. PMID:22734666

  2. Aortic Remodelling Is Improved by 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Involving the Smad3 Pathway in Spontaneously Hypertensive Rats.

    PubMed

    Duan, Ju; Han, Xin; Ling, Shuang; Gan, Woting; Sun, Li; Ni, Rong-Zhen; Xu, Jin-Wen

    2015-01-01

    Hypertension is a common health problem that substantially increases the risk of cardiovascular disease. The condition increases blood pressure, which causes alterations in vascular structure and leads to the development of vascular pathologies. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a resveratrol analogue extracted from a Chinese medicinal plant, has been proven to have numerous vascular protection functions. This study investigated whether THSG can improve vascular remodeling, which has thus far remained unclear. Orally administering THSG to spontaneously hypertensive rats (SHRs) aged 12 weeks for 14 weeks significantly inhibited intima-media thickness in the lower parts of the aortic arch, increased the vascular diastolic rate in response to acetylcholine, and reduced remodelling-related mRNA expression, such as that of ACTA2, CCL3, COL1A2, COL3A1, TIMP1 WISP2, IGFBP1, ECE1, KLF5, MYL1 BMP4, FN1, and PAI-1. Immunofluorescence staining also showed an inhibitory effect similar to that of THSG on PAI-1 protein expression in rat aortas. Results from immunoprecipitation and a Western blot assay showed that THSG inhibited the acetylation of Smad3. A chromatin immunoprecipitation assay showed that THSG prevented Smad3 binding to the PAI-1 proximal promoter in SHR aortas. In conclusion, our results demonstrated that the inhibitory effect of THSG on aortic remodelling involved the deacetylating role of Smad3 with increasing blood flow and with constant blood pressure. PMID:26693246

  3. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology.

    PubMed

    Kyzar, Evan J; Floreani, Christina; Teppen, Tara L; Pandey, Subhash C

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  4. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.

    PubMed

    Ulrich, Victoria; Rotllan, Noemi; Araldi, Elisa; Luciano, Amelia; Skroblin, Philipp; Abonnenc, Mélanie; Perrotta, Paola; Yin, Xiaoke; Bauer, Ashley; Leslie, Kristen L; Zhang, Pei; Aryal, Binod; Montgomery, Rusty L; Thum, Thomas; Martin, Kathleen; Suarez, Yajaira; Mayr, Manuel; Fernandez-Hernando, Carlos; Sessa, William C

    2016-01-01

    Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions. PMID:27137489

  5. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology

    PubMed Central

    Kyzar, Evan J.; Floreani, Christina; Teppen, Tara L.; Pandey, Subhash C.

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  6. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  7. Abnormal ionization in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Juan; An, Yu

    2015-04-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  8. Félix Voisin and the genesis of abnormals.

    PubMed

    Doron, Claude-Olivier

    2015-12-01

    This article traces the genealogy of the category of 'abnormals' in psychiatry. It focuses on the French alienist Felix Voisin (1794-1872) who played a decisive role in the creation of alienist knowledge and institutions for problem children, criminals, idiots and lunatics. After a presentation of the category of 'abnormals' as understood at the end of the nineteenth century, I identify in the works of Voisin a key moment in the concept's evolution. I show how, based on concepts borrowed from phrenology and applied first to idiocy, Voisin allows alienism to establish links between the medico-legal (including penitentiary) and medical-educational fields (including difficult childhood). I stress the extent to which this enterprise is related to Voisin's humanism, which claimed to remodel pedagogy and the right to punish on the anthropological particularities of individuals, in order to improve them. PMID:26574056

  9. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  10. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  11. Abnormal hematological indices in cirrhosis

    PubMed Central

    Qamar, Amir A; Grace, Norman D

    2009-01-01

    Abnormalities in hematological indices are frequently encountered in cirrhosis. Multiple causes contribute to the occurrence of hematological abnormalities. Recent studies suggest that the presence of hematological cytopenias is associated with a poor prognosis in cirrhosis. The present article reviews the pathogenesis, incidence, prevalence, clinical significance and treatment of abnormal hematological indices in cirrhosis. PMID:19543577

  12. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata.

