Science.gov

Sample records for abnormal vascular smooth

  1. Mechanics of Vascular Smooth Muscle.

    PubMed

    Ratz, Paul H

    2015-12-15

    Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.

  2. Vascular smooth muscle phenotypic diversity and function

    PubMed Central

    2010-01-01

    The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts. PMID:20736412

  3. Notch Signaling in Vascular Smooth Muscle Cells.

    PubMed

    Baeten, J T; Lilly, B

    2017-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.

  4. Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification

    PubMed Central

    Leopold, Jane A.

    2014-01-01

    Vascular calcification is highly prevalent and, when present, is associated with major adverse cardiovascular events. Vascular smooth muscle cells play an integral role in mediating vessel calcification by undergoing differentiation to osteoblast-like cells and generating matrix vesicles that serve as a nidus for calcium-phosphate deposition in the vessel wall. Once believed to be a passive process, it is now recognized that vascular calcification is a complex and highly regulated process that involves activation of cellular signaling pathways, circulating inhibitors of calcification, genetic factors, and hormones. This review will examine several of the key mechanisms linking vascular smooth muscle cells to vessel calcification that may be targeted to reduce vessel wall mineralization and, thereby, reduce cardiovascular risk. PMID:25435520

  5. Cobalt contraction of vascular smooth muscle

    SciTech Connect

    Dominiczak, A.; Clyde, E.; Bohr, D. )

    1991-03-11

    Although it has been reported that cobalt causes contraction of vascular smooth muscle, the mechanism responsible for this contraction has not been defined. The authors studied these contractions in rat aortic rings. Concentration-response studies indicated that the threshold for contraction was 10{sup {minus}8}M, maximum contraction occurred at 3 {times} 10{sup 7}M and relaxation began at 10{sup {minus}6}M. No contraction occurred in a calcium-free physiological salt solution and the contraction was not inhibited by H-7, a protein kinase C inhibitor. The authors conclude the cobalt in low concentrations causes contraction by activating calcium channels and that in high concentrations it causes relaxation by inactivating these same channels.

  6. Sympathetic innervation promotes vascular smooth muscle differentiation.

    PubMed

    Damon, Deborah H

    2005-06-01

    The sympathetic nervous system (SNS) is an important modulator of vascular smooth muscle (VSM) growth and function. Several lines of evidence suggest that the SNS also promotes VSM differentiation. The present study tests this hypothesis. Expression of smooth muscle myosin (SM2) and alpha-actin were assessed by Western analysis as indexes of VSM differentiation. SM2 expression (normalized to alpha-actin) in adult innervated rat femoral and tail arteries was 479 +/- 115% of that in noninnervated carotid arteries. Expression of alpha-actin (normalized to GAPDH or total protein) in 30-day-innervated rat femoral arteries was greater than in corresponding noninnervated femoral arteries from guanethidine-sympathectomized rats. SM2 expression (normalized to alpha-actin) in neonatal femoral arteries grown in vitro for 7 days in the presence of sympathetic ganglia was greater than SM2 expression in corresponding arteries grown in the absence of sympathetic ganglia. In VSM-endothelial cell cultures grown in the presence of dissociated sympathetic neurons, alpha-actin (normalized to GAPDH) was 300 +/- 66% of that in corresponding cultures grown in the absence of neurons. This effect was inhibited by an antibody that neutralized the activity of transforming growth factor-beta2. All of these data indicate that sympathetic innervation increased VSM contractile protein expression and thereby suggest that the SNS promotes and/or maintains VSM differentiation.

  7. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  8. Carotid Vascular Abnormalities in Primary Hyperparathyroidism

    PubMed Central

    Walker, M. D.; Fleischer, J.; Rundek, T.; McMahon, D. J.; Homma, S.; Sacco, R.; Silverberg, S. J.

    2009-01-01

    Context: Data on the presence, extent, and reversibility of cardiovascular disease in primary hyperparathyroidism (PHPT) are conflicting. Objective: This study evaluated carotid structure and function in PHPT patients compared with population-based controls. Design: This is a case-control study. Setting: The study was conducted in a university hospital metabolic bone disease unit. Participants: Forty-nine men and women with PHPT and 991 controls without PHPT were studied. Outcome Measures: We measured carotid intima-media thickness (IMT), carotid plaque presence and thickness, and carotid stiffness, strain, and distensibility. Results: IMT, carotid plaque thickness, carotid stiffness, and distensibility were abnormal in PHPT patients, and IMT was higher in patients than controls (0.959 vs. 0.907 mm, P < 0.0001). In PHPT, PTH levels, but not calcium concentration, predicted carotid stiffness (P = 0.04), strain (P = 0.06), and distensibility (P = 0.07). Patients with increased carotid stiffness had significantly higher PTH levels than did those with normal stiffness (141 ± 48 vs. 94.9 ± 44 pg/ml, P = 0.002), and odds of abnormal stiffness increased 1.91 (confidence interval = 1.09–3.35; P = 0.024) for every 10 pg/ml increase in PTH, adjusted for age, creatinine, and albumin-corrected calcium. Conclusions: Mild PHPT is associated with subclinical carotid vascular manifestations. IMT, a predictor of cardiovascular outcomes, is increased. Measures of carotid stiffness are associated with extent of PTH elevation, suggesting that those with more severe PHPT may have impaired vascular compliance and that PTH, rather than calcium, is the mediator. PMID:19755478

  9. Functional preservation of vascular smooth muscle tissue

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.

    1973-01-01

    The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.

  10. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  11. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  12. Extracellular calcium sensing in rat aortic vascular smooth muscle cells

    SciTech Connect

    Smajilovic, Sanela; Hansen, Jakob Lerche; Christoffersen, Tue E.H.

    2006-10-06

    Extracellular calcium (Ca2+o) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca2+o stimulates proliferation of the cells. The effects of Ca2+o were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca2+o-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca2+o-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.

  13. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    PubMed

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  14. Effects of sodium selenite on vascular smooth muscle reactivity.

    PubMed

    Togna, G; Russo, P; Pierconti, F; Caprino, L

    2000-02-01

    The effects of sodium selenite (Na(2)SeO(3)) on the vascular smooth muscle reactivity of rabbit aorta were studied. In isolated rabbit aorta, Na(2)SeO(3) inhibited contractile response to phenylephrine and developed a lasting contracture in the vascular tissue. Relaxation in phenylephrine-precontracted aortic rings induced by sodium nitroprusside and 8-bromo-guanosine 3':5'-cyclic-monophosphate was also inhibited. Preliminary data obtained with ascorbic acid suggested a partial involvement of an oxidative mechanism. Excluding the possibility that Se damages actin or modifies its distribution (immunohistochemical evaluation), results indicate that Se alters vascular smooth muscle reactivity by inhibiting both its contracting and relaxing properties. Calcium-dependent mechanisms appear to be primarily involved and an interference with calcium re-uptake by sarcoplasmic reticulum as a possible site of Se vascular action could be hypothesized.

  15. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al., pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  16. Caveolin-1 regulates contractility in differentiated vascular smooth muscle.

    PubMed

    Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G

    2004-01-01

    Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.

  17. Nuclear reprogramming and its role in vascular smooth muscle cells.

    PubMed

    Zaina, Silvio; del Pilar Valencia-Morales, Maria; Tristán-Flores, Fabiola E; Lund, Gertrud

    2013-09-01

    In general terms, "nuclear reprogramming" refers to a change in gene expression profile that results in a significant switch in cellular phenotype. Nuclear reprogramming was first addressed by pioneering studies of cell differentiation during embryonic development. In recent years, nuclear reprogramming has been studied in great detail in the context of experimentally controlled dedifferentiation and transdifferentiation of mammalian cells for therapeutic purposes. In this review, we present a perspective on nuclear reprogramming in the context of spontaneous, pathophysiological phenotypic switch of vascular cells occurring in the atherosclerotic lesion. In particular, we focus on the current knowledge of epigenetic mechanisms participating in the extraordinary flexibility of the gene expression profile of vascular smooth muscle cells and other cell types participating in atherogenesis. Understanding how epigenetic changes participate in vascular cell plasticity may lead to effective therapies based on the remodelling of the vascular architecture.

  18. Vascular Smooth Muscle Sirtuin-1 Protects Against Aortic Dissection During Angiotensin II–Induced Hypertension

    PubMed Central

    Fry, Jessica L; Shiraishi, Yasunaga; Turcotte, Raphaël; Yu, Xunjie; Gao, Yuan Z; Akiki, Rachid; Bachschmid, Markus; Zhang, Yanhang; Morgan, Kathleen G; Cohen, Richard A; Seta, Francesca

    2015-01-01

    Background Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide+–dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus. Methods and Results Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II–treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II–treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol. Conclusions Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan’s syndrome. PMID:26376991

  19. Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure

    PubMed Central

    Su, Wen; Xie, Zhongwen; Liu, Shu; Calderon, Lindsay E.; Guo, Zhenheng

    2013-01-01

    Recent data revealed that protein kinase C-potentiated myosin phosphatase inhibitor of 17 kDa (CPI-17), a myosin phosphatase inhibitory protein preferentially expressed in smooth muscle, is upregulated/activated in several diseases but whether this CPI-17 increase plays a causal role in pathologically enhanced vascular smooth muscle contractility and blood pressure remains unclear. To address this possibility, we generated a smooth muscle-specific CPI-17 transgenic mouse model (CPI-17-Tg) and demonstrated that the CPI-17 transgene was selectively expressed in smooth muscle-enriched tissues, including mesenteric arteries. The isometric contractions in the isolated second-order branch of mesenteric artery helical strips from CPI-17-Tg mice were significantly enhanced compared with controls in response to phenylephrine, U-46619, serotonin, ANG II, high potassium, and calcium. The perfusion pressure increases in isolated perfused mesenteric vascular beds in response to norepinephrine were also enhanced in CPI-17-Tg mice. The hypercontractility was associated with increased phosphorylation of CPI-17 and 20-kDa myosin light chain under basal and stimulated conditions. Surprisingly, the protein levels of rho kinase 2 and protein kinase Cα/δ were significantly increased in CPI-17-Tg mouse mesenteric arteries. Radiotelemetry measurements demonstrated that blood pressure was significantly increased in CPI-17-Tg mice. However, no vascular remodeling was detected by morphometric analysis. Taken together, our results demonstrate that increased CPI-17 expression in smooth muscle promotes vascular smooth muscle contractility and increases blood pressure, implicating a pathological significant role of CPI-17 upregulation. PMID:23604714

  20. Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.

    PubMed

    Farah, Omar R; Li, Dongge; McIntyre, Brendan A S; Pan, Jingyi; Belik, Jaques

    2009-01-01

    The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.

  1. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling

    PubMed Central

    Dong, Nana; Wang, Wei; Tian, Jinwei; Xie, Zulong; Lv, Bo; Dai, Jiannan; Jiang, Rui; Huang, Dan; Fang, Shaohong; Tian, Jiangtian; Li, Hulun; Yu, Bo

    2017-01-01

    The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR-182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate the role of miR-182 in the vascular SMC phenotypic switch and to determine the potential molecular mechanisms involved. The expression of miR-182 gene was significantly downregulated in cultured SMCs during dedifferentiation from a contractile to a synthetic phenotype. Conversely, the upregulation of miR-182 increased the expression of SMC-specific contractile genes, such as α-smooth muscle actin, smooth muscle 22α and calponin. Additionally, miR-182 overexpression potently inhibited SMC proliferation and migration under both basal conditions and under platelet-derived growth factor-BB stimulation. Furthermore, we identified fibroblast growth factor 9 (FGF9) as the target gene of miR-182 for the phenotypic modulation of SMCs mediated through platelet-derived growth factor receptor β (PDGFRβ) signaling. These data suggest that miR-182 may be a novel SMC phenotypic marker and a modulator that may be used to prevent SMC dedifferentiation via FGF9/PDGFRβ signaling. PMID:28259995

  2. Pulmonary vascular development goes awry in congenital lung abnormalities.

    PubMed

    Kool, Heleen; Mous, Daphne; Tibboel, Dick; de Klein, Annelies; Rottier, Robbert J

    2014-12-01

    Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease.

  3. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  4. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  5. Vascular smooth muscle cell culture in microfluidic devices

    PubMed Central

    Wei, Y. C.; Chen, F.; Zhang, T.; Chen, D. Y.; Jia, X.; Wang, J. B.; Guo, W.; Chen, J.

    2014-01-01

    This paper presents a microfluidic device enabling culture of vascular smooth muscle cells (VSMCs) where extracellular matrix coating, VSMC seeding, culture, and immunostaining are demonstrated in a tubing-free manner. By optimizing droplet volume differences between inlets and outlets of micro channels, VSMCs were evenly seeded into microfluidic devices. Furthermore, the effects of extracellular matrix (e.g., collagen, poly-l-Lysine (PLL), and fibronectin) on VSMC proliferation and phenotype expression were explored. As a platform technology, this microfluidic device may function as a new VSMC culture model enabling VSMC studies. PMID:25379109

  6. Upregulation of decorin by FXR in vascular smooth muscle cells

    SciTech Connect

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-08-08

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.

  7. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    SciTech Connect

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  8. Biophysical Induction of Vascular Smooth Muscle Cell Podosomes

    PubMed Central

    Kim, Na Young; Kohn, Julie C.; Huynh, John; Carey, Shawn P.; Mason, Brooke N.; Vouyouka, Ageliki G.; Reinhart-King, Cynthia A.

    2015-01-01

    Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs. PMID:25785437

  9. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia.

    PubMed

    Mourani, Peter M; Abman, Steven H

    2015-12-01

    Despite advances in the care of preterm infants, these infants remain at risk bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, showing that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities. Several epidemiologic studies have delineated the incidence of PH in preterm infants and the impact on outcomes. These studies have also highlighted gaps in the understanding of PVD in BPD.

  10. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  11. Vascular smooth muscle cell response on thin films of collagen.

    PubMed

    Elliott, John T; Woodward, John T; Langenbach, Kurt J; Tona, Alex; Jones, Peter L; Plant, Anne L

    2005-10-01

    Vascular smooth muscle cells (vSMC) cultured on gels of fibrillar type I collagen or denatured collagen (gelatin) comprise a model system that has been widely used for studying the role of the extracellular matrix in vascular diseases such as hypertension, restenosis and athrosclerosis. Despite the wide use of this model system, there are several disadvantages to using collagen gels for cellular studies. These include poor optical characteristics for microscopy, difficulty in verifying that the properties of the preparations are identical from experiment to experiment, heterogeneity within the gels, and difficulty in handling the gels because they are fragile. Previously, we developed an alternative collagen matrix by forming thin films of native fibrillar collagen or denatured collagen on self-assembled monolayers of alkanethiols [Elliott, J.T., Tona, A., Woodward, J., Jones,P., Plant, A., 2003a. Thin films of collagen affect smooth muscle cell morphology. Langmuir 19, 1506-1514.]. These substrates are robust and can be characterized by surface analytical techniques that allow both verification of the reproducibility of the preparation and high-resolution analysis of collagen structure. In addition, they have excellent optical properties that allow more details of the cell-matrix interactions to be observed by microscopy. In this study, we performed a side-by-side structural and functional comparison of collagen gels with thin films of collagen. Our results indicate that vSMC on thin films of collagen are nearly identical to vSMC on thick gels as determined by morphology, proliferation rate, integrin ligation, tenascin-C expression and intracellular signaling events. These results suggest that the features of collagen gels that direct the observed vSMC responses are adequately reconstituted in the thin films of collagen. These thin films will be useful for elucidating the features of the collagen matrix that regulate vSMC response and may be applicable to high

  12. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    SciTech Connect

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Tikka, Saara

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  13. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  14. Atorvastatin inhibits myocardin expression in vascular smooth muscle cells.

    PubMed

    Li, Jingjing; Jiang, Jixin; Yin, Hao; Wang, Lifeng; Tian, Ruijuan; Li, Haijie; Wang, Zengyong; Li, Dong; Wang, Yuebing; Gui, Yu; Walsh, Michael P; Zheng, Xi-Long

    2012-07-01

    Atorvastatin (ATV), an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is widely prescribed as a lipid-lowering drug. It also inhibits the RhoA-Rho-associated kinase pathway in vascular smooth muscle (SM) cells and critically inhibits SM function. Myocardin is a coactivator of serum response factor, which upregulates SM contractile proteins. The RhoA-Rho-associated kinase pathway, which directly triggers SM contraction, also increases myocardin gene expression. Therefore, we investigated whether ATV inhibits myocardin gene expression in SM cells. In mice injected with ATV (IP 20 μg/g per day) for 5 days, myocardin gene expression was significantly downregulated in aortic and carotid arterial tissues with decreased expression of myocardin target genes SM α-actin and SM22. Correspondingly, the contractility of aortic rings in mice treated with ATV or the Rho-associated kinase inhibitor Y-27632 was reduced in response to treatment with either KCl or phenylephrine. In cultured mouse and human aortic SM cells, KCl treatment stimulated the expression of myocardin, SM α-actin, and SM22. These stimulatory effects were prevented by ATV treatment. ATV-induced inhibition of myocardin expression was prevented by pretreatment with either mevalonate or geranylgeranylpyrophosphate but not farnesylpyrophosphate. Treatment with Y-27632 mimicked ATV effects on the gene expression of myocardin, SM α-actin, and SM22, further suggesting a role for the RhoA-Rho-associated kinase pathway in ATV effects. Furthermore, ATV treatment inhibited RhoA membrane translocation and activation; these effects were prevented by pretreatment with mevalonate. We conclude that ATV inhibits myocardin gene expression in vivo and in vitro, suggesting a novel mechanism for ATV inhibition of vascular contraction.

  15. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    PubMed

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  16. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells.

    PubMed

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ(m)) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology.

  17. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis.

  18. Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease

    PubMed Central

    Pfaltzgraff, Elise R.; Bader, David M.

    2015-01-01

    Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. PMID:25546231

  19. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    PubMed Central

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  20. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma.

    PubMed Central

    Li, H.; Cybulsky, M. I.; Gimbrone, M. A.; Libby, P.

    1993-01-01

    Vascular cell adhesion molecule-1 (VCAM-1), a mononuclear leukocyte adhesion molecule, is expressed in cultured vascular endothelial cells activated by cytokines and is induced in rabbit aortic endothelium in vivo within 1 week after initiation of an atherogenic diet. We now demonstrate that vascular smooth muscle cells can also express VCAM-1 in rabbit atherosclerotic lesions in vivo and in response to cytokines in vitro. Immunohistochemical staining of aortas from rabbits fed a 0.3% cholesterol-containing diet revealed that a portion of smooth muscle cells within intimal foam cell-rich lesions expressed VCAM-1. The intimal VCAM-1-expressing cells localized predominantly in regions above the internal elastic lamina. These VCAM-1-positive cells had the typical spindle shape of smooth muscle cells but had reduced alpha-actin expression in comparison to normal medial smooth muscle cells, and did not bear markers for endothelium, macrophages, and T cells. In culture, rabbit aortic smooth muscle cells expressed VCAM-1 mRNA and protein in a time- and concentration-dependent fashion when exposed to interferon-gamma or Gram-negative bacterial lipopolysaccharide. Cultured human vascular smooth muscle cells also expressed VCAM-1 mRNA and protein in response to lipopolysaccharide, interferon-gamma, and interleukin-4. The monokines interleukin-1 alpha and tumor necrosis factor-alpha did not induce VCAM-1 expression in either rabbit or human vascular smooth muscle cells. Inducible VCAM-1 expression by vascular smooth muscle cells in vivo during hypercholesterolemia and in vitro in response to certain cytokines suggests a broader range of VCAM-1 functions in vascular biology than heretofore appreciated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7504883

  1. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  2. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia.

    PubMed Central

    Law, R E; Meehan, W P; Xi, X P; Graf, K; Wuthrich, D A; Coats, W; Faxon, D; Hsueh, W A

    1996-01-01

    Vascular smooth muscle cell (VSMC) proliferation and migration are responses to arterial injury that are highly important to the processes of restenosis and atherosclerosis. In the arterial balloon injury model in the rat, platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) are induced in the vessel wall and regulate these VSMC activities. Novel insulin sensitizing agents, thiazolidinediones, have been demonstrated to inhibit insulin and epidermal growth factor-induced growth of VSMCs. We hypothesized that these agents might also inhibit the effect of PDGF and bFGF on cultured VSMCs and intimal hyperplasia in vivo. Troglitazone (1 microM), a member of the thiazolidinedione class, produced a near complete inhibition of both bFGF-induced DNA synthesis as measured by bromodeoxyuridine incorporation (6.5+/-3.9 vs. 17.6+/-4.3% cells labeled, P < 0.05) and c-fos induction. This effect was associated with an inhibition (by 73+/-4%, P < 0.01) by troglitazone of the transactivation of the serum response element, which regulates c-fos expression. Inhibition of c-fos induction by troglitazone appeared to occur via a blockade of the MAP kinase pathway at a point downstream of MAP kinase activation by MAP kinase kinase. At this dose, troglitazone also inhibited PDGF-BB-directed migration of VSMC (by 70+/-6%, P < 0.01). These in vitro effects were operative in vivo. Quantitative image analysis revealed that troglitazone-treated rats had 62% (P < 0.001) less neointima/media area ratio 14 d after balloon injury of the aorta compared with injured rats that received no troglitazone. These results suggest troglitazone is a potent inhibitor of VSMC proliferation and migration and, thus, may be a useful agent to prevent restenosis and possibly atherosclerosis. PMID:8878442

  3. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension.

    PubMed

    Harris, David M; Cohn, Heather I; Pesant, Stéphanie; Zhou, Rui-Hai; Eckhart, Andrea D

    2007-11-01

    More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.

  4. Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo

    PubMed Central

    Choudhary, Saba; Berhe, Mikal; Haberstroh, Karen M; Webster, Thomas J

    2006-01-01

    In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micronsized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours’ adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications. PMID:17722261

  5. Lanthanum prevents high phosphate-induced vascular calcification by preserving vascular smooth muscle lineage markers.

    PubMed

    Ciceri, Paola; Elli, Francesca; Brenna, Irene; Volpi, Elisa; Romagnoli, Solange; Tosi, Delfina; Braidotti, Paola; Brancaccio, Diego; Cozzolino, Mario

    2013-06-01

    Vascular calcification (VC) represents a major cardiovascular risk factor in chronic kidney disease patients. High phosphate (Pi) levels are strongly associated with VC in this population. Therefore, Pi binders are commonly used to control high Pi levels. The aim of this work was to study the mechanism of action of lanthanum chloride (LaCl3) on the progression of Pi-induced VC through its direct effect on vascular smooth muscle cells (VSMCs) in vitro. High Pi induced VSCM Ca deposition. We evaluated the action of LaCl3, compared to gadolinium chloride (GdCl3), and found different effects on the modulation of VSMC lineage markers, such as α-actin and SM22α. In fact, only LaCl3 preserved the expression of both VSMC lineage markers compared to high Pi-treated cells. Interestingly, both LaCl3 and GdCl3 reduced the high Pi-induced elevations of bone morphogenic protein 2 mRNA expression, with no reduction of the high core binding factor-alpha 1 mRNA levels observed in calcified VSMCs. Furthermore, we also found that only LaCl3 completely prevented the matrix GLA protein mRNA levels and osteonectin protein expression elevations induced by high Pi compared to GdCl3. Finally, LaCl3, in contrast to GdCl3, prevented the high Pi-induced downregulation of Axl, a membrane tyrosine kinase receptor involved in apoptosis. Thus, our results suggest that LaCl3 prevents VC by preserving VSMC lineage markers and by decreasing high Pi-induced osteoblastic differentiation.

  6. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

    PubMed

    Régent, Alexis; Ly, Kim Heang; Lofek, Sébastien; Clary, Guilhem; Tamby, Mathieu; Tamas, Nicolas; Federici, Christian; Broussard, Cédric; Chafey, Philippe; Liaudet-Coopman, Emmanuelle; Humbert, Marc; Perros, Frédéric; Mouthon, Luc

    2016-10-01

    Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH-SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or -1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH-SMC (fold change 1.5≤ or -1.5≥, p < 0.05). HUASMC expressed increased amount of α-smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH-SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH-SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH-SMC. There was a trend toward reduced proliferation of PAH-SMC with paxillin-si-RNA and increased proliferation with ELAVL1-siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH-SMC proliferation.

  7. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    PubMed

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  8. Association of miRNA-145 expression in vascular smooth muscle cells with vascular damages in patients with lupus nephritis.

    PubMed

    Ding, Yan; Liao, Wang; Yi, Zhuwen; Xiang, Wei; He, Xiaojie

    2015-01-01

    miRNAs have been found to contribute to the regulation of multiple cellular processes, including cell apoptosis, differentiation and proliferation. The patients with lupus nephritis (LN) exhibit thickened renal vascular membrane and highly proliferative vascular smooth muscle cells (VSMCs). Of various miRNAs discovered, miR-145 is essential to mediate the proliferation of VSMCs and the formation of atherosclerotic plaques. In this study, we studied the pathological and vascular damage of renal LN, and the correlation between miR-145 expression in VSMCs and the vascular damages. Serum, urine, and renal biopsies were obtained from 41 patients with active LN. The serum and urinary VEGF levels were examined to confirm the renal damage of each patient. Biopsies were stained to observe the glomerular segmental lesions, sclerosis, and to evaluate the vascular damages. The expression of miR-145 was also examined to determine the correlation between its expression and the vascular damages. The expression of miR-145 was mainly detected in the renal VSMCs and the epithelial cells of glomerular proximal convoluted tubule. Nevertheless, the expression of miR-145 reduced as the tunicae media vasorum ratios increased, indicating the development of LN inhibits the expression of miR-145. Furthermore, our studies revealed no significant correlation among renal interstitial vascular damage, glomerular damage and severity classification of LN. Therefore, we suggest the damage of renal interstitial vascular should be considered as one of the factors to evaluate the severity of the LN.

  9. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling

    PubMed Central

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington’s epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington’s theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality. PMID:25973327

  10. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling.

    PubMed

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington's epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington's theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality.

  11. Diffuse and uncontrolled vascular smooth muscle cell proliferation in rapidly progressing pediatric moyamoya disease.

    PubMed

    Reid, Amy J; Bhattacharjee, Meenakshi B; Regalado, Ellen S; Milewicz, Allen L; El-Hakam, Lisa M; Dauser, Robert C; Milewicz, Dianna M

    2010-09-01

    Moyamoya disease is a rare stroke syndrome of unknown etiology resulting from stenosis or occlusion of the supraclinoid internal carotid artery (ICA) in association with an abnormal vascular network in the basal ganglia. Although the highest incidence of moyamoya disease is in pediatric patients, pathology reports have been primarily limited to adult samples and describe occlusive fibrocellular lesions in the intimae of affected arteries. We describe the case of a young girl with primary moyamoya disease who presented at 18 months of age with right hemiparesis following an ischemic stroke. Angiography showed stenosis of the distal left ICA, left middle cerebral artery, and right ICA. An emergent left-sided dural inversion was performed. Recurrent strokes and alternating hemiplegia necessitated a right dural inversion 6 months later. Nonetheless, her aggressive disease proved uniquely refractory to surgical revascularization, and she succumbed to recurrent strokes and neurological deterioration at 2.5 years of age. Pathological specimens revealed a striking bilateral occlusion of the anterior carotid circulation resulting from intimal proliferation of smooth muscle cells (SMCs). Most strikingly, the ascending aorta and the superior mesenteric artery demonstrated similar intimal proliferation, along with SMC proliferation in the media. The systemic pathology involving multiple arteries in this extremely young child, the first case of its kind available for autopsy, suggests that globally uncontrolled SMC proliferation, in the absence of environmental risk factors and likely resulting from an underlying genetic alteration, may be a primary etiologic event leading to moyamoya disease.

  12. A Review of Vascular Abnormalities of the Spine

    PubMed Central

    Singh, Rahul; Lucke-Wold, Brandon; Gyure, Kymberly; Boo, Sohyun

    2017-01-01

    Patients with spinal vascular lesions present with unique symptoms and have important anatomical and physiologic changes that must be considered prior to treatment. In this mini-review, we provide an overview of normal spinal vascular anatomy and discuss several key spinal vascular lesions. We provide an overview of cavernous malformations, intradural arteriovenous malformations, perimedullary arteriovenous fistulas, and dural arteriovenous fistulas. Important considerations are addressed in terms of pathologic characterization, specific imaging findings, and treatment approaches. PMID:28191502

  13. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent.

    PubMed

    Kim, Hak Rim; Gallant, Cynthia; Leavis, Paul C; Gunst, Susan J; Morgan, Kathleen G

    2008-09-01

    Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.

  14. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide–mediated vascular smooth muscle relaxation

    PubMed Central

    Isenberg, Jeff S.; Hyodo, Fuminori; Matsumoto, Ken-Ichiro; Romeo, Martin J.; Abu-Asab, Mones; Tsokos, Maria; Kuppusamy, Periannan; Wink, David A.; Krishna, Murali C.

    2007-01-01

    The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1–null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1–null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1–null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antag-onistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion. PMID:17082319

  15. Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy.

    PubMed

    Wheeler, Matthew T; Allikian, Michael J; Heydemann, Ahlke; Hadhazy, Michele; Zarnegar, Sara; McNally, Elizabeth M

    2004-03-01

    Vascular spasm is a poorly understood but critical biomedical process because it can acutely reduce blood supply and tissue oxygenation. Cardiomyopathy in mice lacking gamma-sarcoglycan or delta-sarcoglycan is characterized by focal damage. In the heart, sarcoglycan gene mutations produce regional defects in membrane permeability and focal degeneration, and it was hypothesized that vascular spasm was responsible for this focal necrosis. Supporting this notion, vascular spasm was noted in coronary arteries, and disruption of the sarcoglycan complex was observed in vascular smooth muscle providing a molecular mechanism for spasm. Using a transgene rescue strategy in the background of sarcoglycan-null mice, we replaced cardiomyocyte sarcoglycan expression. Cardiomyocyte-specific sarcoglycan expression was sufficient to correct cardiac focal degeneration. Intriguingly, successful restoration of the cardiomyocyte sarcoglycan complex also eliminated coronary artery vascular spasm, while restoration of smooth muscle sarcoglycan in the background of sarcoglycan-null alleles did not. This mechanism, whereby tissue damage leads to vascular spasm, can be partially corrected by NO synthase inhibitors. Therefore, we propose that cytokine release from damaged cardiomyocytes can feed back to produce vascular spasm. Moreover, vascular spasm feeds forward to produce additional cardiac damage.

  16. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    PubMed

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-09

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  17. Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease.