  13. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata. PMID:27097408

  14. Remodelling of gap junctions and connexin expression in diseased myocardium

    PubMed Central

    Severs, Nicholas J.; Bruce, Alexandra F.; Dupont, Emmanuel; Rothery, Stephen

    2008-01-01

    Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease. PMID:18519446

  15. Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness

    PubMed Central

    Walsh, Christopher J.; Batt, Jane; Herridge, Margaret S.; Mathur, Sunita; Bader, Gary D.; Hu, Pingzhao; dos Santos, Claudia C.

    2016-01-01

    ICU acquired weakness (ICUAW) is a common complication of critical illness characterized by structural and functional impairment of skeletal muscle. The resulting physical impairment may persist for years after ICU discharge, with few patients regaining functional independence. Elucidating molecular mechanisms underscoring sustained ICUAW is crucial to understanding outcomes linked to different morbidity trajectories as well as for the development of novel therapies. Quadriceps muscle biopsies and functional measures of muscle strength and mass were obtained at 7 days and 6 months post-ICU discharge from a cohort of ICUAW patients. Unsupervised co-expression network analysis of transcriptomic profiles identified discrete modules of co-expressed genes associated with the degree of muscle weakness and atrophy in early and sustained ICUAW. Modules were enriched for genes involved in skeletal muscle regeneration and extracellular matrix deposition. Collagen deposition in persistent ICUAW was confirmed by histochemical stain. Modules were further validated in an independent cohort of critically ill patients with sepsis-induced multi-organ failure and a porcine model of ICUAW, demonstrating disease-associated conservation across species and peripheral muscle type. Our findings provide a pathomolecular basis for sustained ICUAW, implicating aberrant expression of distinct skeletal muscle structural and regenerative genes in early and persistent ICUAW. PMID:27411715

  16. Optimization of Cranio-Orbital Remodeling: Application of a Mathematical Model.

    PubMed

    Isaac, Kathryn V; Koenemann, Jochen; Fukasawa, Ricardo; Qian, David; Linhares, Andre; Saber, Nikoo R; Drake, James; Forrest, Christopher R; Phillips, John H; Nguyen, Phuong D

    2015-07-01

    Cranio-orbital remodeling aims to correct the dysmorphic skull associated with craniosynostosis. Traditionally, the skull is reconstructed into a shape that is subjectively normal according to the surgeon's perception. We present a novel technique using a mathematical algorithm to define the optimal location for bony osteotomies and to objectively reshape the fronto-orbital bar into an ideal normal skull contour. Using pre-operative computed tomography images, the abnormal skull contour at the frontal-orbital region was obtained for infants planned to undergo cranio-orbital remodeling. The ideal skull shape was derived from an age- and sex-matched normative skull library. For each patient, the mathematical technique of dynamic programming (DP) was applied to compare the abnormal and ideal skull shapes. The DP algorithm identifies the optimal location of osteotomy sites and calculates the objective difference in surface area remaining between the normative and dysmorphic skull shape for each solution applied. By selecting the optimal solution with minimal objective difference, the surgeon is guided to reproducibly recreate the normal skull contour with defined osteotomies. The DP algorithm was applied in 13 cases of cranio-orbital remodeling. Five female and 8 male infants with a mean age of 11 months were treated for craniosynostosis classified as metopic (n = 7), unicoronal (n = 4), or bicoronal (n = 2). The mean OR time was 190.2  min (SD 33.6), mean estimated blood loss 244  cc (SD 147.6), and 10 infants required blood transfusions. Compared with a historical crania-orbital remodeling group treated without application of the algorithm, there was no significant difference in OR time, estimated blood loss, or transfusion rate. This novel technique enables the craniofacial surgeon to objectively reshape the fronto-orbital bar and reproducibly reconstruct a skull shape resembling that of normal infants. PMID:26163851

  17. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  18. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  19. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  20. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation.

    PubMed

    Kapustin, A N; Shanahan, C M

    2016-06-01

    Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes. PMID:26864864

  1. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease. PMID:21903885

  2. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  3. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease.

  4. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    PubMed

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  5. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  6. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  7. Chromatin remodelers: We are the drivers!!

    PubMed

    Tyagi, Monica; Imam, Nasir; Verma, Kirtika; Patel, Ashok K

    2016-07-01

    Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition. PMID:27429206

  8. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  9. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  10. A Rare Stapes Abnormality

    PubMed Central

    Kanona, Hala; Virk, Jagdeep Singh; Kumar, Gaurav; Chawda, Sanjiv; Khalil, Sherif

    2015-01-01

    The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively. PMID:25628909

  11. Adult presentation with vascular ring due to double aortic arch.

    PubMed

    Kafka, Henryk; Uebing, Anselm; Mohiaddin, Raad

    2006-11-01

    This is a case report on the use of cardiovascular magnetic resonance imaging to diagnose vascular ring due to double aortic arch in an adult presenting with an abnormal chest X-ray. The experience in this case and the literature review identify the benefits of using cardiovascular magnetic resonance imaging to clarify complex aortic arch anatomy.

  12. Interference with PPARγ Function in Smooth Muscle Causes Vascular Dysfunction and Hypertension

    PubMed Central

    Halabi, Carmen M.; Beyer, Andreas M.; de Lange, Willem J.; Keen, Henry L.; Baumbach, Gary L.; Faraci, Frank M.; Sigmund, Curt D.

    2008-01-01

    Summary Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription factor playing a critical role in metabolism. Thiazolidinediones, high affinity PPARγ ligands used clinically to treat type-II diabetes, have been reported to lower blood pressure and provide other cardiovascular benefits. Some mutations in PPARγ cause type-II diabetes and severe hypertension. We tested the hypothesis that PPARγ in vascular muscle plays a role in the regulation of vascular tone and blood pressure. Transgenic mice expressing dominant negative mutations in PPARγ under the control of a smooth muscle-specific promoter exhibit a loss of responsiveness to nitric oxide and striking alterations in contractility in the aorta, hypertrophy and inward remodeling in the cerebral microcirculation, and systolic hypertension. These results identify PPARγ as pivotal in vascular muscle as a regulator of vascular structure, vascular function and blood pressure, potentially explaining some of the cardioprotective effects of thiazolidinediones. PMID:18316027

  13. Perivascular mast cells regulate vein graft neointimal formation and remodeling

    PubMed Central

    Grassia, Gianluca; Cambrook, Helen; Ialenti, Armando; MacRitchie, Neil; Carberry, Jaclyn; Lawrence, Catherine

    2015-01-01

    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling. PMID:26312183

  14. Capillary remodeling in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Schraufnagel, D. E.; Mehta, D.; Harshbarger, R.; Treviranus, K.; Wang, N. S.

    1986-01-01

    Lung fibrosis is a process in which collagen is laid down and the delicate capillary-alveolar relationship is disturbed. The architectural changes which occur in the capillaries, a main element of the oxygen transferring unit, are difficult to illustrate without a three-dimensional tool, such as scanning electron microscopy. Therefore, a scanning electron microscopic study was undertaken to show the capillary changes of lung fibrosis. Fibrosis was induced in rats by intratracheal instillation of bleomycin. After 30 days the rats were sacrificed, and the vascular tree of the lung was cast with methacrylate. The fibrosis was patchy. The intercapillary space became wider; and some capillaries had large, irregular dilatations. Occasionally giant capillaries (up to 19 mu in diameter) were noted. The pleural and alveolar capillary diameters increased (P less than 0.01), and the branching frequency decreased (P = 0.02). The center of the capillary rings, which has been suggested to be the site of contractile interstitial cells, increased in size (P = 0.03). The appearance of irregularly shaped capillaries and an increase in diameter without a change in density of alveolar capillaries, resulting in a loss of surface area and a decrease in branching, are the main scanning electron microscopic findings of the remodeling which occurs in pulmonary capillaries in lung fibrosis. These changes may partially explain the functional derangement of this disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:2430459