    PubMed

    Chaturvedi, Praneet; Chen, Neal X; O'Neill, Kalisha; McClintick, Jeanette N; Moe, Sharon M; Janga, Sarath Chandra

    2015-01-01

    Vascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network

  18. Statins inhibited erythropoietin-induced proliferation of rat vascular smooth muscle cells.

    PubMed

    Kaneda, Tae; Tsuruoka, Shuichi; Fujimura, Akio

    2010-12-15

    Erythropoietin (EPO) directly stimulates the proliferation of vascular smooth muscle cells, and this is believed to be one of the mechanisms of vascular access failure of hemodialysis patients. However, precise mechanisms of the EPO-induced proliferation of vascular smooth muscle cells are not certain. HMG-CoA reductase inhibitors (statins) are primarily used to reduce cholesterol levels, but also exert other effects, including reno-protective effects. We evaluated the effect of several statins with various hydrophilicities on the EPO-induced proliferation of primary cultured rat vascular smooth muscle cells (VSMCs) in vitro. EPO significantly and concentration-dependently increased DNA synthesis as assessed by [³H]thymidine incorporation, cell proliferation as assessed by WST-1 assay, and activation of the p44/42MAPK pathway. Therapeutic doses of statins (pravastatin, simvastatin, atorvastatin and fluvastatin) in patients with hypercholesterolemia almost completely suppressed all of the EPO-induced effects in a concentration-dependent manner. Co-addition of mevalonic acid almost completely reversed the effects of statins. Statin alone did not affect the basal proliferation capacity of the cells. The effects were almost similar among the statins. We concluded that statins inhibited EPO-induced proliferation in rat VSMCs at least partly through their inhibition of HMG-CoA reductase activity. In the future, statins might prove useful for the treatment of EPO-induced hyperplasia of vascular access. Because the statins all showed comparable effects irrespective of their hydrophilicities, these effects might be a class effect.

  19. Congenital vascular malformation associated with multiple cranial, vertebral and upper limb skeletal abnormalities.

    PubMed

    Marsden, N; Shokrollahi, K; Maw, K; Sierakowski, A; Bhat, F A; Mathur, B

    2010-07-01

    The association between congenital vascular malformations and altered bone growth, the so-called vascular bone syndrome, is well documented. Various eponymous syndromes each with their individual traits, such as Klippel-Trenaunay, Parkes-Weber and Servelle-Martorell syndrome have been described, along with variations. We report on a previously undescribed case of congenital vascular malformation associated with multiple skeletal abnormalities affecting the skull, vertebrae and right upper limb, and discuss the literature.

  20. Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery

    PubMed Central

    Phillips, Linsey C.; Klibanov, Alexander L.; Wamhoff, Brian R.; Hossack, John A.

    2010-01-01

    We investigate a method for gene delivery to vascular smooth muscle cells using ultrasound triggered delivery of plasmid DNA from electrostatically coupled cationic microbubbles. Microbubbles carrying reporter plasmid DNA were acoustically ruptured in the vicinity of smooth muscle cells in vitro under a range of acoustic pressures (0–950 kPa) and pulse durations (0–100 cycles). No effect on gene transfection or viability was observed from application of microbubbles, DNA, or ultrasound alone. Microbubbles in combination with ultrasound (500 kPa, 1MHz, 50 cycle bursts at a Pulse Repetition Frequency [PRF] of 100 Hz) significantly reduced viability both with DNA (53 +/− 27%) and without (19 +/− 8%). Maximal gene transfection (~1% of cells) occurred using 50 cycle, 1 MHz pulses at 300 kPa which resulted in 40% viability of cells. We demonstrated that we can locally deliver DNA to vascular smooth muscle cells in vitro using microbubble carriers and focused ultrasound. PMID:20800174

  1. Cannabinoid CB{sub 1} receptor inhibition decreases vascular smooth muscle migration and proliferation

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Hasko, Gyoergy; Pacher, Pal

    2008-12-26

    Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli and chemoattractants such as platelet-derived growth factor (PDGF) are key events in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation and migration in various cell types through cannabinoid receptors. Here we investigated the effects of CB{sub 1} receptor antagonist rimonabant (SR141716A), which has recently been shown to have anti-atherosclerotic effects both in mice and humans, on PDGF-induced proliferation, migration, and signal transduction of human coronary artery smooth muscle cells (HCASMCs). PDGF induced Ras and ERK 1/2 activation, while increasing proliferation and migration of HCASMCs, which were dose dependently attenuated by CB{sub 1} antagonist, rimonabant. These findings suggest that in addition to improving plasma lipid alterations and decreasing inflammatory cell migration and inflammatory response, CB{sub 1} antagonists may exert beneficial effects in atherosclerosis and restenosis by decreasing vascular smooth muscle proliferation and migration.

  2. Cinematographic analysis of vascular smooth muscle cell interactions with extracellular matrix.

    PubMed

    Absher, M; Baldor, L

    1991-01-01

    The interactions of vascular smooth muscle cells with growth modulators and extracellular matrix molecules may play a role in the proliferation and migration of these cells after vascular injury and during the development of atherosclerosis. Time-lapse cinematographic techniques have been used to study cell division and migration of bovine carotid artery smooth muscle cells in response to matrix molecules consisting of solubilized basement membrane (Matrigel) and type I collagen. When cells were grown adjacent to Matrigel, both migration and cell proliferation were increased and interdivision time was shortened. Cells grown in Matrigel or in type I collagen had markedly reduced migration rates but interdivision time was not altered. Further, diffusible components of the Matrigel were found to stimulate proliferation of the smooth muscle cells.

  3. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  4. Do subclinical vascular abnormalities precede impaired physical ability and ADL disability?

    PubMed

    den Ouden, Marjolein E M; Schuurmans, Marieke J; Mueller-Schotte, Sigrid; Bots, Michiel L; van der Schouw, YvonneT

    2014-10-01

    Cardiovascular disease is an important cause of disability in activities of daily living (ADL) through its effect on physical functioning. However, it is unclear whether subclinical vascular abnormalities and rate of change in subclinical vascular abnormalities is also associated with an impaired physical ability and with ADL disability. In a longitudinal study, 490 middle-aged and older persons were included. Physical ability was measured using the Short Physical Performance Battery and ADL disability using a questionnaire on self-reported basic and instrumental ADL. Subclinical vascular abnormalities were measured by pulse wave velocity (PWV) and carotid intima media thickness (CIMT, in men only). Longitudinal associations between baseline markers of subclinical vascular abnormalities, their rate of change, and change in physical ability or ADL disability were assessed using generalized estimation equation models. After adjustment for confounders, higher baseline PWV, change in PWV, baseline CIMT (in men) and change in CIMT (in men) were associated with a higher rate of change in physical ability (regression coefficients 0.035, 95% CI [0.018; 0.052]; 0.047, 95% CI [0.024; 0.069]; 0.214, 95% CI [0.070; 0.358] and 0.148, 95% CI [0.019; 0.277], respectively). No relations were found for change in ADL disability. In subjects with incident cardiovascular disease, higher change in PWV was associated with a higher rate of change in ADL disability (regression coefficient 0.054, 95% CI [0.001; 0.106]). The present study showed that subclinical vascular abnormalities and rate of change were associated with higher rate of change in physical ability. The association between (change in) subclinical vascular abnormalities and ADL disability tended to be stronger in persons with incident and prevalent cardiovascular disease. These data may suggest that ADL decline is more a direct effect of experienced clinically manifest vascular events rather than the effect of progression of

  5. Distribution of a lanthanide (147 Pm) in vascular smooth muscle.

    PubMed

    Weiss, G B; Goodman, F R

    1976-08-01

    In order to ascertain whether trivalent rare earth ions such as lanthanum (La+++) penetrate the cell membrane under physiological conditions, the extracellular and cellular distribution of promethium (147 Pm), a carrier-free rare earth radioisotope, was examined in rabbit aortic smooth muscle. As the duration of incubation was lengthened, uptake of 147Pm continued to increase; it was inhibited by La+++ and other rare earth ions (Nd+++, Lu+++) only when the 147 Pm/rare earth concentration ratio exceeded 1:10(6). However, equally high concentrations of Ca++ had no effect on 147Pm uptake. Efflux of 147Pm was only transiently increased by 1.5 mM La+++, and exposure to 0.05 mM EDTA elicited an increased 147Pm efflux with both transient and maintained components. The magnitude of the EDTA-induced increase in 147 Pm efflux was similar over a 30-fold range of EDTA concentration (0.05-1.5 mM); the limiting factor for 147Pm efflux is the rate of 147Pm desorption from the tissue rather than the extracellular concentration of EDTA. Loss of 147Pm in the presence of 0.05 mM EDTA could be described in terms of two specific washout components (the more rapid of which included 147Pm within the extracellular space and the slower of which had half-times of washout of approximately 7-10 minutes). Uptake of 147Pm was inhibited by lowering the incubation solution temperature to 0 degrees C or by procaine. However, concentrations of metabolic inhibitors (iodoacetate and dinitrophenol) which diminish loss of Ca++ from the cell did not decrease either the uptake or efflux of 147Pm. Thus, significant quantities of 147Pm do not appear to be accumulated within the cell or transported out of the cell; distribution of 147Pm can be most simply described in terms of a binding at and desorption from surface acessible fiber sites.

  6. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    PubMed

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.

  7. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling

    PubMed Central

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M.; Kirkby, Nicholas S.; van de Putte, Elisabeth E. Fransen; Christen, Sibylle; Kimmitt, Robert A.; Moorhouse, Rebecca; Castellan, Raphael F.P.; Kotelevtsev, Yuri V.; Kuc, Rhoda E.; Davenport, Anthony P.; Dhaun, Neeraj; Webb, David J.

    2017-01-01

    The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade–mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling. PMID:28028193

  8. Maintenance of GLUT4 expression in smooth muscle prevents hypertension-induced changes in vascular reactivity.

    PubMed

    Atkins, Kevin B; Seki, Yoshinori; Saha, Jharna; Eichinger, Felix; Charron, Maureen J; Brosius, Frank C

    2015-02-01

    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth-muscle-specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild-type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium-intact aortic rings from hypertensive wild-type mice but not in aortae of SMG4 mice. Inhibition of Rho-kinase equally reduced serotonin-stimulated contractility in aortae of hypertensive wild-type and SMG4-mice. In addition, acetylcholine-stimulated relaxation was significantly decreased in aortic rings of hypertensive wild-type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase-2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase-2 had no effect on relaxation in rings of hypertensive wild-type mice. Cyclooxygenase-2 protein expression was decreased in hypertensive wild-type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium-dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.

  9. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism

    PubMed Central

    Agbor, Larry N.; Ibeawuchi, Stella-Rita C.; Hu, Chunyan; Davis, Deborah R.; Keen, Henry L.; Quelle, Frederick W.; Sigmund, Curt D.

    2016-01-01

    Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling. This caused vascular dysfunction and increased arterial pressure under baseline conditions and a marked increase in arterial pressure, collagen deposition, and vascular stiffness in response to a subpressor dose of angiotensin II, which did not cause hypertension in control mice. Inhibition of total cullin activity increased the level of CUL3 substrates cyclin E and RhoA, and expression of CUL3Δ9 decreased the level of the active form of endogenous CUL3 in human aortic smooth muscle cells. These data indicate that selective expression of the Cul3Δ9 mutation in vascular smooth muscle phenocopies the hypertension observed in Cul3Δ9 human subjects and suggest that mutations in CUL3 cause human hypertension in part through a mechanism involving smooth muscle dysfunction initiated by a loss of CUL3-mediated degradation of RhoA. PMID:27882355

  10. [Vascular smooth muscle cells from human umbilical artery undergo osteoblast differentiation and calcification in vitro].

    PubMed

    Guo, Yong Ping; Sun, Ming Shu; Qian, Jia Qi; Ni, Zhao Hui

    2008-04-01

    To research if the vascular smooth muscle cells (VSMCs) from human umbilical artery undergo osteoblast differentiation spontaneously in vitro. The growth curve of vascular smooth muscle cells from human umbilical artery was obtained by MTT method. The course of multicell nodule formation spontaneously by VSMCs was observed morphologically. The apoptosis of VSMCs in the nodules was detected by Hoechst 33258 and TUNEL methods respectively. The expression of alkaline phosphotase in the nodules was detected by immunohistochemical method. And the calcification was studied with transmission electron microscope and by alizarin red S respectively. We found that the umbilical artery smooth muscle cells confluenced after 7 days of passage and exhibited typical "hill and valley" pattern under light microscope. The cells grew into aggregation and formed nodules at the "hill" region with culture-time prolongation. After 4-5 weeks culture, these nodules built up and calcified spontaneously. We also found alkaline phosphotase expression and apoptosis of VSMCs in these nodules at the same time. We conclude that the vascular smooth muscle cells from human umbilical artery just like from aortic artery can undergo osteoblast differentiation spontaneously in vitro, and apoptosis participate this procedure probably.

  11. Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle

    PubMed Central

    Spinelli, Amy M.

    2016-01-01

    Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca2+-selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca2+ sensors located in the membrane of the endoplasmic reticulum. STIM and Orai proteins are expressed in vascular and airway smooth muscle and constitute the molecular components of the ubiquitous store-operated Ca2+ entry pathway that mediate the Ca2+ release-activated Ca2+ current. STIM/Orai proteins also encode store-independent Ca2+ entry pathways in smooth muscle. Altered expression and function of STIM/Orai proteins have been linked to vascular and airway pathologies, including restenosis, hypertension, and atopic asthma. In this review we discuss our current understanding of Orai proteins and the store-dependent and -independent signaling pathways mediated by these proteins in vascular and airway smooth muscle. We also discuss the current studies linking altered expression and function of Orai proteins with smooth muscle-related pathologies. PMID:26718630

  12. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    NASA Astrophysics Data System (ADS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-11-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms.

  13. Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells.

    PubMed

    Kennedy, Eimear; Mooney, Ciaran J; Hakimjavadi, Roya; Fitzpatrick, Emma; Guha, Shaunta; Collins, Laura E; Loscher, Christine E; Morrow, David; Redmond, Eileen M; Cahill, Paul A

    2014-10-01

    Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100β(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.

  14. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  15. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects.

    PubMed

    Zhang, Jinqiu; Lian, Qizhou; Zhu, Guili; Zhou, Fan; Sui, Lin; Tan, Cindy; Mutalif, Rafidah Abdul; Navasankari, Raju; Zhang, Yuelin; Tse, Hung-Fat; Stewart, Colin L; Colman, Alan

    2011-01-07

    The segmental premature aging disease Hutchinson-Gilford Progeria syndrome (HGPS) is caused by a truncated and farnesylated form of Lamin A called progerin. HGPS affects mesenchymal lineages, including the skeletal system, dermis, and vascular smooth muscle (VSMC). To understand the underlying molecular pathology of HGPS, we derived induced pluripotent stem cells (iPSCs) from HGPS dermal fibroblasts. The iPSCs were differentiated into neural progenitors, endothelial cells, fibroblasts, VSMCs, and mesenchymal stem cells (MSCs). Progerin levels were highest in MSCs, VSMCs, and fibroblasts, in that order, with these lineages displaying increased DNA damage, nuclear abnormalities, and HGPS-VSMC accumulating numerous calponin-staining inclusion bodies. Both HGPS-MSC and -VSMC viability was compromised by stress and hypoxia in vitro and in vivo (MSC). Because MSCs reside in low oxygen niches in vivo, we propose that, in HGPS, this causes additional depletion of the MSC pool responsible for replacing differentiated cells lost to progerin toxicity.

  16. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    PubMed

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-04

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  17. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation.

    PubMed

    Kapustin, A N; Shanahan, C M

    2016-06-01

    Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes.

  18. Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification

    PubMed Central

    Zhu, Dongxing; Hadoke, Patrick W. F.; Wu, Junxi; Vesey, Alex T.; Lerman, Daniel. A.; Dweck, Marc R.; Newby, David E.; Smith, Lee B.; MacRae, Vicky E.

    2016-01-01

    Vascular calcification powerfully predicts mortality and morbidity from cardiovascular disease. Men have a greater risk of cardiovascular disease, compared to women of a similar age. These gender disparities suggest an influence of sex hormones. Testosterone is the primary and most well-recognised androgen in men. Therefore, we addressed the hypothesis that exogenous androgen treatment induces vascular calcification. Immunohistochemical analysis revealed expression of androgen receptor (AR) in the calcified media of human femoral artery tissue and calcified human valves. Furthermore, in vitro studies revealed increased phosphate (Pi)-induced mouse vascular smooth muscle cell (VSMC) calcification following either testosterone or dihydrotestosterone (DHT) treatment for 9 days. Testosterone and DHT treatment increased tissue non-specific alkaline phosphatase (Alpl) mRNA expression. Testosterone-induced calcification was blunted in VSMC-specific AR-ablated (SM-ARKO) VSMCs compared to WT. Consistent with these data, SM-ARKO VSMCs showed a reduction in Osterix mRNA expression. However, intriguingly, a counter-intuitive increase in Alpl was observed. These novel data demonstrate that androgens play a role in inducing vascular calcification through the AR. Androgen signalling may represent a novel potential therapeutic target for clinical intervention. PMID:27095121

  19. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation.

    PubMed

    Zuniga, Mary C; White, Sharla L Powell; Zhou, Wei

    2014-10-01

    Atherosclerotic cardiovascular disease has been acknowledged as a chronic inflammatory condition. Monocytes and macrophages lead the inflammatory pathology of atherosclerosis whereas changes in atheromatous plaque thickness and matrix composition are attributed to vascular smooth muscle cells. Because these cell types are key players in atherosclerosis progression, it is crucial to utilize a reliable system to investigate their interaction. In vitro co-culture systems are useful platforms to study specific molecular mechanisms between cells. This review aims to summarize the various co-culture models that have been developed to investigate vascular smooth muscle cell and monocyte/macrophage interactions, focusing on the monocyte/macrophage effects on vascular smooth muscle cell function.

  20. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  1. Voltage-dependent effects of barnidipine in rat vascular smooth muscle.

    PubMed

    Wegener, J W; Korstanje, C; Nawrath, H

    2003-08-01

    The effects of the dihydropyridine nifedipine and its more lipophilic congener, barnidipine, were investigated in smooth muscle preparations from the rat in resting and depolarizing conditions. Both drugs relaxed precontracted aortic rings more potently in depolarizing conditions, barnidipine being more potent than nifedipine. Currents through Ca2+ channels in rat vascular smooth muscle cells (A7r5) and in isolated rat cardiomyocytes were reduced more potently by both drugs at a holding potential of -40 mV than at -80 mV. However, barnidipine and nifedipine were more effective in reducing the current in A7r5 cells than in cardiomyocytes. The IC(50) obtained in aortic rings and in A7r5 cells were similar for barnidipine but an order of magnitude different for nifedipine. The results show that, in depolarizing conditions, barnidipine was more effective than nifedipine. It is suggested that the higher potency of barnidipine acting in vascular smooth muscle is related to both a higher affinity to the inactivated state of vascular Ca2+ channels and to a more lipophilic property as compared with nifedipine.

  2. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    PubMed Central

    da Silva, Tharciano Luiz Teixeira Braga; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Background Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Methods Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Results Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats. PMID:26107814

  3. Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration

    PubMed Central

    Amador, Cristian A.; Bertocchio, Jean-Philippe; Andre-Gregoire, Gwennan; Placier, Sandrine; Van Huyen, Jean-Paul Duong; El Moghrabi, Soumaya; Berger, Stefan; Warnock, David G.; Chatziantoniou, Christos; Jaffe, Iris Z.; Rieu, Philippe; Jaisser, Frederic

    2016-01-01

    Calcineurin inhibitors such as cyclosporine A (CsA) are still commonly used after renal transplantation, despite CsA–induced nephrotoxicity (CIN), which is partly related to vasoactive mechanisms. The mineralocorticoid receptor (MR) is now recognized as a key player in the control of vascular tone, and both endothelial cell- and vascular smooth muscle cell (SMC)-MR modulate the vasoactive responses to vasodilators and vasoconstrictors. Here we tested whether vascular MR is involved in renal hemodynamic changes induced by CsA. The relative contribution of vascular MR in acute CsA treatment was evaluated using mouse models with targeted deletion of MR in endothelial cell or SMC. Results indicate that MR expressed in SMC, but not in endothelium, contributes to the increase of plasma urea and creatinine, the appearance of isometric tubular vacuolization, and overexpression of a kidney injury biomarker (neutrophil gelatinase–associated lipocalin) after CsA treatment. Inactivation of MR in SMC blunted CsA–induced phosphorylation of contractile proteins. Finally, the in vivo increase of renal vascular resistance induced by CsA was blunted when MR was deleted from SMC cells, and this was associated with decreased L-type Ca2+ channel activity. Thus, our study provides new insights into the role of vascular MR in renal hemodynamics during acute CIN, and provides rationale for clinical studies of MR antagonism to manage the side effects of calcineurin inhibitors. PMID:26422501

  4. Procontractile G protein–mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling

    PubMed Central

    Althoff, Till F.; Juárez, Julián Albarrán; Troidl, Kerstin; Tang, Cong; Wang, Shengpeng; Wirth, Angela; Takefuji, Mikito; Wettschureck, Nina

    2012-01-01

    Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G12/G13 and Gq/G11 antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα12/Gα13 or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gαq/Gα11 deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein–mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies. PMID:23129751

  5. The effect of deuterium oxide (D sub 2 O) on in vitro vascular smooth muscle contraction

    SciTech Connect

    McWilliam, T.M.; Liepins, A.; Rankin, A.J. )

    1990-02-26

    Deuterium oxide (D{sub 2}O), a stable nonradioactive isotope of water, has been demonstrated to reduce L-type calcium channel conductance in isolated myocytes. Since the concentration of intracellular free calcium has been implicated in the mechanism of vascular smooth muscle contraction, the authors investigated whether it inhibits contraction of vascular smooth muscle. Phenylephrine concentration-contraction curves were carried out in the rat aortic ring preparation to determine whether D{sub 2}O inhibits contraction of rat aorta induced through activation of receptor-operated calcium channels. D{sub 2}O depressed these response curves in a concentration dependent manner with 50% inhibition of maximum contraction observed with 60% D{sub 2}O; this effect proved to be reversible and non-toxic. D{sub 2}O also depressed potassium chloride curves, demonstrating an effect on voltage-operated calcium channels. Since vascular endothelium releases endothelium-derived relaxing factor (EDRF) when stimulated by a range of pharmacological agents, it was examined whether the endothelium has a role in these actions of D{sub 2}O on vascular contraction. Mechanical disruption of the endothelium had no effect.

  6. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells.

    PubMed

    Hu, Xiang-Qun; Zhang, Lubo

    2012-09-01

    Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.

  7. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Stat1.

    PubMed

    Kunigal, Sateesh; Kusch, Angelika; Tkachuk, Natalia; Tkachuk, Sergey; Jerke, Uwe; Haller, Hermann; Dumler, Inna

    2003-12-15

    After vascular injury, a remodeling process occurs that features leukocyte migration and infiltration. Loss of endothelial integrity allows the leukocytes to interact with vascular smooth muscle cells (VSMCs) and to elicit "marching orders"; however, the signaling processes are poorly understood. We found that human monocytes inhibit VSMC proliferation and induce a migratory potential. The monocytes signal the VSMCs through the urokinase-type plasminogen activator (uPA). The VSMC uPA receptor (uPAR) receives the signal and activates the transcription factor Stat1 that, in turn, mediates the antiproliferative effects. These results provide the first evidence that monocytes signal VSMCs by mechanisms involving the fibrinolytic system, and they imply an important link between the uPA/uPAR-related signaling machinery and human vascular disease.

  8. Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation

    PubMed Central

    Jones, Helen N.; Olbrych, Stephanie K.; Smith, Kathleen L.; Cnota, James F.; Habli, Mounira; Gonzales-Ramos, Osniel; Owens, Kathryn J; Hinton, Andrea C.; Polzin, William J.; Muglia, Louis J.; Hinton, Robert B.

    2015-01-01

    Introduction Hypoplastic left heart syndrome (HLHS) is a severe cardiovascular malformation (CVM) associated with fetal growth abnormalities. Genetic and environmental factors have been identified that contribute to pathogenesis, but the role of the placenta is unknown. The purpose of this study was to systematically examine the placenta in HLHS with and without growth abnormalities. Methods HLHS term singleton births were identified from a larger cohort when placenta tissue was available. Clinical data were collected from maternal and neonatal medical records, including anthropometrics and placental pathology reports. Placental tissues from cases and controls were analyzed to assess parenchymal morphology, vascular architecture and leptin signaling. Results HLHS cases (n = 16) and gestational age-matched controls (n = 18) were analyzed. Among cases, the average birth weight was 2993 grams, including 31% that were small for gestational age. When compared with controls, gross pathology of HLHS cases demonstrated significantly reduced placental weight and increased fibrin deposition, while micropathology showed increased syncytial nuclear aggregates, decreased terminal villi, reduced vasculature and increased leptin expression in syncytiotrophoblast and endothelial cells. Discussion Placentas from pregnancies complicated by fetal HLHS are characterized by abnormal parenchymal morphology, suggesting immature structure may be due to vascular abnormalities. Increased leptin expression may indicate an attempt to compensate for these vascular abnormalities. Further investigation into the regulation of angiogenesis in the fetus and placenta may elucidate the causes of HLHS and associated growth abnormalities in some cases. PMID:26278057

  9. Effect of sinomenine on vascular smooth muscle cell dedifferentiation and neointima formation after vascular injury in mice.

    PubMed

    Zhu, Lihua; Hao, Yarong; Guan, Hongjing; Cui, Changping; Tian, Song; Yang, Da; Wang, Xinan; Zhang, Shuming; Wang, Lang; Jiang, Hong

    2013-01-01

    Sinomenine, a pure alkaloid extract from Sinomenium acutum, has anti-inflammatory and immunoregulatory functions. This study investigated the efficiency and the signalling pathways involved in the effect of sinomenine on vascular smooth muscle cell (VSMC) dedifferentiation in response to platelet-derived growth factor (PDGF)-BB stimulation and vascular injury. VSMCs were isolated from rat aorta and preincubated with sinomenine before being stimulated with PDGF-BB. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Flow cytometric analysis was performed for testing the cell cycle progression. The cell migration of VSMCs were analysed using a Transwell system. The expression of VSMC specific genes and signalling proteins were tested by Western blot. For the animal study, C57/BL6 mice were fed either normal rodent chow diets or sinomenine chow diets that supplemented with 0.09 % sinomenine (w/w) in the normal chows for 14 days before carotid artery wire injury. PDGF-BB activated the dedifferentiation of VSMCs characterised by decreased expression of SMA, Smoothelin and SM22α. However, sinomenine treatment preserved the dedifferentiation in response to PDGF-BB. The activations of mitogen-activated protein kinase extracellular signal-regulated kinases, Akt, GSK3β and STAT3 induced by PDGF-BB were also inhibited in sinomenine-treated VSMCs. In vivo evidence with wire-injured mice exhibited a reduction in neointimal area and an increase in smooth muscle-specific gene expression in the sinomenine-treated group. In this study, we found that sinomenine-suppressed VSMC phenotype switching induced by PDGF-BB in vitro and neointimal formation in vivo. Therefore, sinomenine is a potential candidate to be used in the treatment of vascular proliferative disease.

  10. Myricitrin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation and migration through suppressing PDGFRβ/Akt/Erk signaling.

    PubMed

    Li, Jie; Zhang, Mei; Ma, Juanjuan

    2015-01-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) and the stimulation of platelet-derived growth factor (PDGF)-BB play major pathological processes involved in the development of cardiovascular diseases. As a result, the use of anti-proliferative and anti-migratory agents for VSMCs offers promise for the treatment of vascular disorders. Myricitrin is a naturally occurring phenolic compound which possesses antioxidant and anti-inflammatory activity. In this study, we investigate the inhibitory effect of myricitrin on PDGF-BB-induced VSMCs proliferation and migration. In accordance with these findings, myricitrin induced the arrest of cell cycle progression at G0/G1 phase. Myricitrin also decreased the expressions of G0/G1 specific regulatory proteins including cyclin D1, cyclin-dependent kinases (CDK) 4, cyclin E and CDK2, as well as increased the expression of p21 in PDGF-BB-induced VSMCs. Moreover, myricitrin inhibited PDGF-BB-induced phosphorylation of PDGFRβ, Akt and Erk1/2. These results suggest that myricitrin plays an important role in prevention of VSMCs proliferation and migration through the G0/G1 cell cycle arrest by PDGF signaling pathway. Thus, myricitrin is effective in reducing atherosclerotic process by blocking proliferation of VSMCs.

  11. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification†

    PubMed Central

    Sheen, Campbell R.; Kuss, Pia; Narisawa, Sonoko; Yadav, Manisha C.; Nigro, Jessica; Wang, Wei; Chhea, T. Nicole; Sergienko, Eduard A.; Kapoor, Kapil; Jackson, Michael R.; Hoylaerts, Marc. F.; Pinkerton, Anthony B.; O'Neill, W. Charles; Millán, Jose Luis

    2015-01-01

    Medial vascular calcification (MVC) is a pathological phenomenon common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases, that causes vascular stiffening and can lead to heart failure. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre+/-; HprtALPL/Y, or TNAP-OE) show extensive vascular calcification, high blood pressure, cardiac hypertrophy and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre+/-; HprtALPL/-) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target. This article is protected by copyright. All rights reserved PMID:25428889

  12. Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs

    PubMed Central

    Ames, Juliana; Chokshi, Mithil; Aiad, Norman; Sanyal, Sonali; Kawabata, Kimihito C.; Levental, Ilya; Sundararaghavan, Harini G.; Burdick, Jason A.; Janmey, Paul; Miyazono, Kohei; Wells, Rebecca G.; Jones, Peter L.

    2015-01-01

    Abstract Although there are many studies focusing on the molecular pathways underlying lung vascular morphogenesis, the extracellular matrix (ECM)–dependent regulation of mesenchymal cell differentiation in vascular smooth muscle development needs better understanding. In this study, we demonstrate that the paired related homeobox gene transcription factor Prx1 maintains the elastic ECM properties, which are essential for vascular smooth muscle precursor cell differentiation. We have found that Prx1null mouse lungs exhibit defective vascular smooth muscle development, downregulated elastic ECM expression, and compromised transforming growth factor (TGF)–β localization and signaling. Further characterization of ECM properties using decellularized lung ECM scaffolds derived from Prx1 mice demonstrated that Prx1 is required to maintain lung ECM stiffness. The results of cell culture using stiffness-controlled 2-D and 3-D synthetic substrates confirmed that Prx1-dependent ECM stiffness is essential for promotion of smooth muscle precursor differentiation for effective TGF-β stimulation. Supporting these results, both decellularized Prx1null lung ECM and Prx1WT (wild type) ECM scaffolds with blocked TGF-β failed to support mesenchymal cell to 3-D smooth muscle cell differentiation. These results suggest a novel ECM-dependent regulatory pathway of lung vascular development wherein Prx1 regulates lung vascular smooth muscle precursor development by coordinating the ECM biophysical and biochemical properties. PMID:26064466

  13. Induction of cyclin A gene expression by homocysteine in vascular smooth muscle cells.

    PubMed Central

    Tsai, J C; Wang, H; Perrella, M A; Yoshizumi, M; Sibinga, N E; Tan, L C; Haber, E; Chang, T H; Schlegel, R; Lee, M E

    1996-01-01

    Homocysteine is an important and independent risk factor for arteriosclerosis. We showed previously that homocysteine stimulates vascular smooth muscle cell proliferation, a hallmark of arteriosclerosis. We show here that homocysteine and serum increased DNA synthesis synergistically in both human and rat aortic smooth muscle cells (RASMCs). Treatment of quiescent RASMCs with 1 mM homocysteine or 2% calf serum for 36 h increased cyclin A mRNA levels by 8- and 14-fold, respectively, whereas homocysteine plus serum increased cyclin A mRNA levels by 40-fold, indicating a synergistic induction of cyclin A mRNA. Homocysteine did not increase the half-life of cyclin A mRNA (2.9 h), but it did increase the transcriptional rate of the cyclin A gene in nuclear run-on experiments. The positive effect of homocysteine on cyclin A gene transcription was confirmed by our finding that homocysteine increased cyclin A promoter activity and ATF-binding protein levels in RASMCs. Finally, 1 mM homocysteine increased cyclin A protein levels and cyclin A-associated kinase activity by threefold. This homocysteine-induced expression lesions by promoting proliferation of vascular smooth muscle cells. PMID:8550827

  14. Heparin fragments inhibit human vascular smooth muscle cell proliferation in vitro

    SciTech Connect

    Selden, S.C.; Johnson, W.V.; Maciag, T.

    1986-03-01

    The authors have examined the effect of heparin on human abdominal aortic smooth muscle cell growth. Cell proliferation was inhibited by more than 90% at a concentration of 20 ..mu..g/ml in a 12 day growth assay using heparin from Sigma, Upjohn or Calbiochem. Additionally, 200 ..mu..g/ml Upjohn heparin inhibits /sup 3/H-thymidine incorporation by 50% in short term assays using serum or purified platelet-derived growth factor (25-100ng/ml) to initiate the cell cycle. Homogeneous size classes of heparin fragments were prepared by nitrous acid cleavage and BioGel P-10 filtration chromatography. Deca-, octa-, hexa-, tetra-, and di-saccharides inhibited proliferation by 90% at concentrations of 280, 320, 260, 180 and 100 ..mu..g/ml, respectively, in a 12 day growth assay. These data confirm the work of Castellot et.al. and extend the range of inhibitory fragments down to the tetra- and di-saccharide size. These data suggest, therefore, that di-saccharide subunit of heparin is sufficient to inhibit vascular smooth muscle cell proliferation. The authors are now examining the role of the anhydromannose moiety on the reducing end of the nitrous acid generated fragments as a possible mediator of heparin-induced inhibition of vascular smooth muscle cell proliferation.

  15. Phospholipase D1 is involved in α1-adrenergic contraction of murine vascular smooth muscle.

    PubMed

    Wegener, Jörg W; Loga, Florian; Stegner, David; Nieswandt, Bernhard; Hofmann, Franz

    2014-03-01

    α1-Adrenergic stimulation increases blood vessel tone in mammals. This process involves a number of intracellular signaling pathways that include signaling via phospholipase C, diacylglycerol (DAG), and protein kinase C. So far, it is not certain whether signaling via phospholipase D (PLD) and PLD-derived DAG is involved in this process. We asked whether PLD participates in the α1-adrenergic-mediated signaling in vascular smooth muscle. α1-Adrenergic-induced contraction was assessed by myography of isolated aortic rings and by pressure recordings using the hindlimb perfusion model in mice. The effects of the PLD inhibitor 1-butanol (IC50 0.15 vol%) and the inactive congener 2-butanol were comparatively studied. Inhibition of PLD by 1-butanol reduced specifically the α1-adrenergic-induced contraction and the α1-adrenergic-induced pressure increase by 10 and 40% of the maximum, respectively. 1-Butanol did not influence the aortic contractions induced by high extracellular potassium, by the thromboxane analog U46619, or by a phorbol ester. The effects of 1-butanol were absent in mice that lack PLD1 (Pld1(-/-) mice) or that selectively lack the CaV1.2 channel in smooth muscle (sm-CaV1.2(-/-) mice) but still present in the heterozygous control mice. α1-Adrenergic contraction of vascular smooth muscle involves activation of PLD1, which controls a portion of the α1-adrenergic-induced CaV1.2 channel activity.

  16. Advanced Glycation End-Products Induce Apoptosis of Vascular Smooth Muscle Cells: A Mechanism for Vascular Calcification

    PubMed Central

    Koike, Sayo; Yano, Shozo; Tanaka, Sayuri; Sheikh, Abdullah M.; Nagai, Atsushi; Sugimoto, Toshitsugu

    2016-01-01

    Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD). To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs) stimulated calcium deposition in vascular smooth muscle cells (VSMCs) through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5) was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA). Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA) for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(P)H oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(P)H oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD. PMID:27649164

  17. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization.

  18. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-08-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.

  19. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    PubMed Central

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-01-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells. PMID:27507785

  20. Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel.

    PubMed

    Choi, Jong Seob; Piao, Yunxian; Seo, Tae Seok

    2014-01-01

    The circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel is reported to form an in vivo-like smooth muscle cell layer. To construct a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, a half-circular polydimethylsiloxane (PDMS) microchannel is first fabricated by soft lithography using a convex PDMS mold. Then, the orthogonally microwrinkle patterns are generated inside the half-circular microchannel by a strain responsive wrinkling method. During the UV treatment on a PDMS substrate with uniaxial 40% stretch and a subsequent strain releasing step, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel are generated, which can guide the circumferential alignment of HASMCs during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs reveal the in vivo-like cell phenotype. Finally, a fully circular microchannel is produced by bonding two half-circular microchannels, and the HASMCs are cultured circumferentially inside the channels with high alignment and viability for 5 days. These results demonstrated the creation of an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide a bioassay platforms for in-depth study of HASMC biology and vascular function.

  1. Targeting N-acetylglucosamine-bearing polymer-coated liposomes to vascular smooth muscle cells.

    PubMed

    Ise, Mamiko; Ise, Hirohiko; Shiba, Yuji; Kobayashi, Satoshi; Goto, Mitsuaki; Takahashi, Masafumi; Akaike, Toshihiro; Ikeda, Uichi

    2011-12-01

    The targeted delivery of anti-inflammatory agents has great therapeutic potential for treating restenosis following percutaneous coronary intervention. To develop a drug delivery system targeted to injured blood vessels, we examined whether N-acetylglucosamine (GlcNAc)-bearing polymer-coated liposomes (GlcNAc-Ls) are specifically taken up by vascular smooth muscle cells (VSMCs). Flow cytometric analysis revealed that GlcNAc-Ls were taken up by VSMCs in vitro. Furthermore, GlcNAc-Ls were intravenously administered to mice that had undergone wire-mediated vascular injury. GlcNAc-Ls markedly accumulated at the intramural site of the injured vessel walls but not at the contralateral (uninjured) vessel walls. These results demonstrated that GlcNAc-Ls can be specifically taken up by VSMCs both in vitro and in vivo. We propose a novel strategy of using GlcNAc-Ls that has potential for application in drug delivery targeted to injured blood vessels.

  2. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles.

    PubMed

    Kapustin, Alexander N; Shanahan, Catherine M

    2012-07-01

    Vascular calcification is a pathological process common in patients with disorders of mineral metabolism and mediated by vascular smooth muscle cells (VSMCs). A key event in the initiation of VSMC calcification is the release of mineralization-competent matrix vesicles (MVs), small membrane-bound bodies with structural features enabling them to efficiently nucleate hydroxyapatite. These bodies are similar to MVs secreted by chondrocytes during bone development and their properties include the absence of calcification inhibitors, formation of nucleation sites, and accumulation of matrix metalloproteinases such as MMP-2. The mechanisms of MV biogenesis and loading remain poorly understood; however, emerging data have demonstrated that alterations in cytosolic calcium homeostasis can trigger multiple changes in MV composition that promote their mineralization.

  3. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells

    PubMed Central

    Wang, Jingshuai; Li, Jiyang; Liu, Jie; Xu, Mengjiao; Tong, Xiaowen; Wang, Jianjun

    2016-01-01

    Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases. PMID:27634104

  4. Identification of ostruthin from Peucedanum ostruthium rhizomes as an inhibitor of vascular smooth muscle cell proliferation.

    PubMed

    Joa, Helge; Vogl, Sylvia; Atanasov, Atanas G; Zehl, Martin; Nakel, Thomas; Fakhrudin, Nanang; Heiss, Elke H; Picker, Paolo; Urban, Ernst; Wawrosch, Christoph; Saukel, Johannes; Reznicek, Gottfried; Kopp, Brigitte; Dirsch, Verena M

    2011-06-24

    Inhibition of vascular smooth muscle cell (VSMC) proliferation is of substantial interest in combating cardiovascular disease. A dichloromethane extract from the rhizomes of Peucedanum ostruthium, a traditionally used Austrian medicinal plant with anti-inflammatory properties, was examined for a putative antiproliferative activity in rat aortic VSMC. This extract inhibited serum (10%)-induced VSMC proliferation concentration dependently. Further identification and biological testing of its major constituents revealed that the coumarin ostruthin (7) is the major antiproliferative substance. In summary, a new bioactivity of P. ostruthium rhizomes is described, and 7 has been identified as the responsible compound.

  5. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy

    SciTech Connect

    Lynch, C.M.; Miller, A.D. ); Clowes, M.M.; Osborne, W.R.A.; Clowes, A.W. )

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli {beta}-galactosidase gene or a human adenosine deaminase gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  6. Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis

    PubMed Central

    Hunter, Larry W; Charlesworth, Jon E; Yu, Sam; Lieske, John C; Miller, Virginia M

    2014-01-01

    Background Nano-sized complexes of calcium phosphate mineral and proteins (calcifying nanoparticles [CNPs]) serve as mineral chaperones. Thus, CNPs may be both a result and cause of soft tissue calcification processes. This study determined if CNPs could augment calcification of arterial vascular smooth muscle cells in vitro. Methods CNPs 210 nm in diameter were propagated in vitro from human serum. Porcine aortic smooth muscle cells were cultured for up to 28 days in medium in the absence (control) or presence of 2 mM phosphate ([P] positive calcification control) or after a single 3-day exposure to CNPs. Transmission electron-microscopy was used to characterize CNPs and to examine their cellular uptake. Calcium deposits were visualized by light microscopy and von Kossa staining and were quantified by colorimetry. Cell viability was quantified by confocal microscopy of live-/dead-stained cells and apoptosis was examined concurrently by fluorescent labeling of exposed phosphatidylserine. Results CNPs, as well as smaller calcium crystals, were observed by transmission electron-microscopy on day 3 in CNP-treated but not P-treated cells. By day 28, calcium deposits were visible in similar amounts within multicellular nodules of both CNP- and P-treated cells. Apoptosis increased with cell density under all treatments. CNP treatment augmented the density of apoptotic bodies and cellular debris in association with mineralized multicellular nodules. Conclusion Exogenous CNPs are taken up by aortic smooth muscle cells in vitro and potentiate accumulation of smooth-muscle-derived apoptotic bodies at sites of mineralization. Thus, CNPs may accelerate vascular calcification. PMID:24920905

  7. Severe diffuse hypoplasia of the aorta associated with multiple vascular abnormalities.

    PubMed

    Grebeldinger, Slobodan P; Balj, Svetlana S; Adic, Oto

    2011-06-01

    Hypoplasia of the thoracic and abdominal aorta is an extremely rare vascular pathology. The most common clinical manifestation is severe uncontrolled hypertension in adolescents and young adults. Medical treatment alone can decrease blood pressure, but often very high doses of antihypertensive drugs are needed. When hypertension is refractory to the antihypertensive medications, surgical revascularization is considered as the treatment of choice. We report the case of a severe and diffuse hypoplasia of the aorta, beginning with the aortic isthmus, to the aortic bifurcation, associated with an aberrant celiac trunk and superior mesenteric artery, and with other multiple vascular abnormalities. Unlikely, the only manifestation of this extensive vascular malformation was medicamentously controllable hypertension. To our knowledge, this severe vascular anomaly, with such a minimal clinical manifestation, has not been previously described in the English literature.

  8. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    SciTech Connect

    Davies, P.F.

    1986-03-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with /sup 3/H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products.

  9. Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells

    PubMed Central

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L.; Shiozaki, Yuji; Okamura, Kayo; Chick, Wallace S.; Williams, Kristina; Zhao, Xiaoyun; Rahman, Shaikh Mizanoor; Tintut, Yin; Adams, Christopher M.

    2016-01-01

    Emerging evidence indicates that upregulation of the ER stress–induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell–specific (SMC-specific) Atf4 KO, and transgenic (TG) mouse models. Reduced expression of ATF4 in global ATF4-haplodeficient and SMC-specific Atf4 KO mice reduced medial and atherosclerotic calcification under normal kidney and CKD conditions. In contrast, increased expression of ATF4 in SMC-specific Atf4 TG mice caused severe medial and atherosclerotic calcification. We further demonstrated that ATF4 transcriptionally upregulates the expression of type III sodium-dependent phosphate cotransporters (PiT1 and PiT2) by interacting with C/EBPβ. These results demonstrate that the ER stress effector ATF4 plays a critical role in the pathogenesis of vascular calcification through increased phosphate uptake in vascular SMCs. PMID:27812542

  10. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    PubMed

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  11. Smoking and Female Sex: Independent Predictors of Human Vascular Smooth Muscle Cells Stiffening

    PubMed Central

    Dinardo, Carla Luana; Santos, Hadassa Campos; Vaquero, André Ramos; Martelini, André Ricardo; Dallan, Luis Alberto Oliveira; Alencar, Adriano Mesquita; Krieger, José Eduardo; Pereira, Alexandre Costa

    2015-01-01

    Aims Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study’s objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository. Methods Eighty patients subjected to coronary artery bypass surgery were enrolled. VSMCs were extracted from internal thoracic artery fragments and mechanically evaluated using Optical Magnetic Twisting Cytometry assay. The obtained mechanical variables were correlated with the clinical variables: age, gender, African ancestry, smoking and diabetes mellitus. Results The mechanical variables Gr, G’r and G”r had a normal distribution, demonstrating an inter-individual variability of VSMC viscoelasticity, which has never been reported before. Female sex and smoking were independently associated with VSMC stiffening: Gr (apparent cell stiffness) p = 0.022 and p = 0.018, R2 0.164; G’r (elastic modulus) p = 0.019 and p = 0.009, R2 0.184 and G”r (dissipative modulus) p = 0.011 and p = 0.66, R2 0.141. Conclusion Female sex and smoking are independent predictors of VSMC stiffening. This pro-rigidity effect represents an important element for understanding the vascular rigidity observed in post-menopausal females and smokers, as well as a potential therapeutic target to be explored in the future. There is a significant inter-individual variation of VSMC viscoelasticity, which is slightly modulated by clinical variables and probably relies on molecular factors. PMID:26661469

  12. Regulatory mechanism of human vascular smooth muscle cell phenotypic transformation induced by NELIN

    PubMed Central

    PEI, CHANGAN; QIN, SHIYONG; WANG, MINGHAI; ZHANG, SHUGUANG

    2015-01-01

    Vascular disorders, including hypertension, atherosclerosis and restenosis, arise from dysregulation of vascular smooth muscle cell (VSMC) differentiation, which can be controlled by regulatory factors. The present study investigated the regulatory mechanism of the phenotypic transformation of human VSMCs by NELIN in order to evaluate its potential as a preventive and therapeutic of vascular disorders. An in vitro model of NELIN-overexpressing VSMCs was prepared by transfection with a lentiviral (LV) vector (NELIN-VSMCs) and NELIN was slienced using an a lentiviral vector with small interfering (si)RNA in another group (LV-NELIN-siRNA-VSMCs). The effects of NELIN overexpression or knockdown on the phenotypic transformation of human VSMCs were observed, and its regulatory mechanism was studied. Compared with the control group, cells in the NELIN-VSMCs group presented a contractile phenotype with a significant increase of NELIN mRNA, NELIN protein, smooth muscle (SM)α-actin and total Ras homolog gene family member A (RhoA) protein expression. The intra-nuclear translocation of SMα-actin-serum response factor (SMα-actin-SRF) occurred in these cells simultaneously. Following exposure to Rho kinsase inhibitor Y-27632, SRF and SMα-actin expression decreased. However, cells in the LV-NELIN-siRNA-VSMCs group presented a synthetic phenotype, and the expression of NELIN mRNA, NELIN protein, SMα-actin protein and total RhoA protein was decreased. The occurrence of SRF extra-nuclear translocation was observed. In conclusion, the present study suggested that NELIN was able to activate regulatory factors of SMα-actin, RhoA and SRF successively in human VSMCs cultured in vitro. Furthermore, NELIN-induced phenotypic transformation of human VSMCs was regulated via the RhoA/SRF signaling pathway. The results of the present study provide a foundation for the use of NELIN in preventive and therapeutic treatment of vascular remodeling diseases, including varicosity and

  13. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    PubMed

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

  14. IL-22 activates oxidant signaling in pulmonary vascular smooth muscle cells.

    PubMed

    Bansal, Geetanjali; Das, Dividutta; Hsieh, Cheng-Ying; Wang, Yi-Hsuan; Gilmore, Brent A; Wong, Chi-Ming; Suzuki, Yuichiro J

    2013-12-01

    Reactive oxygen species (ROS) mediate cell-signaling processes in response to various ligands and play important roles in the pathogenesis of cardiovascular diseases. The present study reports that interleukin-22 (IL-22) elicits signal transduction in vascular smooth muscle cells (SMCs) through a ROS-dependent mechanism. We find that pulmonary artery SMCs express IL-22 receptor alpha 1 and that IL-22 activates STAT3 through this receptor. IL-22-induced signaling is found to be mediated by NADPH oxidase, as indicated by the observations that the inhibition and siRNA knock-down of this enzyme inhibit IL-22 signaling. IL-22 triggers the oxidative modifications of proteins through protein carbonylation and protein glutathionylation. Mass spectrometry identified some proteins that are carbonylated in response to IL-22 stimulation, including α-enolase, heat shock cognate 71kDa protein, mitochondrial 60kDa heat shock protein, and cytoplasmic 2 actin and determined that α-tubulin is glutathionylated. Protein glutathionylation and STAT3 phosphorylation are enhanced by the siRNA knock-down of glutaredoxin, while IL-22-mediated STAT3 phosphorylation is suppressed by knocking down thioredoxin interacting protein, an inhibitor of thioredoxin. IL-22 is also found to promote the growth of SMCs via NADPH oxidase. In rats, pulmonary hypertension is found to be associated with increased smooth muscle IL-22 expression. These results show that IL-22 promotes the growth of pulmonary vascular SMCs via a signaling mechanism that involves NADPH oxidase-dependent oxidation.

  15. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-01-29

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation, vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  16. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10μg/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  17. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  18. Peptides PHI and VIP: comparison between vascular and nonvascular smooth muscle effect in rabbit uterus

    SciTech Connect

    Bardrum, B.; Ottesen, B.; Fahrenkrug, J.

    1986-07-01

    The distribution and effects of the two neuropeptides, vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine amide (PHI), on vascular and nonvascular smooth muscle in the urogenital tract of nonpregnant rabbit female, were investigated. Immunoreactive VIP and PHI were present in all regions except the ovary with the highest concentration in the uterin cervix. By using in vitro tension recordings of myometrial specimens, it was demonstrated that both peptides displayed a dose-dependent inhibition of the mechanical activity. The dose-response curves of VIP and PHI were superimposable with and ID50 of 3 x 10 Y mol/l, and their combined effect was additive. In addition, the influence of the two peptides on myometrial blood flow (MBF) was investigated by the xenon-133 washout technique. Both peptides were found to increase MBF with the same potency and efficacy. Their combined effect was additive. In conclusion VIP and PHI are present in the rabbit urogenital tract, and the two peptides are equipotent inhibitors of mechanical nonvascular and vascular smooth muscle activity in the uterus.

  19. Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action.

    PubMed

    Schreier, Barbara; Hünerberg, Mirja; Rabe, Sindy; Mildenberger, Sigrid; Bethmann, Daniel; Heise, Christian; Sibilia, Maria; Offermanns, Stefan; Gekle, Michael

    2016-01-01

    Epi dermal growth factor (EGF) receptor (EGFR) is activated by its canonical ligands and transactivated by various vasoactive substances, e.g. angiotensin II (Ang II). Vascular EGFR has been proposed to be involved in vascular tissue homoeostasis and remodelling. Thus, most studies have focused on its role during long-term vascular changes whereas the relevance for acute regulation of vascular function in vivo and ex vivo is insufficiently understood. To investigate the postnatal role of VSMCs (vascular smooth muscle cells) EGFR in vivo and ex vivo, we generated a mouse model with cell-specific and inducible deletion of VSMC EGFR and studied the effect on basal blood pressure, acute pressure response to, among others, Ang II in vivo as well as ex vivo, cardiovascular tissue homoeostasis and vessel morphometry in male mice. In knockout (KO) animals, systolic, diastolic and mean blood pressures were reduced compared with wild-type (WT). Furthermore, Ang II-induced pressure load was lower in KO animals, as was Ang II-induced force development and extracellular-signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in aortic rings from KO animals. By contrast, we observed no difference in force development during application of serotonin, KCl, endothelin-1 or endothelin-1-induced pressure load in KO animals. In addition, nitric oxide (NO)-mediated vasodilation was not affected. Heart weight (HW) increase and up-regulation of aortic and cardiac expression of Ccl2 (chemoattractant protein-2) and serpinE1 (plasminogen activator inhibitor 1) during the transition from 4- to 10-months of age were prevented by VSMC EGFR KO. We conclude that VSMC EGFR is involved in basal blood pressure homoeostasis and acute pressure response to Ang II, and thereby contributes to maturation-related remodelling.

  20. Smooth Muscle Cell Mineralocorticoid Receptors Are Mandatory for Aldosterone–Salt to Induce Vascular Stiffness

    PubMed Central

    Galmiche, Guillaume; El Moghrabi, Soumaya; Ouvrard-Pascaud, Antoine; Berger, Stefan; Challande, Pascal; Jaffe, Iris Z.; Labat, Carlos; Lacolley, Patrick; Jaisser, Frédéric

    2015-01-01

    Arterial stiffness is recognized as a risk factor for many cardiovascular diseases. Aldosterone via its binding to and activation of the mineralocorticoid receptors (MRs) is a main regulator of blood pressure by controlling renal sodium reabsorption. Although both clinical and experimental data indicate that MR activation by aldosterone is involved in arterial stiffening, the molecular mechanism is not known. In addition to the kidney, MR is expressed in both endothelial and vascular smooth muscle cells (VSMCs), but the specific contribution of the VSMC MR to aldosterone-induced vascular stiffness remains to be explored. To address this question, we generated a mouse model with conditional inactivation of the MR in VSMC (MRSMKO). MRSMKO mice show no alteration in renal sodium handling or vascular structure, but they have decreased blood pressure when compared with control littermate mice. In vivo at baseline, large vessels of mutant mice presented with normal elastic properties, whereas carotids displayed a smaller diameter when compared with those of the control group. As expected after aldosterone/salt challenge, the arterial stiffness increased in control mice; however, it remained unchanged in MRSMKO mice, without significant modification in vascular collagen/elastin ratio. Instead, we found that the fibronectin/α5-subunit integrin ratio is profoundly altered in MRSMKO mice because the induction of α5 expression by aldosterone/salt challenge is prevented in mice lacking VSMC MR. Altogether, our data reveal in the aldosterone/salt hypertension model that MR activation specifically in VSMC leads to the arterial stiffening by modulation of cell-matrix attachment proteins independent of major vascular structural changes. PMID:24296280

  1. TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension.

    PubMed

    Huang, Fang; Ni, Min; Zhang, Jing-Ming; Li, Dong-Jie; Shen, Fu-Ming

    2017-04-01

    Angiotensin II (Ang II)-induced injury of vascular smooth muscle cells (VSMCs) serves an important role in hypertension and other cardiovascular disorders. Transient receptor potential melastatin 8 (TRPM8) is a thermally‑regulated Ca2+‑permeable channel that is activated by reduced body temperature. Although several recent studies have revealed the regulatory effect of TRPM8 in vascular tone and hypertension, the precise role of TRPM8 in dysfunction of vascular smooth muscle cells (VSMCs) induced by Ang II remains elusive. In the present study, the possible function of TRPM8 in Ang II‑induced VSMCs malfunction in vivo and in vitro was investigated. In the aortae from rats that had undergone a two‑kidney one‑clip operation, which is a widely‑used renovascular hypertension model, the mRNA and protein levels of TRPM8 were reduced. In addition, exogenous Ang II treatment decreased TRPM8 mRNA and protein expression levels in primary cultures of rat VSMCs. TRPM8 activation by menthol, a pharmacological agonist, in VSMCs, significantly attenuated the Ang II‑induced increase in reactive oxygen species and H2O2 production. In addition, TRPM8 activation reduced the Ang II‑induced upregulation of NADPH oxidase (NOX) 1 and NOX4 in VSMCs. Furthermore, TRPM8 activation relieved the Ang II‑induced activation of ras homolog gene family, member A‑rho associated protein kinase 2 and janus kinase 2 signaling pathways in VSMCs. In conclusion, the results presented in the current study indicated that TRPM8 downregulation by Ang II in VSMCs may be involved in hypertension.

  2. Vascular smooth muscle contraction evoked by cell volume modulation: role of the cytoskeleton network.

    PubMed

    Koltsova, Svetlana V; Gusakova, Svetlana V; Anfinogenova, Yana J; Baskakov, Mikhail B; Orlov, Sergei N

    2008-01-01

    Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.

  3. CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia.

    PubMed

    Lee, Seon-Jin; Zhang, Meng; Hu, Kebin; Lin, Ling; Zhang, Duo; Jin, Yang

    2015-12-01

    Pulmonary vasoconstriction and increased vascular resistance are common features in pulmonary hypertension (PH). One of the contributing factors in the development of pulmonary vasoconstriction is increased pulmonary artery smooth muscle cell (PASMC) contraction. Here we report that CCN1, an extracellular matrix molecule, suppressed PASMC contraction in response to hypoxia. CCN1 (Cyr61), discovered in past decade, belongs to the Cyr61-CTGF-Nov (CCN) family. It carries a variety of cellular functions, including angiogenesis and cell adhesion, death, and proliferation. Hypoxia robustly upregulated the expression of CCN1 in the pulmonary vessels and lung parenchyma. Given that CCN1 is a secreted protein and functions in a paracine manner, we examined the potential effects of CCN1 on the adjacent smooth muscle cells. Interestingly, bioactive recombinant CCN1 significantly suppressed hypoxia-induced contraction in human PASMCs in vitro. Consistently, in the in vivo functional studies, administration of bioactive CCN1 protein significantly decreased right ventricular pressure in three different PH animal models. Mechanistically, protein kinase A-pathway inhibitors abolished the effects of CCN1 in suppressing PASMC contraction. Furthermore, CCN1-inhibited smooth muscle contraction was independent of the known vasodilators, such as nitric oxide. Taken together, our studies indicated a novel cellular function of CCN1, potentially regulating the pathogenesis of PH.

  4. Benidipine, a calcium channel blocker, regulates proliferation and phenotype of vascular smooth muscle cells.

    PubMed

    Arakawa, Emi; Hasegawa, Kazuhide

    2006-02-01

    Hyperproliferation of phenotypically modified vascular smooth muscle cells (VSMCs) is one of the major factors in the development of atherosclerosis and restenosis. Previously it was demonstrated that benidipine, a dihydropyridine-calcium channel antagonist, reduced neointimal formation in a rat balloon-injury model. In the present study, we examined the effect of benidipine on the phenotypic modulation and proliferation of VSMCs, using primary cultures of rat VSMCs. In the absence of drug treatment, protein levels of the smooth muscle specific markers, such as smooth muscle myosin heavy chain-1 (SM1), calponin 1, and alpha-actin, decreased during culture. However, treatment of VSMCs with benidipine (3 - 10 micromol/L) for 1 week reversed the effect in a concentration-related manner so that high levels of marker proteins were maintained. The expression of calponin mRNAs was reduced markedly during 1-week culture, and treatment with benidipine (3 micromol/L) significantly inhibited the reduction. Treatment with benidipine for 2 days increased the level of p21 protein and partially reduced p70 S6 kinase 1 (p70S6K1) activity. These data suggest that benidipine may arrest the growth of VSMCs, thereby preventing cell dedifferentiation. These additional properties of benidipine suggest that the drug should provide useful therapy for atherosclerosis and restenosis.

  5. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition.

    PubMed

    Zheng, Xi-Long; Gui, Yu; Du, Guangwei; Frohman, Michael A; Peng, Dao-Quan

    2004-02-20

    Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization.

  6. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.

    PubMed

    Park, In Su; Kim, Sang-Heon; Kim, Young Ha; Kim, Ik Hwan; Kim, Soo Hyun

    2009-01-01

    Biodegradable tubular scaffolds have been developed for vascular graft application. This study was focused to improve the adhesion and proliferation of vascular smooth muscle cells (SMCs) in a tubular scaffold. Tubular scaffolds (ID 4 mm, OD 6 mm) were fabricated from a biodegradable elastic polymer, poly(L-lactide-co-epsilon-caprolactone) (PLCL) (50:50, M(n) 1.58 x 10(5)), by an extrusion/particulate leaching method. SMCs suspended in a collagen solution were infiltrated in tubular PLCL scaffolds under vacuum and incubated for 1 h at 37 degrees C to form a collagenous gel. Results from SEM image analysis showed that collagen was infiltrated into the inside of the scaffolds. Cell adhesion and proliferation rate increased in collagen/SMC-incorporated tubular PLCL scaffolds as compared with the scaffolds in which only SMCs were seeded. From SEM image and histological analysis, we further found that SMCs grew on the inside as well as on the surface of collagen/SMCs-incorporated scaffolds and the cells continued to grow as a monolayer on collagen fibers. In particular, cell proliferation and elastin contents were the highest in a PLCL scaffold with 50-100 microm pore size than any other scaffolds used in this experiment. A collagen/SMC-incorporated PLCL scaffold may support SMC growth and functions and can be used as a scaffold for tissue engineering to facilitate small-diameter vascular-tissue formation.

  7. Curcumin attenuates osteogenic differentiation and calcification of rat vascular smooth muscle cells.

    PubMed

    Hou, Menglin; Song, Yan; Li, Zhenlin; Luo, Chufan; Ou, Jing-Song; Yu, Huimin; Yan, Jianyun; Lu, Lihe

    2016-09-01

    Vascular calcification has been considered as a biological process resembling bone formation involving osteogenic differentiation. It is a major risk factor for cardiovascular morbidity and mortality. Previous studies have shown the protective effects of curcumin on cardiovascular diseases. However, whether curcumin has effects on osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) has not been reported. In the present study, we used an in vitro model of VSMC calcification to investigate the role of curcumin in the progression of rat VSMC calcification. Curcumin treatment significantly reduced calcification of VSMCs in a dose-dependent manner, detected by alizarin red staining and calcium content assay. Similarly, ALP activity and expression of bone-related molecules including Runx2, BMP2, and Osterix were also decreased in VSMCs treated with curcumin. In addition, flow cytometry analysis and caspase-3 activity assay revealed that curcumin treatment significantly suppressed apoptosis of VSMCs, which plays an important role during vascular calcification. Furthermore, we found that pro-apoptotic molecules including p-JNK and Bax were up-regulated in VSMCs treated with calcifying medium, but they were reduced in VSMCs after curcumin treatment. However, curcumin treatment has no effect on expression of NF-κB p65. Taken together, these findings suggest that curcumin attenuates apoptosis and calcification of VSMCs, presumably via inhibition of JNK/Bax signaling pathway.