  15. Role of Hydrogen Sulfide in Brain Synaptic Remodeling

    PubMed Central

    Kamat, Pradip Kumar; Kalani, Anuradha; Tyagi, Neetu

    2015-01-01

    Synapses are the functional connection between neurons which are necessary for the transfer of electric activity or chemical activity from one cell to another. Synapses are formed by the pre- and postsynaptic membrane which communicates between pre- and postneurons while a neurochemical modulator is operated in this process. H2S has been known as a toxic gas with rotten eggs smell. However, increasing number of researches show that it regulate a variety of physiological and pathological processes in mammals. Hence, H2S is a physiologically important molecule and has been referred to as the third gaseous molecule alongside carbon monoxide and nitric oxide. The previous era has made an exponential development in the physiological and pathological significance of H2S. Specifically, in the central nervous system, H2S facilitates long-term potentiation and regulates intracellular calcium concentration in brain cells. We as well as others have also shown that H2S has antioxidant, antiapoptotic, and anti-inflammatory properties against various neurodegenerative disorders such as stroke, Alzheimer's disease, and vascular dementia. In this chapter, we highlight the current knowledge of H2S and its neuroprotective effects with a special emphasis on synaptic remodeling. PMID:25747482

  16. Society for Vascular Medicine

    MedlinePlus

    ... Sessions June 14-17, 2017 Sheraton New Orleans New Orleans, LA USA Board Review Course June 16-18, 2017 SVM in the Vascular Lab June 17, 2017 Learn more Patient Information Pages from Vascular Medicine October 2016 Smoking Cessation More info for patients. SVM Case ...

  17. [Vascular graft prosthesis].

    PubMed

    Chakfé, N; Dieval, F; Thaveau, F; Rinckenbach, S; Hassani, O; Camelot, G; Durand, B; Kretz, J-G

    2004-06-01

    Performed since the 1950s, vascular grafting has opened modern era of vascular surgery. Autologous venous grafts are of first choice for revascularisation of small arteries. Synthetic grafts are mainly modelled using microporous polytetrafluoroethylene or terephtalate polyethylene. These prosthesis are mainly used for revascularization of medium and large size arteries. PMID:15220107

  18. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    PubMed

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  19. [Vascular factors in glaucoma].

    PubMed

    Mottet, B; Aptel, F; Geiser, M; Romanet, J P; Chiquet, C

    2015-12-01

    The exact pathophysiology of glaucoma is not fully understood. Understanding of the vascular pathophysiology of glaucoma requires: knowing the techniques for measuring ocular blood flow and characterizing the topography of vascular disease and the mechanisms involved in this neuropathy. A decreased mean ocular perfusion pressure and a loss of vascular autoregulation are implicated in glaucomatous disease. Early decrease in ocular blood flow has been identified in primary open-angle glaucoma and normal pressure glaucoma, contributing to the progression of optic neuropathy. The vascular damage associated with glaucoma is present in various vascular territories within the eye (from the ophthalmic artery to the retina) and is characterized by a decrease in basal blood flow associated with a dysfunction of vasoregulation.

  20. [Vascular factors in glaucoma].

    PubMed

    Mottet, B; Aptel, F; Geiser, M; Romanet, J P; Chiquet, C

    2015-12-01

    The exact pathophysiology of glaucoma is not fully understood. Understanding of the vascular pathophysiology of glaucoma requires: knowing the techniques for measuring ocular blood flow and characterizing the topography of vascular disease and the mechanisms involved in this neuropathy. A decreased mean ocular perfusion pressure and a loss of vascular autoregulation are implicated in glaucomatous disease. Early decrease in ocular blood flow has been identified in primary open-angle glaucoma and normal pressure glaucoma, contributing to the progression of optic neuropathy. The vascular damage associated with glaucoma is present in various vascular territories within the eye (from the ophthalmic artery to the retina) and is characterized by a decrease in basal blood flow associated with a dysfunction of vasoregulation. PMID:26597554

  1. The contribution of HIV infection to intracranial arterial remodeling: A pilot study

    PubMed Central

    Gutierrez, Jose; Elkind, Mitchell S. V.; Petito, Carol; Chung, David Y; Dwork, Andrew J.; Marshall, Randolph S

    2015-01-01

    Pathological arterial wall changes have been cited as potential mechanisms of cerebrovascular disease in the HIV population. We hypothesize that dilatation would be present in arterial walls of patients with HIV compared to controls. Fifty-one intracranial arteries, obtained from autopsies of five individuals with HIV infection and 13 without, were fixed, embedded, stained, and digitally photographed. Cross-sectional areas of intima, media, adventitia and lumen were measured by preset color thresholding. A measure of arterial remodeling was obtained by calculating the ratio between the lumen diameter and the thickness of the arterial wall. Higher numbers indicate arterial dilatation, while lower numbers indicate arterial narrowing. HIV-infected brain donors were more frequently black (80% vs. 15%, P = 0.02) compared with uninfected donors. Inter and intra-reader agreement measures were excellent. The continuous measure of vascular remodeling was significantly higher in the arteries from HIV donors (β = 2.8, P = 0.02). Adjustments for demographics and clinical covariates strengthen this association (β = 9.3, P = 0.01). We found an association of HIV infection with outward brain arterial remodeling. This association might be mediated by a thinner media layer. The reproduction of these results and the implications of this proposed pathophysiology merits further study. PMID:23067346

  2. Nerve Growth Factor Regulates Neurolymphatic Remodeling during Corneal Inflammation and Resolution

    PubMed Central

    Fink, Darci M.; Connor, Alicia L.; Kelley, Philip M.; Steele, Maria M.; Hollingsworth, Michael A.; Tempero, Richard M.

    2014-01-01

    The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery. PMID:25383879

  3. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855

  4. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation. PMID:24079969

  5. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation.

  6. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  7. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  8. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    PubMed

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  9. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

    PubMed

    Andreasen, Eric A; Mathew, Lijoy K; Löhr, Christiane V; Hasson, Rachelle; Tanguay, Robert L

    2007-01-01

    Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in ECM regulation are misexpressed following activation of the aryl hydrocarbon receptor. To investigate whether TCDD blocks regeneration by impairing ECM remodeling, male zebra fish were i.p. injected with 50 ng/g TCDD or vehicle, and caudal fins were amputated. By 3 days postamputation (dpa), the vascular network in the regenerating fin of TCDD-exposed fish was disorganized compared to vehicle-exposed animals. Furthermore, immunohistochemical staining revealed that axonal outgrowth was impacted by TCDD as early as 3 dpa. Histological analysis demonstrated that TCDD exposure leads to an accumulation of collagen at the end of the fin ray just distal to the amputation site by 3 dpa. Mature lepidotrichial-forming cells (fin ray-forming cells) were not observed in the fins of TCDD-treated fish. The capacity to metabolize ECM was also altered by TCDD exposure. Quantitative real-time PCR studies revealed that the aryl hydrocarbon pathway is active and that matrix-remodeling genes are expressed in the regenerate following TCDD exposure.

  10. Femoral artery remodeling after aerobic exercise training without weight loss in women

    PubMed Central

    Sabatier, Manning J; Schwark, Earl H; Lewis, Richard; Sloan, Gloria; Cannon, Joseph; McCully, Kevin

    2008-01-01

    Background It is currently unclear whether reductions in adiposity mediate the improvements in vascular health that occur with aerobic exercise. The purpose of this longitudinal study of 13 healthy women (33 ± 4 years old) was to determine whether 14 weeks of aerobic exercise would alter functional measures of vascular health, namely resting aortic pulse wave velocity (aPWV, an index of arterial stiffness), femoral artery diameter (DFA), and femoral artery blood flow (BFFA) independent of changes in adiposity. Methods Aerobic fitness was assessed as VO2peak normalized to fat-free mass, and adiposity (percent body fat) was determined by dual energy x-ray absorptiometry. Serum concentrations of proteins associated with risk for cardiovascular disease, including C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and leptin, were also measured. Subjects cycled for 50 minutes, 3 times per week. Results Aerobic fitness normalized to fat-free mass increased 6% (P = 0.03) whereas adiposity did not change. Resting DFA increased 12% (P < 0.001) and resting shear rate decreased 28% (P = 0.007). Aortic PWV, and serum sICAM-1, CRP and leptin did not change with training. Conclusion Significant reductions in adiposity were not necessary for aerobic exercise training to bring about improvements in aerobic fitness and arterial remodeling. Peripheral arterial remodeling occurred without changes in central arterial stiffness or markers of inflammation. PMID:18775082

  11. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease.