  8. Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype

    PubMed Central

    Coll-Bonfill, Núria; Peinado, Victor I.; Pisano, María V.; Párrizas, Marcelina; Blanco, Isabel; Evers, Maurits; Engelmann, Julia C.; García-Lucio, Jessica; Tura-Ceide, Olga; Meister, Gunter

    2016-01-01

    Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. Conclusions Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases. PMID:27441378

  9. Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness with Aging

    PubMed Central

    Qiu, Hongyu; Zhu, Yi; Sun, Zhe; Trzeciakowski, Jerome P.; Gansner, Meredith; Depre, Christophe; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Hunter, William C.; Genin, Guy M.; Elson, Elliot L.; Vatner, Dorothy E.; Meininger, Gerald A.; Vatner, Stephen F.

    2010-01-01

    Rationale Increased aortic stiffness, an important feature of many vascular diseases, e.g., aging, hypertension, atherosclerosis and aortic aneurysms, is assumed due to changes in extracellular matrix (ECM). Objective We tested the hypothesis that the mechanisms also involve intrinsic stiffening of vascular smooth muscle cells (VSMCs). Methods and Results Stiffness was measured in vitro both by atomic force microscopy (AFM) and in a reconstituted tissue model, using VSMCs from aorta of young versus old male monkeys (Macaca fascicularis, n=7/group), where aortic stiffness increases by 200 % in vivo. The apparent elastic modulus was increased (P<0.05) in old VSMCs (41.7±0.5 kPa) versus young (12.8±0.3 kPa), but not after disassembly of the actin cytoskeleton with cytochalasin D. Stiffness of the VSMCs in the reconstituted tissue model was also higher (P<0.05) in old (23.3±3.0 kPa) than in young (13.7±2.4 kPa). Conclusions These data support the novel concept, not appreciated previously, that increased vascular stiffness with aging is due not only to changes in ECM, but also to intrinsic changes in VSMCs. PMID:20634486

  10. Kaurane and pimarane-type diterpenes from the Viguiera species inhibit vascular smooth muscle contractility.

    PubMed

    Ambrosio, Sergio R; Tirapelli, Carlos R; da Costa, Fernando B; de Oliveira, Ana M

    2006-08-01

    The research, development and use of natural products as therapeutic agents, especially those derived from plants, have been increasing in recent years. Despite the fact that plants provide a rich source of novel biologically active compounds, only a small percentage have been phytochemically investigated and studied for their medical potential. Viguiera is a genus that belongs to the family Asteraceae and to the sunflower tribe Heliantheae, which is widespread mostly in Mexico and in other areas of the Andes and upland areas of Brazil. A review on the secondary metabolites pointed out that sesquiterpene lactones and diterpenes, of the kaurane and pimarane-type, are the main compounds produced by these plants. Some reports have shown that kaurane- and pimarane-type diterpenes exert several biological activities such as anti-inflammatory action, antimicrobial and antispasmodic activities. Kaurenoic and pimaradienoic acids, which are the main secondary metabolites isolated by our research group from the roots of Viguiera robusta and V. arenaria, respectively, have been evaluated on vascular smooth muscle contractility. We showed that these diterpenoids are able to inhibit the vascular contractility mainly by blocking extracellular Ca(2+) influx. Additionally, in this review we discuss the structure-activity relationship of the diterpenes regarding their inhibitory activity on vascular contractility.

  11. Biphasic responses of human vascular smooth muscle cells to magnesium ion

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Magnesium-based alloys are promising in biodegradable cardiovascular stent applications. The degradation products of magnesium stents may have significant impacts on the surrounding vascular cells. However, knowledge on the interactions between magnesium ion and vascular cells at the molecular and cellular levels is still largely missing. Vascular smooth muscle cell (SMC) plays an important role in the pathogenesis of restenosis and wound healing after stent implantation. This study evaluated the short-term effects of extracellular magnesium ion (Mg2+) on the cellular behaviors of SMCs. Cellular responses to Mg2+ were biphasic and in a concentration-dependent manner. Low concentrations (10 mM) of Mg2+ increased cell viability, cell proliferation rate, cell adhesion, cell spreading, cell migration rate, and actin expression. In contrast, higher concentrations (40–60 mM) of Mg2+ had deleterious effects on cells. Gene expression analysis revealed that Mg2+ altered the expressions of genes mostly related to cell adhesion, cell injury, angiogenesis, inflammation, coagulation, and cell growth. Finding from this study provides some valuable information on SMC responses toward magnesium ions at the cellular and molecular levels, and guidance for future controlled release of magnesium from the stent material. PMID:26402437

  12. Biphasic responses of human vascular smooth muscle cells to magnesium ion.

    PubMed

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-02-01

    Magnesium-based alloys are promising in biodegradable cardiovascular stent applications. The degradation products of magnesium stents may have significant impacts on the surrounding vascular cells. However, knowledge on the interactions between magnesium ion and vascular cells at the molecular and cellular levels is still largely missing. Vascular smooth muscle cell (SMC) plays an important role in the pathogenesis of restenosis and wound healing after stent implantation. This study evaluated the short-term effects of extracellular magnesium ion (Mg(2+)) on the cellular behaviors of SMCs. Cellular responses to Mg(2+) were biphasic and in a concentration-dependent manner. Low concentrations (10 mM) of Mg(2+) increased cell viability, cell proliferation rate, cell adhesion, cell spreading, cell migration rate, and actin expression. In contrast, higher concentrations (40-60 mM) of Mg(2+) had deleterious effects on cells. Gene expression analysis revealed that Mg(2+) altered the expressions of genes mostly related to cell adhesion, cell injury, angiogenesis, inflammation, coagulation, and cell growth. Finding from this study provides some valuable information on SMC responses toward magnesium ions at the cellular and molecular levels, and guidance for future controlled release of magnesium from the stent material.

  13. Taurine prevents beta-glycerophosphate-induced calcification in cultured rat vascular smooth muscle cells.

    PubMed

    Li, Juxiang; Zhang, Baohong; Huang, Zhiyu; Wang, Shuhen; Tang, Chaoshu; Du, Junbao

    2004-05-01

    Vascular calcification is an ectopic calcification that commonly occurs in atherosclerosis. Because taurine was previously shown to protect against cardiovascular diseases, the effect of taurine on vascular calcification was evaluated in calcified vascular smooth muscle cells (VSMCs) of rat in vitro in the present study. Osteoblastic differentiation, calcification, and proliferation in VSMCs were detected in the presence and absence of taurine. Alkaline phosphatase (ALP), cellular calcium content, and (45)Ca accumulation were measured as the indicators of osteoblastic differentiation and calcification. Incubation of VSMCs with Beta-glycerophosphate for 10 days induced an osteoblast-like morphological change. The activity of ALP was enhanced. Calcium content and (45)Ca uptake were increased in these cells. Calcification of these VSMCs was demonstrated with Beta-glycerophosphate treatment. In association with these alterations, cell proliferation, detected by cell counting, [(3)H]thymidine ([(3)H]TdR), and [(3)H]leucine ([(3)H]Leu) incorporation, was also increased in these calcified VSMCs. Taurine at 20 mmol/l decreased calcium content, (45)Ca(2+) uptake, and ALP activity both after early and late treatment, in which a reduction of the cell count, [(3)H"]TdR, and [(3)H]Leu incorporation of calcified VSMCs was also noted. Compared with the calcified group, morphological changes in the VSMCs of the early-treated group were deferred. These results demonstrated that calcification of VSMCs could be alleviated by taurine. Taurine treatment appeared to be more beneficial when the treatment was started earlier.

  14. Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells

    PubMed Central

    Zavaczki, Erzsébet; Jeney, Viktória; Agarwal, Anupam; Zarjou, Abolfazl; Oros, Melinda; Katkó, Mónika; Varga, Zsuzsa; Balla, György; Balla, József

    2011-01-01

    Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) is involved in the pathogenesis of vascular calcification. Hydrogen sulfide (H2S) is a gas endogenously produced by cystathionine γ-lyase in VSMC. Here we determined whether H2S plays a role in phosphate-induced osteoblastic transformation and mineralization of VSMC. Hydrogen sulfide was found to inhibit calcium deposition in the extracellular matrix and to suppress the induction of the genes involved in osteoblastic transformation of VSMC: alkaline phosphatase, osteocalcin, and Cbfa1. Moreover, phosphate uptake and phosphate-triggered upregulation of the sodium-dependent phosphate cotransporter (Pit-1) were also prevented by H2S. Reduction of endogenous production of H2S by inhibition of cystathionine γ-lyase activity resulted in increased osteoblastic transformation and mineralization. Low plasma levels of H2S, associated with decreased cystathionine γ-lyase enzyme activity, were found in patients with chronic kidney disease receiving hemodialysis. Thus, H2S is a potent inhibitor of phosphate-induced calcification and osteoblastic differentiation of VSMC. This mechanism might contribute to accelerated vascular calcification in chronic kidney disease. PMID:21716261

  15. Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells

    PubMed Central

    Ciou, Jin-Shuei; Chen, Shun-Tsung; Chung, Yi; Tsai, Jeffrey J. P.; Kurubanjerdjit, Nilubon

    2016-01-01

    Background Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear. Methods In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data. A three-phase study was proposed to investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First, DEGs were identified by using the moderated t-statistics test. Second, more DEGs were inferred by using the Gaussian Graphical Model (GGM). Finally, the topological parameters-based method and cluster analysis approach were employed to predict the last batch of DEGs. To identify the potential drugs for vascular diseases involve VSMC proliferation, the drug-gene interaction database, Connectivity Map (cMap) was employed. Success of the predictions were determined using in-vitro data, i.e. MTT and clonogenic assay. Results Based on the differential expression calculation, at least 23 DEGs were found, and the findings were qualified by previous studies on VSMC. The results of gene set enrichment analysis indicated that the most often found enriched biological processes are cell-cycle-related processes. Furthermore, more stress-induced genes, well supported by literature, were found by applying graph theory to the gene association network (GAN). Finally, we showed that by processing the cMap input queries with a cluster algorithm, we achieved a substantial increase in the number of potential drugs with experimental IC50 measurements. With this novel approach, we have not only successfully identified the DEGs, but also improved the DEGs prediction by performing the topological and cluster analysis. Moreover, the findings are remarkably validated and in line with the literature. Furthermore, the cMap and

  16. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway

    SciTech Connect

    Sung, Jin Young; Woo, Chang-Hoon; Kang, Young Jin; Lee, Kwang Youn; Choi, Hyoung Chul

    2011-09-16

    Highlights: {yields} An aging model was established by stimulating VSMC with adriamycin. {yields} Adriamycin increased p-LKB1, p-AMPK, p53 and p21 expressions. {yields} Inhibition of AMPK diminished SA-{beta}-gal staining and restored VSMC proliferation. {yields} p53 and p21 siRNA attenuated adriamycin-induced SA-{beta}-gal staining in VSMC. {yields} p53-p21 pathway is a mediator of LKB1/AMPK induced VSMC senescence. -- Abstract: Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated {beta}-galactosidase (SA-{beta}-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-{beta}-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53-p21 pathway is a mediator of LKB1/AMPK-induced senescence.

  17. Free Fatty Acids Induce Autophagy and LOX-1 Upregulation in Cultured Aortic Vascular Smooth Muscle Cells.

    PubMed

    Cheng, Cheng-I; Lee, Yueh-Hong; Chen, Po-Han; Lin, Yu-Chun; Chou, Ming-Huei; Kao, Ying-Hsien

    2016-11-05

    Elevation of free fatty acids (FFAs) is known to affect microvascular function and contribute to obesity-associated insulin resistance, hypertension, and microangiopathy. Proliferative and synthetic vascular smooth muscle cells (VSMCs) increase intimal thickness and destabilize atheromatous plaques. This study aimed to investigate whether saturated palmitic acid (PA) and monounsaturated oleic acid (OA) modulate autophagy activity, cell proliferation, and vascular tissue remodeling in an aortic VSMC cell line. Exposure to PA and OA suppressed growth of VSMCs without apoptotic induction, but enhanced autophagy flux with elevation of Beclin-1, Atg5, and LC3I/II. Cotreatment with autophagy inhibitors potentiated the FFA-suppressed VSMC growth and showed differential actions of PA and OA in autophagy flux retardation. Both FFAs upregulated lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) but only OA increased LDL uptake by VSMCs. Mechanistically, FFAs induced hyperphosphorylation of Akt, ERK1/2, JNK1/2, and p38 MAPK. All pathways, except OA-activated PI3K/Akt cascade, were involved in the LOX-1 upregulation, whereas blockade of PI3K/Akt and MEK/ERK cascades ameliorated the FFA-induced growth suppression on VSMCs. Moreover, both FFAs exhibited tissue remodeling effect through increasing MMP-2 and MMP-9 expression and their gelatinolytic activities, whereas high-dose OA significantly suppressed collagen type I expression. Conversely, siRNA-mediated LOX-1 knockdown significantly attenuated the OA-induced tissue remodeling effects in VSMCs. In conclusion, OA and PA enhance autophagy flux, suppress aortic VSMC proliferation, and exhibit vascular remodeling effect, thereby leading to the loss of VSMCs and interstitial ECM in vascular walls and eventually the instability of atheromatous plaques. J. Cell. Biochem. 9999: 1-13, 2016. © 2016 Wiley Periodicals, Inc.

  18. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    SciTech Connect

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T.

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  19. RNA interference-mediated NOTCH3 knockdown induces phenotype switching of vascular smooth muscle cells in vitro

    PubMed Central

    Liu, Nan; Li, Ying; Chen, Hui; Wei, Wei; An, Yulin; Zhu, Guangming

    2015-01-01

    Notch3 plays an important role in differentiation, migration and signal transduction of vascular smooth muscle cells (VSMCs). In this study, we used RNA interference (RNAi) technique to investigate the effect of knocking down the expression of the NOTCH3 gene in VSMCs on the phenotype determination under pathologic status. Real-time PCR and Western Blot experiments verified the expression levels of Notch3 mRNA and protein were reduced more than 40% and 50% in the NOTCH3 siRNA group. When the expression of Notch3 was decreased, the proliferation, apoptosis and immigration of VSMCs were enhanced compared to control groups (P < 0.01). NOTCH3 siRNA VSMCs observed using confocal microscopy showed abnormal nuclear configuration, a disorganized actin filament system, polygonal cell shapes, and decreasing cell sizes. Additionally, knocking down the expression of NOTCH3 may evoke the CASR and FAK expression. In Conclusion, interfering with the expression of NOTCH3 causes VSMCs to exhibit an intermediate phenotype. CaSR and FAK may be involved in the Notch3 signaling pathway. PMID:26550181

  20. c-Ski inhibits autophagy of vascular smooth muscle cells induced by oxLDL and PDGF.

    PubMed

    Li, Jun; Zhao, Li; Yang, Ting; Zeng, Yi-Jun; Yang, Kang

    2014-01-01

    Autophagy is increasingly being recognized as a critical determinant of vascular smooth muscle cell (VSMC) biology. Previously, we have demonstrated that c-Ski inhibits VSMC proliferation stimulated by transforming growth factor β (TGF-β), but it is not clear whether c-Ski has the similar protective role against other vascular injury factors and whether regulation of autophagy is involved in its protective effects on VSMC. Accordingly, in this study, rat aortic A10 VSMCs were treated with 40 µg/ml oxidized low-density lipoprotein (oxLDL) or 20 ng/ml platelet-derived growth factor (PDGF), both of which were autophagy inducers and closely related to the abnormal proliferation of VSMCs. Overexpression of c-Ski in A10 cells significantly suppressed the oxLDL- and PDGF- induced autophagy. This action of c-Ski resulted in inhibiting the cell proliferation, the decrease of contractile phenotype marker α-SMA expression while the increase of synthetic phenotype marker osteopontin expression stimulated by oxLDL or PDGF. Inversely, knockdown of c-Ski by RNAi enhanced the stimulatory effects of oxLDL or PDGF on A10 cell growth and phenotype transition. And further investigation found that inhibition of AKT phosphorylation to downregulate proliferating cell nuclear antigen (PCNA) expression, was involved in the regulation of autophagy and associated functions by c-Ski in the oxLDL- and PDGF-stimulated VSMCs. Collectively, c-Ski may play an important role in inhibiting autophagy to protect VSMCs against some harsh stress including oxLDL and PDGF.

  1. The effect of cadmium and other metals on vascular smooth muscle of the dogfish shark, Squalus acanthias.

    PubMed

    Evans, D H; Weingarten, K

    1990-04-30

    The effect of Cd2+ and related metals (Ni2+, Hg2+, Pb2+, Co2+, Sn2+ Cu2+ and Zn2+) on vascular tension was studied using isolated rings of endothelium-free, smooth muscle from the ventral aorta of the shark, Squalus acanthias. Both Cd2+ and Ni2+ produced significant vasoconstriction at concentrations at or above 10(-6) M (112 and 59 ppb, respectively); the other metals were either marginally constrictive (Hg2+ and Sn2+) or were without effect (Pb2+, Co2+, Cu2+, and Zn2+). We suggest that previously published vascular effects of Hg2+ and Pb2+ may have been secondary to responses of the vascular endothelium, and that the role of Ni2+ in hypertension should be investigated further. Our data indicate that the effects of metals on this vascular smooth muscle are specific and not generic. Moreover, this system could be utilized to investigate the mechanisms of metal-induced vasoconstriction.

  2. Vascular smooth cell proliferation in perfusion culture of porcine carotid arteries

    SciTech Connect

    Liao, Dan; Lin, Peter H.; Yao Qizhi; Chen Changyi

    2008-08-08

    Objective of this study was to develop a novel in vitro artery culture system to study vascular smooth muscle cell (SMC) proliferation of porcine carotid arteries in response to injury, basic fibroblast growth factor (FGF2), and FGF2 conjugated with cytotoxin saporin (SAP). Perfusion-cultured porcine carotid arteries remained contractile in response to norepinephrine and relaxant to acetylcholine for up to 96 h. SMC proliferation of cultured arteries was detected by bromodeoxyuridine incorporation in both non-injured and balloon-injured arteries. In the inner layer of the vessel wall near the lumen, SMC proliferation were less than 10% in uninjured vessels, 66% in injured vessels, 80% in injured vessels with FGF2 treatment, and 5% in injured vessels with treatment of FGF2-SAP. Thus, the cultured porcine carotid arteries were viable; and the injury stimulated SMC proliferation, which was significantly enhanced by FGF2 and inhibited by FGF2-SAP.

  3. Peach (Prunus persica) extract inhibits angiotensin II-induced signal transduction in vascular smooth muscle cells.

    PubMed

    Kono, Ryohei; Okuno, Yoshiharu; Nakamura, Misa; Inada, Ken-ichi; Tokuda, Akihiko; Yamashita, Miki; Hidaka, Ryu; Utsunomiya, Hirotoshi

    2013-08-15

    Angiotensin II (Ang II) is a vasoactive hormone that has been implicated in cardiovascular diseases. Here, the effect of peach, Prunus persica L. Batsch, pulp extract on Ang II-induced intracellular Ca(2+) mobilization, reactive oxygen species (ROS) production and signal transduction events in cultured vascular smooth muscle cells (VSMCs) was investigated. Pretreatment of peach ethyl acetate extract inhibited Ang II-induced intracellular Ca(2+) elevation in VSMCs. Furthermore, Ang II-induced ROS generation, essential for signal transduction events, was diminished by the peach ethyl acetate extract. The peach ethyl acetate extract also attenuated the Ang II-induced phosphorylation of epidermal growth factor receptor and myosin phosphatase target subunit 1, both of which are associated with atherosclerosis and hypertension. These results suggest that peach ethyl acetate extract may have clinical potential for preventing cardiovascular diseases by interfering with Ang II-induced intracellular Ca(2+) elevation, the generation of ROS, and then blocking signal transduction events.

  4. [3H]ouabain binding to cultured rat vascular smooth muscle cells.

    PubMed

    Khalil, F; Hopp, L; Searle, B M; Tokushige, A; Tamura, H; Kino, M; Aviv, A

    1984-05-01

    The number of Na+ pump units (Bmax) and the equilibrium dissociation constant (Kd) for ouabain as well as parameters of K+ binding to the Na+ pump were examined in in vitro-grown vascular smooth muscle cells ( VSMC ) derived from Sprague-Dawley rats. The technique to measure these variables utilizes analyses of [3H]ouabain displacement from its VSMC receptors by nonlabeled ouabain and K+. The mean values for Bmax and Kd in the cultured VSMCs were 1.95 X 10(5) receptor sites per single VSMC and 2.68 X 10(-6) M, respectively. The equilibrium dissociation constant for K+ (Ki) was 0.92 mM. K+ binding to the cultured VSMCs demonstrated positive cooperativity with a Hill coefficient (n) of 1.78.

  5. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells

    SciTech Connect

    Takahashi, Yoichiro; Watanabe, Hiroyuki; Murakami, Manabu; Ono, Kyoichi; Munehisa, Yoshiko; Koyama, Takashi; Nobori, Kiyoshi; Iijima, Toshihiko; Ito, Hiroshi

    2007-10-05

    We investigated the functional role of STIM1, a Ca{sup 2+} sensor in the endoplasmic reticulum (ER) that regulates store-operated Ca{sup 2+} entry (SOCE), in vascular smooth muscle cells (VSMCs). STIM1 was mainly localized at the ER and plasma membrane. The knockdown of STIM1 expression by small interfering (si) RNA drastically decreased SOCE. In contrast, an EF-hand mutant of STIM1, STIM1{sup E87A}, produced a marked increase in SOCE, which was abolished by co-transfection with siRNA to transient receptor potential canonical 1 (TRPC1). In addition, transfection with siRNA against STIM1 suppressed phosphorylation of cAMP-responsive element binding protein (CREB) and cell growth. These results suggest that STIM1 is an essential component of SOCE and that it is involved in VSMC proliferation.

  6. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    PubMed

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  7. Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification.

    PubMed

    Kiffer-Moreira, Tina; Yadav, Manisha C; Zhu, Dongxing; Narisawa, Sonoko; Sheen, Campbell; Stec, Boguslaw; Cosford, Nicholas D; Dahl, Russell; Farquharson, Colin; Hoylaerts, Marc F; Macrae, Vicky E; Millán, José Luis

    2013-01-01

    Medial vascular calcification (MVC) is common in patients with chronic kidney disease, obesity, and aging. MVC is an actively regulated process that resembles skeletal mineralization, resulting from chondro-osteogenic transformation of vascular smooth muscle cells (VSMCs). Here, we used mineralizing murine VSMCs to study the expression of PHOSPHO1, a phosphatase that participates in the first step of matrix vesicles-mediated initiation of mineralization during endochondral ossification. Wild-type (WT) VSMCs cultured under calcifying conditions exhibited increased Phospho1 gene expression and Phospho1(-/-) VSMCs failed to mineralize in vitro. Using natural PHOSPHO1 substrates, potent and specific inhibitors of PHOSPHO1 were identified via high-throughput screening and mechanistic analysis and two of these inhibitors, designated MLS-0390838 and MLS-0263839, were selected for further analysis. Their effectiveness in preventing VSMC calcification by targeting PHOSPHO1 function was assessed, alone and in combination with a potent tissue-nonspecific alkaline phosphatase (TNAP) inhibitor MLS-0038949. PHOSPHO1 inhibition by MLS-0263839 in mineralizing WT cells (cultured with added inorganic phosphate) reduced calcification in culture to 41.8% ± 2.0% of control. Combined inhibition of PHOSPHO1 by MLS-0263839 and TNAP by MLS-0038949 significantly reduced calcification to 20.9% ± 0.74% of control. Furthermore, the dual inhibition strategy affected the expression of several mineralization-related enzymes while increasing expression of the smooth muscle cell marker Acta2. We conclude that PHOSPHO1 plays a critical role in VSMC mineralization and that "phosphatase inhibition" may be a useful therapeutic strategy to reduce MVC.

  8. T3 inhibits the calcification of vascular smooth muscle cells and the potential mechanism

    PubMed Central

    Chang, Xiaodan; Zhang, Baohong; Lihua, Li; Feng, Zhichun

    2016-01-01

    Objective: This study aimed to investigate the potential molecular mechanism underlying the T3 induced vascular calcification and phenotype transformation of vascular smooth muscle cells (VSMCs). Methods: Rat thoracic aortic smooth muscle cells (A7r5) were cultured in vitro and randomly assigned into normal control group, calcification group, T3 group and inhibitor group. Results: When compared with normal control group, the osteocalcin content, ALP activity, Osterix and Runx2 mRNA expression and OPN protein expression increased significantly (P<0.01), and the protein expression of SMα and SM22α reduced dramatically in A7r5 cells of calcification group (P<0.01). After T3 treatment, the osteocalcin content and ALP activity reduced markedly, mRNA expression of Osterix and Runx2 and OPN protein expression reduced significantly. However, MMI (inhibitor of T3) was able to block the above effects of T3. When compared with calcification group, Osterix and Runx2 mRNA expression and OPN protein expression increased markedly (P<0.01). In addition, the protein expression of ERK1/2, p-ERK, Akt and p-Akt increased significantly in calcification group. In the presence of integrin αvβ3/ERK blocker (PD98059) and/or PI3K/Akt antagonist (LY294002), T3 was still able to inhibit the calcification, and this effect was similar to that after treatment with inhibitors alone. Moreover, LY294002 had a better inhibitory effect as compared to PD98059. Conclusion: T3 may act on PI3K/Akt signaling pathway to inhibit the phenotype transformation of VSMC, which then suppresses the calcium/phosphate induced calcification of rat VSMCs. Thus, T3 is an endogenous molecule that can protect the blood vessels against calcification. PMID:27904672

  9. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    SciTech Connect

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  10. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle.

  11. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA.

  12. Cyclooxygenase-2 in Endothelial and Vascular Smooth Muscle Cells Restrains Atherogenesis in Hyperlipidemic Mice

    PubMed Central

    Tang, Soon Yew; Monslow, James; Todd, Leslie; Lawson, John; Puré, Ellen; FitzGerald, Garret A.

    2014-01-01

    Background Placebo controlled trials of nonsteroidal antinflammatory drugs (NSAIDs) selective for inhibition of COX-2 reveal an emergent cardiovascular hazard in patients selected for low risk of heart disease. Postnatal global deletion of COX-2 accelerates atherogenesis in hyperlipidemic mice, a process delayed by selective enzyme deletion in macrophages. Methods and Results Here, selective depletion of COX-2 in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) depressed biosynthesis of prostaglandin (PG)I2 and PGE2, elevated blood pressure and accelerated atherogenesis in Ldlr knockout (KO) mice. Deletion of COX-2 in VSMCs and ECs coincided with an increase in COX-2 expression in lesional macrophages and increased biosynthesis of thromboxane. Increased accumulation of less organized intimal collagen, laminin, α-smooth muscle actin and matrix-rich fibrosis was also apparent in lesions of the mutants. Conclusions Although atherogenesis is accelerated in global COX-2 KOs, consistent with evidence of risk transformation during chronic NSAID administration, this masks the contrasting effects of enzyme depletion in macrophages versus VSMCs and ECs. Targeting delivery of COX-2 inhibitors to macrophages may conserve their efficacy while limiting cardiovascular risk. PMID:24519928

  13. Phytoncide, Nanochemicals from Chamaecyparis obtusa, Inhibits Proliferation and Migration of Vascular Smooth Muscle Cells.

    PubMed

    Lim, Leejin; Jang, Young-Su; Yun, Je-Jung; Song, Heesang

    2015-01-01

    Phytoncide, nanochemicals extracted from Chamaecyparis obtusa (C. obtusa), is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, antioxidant, and antiinflammatory activities. However, the effect of phytoncide in vascuar diseases, especially on the behavior of vascular smooth muscle cells, has not yet been clearly elucidated. Therefore, in the present study, we investigated the effects of 15 kinds of phytoncide by various extraction conditions from C. obtusa on the proliferation and migration in rat aortic smooth muscle cells (RAoSMCs). First of all, we determined the concentration of each extracts not having cytotoxicity by MTT assay. We observed that the proliferation rate measured using BrdU assay was significantly reduced by supercritical fluid, steam distillation, Me-OH, and hexane extraction fraction in order with higher extent, respectively. Moreover, the treatment of above nanofractions inhibit the migration of RAoSMCs by 40%, 60%, and 30%, respectively, both in 2-D wound healing assay and 3-D boyden chamber assay. Immunoblot revealed that the phosphorylated levels of Akt and ERK were significantly reduced in nanofractions treated RAoSMCs. Taken together, these data suggest that phytoncide extracted from C. obtusa inhibits proliferation and migration in RAoSMCs via the modulation of phosphorylated levels of Akt and ERK. Therefore, phytoncide nanomolecules might be a potential therapeutic approach to prevent or treat atheroscrelosis and restenosis.

  14. Effects of dexamethasone on the synthesis and secretion of galaptin by vascular smooth muscle cells

    SciTech Connect

    Sanford, G.L.; Harris-Hooker, S.A.

    1986-05-01

    The effects of dexamethasone (Dex) on the synthesis and secretion of beta-galactoside specific lectin (galaptin) was examined in cultured primate aortic smooth muscle cells (SMC). SMC cells were treated with 0.15 ..mu..M Dex during their proliferative phase to confluency, and after reaching confluency. Both cultures were labeled with (/sup 3/H)-phenylalanine (phe) for 24 h following exposure to Dex. Incorporation of phe into galaptin increased twofold in the medium from Dex treated confluent cultures, when serum was present. No change was found in incorporation when serum was removed prior to Dex treatment. Phe incorporation into total protein was also increased twofold by Dex treatment of SMC in the presence of serum, but there was a 1.4-fold increase when serum was absent. Dex did not affect the incorporation of phe into either total protein or galaptin in the cell layer of confluent cultures in the presence of serum, but caused a twofold increase in its absence. There was no effect of Dex on the incorporation of phe into galaptin or total protein in either the medium or cell layer of cultures given Dex during their proliferative phase. Dex retarded the growth of SMC, and lowered the total protein content of the cell layer. The results show that vascular smooth muscle cells synthesize and secrete galaptin and that Dex acts directly on confluent SMC to increase galaptin synthesis and secretion. Serum seems to modulate the effect of Dex.

  15. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  16. Inhibition of Rho protein stimulates iNOS expression in rat vascular smooth muscle cells.

    PubMed

    Muniyappa, R; Xu, R; Ram, J L; Sowers, J R

    2000-06-01

    Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.

  17. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells

    SciTech Connect

    Perez-Vizcaino, Francisco . E-mail: fperez@med.ucm.es; Bishop-Bailley, David; Lodi, Federica; Duarte, Juan; Cogolludo, Angel; Moreno, Laura; Bosca, Lisardo; Mitchell, Jane A.; Warner, Timothy D.

    2006-08-04

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries. The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.

  18. Peroxynitrite induces apoptosis in rat aortic smooth muscle cells: possible relation to vascular diseases.

    PubMed

    Li, Jianfeng; Li, Wenyan; Su, Jialin; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2004-03-01

    An emerging body of evidence is accumulating to suggest that in vivo formation of free radicals in the vasculature, such as peroxynitrite (ONOO-), and programmed cell death (i.e., apoptosis) play important roles in vascular diseases such as atherosclerosis, hypertension, and restenosis. The present study was designed to determine whether primary rat aortic smooth muscle cells (SMCs) undergo apoptosis following treatment with ONOO-. Direct exposure of primary rat aortic SMCs to ONOO--induced apoptosis in a concentration-dependent manner, as confirmed by means of quantitative fluorescence staining and TUNEL assays. ONOO--induced apoptosis in rat aortic SMCs appears to involve activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis in rat aortic SMCs need to be further investigated, the present, preliminary findings could be used to suggest that ONOO- formation in the vasculature may play roles in the processes of vascular diseases, such as atherosclerosis, hypertension, and restenosis, via adverse actions on blood vessels.

  19. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum.

    PubMed

    Natori, Tomomi; Fujiyoshi, Masachika; Uchida, Masashi; Abe, Natsuki; Kanaki, Tatsuro; Fukumoto, Yasunori; Ishii, Itsuko

    2017-03-01

    The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27(Kip1) expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.

  20. Aldosterone-induced osteopontin gene transcription in vascular smooth muscle cells involves glucocorticoid response element.

    PubMed

    Kiyosue, Arihiro; Nagata, Daisuke; Myojo, Masahiro; Sato, Tomohiko; Takahashi, Masao; Satonaka, Hiroshi; Nagai, Ryozo; Hirata, Yasunobu

    2011-12-01

    Osteopontin (OPN) is known to be one of the cytokines that is involved in the vascular inflammation caused by aldosterone (Aldo). Previous reports have shown that Aldo increases OPN transcripts, and the mechanisms for this remain to be clarified. In this study, we investigated how Aldo increases OPN transcripts in the vascular smooth muscle cells of rats. Aldosterone increased OPN transcripts time-dependently as well as dose-dependently. This increase was diminished by eplerenone, a mineralocorticoid receptor (MR) antagonist. Luciferase promoter assays showed that the OPN promoter deleted to the -1599 site retained the same promoting ability as the full-length OPN promoter when stimulated by 10(-7) M Aldo, but the promoter deleted to the -1300 site lost the promoting ability. A glucocorticoid response element (GRE) is located in that deleted region. Luciferase assays of a mutated promoter without the GRE lost the luciferase upregulation, although mutated promoters with the deletion of other consensus sites maintained the promoter activity. The binding of the Aldo-MR complex to the GRE fragment was confirmed by an electrophoretic-mobility shift assay. This is the first report showing that Aldo regulates the transcriptional levels of OPN and inflammatory responses in the vasculature through a specific GRE site in the OPN promoter region.

  1. Expression of apolipoprotein E by cultured vascular smooth muscle cells is controlled by growth state

    PubMed Central

    1988-01-01

    Rat vascular smooth muscle cells (SMC) in culture synthesize and secrete a approximately 38,000-Mr protein doublet or triplet that, as previously described (Majack and Bornstein. 1984. J. Cell Biol. 99:1688- 1695), rapidly and reversibly accumulates in the SMC culture medium upon addition of heparin. In the present study, we show that this approximately 38,000-Mr heparin-regulated protein is electrophoretically and immunologically identical to apolipoprotein E (apo-E), a major plasma apolipoprotein involved in cholesterol transport. In addition, we show that expression of apo-E by cultured SMC varies according to growth state: while proliferating SMC produced little apo-E and expressed low levels of apo-E mRNA, quiescent SMC produced significantly more apo-E (relative to other proteins) and expressed markedly increased levels of apo-E mRNA. Northern analysis of RNA extracted from aortic tissue revealed that fully differentiated, quiescent SMC contain significant quantities of apo-E mRNA. These data establish aortic SMC as a vascular source for apo-E and suggest new functional roles for this apolipoprotein, possibly unrelated to traditional concepts of lipid metabolism. PMID:2458361

  2. Lanthanum chloride bidirectionally influences calcification in bovine vascular smooth muscle cells.

    PubMed

    Zhao, Wen-Hua; Gou, Bao-Di; Zhang, Tian-Lan; Wang, Kui

    2012-05-01

    Vascular calcification (VC) is frequent prevalence in patients with chronic kidney disease (CKD) and atherosclerosis. Lanthanum carbonate is used as an orally administered phosphate-binding agent to reduce the gastrointestinal absorption of phosphate and ameliorate VC in advanced CKD. In this study, we used bovine vascular smooth muscle cells as a model VC in vitro and studied the effects of lanthanum chloride on calcium deposition. Exposure of cells to LaCl(3) at the concentration of 0.1 µM suppressed the β-glycerophosphate-induced alkaline phosphatase activity and calcium deposition. Furthermore, LaCl(3) upregulated the β-glycerophosphate-suppressed expression of calcium-sensing receptor. In contrast to the inhibitory effect of LaCl(3) on calcium deposition, higher level lanthanum (50 µM) was found to promote immediately precipitation of calcium phosphate in cell culture medium. At this concentration, LaCl(3) was found to induce cell apoptosis which involves caspases-9 and -3. These data indicate that the promotory effect of LaCl(3) on calcium deposition is likely mediated by induction of apoptosis. Our in vitro findings do suggest that, in the context of raised lanthanum, greater attention should be paid to potential toxic effects associated to the use of lanthanide-based drugs.

  3. Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK

    PubMed Central

    Thompson, Anne Marie; Martin, Kathleen A.; Rzucidlo, Eva M.

    2014-01-01

    Phenotypic plasticity in vascular smooth muscle cells (VSMC) is necessary for vessel maintenance, repair and adaptation to vascular changes associated with aging. De-differentiated VSMC contribute to pathologies including atherosclerosis and intimal hyperplasia. As resveratrol has been reported to have cardio- protective effects, we investigated its role in VSMC phenotypic modulation. We demonstrated the novel finding that resveratrol promoted VSMC differentiation as measured by contractile protein expression, contractile morphology and contraction in collagen gels. Resveratrol induced VSMC differentiation through stimulation of SirT1 and AMPK. We made the novel finding that low or high dose resveratrol had an initially different mechanism on induction of differentiation. We found that low dose resveratrol stimulated differentiation through SirT1-mediated activation of AKT, whereas high dose resveratrol stimulated differentiation through AMPK-mediated inhibition of the mTORC1 pathway, allowing activation of AKT. The health effects of resveratrol in cardiovascular diseases, cancer and longevity are an area of active research. We have demonstrated a supplemental avenue where-by resveratrol may promote health by maintaining and enhancing plasticity of the vasculature. PMID:24416418

  4. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth

    SciTech Connect

    Patecki, Margret; Schaewen, Markus von; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika . E-mail: angelika.kusch@charite.de

    2007-08-03

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury.

  5. Role of blood and vascular smooth muscle in the vasoactivity of nitrite.

    PubMed

    Liu, Taiming; Schroeder, Hobe J; Barcelo, Lisa; Bragg, Shannon L; Terry, Michael H; Wilson, Sean M; Power, Gordon G; Blood, Arlin B

    2014-10-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin.

  6. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells

    PubMed Central

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Bioabsorbable metal zinc (Zn) is a promising new generation of implantable scaffold for cardiovascular and orthopedic applications. In cardiovascular stent applications, zinc ion (Zn2+) will be gradually released into the surrounding vascular tissues from such Zn-containing scaffolds after implantation. However, the interactions between vascular cells and Zn2+ are still largely unknown. We explored the short-term effects of extracellular Zn2+ on human smooth muscle cells (SMCs) up to 24 h, and an interesting biphasic effect of Zn2+ was observed. Lower concentrations (<80 μM) of Zn2+ had no adverse effects on cell viability but promoted cell adhesion, cell spreading, cell proliferation, cell migration, and enhanced the expression of F-actin and vinculin. Cells treated with such lower concentrations of Zn2+ displayed an elongated shape compared to controls without any treatment. In contrast, cells treated with higher Zn2+ concentrations (80–120 μM) had opposite cellular responses and behaviors. Gene expression profiles revealed that the most affected functional genes were related to angiogenesis, inflammation, cell adhesion, vessel tone, and platelet aggregation. Results indicated that Zn has interesting concentration-dependent biphasic effects on SMCs with low concentrations being beneficial to cellular functions. PMID:27248371

  7. Rat vascular smooth muscle cells in culture contract upon Ca2+ repletion after depletion.

    PubMed Central

    Kobayashi, S.; Kanaide, H.; Hasegawa, M.; Yamamoto, H.; Nakamura, M.

    1985-01-01

    We investigated the effects of Ca2+-repletion following depletion on cultured vascular smooth muscle cells (SMCs) from the rat aorta. With Ca2+-repletion, the cells in primary cultures contracted, as indicated by a decrease in cell area. The process was slow (30 min to maximum effect) and reversible (relaxation completed by 120 min). Contraction during Ca2+-repletion was never observed in subcultured cells. The SMCs in primary culture after treatment maintained the ability to grow and to exclude dye, with a normal plating efficiency. There was no treatment-related additional leakage of intracellular enzymes, LDH and CPK, into the medium. Ca2+-repletion at first accelerated the 45Ca uptake by SMCs (1-5 min after repletion) and then increased Ca2+ efflux after about 10 min of Ca2+-repletion. We conclude that Ca2+-repletion after depletion induces a transient and reversible contraction of vascular SMCs in primary culture, without cell injury and in association with a transient increase in Ca2+ influx and then efflux. This phenomenon may relate to the decrease in perfusion flow in hearts and kidneys during Ca2+-repletion after depletion (Ca2+-paradox). Images Fig. 1 Fig. 3 PMID:4084451

  8. Magnesium prevents β-glycerophosphate-induced calcification in rat aortic vascular smooth muscle cells.

    PubMed

    Bai, Yaling; Zhang, Junxia; Xu, Jinsheng; Cui, Liwen; Zhang, Huiran; Zhang, Shenglei; Feng, Xunwei

    2015-07-01

    Vascular calcification (VC), in which high serum phosphate plays a critical role, is one major problem in patients with chronic kidney disease. Clinical studies report that magnesium has a protective effect on VC. However, the studies regarding the impact of high serum magnesium on VC at a cellular level are few and require further investigation. Therefore, the present study explored the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in rat aortic vascular smooth muscle cells (RAVSMCs). In the present study, the addition of magnesium decreased calcium deposition, which was increased by BGP. Higher magnesium levels inhibited BGP-induced alkaline phosphatase (ALP) activity and decreased the expression of core-binding factor α-1 (Cbfα1). In conclusion, higher magnesium levels prevented BGP-induced calcification in RAVSMCs and inhibited the expression of Cbfα1 and ALP. Thus, magnesium is influencing the expression of Cbfα1 and ALP associated with VC and may have the potential to serve as a role for VC in clinical situations.

  9. Tyk2 mediates effects of urokinase on human vascular smooth muscle cell growth.

    PubMed

    Patecki, Margret; von Schaewen, Markus; Tkachuk, Sergey; Jerke, Uwe; Dietz, Rainer; Dumler, Inna; Kusch, Angelika

    2007-08-03

    The urokinase (uPA)/uPA receptor (uPAR) system plays a role in the response of the vessel wall to injury, presumably by modulating vascular smooth muscle cell (VSMC) functional behaviour. The Jak/Stat signaling pathway has been implicated to mediate the uPA/uPAR-directed cell migration and proliferation in VSMC. We have therefore investigated the underlying molecular mechanisms, which remained not completely understood. In particular, we aimed at identification of the kinase involved in the signaling cascade leading to Stat1 phosphorylation by uPA and its impact on VSMC growth. We performed expression in VSMC of kinase-deficient mutant forms of the Janus kinases Jak1 and Tyk2 and used different cell culture models imitating the response to vascular injury. We provide evidence that Tyk2, but not Jak1, mediates uPA-induced Stat1 phosphorylation and VSMC growth inhibition and suggest a novel function for Tyk2 as an important modulator of the uPA-directed VSMC functional behaviour at the place of injury.

  10. Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells.

    PubMed

    Gallant, Cynthia; Appel, Sarah; Graceffa, Philip; Leavis, Paul; Lin, Jim Jung-Ching; Gunning, Peter W; Schevzov, Galina; Chaponnier, Christine; DeGnore, Jon; Lehman, William; Morgan, Kathleen G

    2011-06-01

    Tropomyosin (Tm) is known to be an important gatekeeper of actin function. Tm isoforms are encoded by four genes, and each gene produces several variants by alternative splicing, which have been proposed to play roles in motility, proliferation, and apoptosis. Smooth muscle studies have focused on gizzard smooth muscle, where a heterodimer of Tm from the α-gene (Tmsm-α) and from the β-gene (Tmsm-β) is associated with contractile filaments. In this study we examined Tm in differentiated mammalian vascular smooth muscle (dVSM). Liquid chromatography-tandem mass spectrometry (LC MS/MS) analysis and Western blot screening with variant-specific antibodies revealed that at least five different Tm proteins are expressed in this tissue: Tm6 (Tmsm-α) and Tm2 from the α-gene, Tm1 (Tmsm-β) from the β-gene, Tm5NM1 from the γ-gene, and Tm4 from the δ-gene. Tm6 is by far most abundant in dVSM followed by Tm1, Tm2, Tm5NM1, and Tm4. Coimmunoprecipitation and coimmunofluorescence studies demonstrate that Tm1 and Tm6 coassociate with different actin isoforms and display different intracellular localizations. Using an antibody specific for cytoplasmic γ-actin, we report here the presence of a γ-actin cortical cytoskeleton in dVSM cells. Tm1 colocalizes with cortical cytoplasmic γ-actin and coprecipitates with γ-actin. Tm6, on the other hand, is located on contractile bundles. These data indicate that Tm1 and Tm6 do not form a classical heterodimer in dVSM but rather describe different functional cellular compartments.

  11. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  12. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells.

    PubMed

    Liu, C Y; Sturek, M

    1996-06-01

    Although tyrosine kinases play an important role in cell growth and have been implicated in regulation of smooth muscle contraction, their role in agonist-induced myoplasmic Ca2+ responses is unclear. We examined effects of the tyrosine kinase inhibitors genistein and methyl 2,5-dihydroxycinnamate (MDHC) on the endothelin-1 (ET-1)-induced Ca2+ response and determined underlying mechanisms for the effects. Freshly isolated smooth muscle cells from porcine coronary arteries were loaded with fura 2 ester, and myoplasmic free Ca2+ (Ca2+ (m)) concentration was estimated with fura 2 microfluorometry. Both genistein and MDHC inhibited the initial transient Cam2+ response to ET by 54 and 81%, respectively (P < 0.05), in the presence of extracellular Ca2+. Genistein also significantly delayed the Cam2+ response, with the latent period from ET-1 application to the beginning of the Cam2+ response being increased from 1.08 +/- 0.17 to 2.65 +/- 0.52 min (P < 0.05). In the absence of extracellular Ca2+, genistein inhibited the ET-1-induced Cam2+ response by 93% (P < 0.05). The Cam2+ responses to caffeine (5 mM) or inositol trisphosphate (IP3) applied intracellularly via a patch-clamp pipette were not affected by genistein. Both genistein and MDHC also abolished the sustained Cam2+ response to ET-1. However, the Cam2+ response to depolarization by 80 mM K+ was not inhibited by MDHC and only inhibited 22% by genistein (P < 0.05). These results indicate that 1) activation of tyrosine kinases is an important regulatory mechanism for the ET-1-induced Cam2+ response in vascular smooth muscle and 2) tyrosine kinases mediate ET-1-induced Ca2+ release with no direct effect on IP3-mediated Ca2+ release. Thus ET-1-mediated signaling upstream of IP3 interaction with the Ca2+ stores is regulated by tyrosine kinases.

  13. Vascular and baroreceptor abnormalities in young males with a family history of hypertension.

    PubMed

    Boutcher, Yati N; Park, Young J; Boutcher, Stephen H

    2009-12-01

    Vascular and baroreceptor abnormalities in 44 young males, mean age 21 years, comprising of offspring with (FH(+); n = 22) and without (FH(-); n = 22) hypertensive parents, were investigated. Peak forearm blood flow (FBF), which was defined as the highest blood flow obtained following reactive hyperaemia, was assessed using strain gauge plethysmography following 5 min of ischemia. Cardiopulmonary baroreceptor sensitivity was assessed using lower body negative pressure for 5 min at -20 mmHg and was determined by calculating change of stroke volume and forearm vascular resistance (FVR) to lower body negative pressure. Carotid baroreceptor sensitivity was assessed using neck suction at -20, -40, -60, and -80 mmHg and was calculated by dividing RR interval by systolic blood pressure. Augmentation index, a measure of wave reflection, was assessed using applanation tonometry and was calculated as the ratio of augmented pressure and pulse pressure. Peak FBF of FH(+) was 19% lower than the FH(-) (p = 0.02). Also FH(+) had 17% higher peak FVR compared to FH(-) (p = 0.04). However, there were no significant differences between groups for cardiopulmonary, carotid baroreceptor sensitivity, and augmentation index. These results suggest that peripheral vascular dysfunction appears earlier than abnormal baroreceptor sensitivity in young males with a family history of hypertension.

  14. Regulation of SIRT1 in vascular smooth muscle cells from streptozotocin-diabetic rats.

    PubMed

    Toniolo, Alice; Warden, Erica Alessia; Nassi, Alberto; Cignarella, Andrea; Bolego, Chiara

    2013-01-01

    Sirtuins enzymes are a conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and ADP-ribosyltransferases that mediate responses to oxidative stress, fasting and dietary restriction in mammals. Vascular smooth muscle cells (VSMCs) are involved in many mechanisms that regulate vascular biology in vivo but the role of SIRT1 has not been explored in much detail. Therefore, we investigated the regulation of SIRT1 in cultured VSMCs under various stress conditions including diabetes. Sprague-Dawley rats were made diabetic by injecting a single dose of streptozotocin (65 mg/Kg), and aortic VSMCs were isolated after 4 weeks. Immunocytochemistry showed that SIRT1 was localized predominantly in the nucleus, with lower staining in VSMCs from STZ-diabetic as compared with normoglycemic rats. Previous diabetes induction in vivo and high glucose concentrations in vitro significantly downregulated SIRT1 amounts as detected in Western blot assays, whereas TNF-α (30 ng/ml) stimulation failed to induce significant changes. Because estrogen signaling affects several pathways of oxidative stress control, we also investigated SIRT1 modulation by 17β-estradiol. Treatment with the hormone (10 nM) or a selective estrogen receptor-α agonist decreased SIRT1 levels in VSMCs from normoglycemic but not in those from STZ-diabetic animals. 17β-estradiol treatment also enhanced activation of AMP-dependent kinase, which partners with SIRT1 in a signaling axis. SIRT1 downregulation by 17β-estradiol could be observed as well in human peripheral blood mononuclear cells, a cell type in which SIRT1 downregulation is associated with insulin resistance and subclinical atherosclerosis. These data suggest that SIRT1 protein levels are regulated by diverse cellular stressors to a variable extent in VSMCs from diabetic and normoglycemic rats, warranting further investigation on SIRT1 as a modulator of VSMC activity in settings of vascular inflammation.

  15. The vascular smooth muscle cell: a therapeutic target in Type 2 diabetes?

    PubMed

    Porter, Karen E; Riches, Kirsten

    2013-08-01

    The rising epidemic of T2DM (Type 2 diabetes mellitus) worldwide is of significant concern. The inherently silent nature of the disease in its early stages precludes early detection; hence cardiovascular disease is often established by the time diabetes is diagnosed. This increased cardiovascular risk leads to significant morbidity and mortality in these individuals. Progressive development of complications as a result of previous exposure to metabolic disturbances appears to leave a long-lasting impression on cells of the vasculature that is not easily reversed and is termed 'metabolic memory'. SMCs (smooth muscle cells) of blood vessel walls, through their inherent ability to switch between a contractile quiescent phenotype and an active secretory state, maintain vascular homoeostasis in health and development. This plasticity also confers SMCs with the essential capacity to adapt and remodel in pathological states. Emerging clinical and experimental studies propose that SMCs in diabetes may be functionally impaired and thus contribute to the increased incidence of macrovascular complications. Although this idea has general support, the underlying molecular mechanisms are currently unknown and hence are the subject of intense research. The aim of the present review is to explore and evaluate the current literature relating to the problem of vascular disease in T2DM and to discuss the critical role of SMCs in vascular remodelling. Possibilities for therapeutic strategies specifically at the level of T2DM SMCs, including recent novel advances in the areas of microRNAs and epigenetics, will be evaluated. Since restoring glucose control in diabetic patients has limited effect in ameliorating their cardiovascular risk, discovering alternative strategies that restrict or reverse disease progression is vital. Current research in this area will be discussed.

  16. Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the Akt pathway.

    PubMed

    Fitzgerald, Tamara N; Shepherd, Benjamin R; Asada, Hidenori; Teso, Desarom; Muto, Akihito; Fancher, Tiffany; Pimiento, Jose M; Maloney, Stephen P; Dardik, Alan

    2008-08-01

    Vascular smooth muscle cells (SMC) may be directly exposed to blood flow after an endothelial-denuding injury. It is not known whether direct exposure of SMC to shear stress reduces SMC turnover and contributes to the low rate of restenosis after most vascular interventions. This study examines if laminar shear stress inhibits SMC proliferation or stimulates apoptosis. Bovine aortic SMC were exposed to arterial magnitudes of laminar shear stress (11 dynes/cm(2)) for up to 24 h and compared to control SMC (0 dynes/cm(2)). SMC density was assessed by cell counting, DNA synthesis by (3)[H]-thymidine incorporation, and apoptosis by TUNEL staining. Akt, caspase, bax, and bcl-2 phosphorylation were assessed by Western blotting; caspase activity was also measured with an in vitro assay. Analysis of variance was used to compare groups. SMC exposed to laminar shear stress had a 38% decrease in cell number (n = 4, P = 0.03), 54% reduction in (3)[H]-thymidine incorporation (n = 3, P = 0.003), and 15-fold increase in TUNEL staining (n = 4, P < 0.0001). Akt phosphorylation was reduced by 67% (n = 3, P < 0.0001), whereas bax/bcl-2 phosphorylation was increased by 1.8-fold (n = 3, P = 0.01). Caspase-3 activity was increased threefold (n = 5, P = 0.03). Pretreatment of cells with ZVAD-fmk or wortmannin resulted in 42% increased cell retention (n = 3, P < 0.01) and a fourfold increase in apoptosis (n = 3, P < 0.04), respectively. Cells transduced with constitutively-active Akt had twofold decreased apoptosis (n = 3, P < 0.002). SMC exposed to laminar shear stress have decreased proliferation and increased apoptosis, mediated by the Akt pathway. These results suggest that augmentation of SMC apoptosis may be an alternative strategy to inhibit restenosis after vascular injury.

  17. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    SciTech Connect

    Moon, Chang Yoon; Ku, Cheol Ryong; Cho, Yoon Hee; Lee, Eun Jig

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  18. Human Embryonic Stem Cell Derived Vascular Progenitor Cells Capable of Endothelial and Smooth Muscle Cell Function

    PubMed Central

    Hill, Katherine L; Obrtlikova, Petra; Alvarez, Diego F; King, Judy A; Keirstead, Susan A; Allred, Jeremy R; Kaufman, Dan S

    2010-01-01

    OBJECTIVE Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34+ cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization. MATERIALS AND METHODS hESCs are co-cultured on M2-10B4 stromal cells or Wnt1 expressing M2-10B4 for 13–15 days to generate a CD34+ cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24–48 hours. RESULTS CD34+ vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when co-cultured in Matrigel. Human umbilical vein endothelial cells (HUVEC) cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1 overexpressing stromal cells produced an increased number of progenitor cells. CONCLUSIONS The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The step-wise differentiation outlined here is an efficient, reproducible method with potential for large scale cultures suitable for clinical applications. PMID:20067819

  19. Mice lacking hypertension candidate gene ATP2B1 in vascular smooth muscle cells show significant blood pressure elevation.

    PubMed

    Kobayashi, Yusuke; Hirawa, Nobuhito; Tabara, Yasuharu; Muraoka, Hidenori; Fujita, Megumi; Miyazaki, Nobuko; Fujiwara, Akira; Ichikawa, Yasuhiro; Yamamoto, Yuichiro; Ichihara, Naoaki; Saka, Sanae; Wakui, Hiromichi; Yoshida, Shin-ichiro; Yatsu, Keisuke; Toya, Yoshiyuki; Yasuda, Gen; Kohara, Katsuhiko; Kita, Yoshikuni; Takei, Kohtaro; Goshima, Yoshio; Ishikawa, Yoshihiro; Ueshima, Hirotsugu; Miki, Tetsuro; Umemura, Satoshi

    2012-04-01

    We reported previously that ATP2B1 was one of the genes for hypertension receptivity in a large-scale Japanese population, which has been replicated recently in Europeans and Koreans. ATP2B1 encodes the plasma membrane calcium ATPase isoform 1, which plays a critical role in intracellular calcium homeostasis. In addition, it is suggested that ATP2B1 plays a major role in vascular smooth muscle contraction. Because the ATP2B1 knockout (KO) mouse is embryo-lethal, we generated mice with vascular smooth muscle cell-specific KO of ATP2B1 using the Cre-loxP system to clarify the relationship between ATP2B1 and hypertension. The KO mice expressed significantly lower levels of ATP2B1 mRNA and protein in the aorta compared with control mice. KO mice showed significantly higher systolic blood pressure as measured by tail-cuff method and radiotelemetric method. Similar to ATP2B1, the expression of the Na(+)-Ca(2+) exchanger isoform 1 mRNA was decreased in vascular smooth muscle cells of KO mice. However, ATP2B4 expression was increased in KO mice. The cultured vascular smooth muscle cells of KO mice showed increased intracellular calcium concentration not only in basal condition but also in phenylephrine-stimulated condition. Furthermore, phenylephrine-induced vasoconstriction was significantly increased in vascular rings of the femoral artery of KO mice. These results suggest that ATP2B1 plays important roles in the regulation of blood pressure through alteration of calcium handling and vasoconstriction in vascular smooth muscle cells.

  20. [Progress of study on inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cells].

    PubMed

    Yang, Guang; Zhang, Min-zhou; Jiang, Wei

    2005-10-01

    This paper sums up some studies in the last decade regarding the inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cell (VSMC) via directly measuring the mRNA expression of its growth factors and the related receptors by electron microscope, immunohistochemistry, blot and hybridization in situ.

  1. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  2. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  3. /sup 22/Na+ and /sup 86/Rb+ transport in vascular smooth muscle of SHR, Wistar Kyoto, and Wistar rats

    SciTech Connect

    Kuriyama, S.; Denny, T.N.; Aviv, A.

    1988-06-01

    To gain further insight into differences in cellular Na+ and K+ regulation between the spontaneously hypertensive rat (SHR), Wistar Kyoto (WKY), and American Wistar (W) rats, 22Na+ and 86Rb+ washouts were performed under steady-state conditions in cultured vascular smooth muscle cells from the three rat strains. SHR vascular smooth muscle cells showed significantly higher bumetanide sensitive 86Rb+ washout rate constant (x 10(-4)/min; mean +/- SEM) than WKY cells (-38.6 +/- 2.84 and -23.8 +/- 3.58, respectively; p less than 0.005). SHR vascular smooth muscle cells also exhibited significantly higher values than WKY cells in the total 22Na+ washout rate constant (x 10(-2)/min) (-61.0 +/- 1.57 vs. -53.8 +/- 1.24; p less than 0.005). The amiloride sensitive component of the 22Na+ washout rate constant accounted for these differences (-18.6 +/- 1.04 for SHR and -12.1 +/- 2.00 for WKY; p less than 0.05). There were no apparent differences in cellular Na+ concentrations between WKY and SHR cells. In general, the 86Rb+ and 22Na+ washout parameters of W rat cells were quite similar to those of cells from SHR. We conclude that the bumetanide-sensitive 86Rb+ washout (the Na+ K+-cotransport), the overall, and the amiloride-sensitive 22Na+ washout (the latter primarily represents the Na+/H+ antiport) are higher in SHR than WKY rat vascular smooth muscle cells. These findings indicate innate differences in cellular Na+ and K+ transport in vascular smooth muscle cells of the SHR and WKY rat. The mechanisms responsible for these differences are yet to be determined.

  4. MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP

    PubMed Central

    Xu, Fei; Ahmed, Abu Shufian Ishtiaq; Kang, Xiuhua; Hu, Guoqing; Liu, Fang; Zhang, Wei; Zhou, Jiliang

    2015-01-01

    Objective To investigate the functional role of the miR-15b/16 in vascular smooth muscle phenotypic modulation. Approach and Results We found that miR-15b/16 is the one of most abundant microRNAs expressed in contractile vascular smooth muscle cells (VSMCs). However, when contractile VSMCs convert to a synthetic phenotype miR-15b/16 expression is significantly reduced. Knocking-down endogenous miR-15b/16 in VSMCs attenuates smooth muscle-specific gene expression but promotes VSMC proliferation and migration. Conversely, over-expression of miR-15b/16 promotes smooth muscle contractile gene expression while attenuating VSMC migration and proliferation. Consistent with this, over-expression of miR-15b/16 in a rat carotid balloon injury model markedly attenuates injury-induced smooth muscle de-differentiation and neointima formation. Mechanistically, we identified the potent oncoprotein yes-associated protein (YAP) as a downstream target of miR-15b/16 in VSMCs. Reporter assays validated that miR-15b/16 targets YAP’s 3′-untranslated region. Moreover, overexpression of miR-15b/16 significantly represses YAP expression, whereas conversely, depletion of endogenous miR-15b/16 results in up-regulation of YAP expression. Conclusions These results indicate that miR-15b/16 plays a critical role in smooth muscle phenotypic modulation at least partly through targeting YAP. Restoring expression of miR-15b/16 would be a potential therapeutic approach for treatment of proliferative vascular diseases. PMID:26293467

  5. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    SciTech Connect

    Helkin, Alex; Maier, Kristopher G.; Gahtan, Vivian

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  6. Vascular, metabolic, and inflammatory abnormalities in normoglycemic offspring of patients with type 2 diabetes mellitus.