    PubMed

    Bevilacqua, Ariana; Willis, Monte S; Bultman, Scott J

    2014-01-01

    Our understanding of congenital heart defects has been recently advanced by whole exome sequencing projects, which have identified de novo mutations in many genes encoding epigenetic regulators. Notably, multiple subunits of switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes have been identified as strong candidates underlying these defects because they physically and functionally interact with cardiogenic transcription factors critical to cardiac development, such as TBX5, GATA-4, and NKX2-5. While these studies indicate a critical role of SWI/SNF complexes in cardiac development and congenital heart disease, many exciting new discoveries have identified their critical role in the adult heart in both physiological and pathological conditions involving multiple cell types in the heart, including cardiomyocytes, vascular endothelial cells, pericytes, and neural crest cells. This review summarizes the role of SWI/SNF chromatin-remodeling complexes in cardiac development, congenital heart disease, cardiac hypertrophy, and vascular endothelial cell survival. Although the clinical relevance of SWI/SNF mutations has traditionally been focused primarily on their role in tumor suppression, these recent studies illustrate their critical role in the heart whereby they regulate cell proliferation, differentiation, and apoptosis of cardiac derived cell lines.

  12. The vascular system as a target of metal toxicity.

    PubMed

    Prozialeck, Walter C; Edwards, Joshua R; Nebert, Daniel W; Woods, James M; Barchowsky, Aaron; Atchison, William D

    2008-04-01

    Vascular system function involves complex interactions among the vascular endothelium, smooth muscle, the immune system, and the nervous system. The toxic metals cadmium (Cd), arsenic (As), and lead (Pb) can target the vascular system in a variety of ways, ranging from hemorrhagic injury to subtle pathogenic remodeling and metabolic changes. Acute Cd exposure results in hemorrhagic injury to the testis, although some strains of animals are resistant to this effect. A comparison of Cd-sensitive with Cd-resistant mouse strains showed that expression of the Slc39a8 gene, encoding the ZIP8 transporter, in the testis vasculature endothelium is responsible for this difference. Endogenously, ZIP8 is a Mn(2+)/HCO(3)(-)symporter that may also contribute to Cd damage in the kidney. Chronic Cd exposure is associated with various cardiovascular disorders such as hypertension and cardiomyopathy and it is reported to have both carcinogenic and anticarcinogenic activities. At noncytotoxic concentrations of 10-100nM, Cd can inhibit chemotaxis and tube formation of vascular endothelial cells. These angiostatic effects may be mediated through disruption of vascular endothelial cadherin, a Ca(2+)-dependent cell adhesion molecule. With regard to As, ingestion of water containing disease-promoting concentrations of As promotes capillarization of the liver sinusoidal endothelium. Because capillarization is a hallmark precursor for liver fibrosis and contributes to an imbalance of lipid metabolism, this As effect on hepatic endothelial cells may be a pathogenic mechanism underlying As-related vascular diseases. With regard to Pb, perinatal exposure may cause sustained elevations in adult blood pressure, and genetically susceptible animals may show enhanced sensitivity to this effect. Taken together, these data indicate that the vascular system is a critical target of metal toxicity and that actions of metals on the vascular system may play important roles in mediating the

  13. The Vascular System as a Target of Metal Toxicity

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.; Nebert, Daniel W.; Woods, James M.; Barchowsky, Aaron; Atchison, William D.

    2009-01-01

    Vascular system function involves complex interactions among the vascular endothelium, smooth muscle, the immune system, and the nervous system. The toxic metals cadmium (Cd), arsenic (As), and lead (Pb) can target the vascular system in a variety of ways, ranging from hemorrhagic injury to subtle pathogenic remodeling and metabolic changes. Acute Cd exposure results in hemorrhagic injury to the testis, although some strains of animals are resistant to this effect. A comparison of Cd-sensitive with Cd-resistant mouse strains showed that expression of the Slc39a8 gene, encoding the ZIP8 transporter, in the testis vasculature endothelium is responsible for this difference. Endogenously, ZIP8 is a Mn2+/HCO3−symporter that may also contribute to Cd damage in the kidney. Chronic Cd exposure is associated with various cardiovascular disorders such as hypertension and cardiomyopathy and it is reported to have both carcinogenic and anticarcinogenic activities. At noncytotoxic concentrations of 10–100nM, Cd can inhibit chemotaxis and tube formation of vascular endothelial cells. These angiostatic effects may be mediated through disruption of vascular endothelial cadherin, a Ca2+-dependent cell adhesion molecule. With regard to As, ingestion of water containing disease-promoting concentrations of As promotes capillarization of the liver sinusoidal endothelium. Because capillarization is a hallmark precursor for liver fibrosis and contributes to an imbalance of lipid metabolism, this As effect on hepatic endothelial cells may be a pathogenic mechanism underlying As-related vascular diseases. With regard to Pb, perinatal exposure may cause sustained elevations in adult blood pressure, and genetically susceptible animals may show enhanced sensitivity to this effect. Taken together, these data indicate that the vascular system is a critical target of metal toxicity and that actions of metals on the vascular system may play important roles in mediating the pathophysiologic

  14. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  15. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  16. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  17. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  18. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  19. Abortion for fetal abnormality.

    PubMed

    Maclean, N E

    1979-07-25

    I wish to thank Dr. Pauline Bennett for her reply (NZ Med J, 13 June). She has demonstrated well that in dealing with sensitive difficult issues such as abortion for fetal abnormality, the one thing the doctor is not recommended to do is to speak the truth] I am prompted to write this letter for 2 reasons. Firstly, the excellent letter written by Dr. A. M. Rutherford (NZ Med J, 13 June) on the subject of abortion stated, "The most disturbing feature about the whole controversy is the 'blunting of our conscience'." When the doctors are not encouraged to be honest with patients then indeed our conscience has been blunted. Secondly, I watched Holocaust last night, and cannot refrain from stating that I see frightening parallels between our liberal abortion policy and the activities of the Nazis. As I watched the "mental patients" being herded into the shed for gassing by the polite, tidy, white coated medical staff, and then heard the compassionate, sensitive, letter of the hospital authorities to the relatives of the deceased, the parallel became obvious. The mental patients were weak, defenseless, burdensome, and uneconomic; the unborn are weak, defenseless, burdensome, and uneconomic. The hospital authority's letter was acceptable in many ways, acceptable except that its words bore no relation to the truth. It is said that the "first casualty of war is the truth". Whether that war involves the Jews, or the insane, or the unborn, the statement would seem correct.

  20. Structural remodeling of coronary resistance arteries: effects of age and exercise training.

    PubMed

    Hanna, Mina A; Taylor, Curtis R; Chen, Bei; La, Hae-Sun; Maraj, Joshua J; Kilar, Cody R; Behnke, Bradley J; Delp, Michael D; Muller-Delp, Judy M

    2014-09-15

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins.

  1. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice

    PubMed Central

    Jin, Yuling; Wang, Wang; Chai, Sanbao; Liu, Jie

    2015-01-01

    Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment. PMID:25956683

  2. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice.

    PubMed

    Jin, Yuling; Wang, Wang; Chai, Sanbao; Liu, Jie; Yang, Ting; Wang, Jun

    2015-12-01

    Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.

  3. Effects of lead on vascular reactivity.

    PubMed Central

    Chai, S S; Webb, R C

    1988-01-01

    Considerable controversy exists concerning the possible role of lead in the etiology of human hypertension. In animal studies, there is convincing evidence that lead alters cardiovascular responsiveness; rats drinking water containing 100 ppm lead develop a chronic, significant 15 to 20 mm Hg elevation in systolic blood pressure. Pressor responsiveness to catecholamines is enhanced in animals chronically exposed to lead, and the responsiveness of isolated vascular smooth muscle to adrenergic agonists is increased in rats with lead-induced hypertension. Experimental evidence suggests that alterations in the cellular mechanisms that regulate intracellular calcium concentration may contribute to the abnormal vascular function in lead-induced hypertension. Recent work in our laboratory indicates that increased vascular reactivity in genetic hypertension is associated with altered activity of the protein kinase C branch of the calcium messenger system. Contractile responses to lead in rabbit mesenteric artery are potentiated by activators (phorbol esters) of this enzyme complex, and a selective inhibitor of protein kinase C inhibited contractions induced by lead. Based on these results, it is proposed that a cellular component of the action of lead to increase vascular reactivity may relate to the role of protein kinase C in smooth muscle contraction. PMID:3060355