    PubMed

    Tesauro, Manfredi; Rizza, Stefano; Iantorno, Micaela; Campia, Umberto; Cardillo, Carmine; Lauro, Davide; Leo, Roberto; Turriziani, Mario; Cocciolillo, Giulio Cesare; Fusco, Angelo; Panza, Julio A; Scuteri, Angelo; Federici, Massimo; Lauro, Renato; Quon, Michael J

    2007-03-01

    Endothelial dysfunction, insulin resistance, and elevated levels of circulating proinflammatory markers are among the earliest detectable abnormalities in people at risk for atherosclerosis. Accelerated atherosclerosis is a leading contributor to morbidity and mortality in type 2 diabetes mellitus, a complex genetic disorder. Therefore, we hypothesized that normoglycemic offspring of patients with type 2 diabetes mellitus (NOPD) may have impaired vascular and metabolic function related to an enhanced proinflammatory state. We compared NOPD (n = 51) with matched healthy control subjects without family history of diabetes (n = 35). Flow- and nitroglycerin-mediated brachial artery vasodilation were assessed by ultrasound to evaluate endothelium-dependent and -independent vascular function. Each subject also underwent an oral glucose tolerance test to evaluate metabolic function. Fasting levels of plasma adiponectin and circulating markers of inflammation (high-sensitivity C-reactive protein, CD40 ligand, interleukin 1beta, tumor necrosis factor alpha, vascular cell adhesion molecule 1, and intracellular adhesion molecule) were measured. Both NOPD and the control group had fasting glucose and insulin levels well within the reference range. However, results from oral glucose tolerance test and quantitative insulin sensitivity check index revealed that NOPD were insulin resistant with significantly impaired flow- and nitroglycerin-mediated dilation compared with the control group. Adiponectin levels were lower, whereas many circulating markers of inflammation were higher, in NOPD compared with the control group. Normoglycemic offspring of patients with type 2 diabetes mellitus have impaired vascular and metabolic function accompanied by an enhanced proinflammatory state that may contribute to their increased risk of diabetes and its vascular complications.

  7. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells

    PubMed Central

    Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo

    2016-01-01

    Rab5a, a key member of the Rab family of GTPases, was determined to be a regulator of vascular smooth muscle cell (VSMC) proliferation and migration. However, the exact regulatory mechanism remains unclear. As Rab5a has been shown to be associated with autophagy, which is essential for the conversion of VSMCs from a contractile to a synthetic phenotype in order to prevent cell death due to oxidative stress. The present study hypothesized that autophagy may be responsible for the proliferation and migration of VSMCs via the Rab5a protein. The aim of the present study was to evaluate the effect of Rab5a on autophagy in VSMCs. The human aorta vascular smooth muscle cell line, T/G HA-VSMCs, was treated with small interfering (si)RNA against Rab5a and/or platelet-derived growth factor (PDGF). Following treatment, the phenotype transition of the VSMCs was evaluated by detecting the mRNA and protien expression levels of VSMC molecular markers using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. In addition, autophagy in VSMCs was evaluated by western blotting for autophagy-associated proteins, flow cytometry of acidic vesicular organelles, punctate fluorescence of microtubule associated protein light chain 3 and transmission electron microscopy of typical scattered double-membrane vacuolar structures. Additionally, the proliferation, migration, cell cycle and apoptotic response of VSMCs were detected by sulforhodamine B assay, transwell assay and flow cytometry, respectively. The results revealed that transfection with siRNA against Rab5a led to a significant decrease in Rab5a protein expression, while the reduced expression trend of Rab5a was rescued by intervention with PDGF. Furthermore, cells transfected with siRNA against Rab5a inhibited the autophagy of VSMCs. Downregulated Rab5a inhibited the phenotype transition of VSMCs. Additionally, downregulated Rab5a led to slowed cell growth, decreased numbers of migrated

  8. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy

    SciTech Connect

    Salabei, Joshua K.; Balakumaran, Arun; Frey, Justin C.; Boor, Paul J.; Treinen-Moslen, Mary; Conklin, Daniel J.

    2012-08-01

    Calcium channel blockers (CCBs) are important in the management of hypertension and limit restenosis. Although CCB efficacy could derive from decreased blood pressure, other mechanisms independent of CCB activity also can contribute to antiproliferative action. To understand mechanisms of CCB-mediated antiproliferation, we studied two structurally dissimilar CCBs, diltiazem and verapamil, in cultured rat vascular smooth muscle cells (VSMC). To elucidate CCB-independent effects, pure stereoisomers of verapamil (R-verapamil, inactive VR; S-verapamil, active, VS) were used. The effects of CCB exposure on cell viability (MTT reduction), cell proliferation ({sup 3}H-thymidine incorporation), VSMC morphology by light and transmission electron microscopy (TEM) and autophagy (LC3I/II, ATG5) were measured. In general, verapamil, VR or VS treatment alone (80 μM) appreciably enhanced MTT absorbance although higher concentrations (VR or VS) slightly decreased MTT absorbance. Diltiazem (140 μM) markedly decreased MTT absorbance (40%) at 120 h. VR or VS treatment inhibited {sup 3}H-thymidine incorporation (24 h) and induced cytological alterations (i.e., karyokinesis, enhanced perinuclear MTT deposition, accumulated perinuclear “vacuoles”). TEM revealed perinuclear “vacuoles” to be aggregates of highly laminated and electron-dense vesicles resembling autophagosomes and lysosomes, respectively. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation by Western blotting and by increased perinuclear LC3-GFP{sup +} puncta in verapamil-treated VSMC. Verapamil stereoisomers appeared to decrease perinuclear mitochondrial density. These observations indicate that antiproliferative effects of verapamil stereoisomers are produced by enhanced mitochondrial damage and upregulated autophagy in VSMC. These effects are independent of CCB activity indicating a distinct mechanism of action that could be targeted for more efficacious anti

  9. Continuous exposure to low amplitude extremely low frequency electrical fields characterizing the vascular streaming potential alters elastin accumulation in vascular smooth muscle cells.

    PubMed

    Bergethon, Peter R; Kindler, Dean D; Hallock, Kevin; Blease, Susan; Toselli, Paul

    2013-07-01

    In normal development and pathology, the vascular system depends on complex interactions between cellular elements, biochemical molecules, and physical forces. The electrokinetic vascular streaming potential (EVSP) is an endogenous extremely low frequency (ELF) electrical field resulting from blood flowing past the vessel wall. While generally unrecognized, it is a ubiquitous electrical biophysical force to which the vascular tree is exposed. Extracellular matrix elastin plays a central role in normal blood vessel function and in the development of atherosclerosis. It was hypothesized that ELF fields of low amplitude would alter elastin accumulation, supporting a link between the EVSP and the biology of vascular smooth muscle cells. Neonatal rat aortic smooth muscle cell cultures were exposed chronically to electrical fields characteristic of the EVSP. Extracellular protein accumulation, DNA content, and electron microscopic (EM) evaluation were performed after 2 weeks of exposure. Stimulated cultures showed no significant change in cellular proliferation as measured by the DNA concentration. The per-DNA normalized protein in the extracellular matrix was unchanged while extracellular elastin accumulation decreased 38% on average. EM analysis showed that the stimulated cells had a 2.85-fold increase in mitochondrial number. These results support the formulation that ELF fields are a potential factor in both normal vessel biology and in the pathogenesis of atherosclerotic diseases including heart disease, stroke, and peripheral vascular disease.

  10. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.

    PubMed

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-05-10

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs.

  11. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes.

    PubMed

    Kranzhöfer, R; Clinton, S K; Ishii, K; Coughlin, S R; Fenton, J W; Libby, P

    1996-08-01

    Thrombosis frequently occurs during atherogenesis and in response to vascular injury. Accumulating evidence supports a role for inflammation in the same situation. The present study therefore sought links between thrombosis and inflammation by determining whether thrombin, which is present in active form at sites of thrombosis, can elicit inflammatory functions of human monocytes and vascular smooth muscle cells (SMCs), two major constituents of advanced atheroma. Human alpha-thrombin (EC50, approximately equal to 500 pmol/L) potently induced interleukin (IL)-6 release from SMCs. The tethered-ligand thrombin receptor appeared to mediate this effect. Furthermore, alpha-thrombin also rapidly increased levels of mRNA encoding IL-6 and monocyte chemotactic protein-1 (MCP-1) in SMCs. In contrast, only alpha-thrombin concentrations of > or = 100 nmol/L could stimulate release of IL-6 or tumor necrosis factor-alpha (TNF alpha) in peripheral blood monocytes or monocyte-derived macrophages. Lipid loading of macrophages did not augment thrombin responsiveness. Likewise, only alpha-thrombin concentrations of > or = 100 nmol/L increased levels of IL-6, IL-1 beta, MCP-1, or TNF alpha mRNA in monocytes. Differential responses of SMCs and monocytes to thrombin extended to early agonist-mediated increases in [Ca2+]i. SMCs and endothelial cells, but not monocytes, contained abundant mRNA encoding the thrombin receptor and displayed cell surface thrombin receptor expression detected with a novel monoclonal antibody. Thus, the level of thrombin receptors appeared to account for the differential thrombin susceptibility of SMCs and monocytes. These data suggest that SMCs may be more sensitive than monocytes/macrophages to thrombin activation in human atheroma. Cytokines produced by thrombin-activated SMCs may contribute to ongoing inflammation in atheroma complicated by thrombosis or subjected to angioplasty.

  12. Cyclin-dependent kinase inhibitor, p21Waf1, regulates vascular smooth muscle cell hypertrophy.

    PubMed

    Okamoto, Kenichi; Kato, Seiya; Arima, Nobuyuki; Fujii, Teruhiko; Morimatsu, Minoru; Imaizumi, Tsutomu

    2004-04-01

    In the process of vascular diseases, smooth muscle cells (SMC) undergo not only hyperplasia but also hypertrophy, resulting in vascular remodeling. A cyclin-dependent kinase inhibitor (CDKI), p21Waf1, has been shown to play an important role in SMC hyperplasia. Here we investigated a potential role of p21Waf1 in SMC hypertrophy. An exposure of cultured rat SMC to serum drove the cell cycle progression with up-regulation of various cell cycle markers and increased activities of cyclin-dependent kinases, but did not cause SMC hypertrophy. In contrast, incubation of SMC for 48 h with angiotensin II (AII, 100 nmol/l) resulted in a significant increase in the cell size measured by flowcytometric forward-angle light scatter assay, in association with an increase in the ratio of [3H]leucine/[3H]thymidine uptake, indicating SMC hypertrophy. At 48 h, p21Waf1 expression was up-regulated in SMC exposed to AII but not in those exposed to serum. These results suggest that p21Waf1 may be involved in hypertrophy. To further investigate this issue, two manipulations of the p21Waf1 gene were performed. Adenovirus-mediated over-expression of p21Waf1 not only reduced S-phasic cells but also caused hypertrophy, despite the exposure to serum. Antisense oligodeoxynucleotide for p21Waf1 inhibited the hypertrophy of SMC exposed to AII. Our data suggest that p21Waf1 may play a role in SMC hypertrophy as well.

  13. Zoledronate upregulates MMP-9 and -13 in rat vascular smooth muscle cells by inducing oxidative stress

    PubMed Central

    Arun, Mehmet Zuhuri; Reel, Buket; Sala-Newby, Graciela B; Bond, Mark; Tsaousi, Aikaterini; Maskell, Perry; Newby, Andrew C

    2016-01-01

    Background Bisphosphonates, including zoledronate, target osteoclasts and are widely used in the treatment of osteoporosis and other bone resorption diseases, despite side effects that include damaging the stomach epithelium. Beneficial and adverse effects on other organ systems, including the cardiovascular system, have also been described and could impact on the use of bisphosphonates as therapeutic agents. Vascular smooth muscle cells (VSMCs) are major constituents of the normal vascular wall and have a key role in intimal thickening and atherosclerosis, in part by secreting MMPs that remodel the extracellular matrix and cleave cell surface proteins or secreted mediators. In this study, we investigated the effects of zoledronate on MMP expression. Methods Rat VSMCs were stimulated by PDGF (50 ng/mL) plus TNF-α (10 ng/mL) or left unstimulated for a further 24 hours in serum-free medium. In other series of experiments, cells were pre-treated either with SC-514 (50 μM) or with apocynin (20 nM) for 2 hours, then zoledronate (100 μM) was added into 2% fetal calf serum containing medium for 24 hours. Results and discussion Using isolated rat VSMCs in culture, zoledronate (100 μM) increased MMP-9 and -13 mRNA expressions but inhibited MMP-2 expression. MMP-9 and MMP-13 up-regulation was shown to depend on the NF-κB pathway; and this was activated by zoledronate. Furthermore, zoledronate elevated the levels of reactive oxygen species detected by either dichlorofluorescein in isolated VSMCs or lucigenin enhanced chemiluminescence in rat aortic rings in vitro. Apocynin, an inhibitor of NADPH oxidase, reversed NF-κB activation and MMP-9 and MMP-13 up-regulation by zoledronate. Conclusion We conclude that zoledronate increases MMP-9 and MMP-13 expressions in rat VSMCs dependent upon stimulation of the NF-κB pathway by reactive oxygen species. Effects on MMP expression may contribute to the pharmacologic profile of bisphosphonates. PMID:27143852

  14. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites

    PubMed Central

    Sun, Zhe; Martinez-Lemus, Luis A.; Hill, Michael A.; Meininger, Gerald A.

    2008-01-01

    Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2∼5 μm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of α5- and β3-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800∼1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to α5β1- and αvβ3-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces. PMID:18495809

  15. Thiamylal sodium increased inflammation and the proliferation of vascular smooth muscle cells

    PubMed Central

    Hoka, Sumio

    2016-01-01

    Background Thiamylal sodium is a common anesthetic barbiturate prepared in alkaline solution for clinical use. There is no previously reported study on the effects of barbiturates on the inflammation and proliferation of vascular smooth muscle cells (VSMCs). Here, we examined the effects of clinical-grade thiamylal sodium solution (TSS) on the inflammation and proliferation of rat VSMCs. Methods Expression levels of interleukin (IL)-1α, IL-1β, IL-6, and toll-like receptors in rat VSMCs were detected by quantitative reverse transcription-polymerase chain reaction and microarray analyses. The production of IL-6 by cultured VSMCs or ex vivo-cultured rat aortic segments was detected in supernatants by enzyme-linked immunosorbent assay. VSMC proliferation and viability were determined by the water-soluble tetrazolium-1 assay and trypan blue staining, respectively. Results TSS increased expression of IL-1α, IL-6, and TLR4 in VSMCs in a dose-dependent manner, and reduced IL-1β expression. Ex vivo TSS stimulation of rat aorta also increased IL-6. Low concentrations of TSS enhanced VSMC proliferation, while high concentrations reduced both cell proliferation and viability. Expression of IL-1 receptor antagonist, which regulates cell proliferation, was not increased by TSS stimulation. Exposure of cells to the TSS additive, sodium carbonate, resulted in significant upregulation of IL-1α and IL-6 mRNA levels, to a greater extent than TSS. Conclusions TSS-induced proinflammatory cytokine production by VSMCs is caused by sodium carbonate. However, pure thiamylal sodium has an anti-inflammatory effect in VSMCs. TSS exposure to VSMCs may promote vascular inflammation, leading to the progression of atherosclerosis or in-stent restenosis, resulting in vessel bypass graft failure. PMID:27274372

  16. NOX4 downregulation leads to senescence of human vascular smooth muscle cells

    PubMed Central

    Przybylska, Dorota; Janiszewska, Dorota; Goździk, Aleksandra; Bielak-Zmijewska, Anna; Sunderland, Piotr; Sikora, Ewa; Mosieniak, Grażyna

    2016-01-01

    Senescence is a stress response characterized by an irreversible growth arrest and alterations in certain cell functions. It is believed that both double-strand DNA breaks (DSB) and increased ROS level are the main culprit of senescence. Excessive ROS production is also particularly important in the development of a number of cardiovascular disorders. In this context the involvement of professional ROS-producing enzymes, NADPH oxidases (NOX), was postulated. In contrary to the common knowledge, we have shown that not only increased ROS production but also diminished ROS level could be involved in the induction of senescence. Accordingly, our studies revealed that stress-induced premature senescence (SIPS) of vascular smooth muscle cells (VSMCs) induced by doxorubicin or H2O2, correlates with increased level of DSB and ROS. On the other hand, both SIPS and replicative senescence were accompanied by diminished expression of NOX4. Moreover, inhibition of NOX activity or decrease of NOX4 expression led to permanent growth arrest of VSMCs and secretion of interleukins and VEGF. Interestingly, cells undergoing senescence due to NOX4 depletion neither acquired DSB nor activated DNA damage response. Instead, transient induction of the p27, upregulation of HIF-1alpha, decreased expression of cyclin D1 and hypophosphorylated Rb was observed. Our results showed that lowering the level of ROS-producing enzyme - NOX4 oxidase below physiological level leads to cellular senescence of VSMCs which is correlated with secretion of pro-inflammatory cytokines. Thus the use of specific NOX4 inhibitors for pharmacotherapy of vascular diseases should be carefully considered. PMID:27655718

  17. Critical Parameters of the In Vitro Method of Vascular Smooth Muscle Cell Calcification

    PubMed Central

    Hortells, Luis; Sosa, Cecilia; Millán, Ángel; Sorribas, Víctor

    2015-01-01

    Background Vascular calcification (VC) is primarily studied using cultures of vascular smooth muscle cells. However, the use of very different protocols and extreme conditions can provide findings unrelated to VC. In this work we aimed to determine the critical experimental parameters that affect calcification in vitro and to determine the relevance to calcification in vivo. Experimental Procedures and Results Rat VSMC calcification in vitro was studied using different concentrations of fetal calf serum, calcium, and phosphate, in different types of culture media, and using various volumes and rates of change. The bicarbonate content of the media critically affected pH and resulted in supersaturation, depending on the concentration of Ca2+ and Pi. Such supersaturation is a consequence of the high dependence of bicarbonate buffers on CO2 vapor pressure and bicarbonate concentration at pHs above 7.40. Such buffer systems cause considerable pH variations as a result of minor experimental changes. The variations are more critical for DMEM and are negligible when the bicarbonate concentration is reduced to ¼. Particle nucleation and growth were observed by dynamic light scattering and electron microscopy. Using 2mM Pi, particles of ~200nm were observed at 24 hours in MEM and at 1 hour in DMEM. These nuclei grew over time, were deposited in the cells, and caused osteogene expression or cell death, depending on the precipitation rate. TEM observations showed that the initial precipitate was amorphous calcium phosphate (ACP), which converts into hydroxyapatite over time. In blood, the scenario is different, because supersaturation is avoided by a tightly controlled pH of 7.4, which prevents the formation of PO43--containing ACP. Conclusions The precipitation of ACP in vitro is unrelated to VC in vivo. The model needs to be refined through controlled pH and the use of additional procalcifying agents other than Pi in order to reproduce calcium phosphate deposition in vivo

  18. Oxidized Phospholipid Species Promote in Vivo Differential Cx43 Phosphorylation and Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Johnstone, Scott R.; Ross, Jeremy; Rizzo, Michael J.; Straub, Adam C.; Lampe, Paul D.; Leitinger, Norbert; Isakson, Brant E.

    2009-01-01

    Regulation of both the expression and function of connexins in the vascular wall is important during atherosclerosis. Progression of the disease state is marked by vascular smooth muscle cell (VSMC) proliferation, which coincides with the reduced expression levels of connexin 43 (Cx43). However, nothing is currently known about the factors that regulate post-translational modifications of Cx43 in atherogenesis, which could be of particular importance, due to the association between site-specific Cx43 phosphorylation and cellular proliferation. We compared the effects of direct carotid applications of two oxidized phospholipid derivatives, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), on Cx43 expression and phosphorylation, and on cell proliferation. Since both POVPC and PGPC have been shown to act through different intracellular pathways, we hypothesized that each oxidized phospholipid species could induce differential Cx43 phosphorylation events in the cytoplasmically located carboxyl-terminal region of the protein, which could potentially enhance cell proliferation. Application of POVPC caused a reduction in VSMC Cx43 levels, enhanced its phosphorylation at serine (pS) 279/282, and increased VSMC proliferation both in vivo and in vitro. Treatment with PGPC enhanced VSMC pS368 levels with no associated change in proliferation. These oxidized phospholipid-induced Cx43 post-translational changes in VSMCs were consistent with those identified in ApoE−/− mice. Taken together, these results demonstrate that post-translational phosphorylation of Cx43 could be a key factor in the pathogenesis of atherosclerosis. PMID:19608875

  19. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    SciTech Connect

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  20. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

    PubMed Central

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-01-01

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs. PMID:27114541

  1. Role of blood and vascular smooth muscle in the vasoactivity of nitrite

    PubMed Central

    Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.

    2014-01-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012

  2. Essential Role of TGF-β/Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation

    PubMed Central

    Rodríguez-Vita, Juan; Sánchez-Galán, Eva; Santamaría, Beatriz; Sánchez-López, Elsa; Rodrigues-Díez, Raquel; Blanco-Colio, Luís Miguel; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta

    2008-01-01

    Background The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins) exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-β (TGF-β) in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-β/Smad pathway in atherosclerosis and vascular cells. Methodology In cultured vascular smooth muscle cells (VSMCs) statins enhanced Smad pathway activation caused by TGF-β. In addition, statins upregulated TGF-β receptor type II (TRII), and increased TGF-β synthesis and TGF-β/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-β induced apoptosis and increased TGF-β-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-β/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. Conclusions Statins enhance TGF-β/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-β/Smad pathway is essential for statins-dependent actions in VSMCs. PMID:19088845

  3. Functional regulation of ClC-3 in the migration of vascular smooth muscle cells.

    PubMed

    Ganapathi, Sindura B; Wei, Shun-Guang; Zaremba, Angelika; Lamb, Fred S; Shears, Stephen B

    2013-01-01

    Migration of vascular smooth muscle cells (VSMCs) into neointima contributes to atherosclerosis and restenosis. This migration requires coordinated plasmalemmal fluxes of water and ions. Here, we show that aortic VSMC migration depends on the regulation of transmembrane Cl(-) flux by ClC-3, a Cl(-) channel/transporter. The contribution of ClC-3 to plasmalemmal Cl(-) current was studied in VSMCs by electrophysiological recordings. Cl(-) current was negligible in cells perfused with 0 [Ca(2+)]. Raising intracellular [Ca(2+)] to 0.5 μM activated a Cl(-) current (I(Cl.Ca)), approximately half of which was eliminated on inhibition by KN-93 of calmodulin-dependent protein kinase II. I(Cl.Ca) was also halved by inositol-3,4,5,6-tetrakisphosphate, a cellular signal with the biological function of specifically preventing calmodulin-dependent protein kinase II from activating I(Cl.Ca). Gene disruption of ClC-3 reduced I(Cl.Ca) by 50%. Moreover, I(Cl.Ca) in the ClC-3 null VSMCs was not affected by either KN-93 or inositol-3,4,5,6-tetrakisphosphate. We conclude that I(Cl.Ca) is composed of 2 components, one is ClC-3 independent whereas the other is ClC-3 dependent, activated by calmodulin-dependent protein kinase II and inhibited by inositol-3,4,5,6-tetrakisphosphate. We also assayed VSMC migration in transwell assays. Migration was halved in ClC-3 null cells versus wild-type cells. In addition, inhibition of ClC-3 by niflumic acid, KN-93, or inositol-3,4,5,6-tetrakisphosphate each reduced cell migration in wild-type cells but not in ClC-3 null cells. These cell-signaling roles of ClC-3 in VSMC migration suggest new therapeutic approaches to vascular remodeling diseases.

  4. miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway.

    PubMed

    Wu, Z W; Liu, Y F; Wang, S; Li, B

    2015-12-29

    The aim of this study was to investigate the role of miRNA-146a in modulating the function of vascular smooth muscle cells in a rat model of coronary heart disease. Vascular smooth muscle cells were isolated and cultured from the rat coronary heart disease model and normal rats (controls). miRNA-146a levels were measured in vascular smooth muscle cells obtained from rats with coronary heart disease and control rats. The proliferation, growth, apoptosis, and activation of the NF-κB pathway in the vascular smooth muscle cells were detected using the MTT assay and flow cytometry, respectively. The role of the NF-κB pathway in modulating the apoptosis of vascular smooth muscle cells was investigated by measuring the reactivity of the cells to an NF-κB pathway inhibitor (TPCA-1). Vascular smooth muscle cells from the disease model exhibited higher levels of miRNA-146a than that by the normal controls (P = 0.0024). The vascular smooth muscle cells obtained from rats with coronary heart disease showed decreased proliferation and growth and increased apoptosis. miRNA-146a overexpression elevated the rate of cell apoptosis. The NF-κB pathway was activated in vascular smooth muscle cells obtained from rats with coronary heart disease. Inhibition of the NF- κB pathway significantly decreased the rate of vascular smooth muscle cell apoptosis in coronary heart disease rats (P = 0.0038). In conclusion, miRNA- 146a was found to induce vascular smooth muscle cell apoptosis in rats with coronary heart disease via the activation of the NF-κB signal pathway.

  5. Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency.

    PubMed

    Wood, Alasdair J; Müller, Juliane S; Jepson, Catherine D; Laval, Steve H; Lochmüller, Hanns; Bushby, Kate; Barresi, Rita; Straub, Volker

    2011-12-15

    Fukutin and fukutin-related protein (FKRP) are involved in the glycosylation of α-dystroglycan, a key receptor for basement membrane proteins. Aberrant α-dystroglycan glycosylation leads to a broad spectrum of disorders, ranging from limb girdle muscular dystrophy to Walker-Warburg syndrome. This is the first study investigating a role of fukutin and FKRP-mediated glycosylation in angiogenesis. Transgenic zebrafish expressing enhanced green fluorescent protein in blood vessels were treated with morpholino antisense oligonucleotides that blocked the expression of fukutin, FKRP and dystroglycan. All morphant fish showed muscle damage and vascular abnormalities at day 1 post-fertilization. Intersegmental vessels of somites failed to reach the dorsal longitudinal anastomosis and in more severe phenotypes retracted further or were in some cases even completely missing. In contrast, the eye vasculature was distorted in both fukutin and FKRP morphants, but not in dystroglycan morphants or control fish. The eye size was also smaller in the fukutin and FKRP morphants when compared with dystroglycan knockdown fish and controls. In general, the fukutin morphant fish had the most severe skeletal muscle and eye phenotype. Our findings suggest that fukutin and FKRP have functions that affect ocular development in zebrafish independently of dystroglycan. Despite anecdotal reports about vascular abnormalities in patients affected by dystroglycanopathies, the clinical relevance of such lesions remains unclear and should be subject to further review and investigations.

  6. IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway.

    PubMed

    Wang, Hui-Jin; Zhou, Yu; Liu, Rui-Ming; Qin, Yuan-Sen; Cen, Ying-Huan; Hu, Ling-Yu; Wang, Shen-Ming; Hu, Zuo-Jun

    2017-03-01

    Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets

  7. Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension

    PubMed Central

    Zhou, Ning; Lee, Jia-Jye; Stoll, Shaunrick; Ma, Ben; Wiener, Robert; Wang, Charles; Costa, Kevin D.; Qiu, Hongyu

    2017-01-01

    Aims Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute to the pathogenesis of aortic stiffening in hypertension, mediated by the serum response factor (SRF)/myocardin signalling pathway. Methods and results Four month old male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were studied. Using atomic force microscopy, significant VSMC stiffening was observed in the large conducting aorta compared with the distal arteries in SHR (P < 0.001), however, this regional variation was not observed in WKY rats (P > 0.4). The increase of VSMC stiffness was accompanied by a parallel increase in the expression of SRF by 9.8-fold and of myocardin by 10.5-fold in thoracic aortic VSMCs from SHR vs. WKY rats, resulting in a significant increase of downstream stiffness-associated genes (all, P < 0.01 vs. WKY). Inhibition of SRF/myocardin expression selectively attenuated aortic VSMC stiffening, and normalized downstream targets in VSMCs isolated from SHR but not from WKY rats. In vivo, 2 weeks of treatment with SRF/myocardin inhibitor delivered by subcutaneous osmotic minipump significantly reduced aortic stiffness and then blood pressure in SHR but not in WKY rats, although concomitant changes in aortic wall remodelling were not detected during this time frame. Conclusions SRF/myocardin pathway acts as a pivotal mediator of aortic VSMC mechanical properties and plays a central role in the pathological aortic stiffening in hypertension. Attenuation of aortic VSMC stiffening by pharmacological inhibition of SRF/myocardin signalling presents a novel therapeutic strategy for the treatment of hypertension by targeting the cellular contributors to aortic stiffness. PMID:28003268

  8. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6.

    PubMed Central

    Loppnow, H; Libby, P

    1990-01-01

    The cells that make up blood vessel walls appear to participate actively in local immune and inflammatory responses, as well as in certain vascular diseases. We tested here whether smooth muscle cells (SMC) can produce the important inflammatory mediator IL6. Unstimulated SMC in vitro elaborated 5 X 10(3) pg recIL6/24h (i.e., biological activity equivalent to 5 X 10(3) pg recombinant IL6 (recIL6), as determined in B9-assay with a recIL6 standard). Several pathophysiologically relevant factors augmented IL6 release from SMC including 10 micrograms LPS/ml (10(4) pg recIL6), 10 ng tumor necrosis factor/ml (4 X 10(4) pg recIL6), and most notably 10 ng IL1/ml (greater than or equal to 3.2 X 10(5) pg recIL6). Production of IL6 activity corresponded to IL6 mRNA accumulation and de novo synthesis. SMC released newly synthesized IL6 rapidly, as little metabolically labeled material remained cell-associated. In supernatants of IL1-stimulated SMC, IL6 accounted for as much as 4% of the secreted proteins. In normal vessels SMC seldom divide, but SMC proliferation can occur in hypertension or during atherogenesis. We therefore tested the relationship between IL6 production and SMC proliferation in response to platelet-derived growth factor (PDGF) in vitro. Quiescent SMC released scant IL6 activity, whereas PDGF (1-100 ng/ml) produced concentration-dependent and coordinate enhancement of SMC proliferation and IL6 release (linear regression of growth vs. IL6 release yielded r greater than 0.9). IL6 itself neither stimulated nor inhibited SMC growth or IL6 production. Intact medial strips studied in short-term organoid culture produced large quantities of IL6, similar to the results obtained with cultured SMC. These findings illustrate a new function of vascular SMC by which these cells might participate in local immunoregulation and in the pathogenesis of various important vascular diseases as well as in inflammatory responses generally. Images PMID:2312724

  9. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    SciTech Connect

    Guo, Xiaoxia; Zhou, Chunyan; Sun, Ningling

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  10. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

    PubMed

    Barnes, Elizabeth A; Chen, Chih-Hsin; Sedan, Oshra; Cornfield, David N

    2017-02-01

    Pulmonary arterial hypertension (PAH) is an often fatal disease with limited treatment options. Whereas current data support the notion that, in pulmonary artery endothelial cells (PAECs), expression of transcription factor hypoxia inducible factor-1α (HIF-1α) is increased, the role of HIF-1α in pulmonary artery smooth muscle cells (PASMCs) remains controversial. This study investigates the hypothesis that, in PASMCs from patients with PAH, decreases in HIF-1α expression and activity underlie augmented pulmonary vascular contractility. PASMCs and tissues were isolated from nonhypertensive control patients and patients with PAH. Compared with controls, HIF-1α and Kv1.5 protein expression were decreased in PAH smooth muscle cells (primary culture). Myosin light chain (MLC) phosphorylation and MLC kinase (MLCK) activity-major determinants of vascular tone-were increased in patients with PAH. Cofactors involved in prolyl hydroxylase domain activity were increased in PAH smooth muscle cells. Functionally, PASMC contractility was inversely correlated with HIF-1α activity. In PASMCs derived from patients with PAH, HIF-1α expression is decreased, and MLCK activity, MLC phosphorylation, and cell contraction are increased. We conclude that compromised PASMC HIF-1α expression may contribute to the increased tone that characterizes pulmonary hypertension.-Barnes, E. A., Chen, C.-H., Sedan, O., Cornfield, D. N. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

  11. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  12. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications.

  13. Binding, internalization, and degradation of atrial natriuretic peptide in cultured vascular smooth muscle cells of rat

    SciTech Connect

    Hirata, Y.; Takata, S.; Tomita, M.; Takaichi, S.

    1985-11-15

    Binding, internalization, and degradation of /sup 125/I-labeled-rat atrial natriuretic peptide (rANP) were studied in cultured rat aortic vascular smooth muscle cells (VSMC). At 37 degrees C, /sup 125/I-labeled-rANP rapidly bound to VSMCs, but the cell-bound radioactivity rapidly decreased upon subsequent incubation, while the binding was slow at 4 degrees C, reaching to an apparent equilibrium after 6 hrs. The cell-bound /sup 125/I-labeled-rANP at 37 degrees C is rapidly dissociated from VSMC (t 1/2: approximately 40 min) with the appearance of degradaded product(s) of radioligand in the medium, whereas the degradation was minimal at 4 degrees C. This degradative process was blocked by inhibitors of metabolic energy production (azide, dinitrophenol), inhibitors of lysosomal cathepsins (leupeptin, pepstatin), and lysosomotropic agents (NH/sub 4/Cl, chloroquine, lidocaine, methylamine, dansylcadaverine), but not by inhibitors of serine or thiol proteases. /sup 125/I-labeled-rANP initially bound to the cell-surface was rapidly internalized, and delivered to lysosomal structures, which was confirmed by autoradiographic studies. These data indicate that rANP, after binding to the cell-surface receptors, is rapidly internalized into the cells through receptor-mediated endocytosis, and subsequently degradaded by lysosomal hydrolases.

  14. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.

    PubMed

    Li, J; Liu, S; Li, W; Hu, S; Xiong, J; Shu, X; Hu, Q; Zheng, Q; Song, Z

    2012-08-01

    Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.

  15. Insulin-independent GLUT4 translocation in proliferative vascular smooth muscle cells involves SM22α.

    PubMed

    Zhao, Li-Li; Zhang, Fan; Chen, Peng; Xie, Xiao-Li; Dou, Yong-Qing; Lin, Yan-Ling; Nie, Lei; Lv, Pin; Zhang, Dan-Dan; Li, Xiao-Kun; Miao, Sui-Bing; Yin, Ya-Juan; Dong, Li-Hua; Song, Yu; Shu, Ya-Nan; Han, Mei

    2017-02-01

    The insulin-sensitive glucose transporter 4 (GLUT4) is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs) and is significantly upregulated in rabbit neointima. This study investigated the role of GLUT4 in VSMC proliferation, the cellular mechanism underlying PDGF-BB-stimulated GLUT4 translocation, and effects of SM22α, an actin-binding protein, on this process. Chronic treatment of VSMCs with PDGF-BB significantly elevated GLUT4 expression and glucose uptake. PDGF-BB-induced VSMC proliferation was dependent on GLUT4-mediated glucose uptake. Meanwhile, the response of GLUT4 to insulin decreased in PDGF-BB-stimulated VSMCs. PDGF-BB-induced GLUT4 translocation partially rescued glucose utilization in insulin-resistant cells. Immunofluorescence and western blot analysis revealed that PDGF-BB induced GLUT4 translocation in an actin dynamics-dependent manner. SM22α disruption facilitated GLUT4 translocation and glucose uptake by promoting actin dynamics and cortical actin polymerization. Similar results were observed in VSMCs of SM22α (-/-) mice. The in vivo experiments showed that the glucose level in the neointima induced by ligation was significantly increased in SM22α (-/-) mice, accompanied by increased neointimal thickness, compared with those in wild-type mice. These findings suggest that GLUT4-mediated glucose uptake is involved in VSMC proliferation, and provide a novel link between SM22α and glucose utilization in PDGF-BB-triggered proliferation.

  16. Autocrine secretion of osteopontin by vascular smooth muscle cells regulates their adhesion to collagen gels.

    PubMed Central

    Weintraub, A. S.; Giachelli, C. M.; Krauss, R. S.; Almeida, M.; Taubman, M. B.

    1996-01-01

    Osteopontin (OPN) is a secreted protein postulated to facilitate vascular smooth muscle cell (VSMC) adhesion and migration. Rat aortic VSMC lines were isolated after infection with recombinant retroviruses harboring OPN sense and antisense constructs. All lines grew normally in monolayer culture. On three-dimensional collagen gels, normal VSMCs and lines containing sense constructs (n=15) or empty vector (n=10) attached to gel and invaded the matrix. Four of five antisense clones did not adhere or invade. Antisense clones had lower OPN levels after stimulation with angiotensin II than sense clones or clones containing the empty vector (antisense, 257+/-102 ng/ml; sense, 473+/-104; vector, 434+/-66). Non-adhering antisense clones had lower mean OPN levels after angiotensin II stimulation (161+/-47 ng/ml) than sense or antisense lines with normal adhesion (486+/-63 ng/ml). The ability to adhere correlated with OPN levels >250 ng/ml. Adhesion and invasion were fully restored with addition of 100 to 200 ng/ml of exogenous OPN and were inhibited in normal VSMCs by incubation with 1 microgram/ml anti-OPN antibody. The autocrine secretion of OPN appears to play an important role in VSMC adhesion, spreading, and invasion. Images Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:8686750

  17. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  18. Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

    PubMed Central

    Zhang, Chao; Luo, Tao; Cui, Shijun; Gu, Yongquan; Bian, Chunjing; Chen, Yibin; Yu, Xiaochun; Wang, Zhonggao

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359] PMID:25748172

  19. Shikonin inhibits TNF-α-induced growth and invasion of rat aortic vascular smooth muscle cells.

    PubMed

    Zhang, Xuemin; Hu, Wenyu; Wu, Fang; Yuan, Xue; Hu, Jian

    2015-08-01

    Shikonin is a naphthoquinone compound extracted from the Chinese herb purple gromwell. Shikonin has broad antibacterial, anti-inflammatory, and antitumor activities. The tumor necrosis factor-α (TNF-α)-induced proliferation and invasion of vascular smooth muscle cells (VSMCs) is an important factor that contributes to atherosclerosis. The effects of shikonin on the proliferation and apoptosis of VSMCs have been reported; however, the function of shikonin on TNF-α-mediated growth and invasion of VSMCs during atherosclerosis remains unclear. In this study, we used Western blot, flow cytometry, real-time quantitative PCR, and enzyme-linked immunosorbent assay to investigate the effect of shikonin on the TNF-α-induced growth and invasion of VSMCs and to determine the underlying mechanism. Our results showed that shikonin inhibits the TNF-α-mediated growth and invasion. Further study revealed that shikonin regulates the activation of nuclear factor kappa B and phosphatidyl inositol 3-kinase signaling pathways; modulates the expression of cyclin D1, cyclin E, B-cell lymphoma 2, and Bax; activates caspase-3 and caspase-9; induces cell cycle arrest; and promotes the apoptosis of VSMCs. Together, our results indicate that shikonin may become a promising agent for the treatment of atherosclerosis and they also establish foundation for the development of anti-atherosclerosis drugs.

  20. Identification and characterization of [6]-shogaol from ginger as inhibitor of vascular smooth muscle cell proliferation

    PubMed Central

    Liu, Rongxia; Heiss, Elke H; Sider, Nadine; Schinkovitz, Andreas; Gröblacher, Barbara; Guo, Dean; Bucar, Franz; Bauer, Rudolf; Dirsch, Verena M; Atanasov, Atanas G

    2015-01-01

    Scope Vascular smooth muscle cell (VSMC) proliferation is involved in the pathogenesis of cardiovascular disease, making the identification of new counteracting agents and their mechanisms of action relevant. Ginger and its constituents have been reported to improve cardiovascular health, but no studies exist addressing a potential interference with VSMC proliferation. Methods and results The dichloromethane extract of ginger inhibited VSMC proliferation when monitored by resazurin metabolic conversion (IC50 = 2.5 μg/mL). The examination of major constituents from ginger yielded [6]-shogaol as the most active compound (IC50 = 2.7 μM). In the tested concentration range [6]-shogaol did not exhibit cytotoxicity toward VSMC and did not interfere with endothelial cell proliferation. [6]-shogaol inhibited DNA synthesis and induced accumulation of the VSMC in the G0/G1 cell-cycle phase accompanied with activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/HO-1 pathway. Since [6]-shogaol lost its antiproliferative activity in the presence of the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin IX, HO-1 induction appears to contribute to the antiproliferative effect. Conclusion This study demonstrates for the first time inhibitory potential of ginger constituents on VSMC proliferation. The presented data suggest that [6]-shogaol exerts its antiproliferative effect through accumulation of cells in the G0/G1 cell-cycle phase associated with activation of the Nrf2/HO-1 pathway. PMID:25631547

  1. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment

    PubMed Central

    Espagnolle, Nicolas; Guilloton, Fabien; Deschaseaux, Frédéric; Gadelorge, Mélanie; Sensébé, Luc; Bourin, Philippe

    2014-01-01

    Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146−/Low and CD146High cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146−/Low and CD146High bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146−/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage. PMID:24188055

  2. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    SciTech Connect

    Liu, Yan; Zheng, Bin; Zhang, Xin-hua; Nie, Chan-juan; Li, Yong-hui; Wen, Jin-kun

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.

  3. Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation.

    PubMed

    Houtchens, Graham R; Foster, Michael D; Desai, Tejal A; Morgan, Elise F; Wong, Joyce Y

    2008-01-01

    Cellular alignment studies have shown that cell orientation has a large effect on the expression and behavior of cells. Cyclic strain and substrate microtopography have each been shown to regulate cellular alignment. This study examined the combined effects of these two stimuli on the alignment of bovine vascular smooth muscle cells (VSMCs). Cells were cultured on substrates with microgrooves of varying widths oriented either parallel or perpendicular to the direction of an applied cyclic tensile strain. We found that microgrooves oriented parallel to the direction of the applied strain limited the orientation response of VSMCs to the mechanical stimulus, while grooves perpendicular to the applied strain enhanced cellular alignment. Further, the extent to which parallel grooves limited cell alignment was found to be dependent on the groove width. It was found that for both a small (15microm) and a large (70microm) groove width, cells were better able to reorient in response to the applied strain than for an intermediate groove width (40microm). This study indicates that microtopographical cues modulate the orientation response of VSMCs to cyclic strain. The results suggest that there is a range of microgroove dimensions that is most effective at maintaining the orientation of the cells in the presence of an opposing stimulus induced by cyclic strain.

  4. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  5. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells.

    PubMed Central

    Sudhir, K; Wilson, E; Chatterjee, K; Ives, H E

    1993-01-01

    The effects of extracellular matrix proteins and mechanical strain on the mitogenic activity of angiotensins I and II (AI and AII) were examined in cultured rat vascular smooth muscle (VSM) cells. VSM cells on various extracellular matrices were exposed to AII (1 microM) for 48 h. On plastic, AII induced only a 1.6-fold increase in [3H]thymidine incorporation, but on fibronectin- or type I collagen-coated plastic, the response to AII was enhanced from two- to fourfold. On a type I collagen-coated silicone elastomer, to which mechanical strain was applied, [3H]thymidine incorporation dramatically increased to a maximum of 53-fold. Dup 753 (10(-5) M) blocked the AII-induced increase in DNA synthesis. AI also increased DNA synthesis in VSM cells, and this response was also enhanced by mechanical strain. Mitogenic activity of AI was blocked by ramiprilat (10(-5) M), indicating that its mitogenic activity was via conversion to AII. The synergy between AII and strain was completely eliminated by neutralizing antibodies to PDGF AB (3 micrograms/ml). Furthermore, the mitogenic effect of AII in unstrained cells was also synergistic with submaximal concentrations of PDGF AB (1 ng/ml). Thus, the synergy between AII and mechanical strain probably results from synergism between AII and PDGF secreted in response to strain. PMID:8254054

  6. Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

    PubMed Central

    Lee, Dong Hyup; Choi, Hyoung Chul; Lee, Kwang Youn

    2009-01-01

    Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-1β plus TNF-α), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-1 induction in rat VSMCs. Aprotinin induced HO-1 protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-1 inhibitor, tin protoporphyrin IX (SnPPIX). HO-1 is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties. PMID:19885007

  7. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    SciTech Connect

    Wada, Hiromichi Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  8. Role of asymmetric dimethylarginine in homocysteine-induced apoptosis of vascular smooth muscle cells.

    PubMed

    Yuan, Qiong; Jiang, De-Jian; Chen, Qing-Quan; Wang, Shan; Xin, Hong-Ya; Deng, Han-Wu; Li, Yuan-Jian

    2007-05-18

    Homocysteine (Hcy) could induce apoptosis of vascular smooth muscle cells (VSMC). Asymmetric dimethylarginine (ADMA) has been thought as a novel risk factor for cardiovascular diseases. We hypothesized that ADMA mediates homocysteine-induced apoptosis of VSMC. In this experiment the level of ADMA in the medium measured by high-performance liquid chromatography (HPLC) was elevated when the apoptosis of T/G HA-VSMC was induced by Hcy which was detected by Hoechst33342 staining or flow cytometry (FCM) with Annecin V+Propidium Iodide (PI). Exogenous ADMA induced the apoptosis of VSMC. At the same time, ADMA elevated the level of intracellular reactive oxidative species (ROS) determined by fluorescent ROS detection kit. The activation of JNK and p38MAPK contributed to ADMA-induced apoptosis of VSMC. The present results suggest that endogenous ADMA is involved in apoptosis of VSMC induced by Hcy, and the effects of ADMA is related to elevation of intracellular ROS and activation of JNK/p38MAPK signaling pathways.

  9. Alpha adrenergic modulation of the Na/sup +/ pump of canine vascular smooth muscle

    SciTech Connect

    Navran, S.S.; Adair, S.E.; Allen, J.C.; Seidel, C.L.

    1986-03-01

    Some vasoactive agents, eg. beta adrenergic agonists and forskolin, stimulate the Na/sup 7/ pump by a cAMP- dependent mechanism. The authors have now demonstrated that phenylephrine (PE) stimulates the Na/sup 7/ pump in intact blood vessels as quantitated by an increased ouabain-sensitive /sup 86/Rb uptake. The stimulation is dose-dependent (ED/sub 50/, 3 x 10/sup -6/M) and blocked by phentolamine (I/sub 50/, 10/sup -7/M), prazosin (I/sub 50/, 10/sup -8/M) yohimbine (I/sub 50/, 10/sup -6/M) or elevated intracellular Na/sup +/. These data suggest that the Na/sup +/ pump stimulation is mediated through alpha/sub 1/ receptors which produce an influx of extracellular Na/sup +/. In vascular smooth muscle cell cultures PE stimulates the Na/sup +/ pump, but only when cells have been deprived of fetal calf serum (FCS). Since FCS is known to stimulate Na/sup +/influx, in the continuous presence of FCS, these cells may already be Na/sup +/-loaded and therefore refractory to further stimulation by alpha-adrenergic agents. Unlike those vasorelaxants whose mechanism involves stimulation of the Na/sup +/ pump, alpha adrenergic agents are vasoconstrictors and therefore the role of Na/sup +/ pump stimulation in this case may be as a mechanism of feedback inhibition of contractility.

  10. Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice

    PubMed Central

    Jia, Lilly; Funk, Colin D.; Jia, Zongchao; Mak, Alan S.

    2017-01-01

    In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes. PMID:28362832

  11. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  12. Increased proliferation of explanted vascular smooth muscle cells: a marker presaging atherogenesis.

    PubMed

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1997-06-01

    The JCR:LA-cp homozygous cp/cp corpulent rat is genetically predisposed to develop atherosclerosis evident after 9 and 18 months of age in males and females and to manifest metabolic derangements resembling those seen in type II diabetes in humans (hyperinsulinemia, insulin resistance, hyperglycemia and hypertriglyceridemia). The present study was undertaken to determine whether vascular smooth muscle cells (SMCs) explanted from vessels destined to become atherosclerotic later in life exhibit intrinsic properties ex vivo that presage atherogenesis to provide a means for evaluating promptly intervention designed to modify it. SMCs were cultured from aortic explants of JCR:LA-cp corpulent (cp/cp) and lean control (+/+) rats of 4, 5, 6, and 9 months of age. Compared with SMCs from controls, SMCs from cp/cp rats exhibited increased proliferation, higher saturation density, increased augmentation of proliferation in response to selected mitogens and greater adherence to extracellular matrix proteins. The increased proliferative activity ex vivo anteceded by several months the development of atherosclerotic lesions in vivo. Thus, it is a promising marker in assessments of the efficacy of interventions designed to retard or prevent atherosclerosis.

  13. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    PubMed

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  14. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production.

    PubMed

    Zhu, Y; Hojo, Y; Ikeda, U; Takahashi, M; Shimada, K

    2000-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in atherosclerotic plaque rupture. The purpose of this study was to investigate the expression of MMP-1 by cell-to-cell interactions between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cells) were cocultured. MMP-1 levels were measured by enzyme-linked immunosorbent assay. Collagenolytic activity was determined by fluorescent labeled-collagen digestion. Immunohistochemistry was performed to determine which types of cells produce MMP-1. Adding THP-1 cells to VSMCs markedly increased the MMP-1 levels and activity of the culture media. MMP-1 levels were maximal when the cellular ratio of THP-1 cells/VSMCs was 1.0. Immunohistochemistry revealed that both types of cells in the coculture produced MMP-1. Separated coculture experiments showed that both direct contact and a soluble factor(s) contributed to MMP-1 production. Neutralizing anti-interleukin (IL)-6 and tumor necrosis factor-alpha antibodies inhibited coculture conditioned medium-induced MMP-1 production by VSMCs and THP-1 cells. Protein kinase C inhibitors, tyrosine kinase inhibitors, and a mitogen-activated protein kinase inhibitor significantly inhibited MMP-1 production by cocultures. Direct cell-to-cell interaction between THP-1 cells and VSMCs enhanced MMP-1 synthesis in both types of cells. Increased local MMP-1 production and activity induced by monocyte-VSMC interaction play an important pathogenic role in atherosclerotic plaque rupture.

  15. Monocyte prostaglandins inhibit procollagen secretion by human vascular smooth muscle cells: implications for plaque stability.

    PubMed

    Fitzsimmons, C; Proudfoot, D; Bowyer, D E

    1999-02-01

    Extracellular matrix remodelling occurs during atherosclerosis dictating the structure of the plaque and thus the resistance to rupture. Monocytes and macrophages are believed to play a role in this remodelling. In the present study, filter-separated co-culture has been used to study the effect of monocytes on procollagen turnover by human vascular smooth muscle cells (VSMC). In this system, freshly isolated human peripheral blood monocytes inhibited procollagen secretion from VSMC without affecting either degradation of procollagen, or DNA synthesis by the VSMC. Insertion of a 12 kDa dialysis membrane between the two cell types and treatment with indomethacin showed that the inhibitory factor was of low molecular weight and was cyclooxygenase-dependent. Pre-incubation of each cell type with indomethacin demonstrated that monocyte, but not VSMC cyclooxygenase was required. Thus, the inhibitory effect on procollagen secretion was due, most likely, to monocyte prostaglandins. Neither inhibition of thromboxane synthetase, nor blocking IL-1 activity, reduced the inhibitory activity. Addition of prostaglandins PGE1, PGE2 and PGF2alpha to VSMC cultures caused a reduction in procollagen secretion which was equivalent to, but was not additive with, the maximal effect achieved by monocytes. Monocytes and macrophages are a major source of prostaglandins and these molecules are likely to play an important role in collagen turnover within lesions.

  16. Effect of Cymbopogon citratus and Citral on Vascular Smooth Muscle of the Isolated Thoracic Rat Aorta.

    PubMed

    Devi, R Chitra; Sim, S M; Ismail, R

    2012-01-01

    Cymbopogon citratus has been shown to have antioxidant, antimicrobial, antispasmodic and chemo-protective properties. Citral, is the major constituent of C. citratus. This study investigated the effects of methanolic extracts of leaves (LE), stems (SE), and roots (RE) of C. citratus and citral on vascular smooth muscle and explored their possible mechanisms of action. The experiment was conducted using isolated tissue preparations, where citral, LE, SE, and RE were added separately into a tissue bath that contained aortic rings, which were pre-contracted with phenylephrine (PE). Citral, LE, and RE exhibited a dose-dependent relaxant effect on the PE-induced contractions. Citral appeared to partially act via NO as its vasorelaxant effect was attenuated by L-NAME. However, the effect of LE may involve prostacyclin as indomethacin reversed the relaxant effect of LE on the PE-induced contraction. Furthermore, citral, LE, and RE abolished the restoration of PE-induced contraction caused by the addition of increasing doses of calcium in both endothelium intact and denuded rings. These findings suggest that the relaxation effect of citral, LE, and RE is endothelium-independent and may be mainly by affecting the intracellular concentration of calcium. Citral may partially act through the NO pathway while a vasodilator prostaglandin may mediate the effect of LE.

  17. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model

    PubMed Central

    Keller, Amy C.; Knaub, Leslie A.; McClatchey, P. Mason; Connon, Chelsea A.; Bouchard, Ron; Miller, Matthew W.; Geary, Kate E.; Walker, Lori A.; Klemm, Dwight J.; Reusch, Jane E. B.

    2016-01-01

    Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets. PMID:27034743

  18. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model.

    PubMed

    Keller, Amy C; Knaub, Leslie A; McClatchey, P Mason; Connon, Chelsea A; Bouchard, Ron; Miller, Matthew W; Geary, Kate E; Walker, Lori A; Klemm, Dwight J; Reusch, Jane E B

    2016-01-01

    Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.

  19. Benefit of Mineralocorticoid Receptor Antagonism in AKI: Role of Vascular Smooth Muscle Rac1.

    PubMed

    Barrera-Chimal, Jonatan; André-Grégoire, Gwennan; Nguyen Dinh Cat, Aurelie; Lechner, Sebastian M; Cau, Jérôme; Prince, Sonia; Kolkhof, Peter; Loirand, Gervaise; Sauzeau, Vincent; Hauet, Thierry; Jaisser, Frédéric

    2017-01-13

    AKI is a frequent complication in hospitalized patients. Unfortunately, there is no effective pharmacologic approach for treating or preventing AKI. In rodents, mineralocorticoid receptor (MR) antagonism prevents AKI induced by ischemia-reperfusion (IR). We investigated the specific role of vascular MR in mediating AKI induced by IR. We also assessed the protective effect of MR antagonism in IR-induced AKI in the Large White pig, a model of human AKI. In mice, MR deficiency in smooth muscle cells (SMCs) protected against kidney IR injury. MR blockade by the novel nonsteroidal MR antagonist, finerenone, or genetic deletion of MR in SMCs associated with weaker oxidative stress production. Moreover, ischemic kidneys had higher levels of Rac1-GTP, required for NADPH oxidase activation, than sham control kidneys, and genetic deletion of Rac1 in SMCs protected against AKI. Furthermore, genetic deletion of MR in SMCs blunted the production of Rac1-GTP after IR. Pharmacologic inhibition of MR also prevented AKI induced by IR in the Large White pig. Altogether, we show that MR antagonism, or deletion of the MR gene in SMCs, limited the renal injury induced by IR through effects on Rac1-mediated MR signaling. The benefits of MR antagonism in the pig provide a rational basis for future clinical trials assessing the benefits of this approach in patients with IR-mediated AKI.

  20. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus.

    PubMed

    Panizo, Sara; Naves-Díaz, Manuel; Carrillo-López, Natalia; Martínez-Arias, Laura; Fernández-Martín, José Luis; Ruiz-Torres, María Piedad; Cannata-Andía, Jorge B; Rodríguez, Isabel

    2016-03-01

    Vascular calcification is a frequent cause of morbidity and mortality in patients with CKD and the general population. The common association between vascular calcification and osteoporosis suggests a link between bone and vascular disorders. Because microRNAs (miRs) are involved in the transdifferentiation of vascular smooth muscle cells into osteoblast-like cells, we investigated whether miRs implicated in osteoblast differentiation and bone formation are involved in vascular calcification. Different levels of uremia, hyperphosphatemia, and aortic calcification were induced by feeding nephrectomized rats a normal or high-phosphorus diet for 12 or 20 weeks, at which times the levels of eight miRs (miR-29b, miR-125, miR-133b, miR-135, miR-141, miR-200a, miR-204, and miR-211) in the aorta were analyzed. Compared with controls and uremic rats fed a normal diet, uremic rats fed a high-phosphorous diet had lower levels of miR-133b and miR-211 and higher levels of miR-29b that correlated respectively with greater expression of osteogenic RUNX2 and with lower expression of several inhibitors of osteoblastic differentiation. Uremia per se mildly reduced miR-133b levels only. Similar results were obtained in two in vitro models of vascular calcification (uremic serum and high-calcium and -phosphorus medium), and experiments using antagomirs and mimics to modify miR-29b, miR-133b, and miR-211 expression levels in these models confirmed that these miRs regulate the calcification process. We conclude that miR-29b, miR-133b, and miR-211 have direct roles in the vascular smooth muscle calcification induced by high phosphorus and may be new therapeutic targets in the management of vascular calcification.

  1. Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia

    PubMed Central

    Cai, Yujun; Nagel, David J.; Zhou, Qian; Cygnar, Katherine D.; Zhao, Haiqing; Li, Faqian; Pi, Xinchun; Knight, Peter A.; Yan, Chen

    2015-01-01

    Objective Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, post-angioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. Methods & Results We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. Additionally, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF-receptor-beta (PDGFRβ) known to be important in pathological vascular remodeling. PDE1C interacts with LDL-receptor-related-protein-1 (LRP1) and PDGFRβ, thus regulating PDGFRβ endocytosis and lysosome-dependent degradation in an LRP1-dependent manner. A transmembrane-adenylyl-cyclase (tmAC)-cAMP-PKA cascade modulated by PDE1C is critical in regulating PDGFRβ degradation. Conclusion These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome dependent PDGFRβ protein degradation via LRP1. PMID:25608528

  2. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats.

    PubMed

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-03-22

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia.

  3. PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats

    PubMed Central

    Zhang, Hongrong; Jiang, Li; Guo, Zongduo; Zhong, Jianjun; Wu, Jingchuan; He, Junchi; Liu, Han; He, Zhaohui; Wu, Haitao; Cheng, Chongjie; Sun, Xiaochuan

    2017-01-01

    Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia. PMID:28327554

  4. Effect of crocetin on vascular smooth muscle cells migration induced by advanced glycosylation end products.

    PubMed

    Xiang, Min; Yang, Runlin; Zhang, Yaqin; Wu, Pingping; Wang, Lizhen; Gao, Zhenyu; Wang, Jianmei

    2017-02-13

    Crocetin is a major active constituent of Gardenia jasminoides J. Ellis, and can aid in the prevention of cardiovascular disease. The effect and possible mechanism of crocetin on the migration of vascular smooth muscle cells (VSMCs) induced by advanced glycosylation end products (AGEs) were investigated. VSMCs were pre-incubated with or without crocetin and exposed to AGEs subsequently. The invasion of the cells was investigated using a 24-well Cell Invasion Chamber. The anti-proliferative activity of crocetin was evaluated by MTT assay and VSMCs cell-cycle distribution was examined by flow cytometry. Cytokine TNF-α and IL-6 secreted by VSMCs and the amount of matrix metalloproteinase MMP-2 and MMP-9 in the culture supernatant were detected by ELISA. The expression level of RAGE (AGEs receptor), in cells was analyzed by western blot. The results demonstrated that AGEs increased about two-fold migration of VSMCs compared with control (OD=0.778±0.191 vs OD=0.413±0.214, P<0.01), and the proliferation increased by about 20% (OD=0.335±0.043 vs OD=0.281±0.037, P<0.01). Pre-treatment with crocetin (1.0μM) or RAGE antibody (10μg/ml) could inhibit the AGEs triggered migration of VSMCs obviously. Furthermore, both crocetin and RAGE antibody inhibited the increase of RAGE protein in VSMCs stimulated by AGEs. The levels of TNF-α and IL-6 decreased in the crocetin (1.0μM) pre-treated group compared to the AGEs (without pre-treated) group (37.60±3.08pg/ml vs 46.59±1.92pg/ml, 32.11±4.69pg/ml vs 49.99±8.84pg/ml, respectively). Crocetin (1.0μM) also reduced the value of MMP-2 and MMP-9 compared with the AGEs group (2.81±0.35ng/ml vs 6.40±0.85ng/ml, 2.69±0.25ng/ml vs 4.32±0.57ng/ml, respectively). In summary, crocetin inhibits the migration of VSMCs induced by AGEs through RAGE-dependent signaling pathway. And it is meaningful to diabetic vascular complications.

  5. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.

    PubMed Central

    López-Candales, A.; Holmes, D. R.; Liao, S.; Scott, M. J.; Wickline, S. A.; Thompson, R. W.

    1997-01-01

    Abdominal aortic aneurysms (AAAs) are characterized by structural deterioration of the aortic wall leading to progressive aortic dilatation and eventual rupture. The histopathological changes in AAAs are particularly evident within the elastic media, which is normally dominated by vascular smooth muscle cells (SMCs). To determine whether a decrease in vascular SMCs contributes to medial degeneration, we measured SMC density in 21 normal and pathological human abdominal aortic tissue specimens using immunohistochemistry for alpha-SMC actin and direct cell counts (medial SMCs per high-power field (HPF)). Medial SMC density was not significantly different between normal aorta (n = 5; 199.5 +/- 14.9 SMCs/HPF) and atherosclerotic occlusive disease (n = 6; 176.4 +/- 13.9 SMCs/HPF), but it was reduced by 74% in AAA (n = 10; 50.9 +/- 6.1 SMCs/HPF; P < 0.01 versus normal aorta). Light and electron microscopy revealed no evidence of overt cellular necrosis, but SMCs in AAAs exhibited ultrastructural changes consistent with apoptosis. Using in situ end-labeling (ISEL) of fragmented DNA to detect apoptotic cells, up to 30% of aortic wall cells were ISEL positive in AAAs. By double-labeling techniques, many of these cells were alpha-actin-positive SMCs distributed throughout the degenerative media. In contrast, ISEL-positive cells were observed only within the intimal plaque in atherosclerotic occlusive disease. The amount of p53 protein detected by immunoblotting was increased nearly fourfold in AAA compared with normal aorta and atherosclerotic occlusive disease (P < 0.01), and immunoreactive p53 was localized to lymphocytes and residual SMCs in the aneurysm wall. Using reverse transcription polymerase chain reaction assays a substantial amount of p53 mRNA expression was observed in AAAs. These results demonstrate that medial SMC density is significantly decreased in human AAA tissues associated with evidence of SMC apoptosis and increased production of p53, a potential

  6. Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions

    PubMed Central

    Pan, Qunwen; Liu, Hua; Zheng, Chunyan; Zhao, Yuhui; Liao, Xiaorong; Wang, Yan; Chen, Yanfang; Zhao, Bin; Lazartigues, Eric; Yang, Yi; Ma, Xiaotang

    2017-01-01

    Purpose: Microvesicles (MV) can modulate the function of recipient cells by transferring their contents. Our previous study highlighted that MV released from tumor necrosis factor-α (TNF-α) plus serum deprivation (SD)-stimulated endothelial progenitor cells, induce detrimental effects on endothelial cells. In this study, we investigated the potential effects of endothelial MV (EMV) on proliferation, migration, and apoptosis of human brain vascular smooth cells (HBVSMC). Methods: EMV were prepared from human brain microvascular endothelial cells (HBMEC) cultured in a TNF-α plus SD medium. RNase-EMV were made by treating EMV with RNase A for RNA depletion. The proliferation, apoptosis and migration abilities of HBVSMC were determined after co-culture with EMV or RNase-EMV. The Mek1/2 inhibitor, PD0325901, was used for pathway analysis. Western blot was used for analyzing the proteins of Mek1/2, Erk1/2, phosphorylation Erk1/2, activated caspase-3 and Bcl-2. The level of miR-146a-5p was measured by qRT-PCR. Results: (1) EMV significantly promoted the proliferation and migration of HBVSMC. The effects were accompanied by an increase in Mek1/2 and p-Erk1/2, which could be abolished by PD0325901; (2) EMV decreased the apoptotic rate of HBVSMC by approximately 35%, which was accompanied by cleaved caspase-3 down-regulation and Bcl-2 up-regulation; (3) EMV increased miR-146a-5p level in HBVSMC by about 2-folds; (4) RNase-treated EMV were less effective than EMV on HBVSMC activities and miR-146a-5p expression. Conclusion: EMV generated under inflammation challenge can modulate HBVSMC function and fate via their carried RNA. This is associated with activation of theMek1/2/Erk1/2 pathway and caspase-3/Bcl-2 regulation, during which miR-146a-5p may play an important role. The data suggest that EMV derived from inflammation-challenged endothelial cells are detrimental to HBVSMC homeostatic functions, highlighting potential novel therapeutic targets for vascular diseases. PMID

  7. Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality

    SciTech Connect

    Pan, Yaoqian; Balazs, Louisa; Tigyi, Gabor; Yue, Junming

    2011-05-13

    Highlights: {yields} Deletion of Dicer in vascular smooth muscle cells(VSMCs) leads to embryonic mortality. {yields} Loss of Dicer in VSMCs leads to developmental delay. {yields} Loss of Dicer in VSMCs leads to hemorrhage in various organs including brain, skin and liver. {yields} Loss of Dicer in VSMCs leads to vascular wall remodeling. {yields} Loss of Dicer in VSMCs dysregulates the expression of miRNA and VSMC marker genes. -- Abstract: Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role of Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation.

  8. Angiotensin II and NADPH oxidase increase ADMA in vascular smooth muscle cells.

    PubMed

    Luo, Zaiming; Teerlink, Tom; Griendling, Kathy; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2010-09-01

    Asymmetrical dimethylarginine inhibits nitric oxide synthase, cationic amino acid transport, and endothelial function. Patients with cardiovascular risk factors often have endothelial dysfunction associated with increased plasma asymmetrical dimethylarginine and markers of reactive oxygen species. We tested the hypothesis that reactive oxygen species, generated by nicotinamide adenine dinucleotide phosphate oxidase, enhance cellular asymmetrical dimethylarginine. Incubation of rat preglomerular vascular smooth muscle cells with angiotensin II doubled the activity of nicotinamide adenine dinucleotide phosphate oxidase but decreased the activities of dimethylarginine dimethylaminohydrolase by 35% and of cationic amino acid transport by 20% and doubled cellular (but not medium) asymmetrical dimethylarginine concentrations (P<0.01). This was blocked by tempol or candesartan. Cells stably transfected with p22(phox) had a 50% decreased protein expression and activity of dimethylarginine dimethylaminohydrolase despite increased promoter activity and mRNA. The decreased DDAH protein expression and the increased asymmetrical dimethylarginine concentration in p22(phox)-transfected cells were prevented by proteosomal inhibition. These cells had enhanced protein arginine methylation, a 2-fold increased expression of protein arginine methyltransferase-3 (P<0.05) and a 30% reduction in cationic amino acid transport activity (P<0.05). Asymmetrical dimethylarginine was increased from 6+/-1 to 16+/-3 micromol/L (P<0.005) in p22(phox)-transfected cells. Thus, angiotensin II increased cellular asymmetrical dimethylarginine via type 1 receptors and reactive oxygen species. Nicotinamide adenine dinucleotide phosphate oxidase increased cellular asymmetrical dimethylarginine by increasing enzymes that generate it, enhancing the degradation of enzymes that metabolize it, and reducing its cellular transport. This could underlie increases in cellular asymmetrical dimethylarginine during

  9. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells

    PubMed Central

    Chen, Li; Wang, Wen-yi; Wang, Yi-ping

    2009-01-01

    Aim: To understand the effects of lithospermic acid (LA), a potent antioxidant from the water-soluble extract of Salvia miltiorrhiza, on the migration and proliferation of rat thoracic aorta vascular smooth muscle cells (VSMCs). Methods: VSMC migration, proliferation, DNA synthesis and cell cycle progression were investigated by transwell migration analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, bromodeoxyuridine (BrdU) incorporation assay, and flow cytometric detection, respectively. Intracellular reactive oxygen species (ROS) generation was detected using 2′,7′-dichlorofluorescin diacetate (DCFH-DA). The expression of cyclin D1 protein and matrix metalloproteinase-9 (MMP-9) protein, as well as the phosphorylation state of ERK1/2, were determined using Western blots. The activity of MMP-9 and the expression of MMP-9 mRNA were assessed by gelatin zymography analysis and RT-PCR, respectively. Results: LA (25−100 μmol/L) inhibited both lipopolysaccharide (LPS)- and fetal bovine serum (FBS)-induced ROS generation and ERK1/2 phosphorylation. By down-regulating the expression of cyclin D1 and arresting cell cycle progression at the G1 phase, LA inhibited both VSMC proliferation and DNA synthesis as induced by 5% FBS. Furthermore, LA attenuated LPS-induced VSMC migration by inhibiting MMP-9 expression and its enzymatic activity. Conclusion: LA is able to inhibit FBS-induced VSMC proliferation and LPS-induced VSMC migration, which suggests that LA may have therapeutic effects in the prevention of atherosclerosis, restenosis and neointimal hyperplasia. PMID:19701233

  10. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells.

    PubMed

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.

  11. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-08-24

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration.

  12. Effects of total flavones from Dendranthema morifolium on vasocontraction and proliferation of vascular smooth muscle cells.

    PubMed

    Jin, Hong-Feng; Liu, Xiao-Wei; Tang, Yi-Ming; Tang, Li-Jiang; Wang, Ya-Li; Du, Chang-Qing

    2016-01-01

    Pharmacological studies have shown that the active components in Dendranthema morifolium exhibit protective effects against ischemia/reperfusion injury; however, its pharmacological action on blood vessels has not yet been investigated. The purpose of the present study was to assess the effects of the total flavones extracted from D. morifolium (Ramat.) Tzvel. cv. Hangju (FDM) on the vasocontraction and proliferation of vascular smooth muscle cells (VSMCs). The tension of rat thoracic aortic rings was measured using a mechanical force transducer attached to a recording system. FDM induced a dose‑dependent relaxation of rings with endothelium pre‑contracted by either phenylephrine (PE; 10(‑6) mol/l) or a high concentration of potassium chloride (KCl; 60 mmol/l). FDM did not significantly affect the vasorelaxant effects on mechanically removed endothelium. In endothelium‑denuded aortic rings depolarized by 60 mmol/l KCl, FDM inhibited the contraction induced by Ca2+. FDM reduced the transient contraction caused by PE in a Ca2+‑free solution, but did not affect the contraction induced by phorbol ester. Furthermore, FDM inhibited the proliferation of VSMCs with or without growth stimulation by insulin. In conclusion, that the vasorelaxation induced by FDM in rat aortic rings is not dependent on the endothelium but is mediated via a reduction of the influx of extracellular Ca2+ through the voltage‑dependent and receptor‑operated channels and via the inhibition of the release of intracellular Ca2+ in VSMCs. The anti‑proliferative activity of FDM suggests that it may be beneficial in inhibiting atherosclerosis.

  13. Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Adderley, Shaquria P.; Joshi, Chintamani N.; Martin, Danielle N.; Tulis, David Anthony

    2012-01-01

    BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phosphoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone increased phosphorylation of VASPSer239 and VASPSer157, respective indicators of PKG and PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phosphorylation at VASPSer239 but inhibited phosphorylation at VASPSer157. Selective inhibitors of PDE3 or PDE4 attenuated BAY-mediated increases at VASPSer239 and VASPSer157, whereas PDE5 inhibition potentiated BAY-mediated increases only at VASPSer157. In comparison, 8Br-cGMP increased phosphorylation at VASPSer239 and VASPSer157 which were not affected by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5 decreased VASPSer239 phosphorylation and inhibition of PDE3 increased phosphorylation at VASPSer239, while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no effect on VASPSer157 phosphorylation. These findings demonstrate that BAY operates via cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative disorders. PMID:22347188

  14. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells.

    PubMed

    Alvarez-Collazo, Julio; Alonso-Carbajo, Lucía; López-Medina, Ana I; Alpizar, Yeranddy A; Tajada, Sendoa; Nilius, Bernd; Voets, Thomas; López-López, José Ramón; Talavera, Karel; Pérez-García, María Teresa; Alvarez, Julio L

    2014-11-01

    Cinnamaldehyde (CA), a major component of cinnamon, is known to have important actions in the cardiovascular system, including vasorelaxation and decrease in blood pressure. Although CA-induced activation of the chemosensory cation channel TRPA1 seems to be involved in these phenomena, it has been shown that genetic ablation of Trpa1 is insufficient to abolish CA effects. Here, we confirm that CA relaxes rat aortic rings and report that it has negative inotropic and chronotropic effects on isolated mouse hearts. Considering the major role of L-type Ca(2+) channels in the control of the vascular tone and cardiac contraction, we used whole-cell patch-clamp to test whether CA affects L-type Ca(2+) currents in mouse ventricular cardiomyocytes (VCM, with Ca(2+) as charge carrier) and in mesenteric artery smooth muscle cells (VSMC, with Ba(2+) as charge carrier). We found that CA inhibited L-type currents in both cell types in a concentration-dependent manner, with little voltage-dependent effects. However, CA was more potent in VCM than in VSMC and caused opposite effects on the rate of inactivation. We found these divergences to be at least in part due to the use of different charge carriers. We conclude that CA inhibits L-type Ca(2+) channels and that this effect may contribute to its vasorelaxing action. Importantly, our results demonstrate that TRPA1 is not a specific target of CA and indicate that the inhibition of voltage-gated Ca(2+) channels should be taken into account when using CA to probe the pathophysiological roles of TRPA1.

  15. Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D.

    PubMed

    Li, Y; Shiels, A J; Maszak, G; Byron, K L

    2001-06-01

    Physiological concentrations of [Arg(8)]vasopressin (AVP; 10-500 pM) stimulate oscillations of cytosolic free Ca2+ concentration (Ca2+ spikes) in A7r5 vascular smooth muscle cells. We previously reported that this effect of AVP was blocked by a putative phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (5 microM). In the present study, the products of PLA2, arachidonic acid (AA), and lysophospholipids were found to be ineffective in stimulating Ca2+ spiking, and inhibitors of AA metabolism did not prevent AVP-stimulated Ca2+ spiking. Thin layer chromatography was used to monitor the release of AA and phosphatidic acid (PA), which are the products of PLA2 and phospholipase D (PLD), respectively. AVP (100 pM) stimulated both AA and PA formation, but only PA formation was inhibited by ONO-RS-082 (5 microM). Exogenous PLD (type VII; 2.5 U/ml) stimulated Ca2+ spiking equivalent to the effect of 100 pM AVP. AVP stimulated transphosphatidylation of 1-butanol (a PLD-catalyzed reaction) but not 2-butanol, and 1-butanol (but not 2-butanol) completely prevented AVP-stimulated Ca2+ spiking. Protein kinase C (PKC) inhibition, which completely prevents AVP-stimulated Ca2+ spiking, did not inhibit AVP-stimulated phosphatidylbutanol formation. These results suggest that AVP-stimulated Ca2+ spiking depends on activation of PLD rather than PLA2 and that PKC activation may be downstream of PLD in the signaling cascade.

  16. Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit Positive Human Cardiac Stem Cells.

    PubMed

    Ledford, Benjamin T; Simmons, Jamelle; Chen, Miao; Fan, Huimin; Barron, Catherine; Liu, Zhongmin; Van Dyke, Mark; He, Jia-Qiang

    2017-03-28

    Stem cell-based therapies have demonstrated great potential for the treatment of cardiac diseases, e.g., myocardial infarction; however, low cell viability, low retention/engraftment, and uncontrollable in vivo differentiation after transplantation are still major limitations, which lead low therapeutic efficiency. Biomaterials provide a promising solution to overcome these issues due to their biocompatibility, biodegradability, low/non-immunogenicity, and low/non-cytotoxicity. The present study aims to investigate the impacts of Keratose (KOS) hydrogel biomaterial on cellular viability, proliferation, and differentiation of c-kit+ human cardiac stem cells (hCSCs). Briefly, hCSCs were cultured on both KOS hydrogel-coated dishes and regular tissue culture dishes (Blank control). Cell viability, stemness, proliferation, cellular morphology, and cardiac lineage differentiation were compared between KOS hydrogel and the Blank control at different time points. We found that KOS hydrogel is effective in maintaining hCSCs without any observable toxic effects, although cell size and proliferation rate appeared smaller on the KOS hydrogel compared to the Blank control. To our surprise, KOS hydrogel significantly promoted vascular smooth muscle cell (VSMC) differentiation (~72%), while on the Blank control dishes, most of the hCSCs (~78%) became cardiomyocytes. Further, we also observed "endothelial cell tube-like" microstructures formed by differentiated VSMCs only on KOS hydrogel, suggesting a potential capability of the hCSC-derived VSMCs for in vitro angiogenesis. To the best of our knowledge, this is the first report to discover the preferred differentiation of hCSCs toward VSMCs on KOS hydrogel. The underlying mechanism remains unknown. This innovative methodology may offer a new approach to generate a robust number of VSMCs simply by culturing hCSCs on KOS hydrogel, and the resulting VSMCs may be used in animal studies and clinical trials in

  17. SDF-1 promotes ox-LDL induced vascular smooth muscle cell proliferation.

    PubMed

    Li, Ling-Xing; Zhang, Xian-Feng; Bai, Xue; Tong, Qian

    2013-09-01

    The mechanism of the regulatory roles of stromal cell derived factor-1 (SDF-1)/C-X-C motif receptor 4 (CXCR4) on cell proliferation and apoptosis in vascular smooth muscle cells (VSMCs) via the protein kinase C (PKC) and nuclear factor-kappa B (NF-κB) signalling pathways have been investigated. Rat aortic VSMCs were treated with control or an oxidised low-density lipoprotein (ox-LDL) atherosclerosis (AS) model. Cells exposed to the AS model were treated with SDF-1 plus inhibitors specific for PKC (Ro31-8220), CXCR4 (12G5) or NF-κB (pyrrolidine dithiocarbamate, PDTC). Cell proliferation was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis by flow cytometry. NF-κB protein expression was analysed using Western blotting. The proliferation rate in the AS model group was significantly higher than the control group, but lower than the SDF-1 group (P < 0.05). Apoptosis in the AS model group (ox-LDL) was significantly higher than the normal control group (P < 0.05). In addition, the apoptosis rate in the SDF-1 group was significantly lower than the normal control group (P < 0.05); however, there was no difference from the Ro31-8220 group. NF-κB protein expression in the SDF-1 group was significantly higher than the AS model (ox-LDL) group (P < 0.05). In conclusion, SDF-1 can promote the proliferation of VSMCs induced by ox-LDL and inhibit cell apoptosis, via the SDF-1/CXCR4 axis.

  18. Nitric Oxide and the Mechanism of Rat Vascular Smooth Muscle Photorelaxation

    PubMed Central

    Flitney, Frederick Werner; Megson, Ian L

    2003-01-01

    Photorelaxation of vascular smooth muscle (VSM) was studied using segments of tail artery from normotensive rats (NTR) or spontaneously hypertensive rats (SHR). Isolated vessels with intact endothelium were perfused with Krebs solution containing phenylephrine. Perfusion pressures were recorded while arteries were irradiated with either visible (VIS; λ = 514.5 nm) or long wavelength ultra-violet (UVA; λ = 366 nm) light. VIS light produced a transient vasodilator response: a rapid decrease of pressure that recovered fully during the period (6 min) of illumination. An irradiated artery was refractory to a second period of illumination delivered immediately after the first, but its photosensitivity recovered slowly in the dark, a process called ‘repriming’. Photorelaxations generated by UVA light were qualitatively different and consisted of two components: a phasic (or p-) component superimposed on a sustained (or s-) component. The p-component is similar to the VIS light-induced response in that both exhibit refractoriness and repriming depends upon endothelium-derived NO. In contrast, the s-component persists throughout the period of illumination and does not show refractoriness. We conclude that VIS light-induced photorelaxations and the p-component of UVA light-induced responses are mediated by the photochemical release of NO from a finite molecular ‘store’ that can be reconstituted afterwards in the dark. The s-component of the UVA light-induced response does not depend directly on endothelial NO and may result instead from a stimulatory effect of UVA light on soluble guanylate cyclase. NO-dependent photorelaxation is impaired in vessels from SHR while the s-component is enhanced. PMID:12824453

  19. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    PubMed

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  20. Osteopontin expression in vascular smooth muscle cells in patients with end-stage renal disease.

    PubMed

    Nakamura, Hironori; Honda, Hirokazu; Inada, Yoshifumi; Kato, Noriyuki; Kato, Kenichi; Kitazawa, Kozo; Sugisaki, Tetsuzo

    2006-06-01

    beta-glycerophosphate, a phosphate donor, and uremic sera induce osteopontin (OPN) expression in bovine vascular smooth muscle cells (VSMCs). However, the correlations of serum phosphorus level with OPN expression, and blood urea nitrogen (BUN) level with OPN expression in humans have not previously been reported. The purpose of the current study is to compare the expression of OPN in VSMCs with clinical data in patients with end-stage renal disease (ESRD). The radial arteries of 33 patients (21 male and 12 female patients) were examined to determine the expression of OPN and collagen type I (Col I) by immunohistochemistry. The correlation of the expression of bone matrix proteins with clinical data was analyzed. Between the low-serum phosphorus (<6 mg/dL) group and high-serum phosphorus (> or =6 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0049) and the levels of BUN (P = 0.0005), serum phosphorus (P < 0.0001) and calcium x phosphorus products (P < 0.0001). Moreover, between the low-BUN (<70 mg/dL, N = 19) group and high-BUN (> or =70 mg/dL) group, significant differences were detected in the expression of OPN (P = 0.0039) and the levels of BUN (P = 0.0002), serum phosphorus (P = 0.0002) and calcium x phosphorus products (P = 0.0003). We have shown that hyperphosphatemia or azotemia is associated with the expression of OPN in VSMCs in patients with ESRD.

  1. Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine.

    PubMed

    Mok, Su San; Turner, Bradley J; Beyreuther, Konrad; Masters, Colin L; Barrow, Colin J; Small, David H

    2002-06-01

    Tauhe main component of cerebral amyloid angiopathy (CAA) in Alzheimer's disease is the amyloid-beta protein (Abeta), a 4-kDa polypeptide derived from the beta-amyloid protein precursor (APP). The accumulation of Abeta in the basement membrane has been implicated in the degeneration of adjacent vascular smooth muscle cells (VSMC). However, the mechanism of Abeta toxicity is still unclear. In this study, we examined the effect of substrate-bound Abeta on VSMC in culture. The use of substrate-bound proteins in cell culture mimics presentation of the proteins to cells as if bound to the basement membrane. Substrate-bound Abeta peptides were found to be toxic to the cells and to increase the rate of cell death. This toxicity was dependent on the length of time the peptide was allowed to 'age', a process by which Abeta is induced to aggregate over several hours to days. Oxidative stress via hydrogen peroxide (H2O2) release was not involved in the toxic effect, as no decrease in toxicity was observed in the presence of catalase. However, substrate-bound Abeta significantly reduced cell adhesion compared to cells grown on plastic alone, indicating that cell-substrate adhesion may be important in maintaining cell viability. Abeta also caused an increase in the number of apoptotic cells. This increase in apoptosis was accompanied by activation of caspase-3. Homocysteine, a known risk factor for cerebrovascular disease, increased Abeta-induced toxicity and caspase-3 activation in a dose-dependent manner. These studies suggest that Abeta may activate apoptotic pathways to cause loss of VSMC in CAA by inhibiting cell-substrate interactions. Our studies also suggest that homocysteine, a known risk factor for other cardiovascular diseases, could also be a risk factor for hemorrhagic stroke associated with CAA.

  2. Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold.

    PubMed

    Battiston, K G; Ouyang, B; Labow, R S; Simmons, C A; Santerre, J P

    2014-03-01

    Tissue engineering strategies rely on the ability to promote cell proliferation and migration into porous biomaterial constructs, as well as to support specific phenotypic states of the cells in vitro. The present study investigated the use of released factors from monocytes and their derived macrophages (MDM) and the mechanism by which they regulate vascular smooth muscle cell (VSMC) response in a VSMC-monocyte co-culture system within a porous degradable polyurethane (D-PHI) scaffold. VSMCs cultured in monocyte/MDM-conditioned medium (MCM), generated from the culture of monocytes/MDM on D-PHI scaffolds for up to 28 days, similarly affected VSMC contractile marker expression, growth and three-dimensional migration when compared to direct VSMC-monocyte co-culture. Monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) were identified as two cytokines present in MCM, at concentrations that have previously been shown to influence VSMC phenotype. VSMCs cultured alone on D-PHI scaffolds and exposed to MCP-1 (5 ng ml(-1)) or IL-6 (1 ng ml(-1)) for 7 days experienced a suppression in contractile marker expression (with MCP-1 or IL-6) and increased growth (with MCP-1) compared to no cytokine medium supplementation. These effects were also observed in VSMC-monocyte co-culture on D-PHI. Neutralization of IL-6, but not MCP-1, was subsequently shown to decrease VSMC growth and enhance calponin expression for VSMC-monocyte co-cultures on D-PHI scaffolds for 7 days, implying that IL-6 mediates VSMC response in monocyte-VSMC co-cultures. This study highlights the use of monocytes and their derived macrophages in conjunction with immunomodulatory biomaterials, such as D-PHI, as agents for regulating VSMC response, and demonstrates the importance of monocyte/MDM-released factors, such as IL-6 in particular, in this process.

  3. Diabetic conditions promote binding of monocytes to vascular smooth muscle cells and their subsequent differentiation.

    PubMed

    Meng, Li; Park, Jehyun; Cai, Qiangjun; Lanting, Linda; Reddy, Marpadga A; Natarajan, Rama

    2010-03-01

    Diabetes is associated with significantly accelerated rates of atherosclerosis, key features of which include the presence of excessive macrophage-derived foam cells in the subendothelial space. We examined the hypothesis that enhanced monocyte-vascular smooth muscle cell (VSMC) interactions leading to subendothelial monocyte retention and differentiation to macrophages under diabetic conditions may be underlying mechanisms. Human aortic VSMCs (HVSMCs) treated with diabetic stimuli high glucose (HG) or S100B, a ligand of the receptor for advanced glycation end products, exhibited significantly increased binding of THP-1 monocytic cells. Diabetic stimuli increased the expression of the adhesive chemokine fractalkine (FKN) in HVSMCs. Pretreatment of HVSMCs with FKN or monocyte chemoattractant protein-1 (MCP-1) neutralizing antibodies significantly inhibited monocyte-VSMC binding, whereas monocytes treated with FKN showed enhanced binding to VSMC. Mouse aortic VSMCs (MVSMCs) derived from type 2 diabetic db/db mice exhibited significantly increased FKN levels and binding to mouse WEHI78/24 monocytic cells relative to nondiabetic control db/+ cells. The enhanced monocyte binding in db/db cells was abolished by both FKN and MCP-1 antibodies. Endothelium-denuded aortas from db/db mice and streptozotocin-induced diabetic mice also exhibited enhanced FKN expression and monocyte binding, relative to respective controls. Coculture with HVSMCs increased CD36 expression in THP-1 cells, and this was significantly augmented by treatment of HVSMCs with S100B or HG. CD36 mRNA and protein levels were also significantly increased in WEHI78/24 cells after coincubation with db/db MVSMCs relative to control MVSMCs. These results demonstrate that diabetic conditions may accelerate atherosclerosis by inducing key chemokines in the vasculature that promote VSMC-monocyte interactions, subendothelial monocyte retention, and differentiation.

  4. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration

    PubMed Central

    Wei, Yuanchen; Chen, Feng; Zhang, Tao; Chen, Deyong; Jia, Xin; Wang, Junbo; Guo, Wei; Chen, Jian

    2015-01-01

    This paper presents a tubing-free microfluidic wound healing assay to quantify the migration of vascular smooth muscle cells (VSMCs), where gravity was used to generate a laminar flow within microfluidic channels, enabling cell seeding, culture, and wound generation. As the first systemic study to quantify the migration of VSMCs within microfluidic environments, the effects of channel geometries, surface modifications and chemokines on cellular migration were investigated, revealing that 1) height of the micro channels had a significant impact on cell migration; 2) the surface coating of collagen induced more migration of VSMCs than fibronectin coated surfaces and 3) platelet derived growth factor resulted in maximal cell migration compared to tumor necrosis factor alpha and fetal bovine serum. Furthermore, migrations of five types of VSMCs (e.g., the human vascular smooth muscle cell line, two types of primary vascular smooth cells, and VSMCs isolated from two human samples) were quantified, finding that VSMCs from the cell line and human samples demonstrated comparable migration distances, which were significantly lower than the migration distances of two primary cell types. As a platform technology, this wound healing assay may function as a new model to study migration of VSMCs within microfluidic environments. PMID:26365412

  5. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration.

    PubMed

    Wei, Yuanchen; Chen, Feng; Zhang, Tao; Chen, Deyong; Jia, Xin; Wang, Junbo; Guo, Wei; Chen, Jian

    2015-09-14

    This paper presents a tubing-free microfluidic wound healing assay to quantify the migration of vascular smooth muscle cells (VSMCs), where gravity was used to generate a laminar flow within microfluidic channels, enabling cell seeding, culture, and wound generation. As the first systemic study to quantify the migration of VSMCs within microfluidic environments, the effects of channel geometries, surface modifications and chemokines on cellular migration were investigated, revealing that 1) height of the micro channels had a significant impact on cell migration; 2) the surface coating of collagen induced more migration of VSMCs than fibronectin coated surfaces and 3) platelet derived growth factor resulted in maximal cell migration compared to tumor necrosis factor alpha and fetal bovine serum. Furthermore, migrations of five types of VSMCs (e.g., the human vascular smooth muscle cell line, two types of primary vascular smooth cells, and VSMCs isolated from two human samples) were quantified, finding that VSMCs from the cell line and human samples demonstrated comparable migration distances, which were significantly lower than the migration distances of two primary cell types. As a platform technology, this wound healing assay may function as a new model to study migration of VSMCs within microfluidic environments.

  6. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  7. ECM-mimetic heparin glycosamioglycan-functionalized surface favors constructing functional vascular smooth muscle tissue in vitro.

    PubMed

    Zhang, Jimin; Wang, Jianing; Wei, Yongzhen; Gao, Cheng; Chen, Xuejiao; Kong, Wei; Kong, Deling; Zhao, Qiang

    2016-10-01

    Contractile vascular smooth muscle accounts for the normal physiological function of artery. Heparin, as a native glycosaminoglycan, has been well known for its important function in promoting or maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs). In this study, heparin-functionalized non-woven poly(ε-caprolactone) (PCL) mat was fabricated by a facile and efficient surface modification protocol, which enables the control of surface heparin density within a broad range. Surface heparization remarkably increased the hydrophilicity of PCL, and reduced platelet adhesion. MTT assay showed that VSMC proliferation was evidently inhibited on the heparin-functionalized PCL surface in a dose-dependent manner. Gene analysis confirmed that surface heparization also promoted the transition of VSMCs from synthetic phenotype to contractile one. Furthermore, with a proper surface density of heparin, it allowed VSMCs to grow in a certain rate, while exhibiting contractile phenotype. Culture of VSMCs on a modified PCL mat with moderate heparin density (PCL-Hep-20) for 2 days resulted in a confluent layer of contractile smooth muscle cells. These data suggest that the heparin-modified PCL scaffolds may be a promising candidate to generate functional vascular tissues in vitro.

  8. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  9. Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis.

    PubMed

    Arai, Takehiro; Kasper, Jocelyn S; Skaar, Jeffrey R; Ali, Syed Hamid; Takahashi, Chiaki; DeCaprio, James A

    2003-08-19

    Cul1, a member of the cullin ubiquitin ligase family, forms a multiprotein complex known as SCF and plays an essential role in numerous cellular and biological activities. A Cul1 homologue, p185 (Cul7), has been isolated as an simian virus 40 large T antigen-binding protein. To understand the physiological role of p185, we generated mice lacking p185. p185-/- embryos are runted and die immediately after birth because of respiratory distress. Dermal and hypodermal hemorrhage is detected in mutant embryos at late gestational stage. p185-/- placentas show defects in the differentiation of the trophoblast lineage with an abnormal vascular structure. We demonstrate that p185 forms an SCF-like complex with Skp1, Rbx1, Fbw6 (Fbx29), and FAP68 (FAP48, glomulin). FAP68 has recently been identified as a gene responsible for familial glomuvenous malformation. These results suggest that p185 forms a multiprotein complex and plays an important role in vascular morphogenesis.

  10. Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis

    PubMed Central

    Arai, Takehiro; Kasper, Jocelyn S.; Skaar, Jeffrey R.; Ali, Syed Hamid; Takahashi, Chiaki; DeCaprio, James A.

    2003-01-01

    Cul1, a member