  4. Vascular nitric oxide: formation and function

    PubMed Central

    Jin, Richard C; Loscalzo, Joseph

    2010-01-01

    Nitric oxide (NO) is a structurally simple, highly versatile molecule that was originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to its vasorelaxing effects, NO is now recognized as a key determinant of vascular health, exerting antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-lived molecule exerts its inhibitory effect on vascular smooth muscle cells and platelets largely through cyclic guanosine monophosphate-dependent mechanisms, resulting in a multitude of molecular effects by which platelet activation and aggregation are prevented. The biosynthesis of NO occurs via the catalytic activity of NO synthase, an oxidoreductase found in many cell types. NO insufficiency can be attributed to limited substrate/cofactor availability as well as interactions with reactive oxygen species. Impaired NO bioavailability represents the central feature of endothelial dysfunction, a common abnormality found in many vascular diseases. In this review, we present an overview of NO synthesis and biochemistry, discuss the mechanisms of action of NO in regulating platelet and endothelial function, and review the effects of vascular disease states on NO bioavailability. PMID:21572574

  5. Retinal vascular tree reconstruction with anatomical realism.

    PubMed

    Lin, Kai-Shun; Tsai, Chia-Ling; Tsai, Chih-Hsiangng; Sofka, Michal; Chen, Shih-Jen; Lin, Wei-Yang

    2012-12-01

    Motivated by the goals of automatically extracting vessel segments and constructing retinal vascular trees with anatomical realism, this paper presents and analyses an algorithm that combines vessel segmentation and grouping of the extracted vessel segments. The proposed method aims to restore the topology of the vascular trees with anatomical realism for clinical studies and diagnosis of retinal vascular diseases, which manifest abnormalities in either venous and/or arterial vascular systems. Vessel segments are grouped using extended Kalman filter which takes into account continuities in curvature, width, and intensity changes at the bifurcation or crossover point. At a junction, the proposed method applies the minimum-cost matching algorithm to resolve the conflict in grouping due to error in tracing. The system was trained with 20 images from the DRIVE dataset, and tested using the remaining 20 images. The dataset contained a mixture of normal and pathological images. In addition, six pathological fluorescein angiogram sequences were also included in this study. The results were compared against the groundtruth images provided by a physician, achieving average success rates of 88.79% and 90.09%, respectively.

  6. Vascular Access in Children

    SciTech Connect

    Krishnamurthy, Ganesh Keller, Marc S.

    2011-02-15

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the 'expert procedural pyramid' is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  7. CSF biomarkers in neurodegenerative and vascular dementias.

    PubMed

    Llorens, Franc; Schmitz, Matthias; Ferrer, Isidro; Zerr, Inga

    2016-01-01

    Neurodegenerative diseases with abnormal protein aggregates such as Alzheimer's disease, tauopathies, synucleinopathies, and prionopathies, together with vascular encephalopathies, are cause of cognitive impairment and dementia. Identification of reliable biomarkers in biological fluids, particularly in the cerebrospinal fluid (CSF), is of extreme importance in optimizing the precise early clinical diagnosis of distinct entities and predicting the outcome in particular settings. In addition, the study of CSF biomarkers is useful to identify and monitor the underlying pathological processes developing in the central nervous system of affected individuals. Evidence suggests that levels of key CSF molecules correlate, in some circumstances, with prediction, disease progression, and severity of cognitive decline. Correlation of CSF markers and underlying pathological molecular substrates in brain is an exciting field for further study. However, while some dementias such as Creutzfeldt-Jakob disease have accurate CSF biomarkers, other disease types such as dementia with Lewy bodies, vascular dementia, and frontotemporal dementia lack reliable biomarkers for their specific clinical diagnosis. PMID:27016008

  8. SWI/SNF chromatin remodeling complexes and cancer.

    PubMed

    Biegel, Jaclyn A; Busse, Tracy M; Weissman, Bernard E

    2014-09-01

    The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than 20% of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types.

  9. The REST remodeling complex protects genomic integrity during embryonic neurogenesis

    PubMed Central

    Nechiporuk, Tamilla; McGann, James; Mullendorff, Karin; Hsieh, Jenny; Wurst, Wolfgang; Floss, Thomas; Mandel, Gail

    2016-01-01

    The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosom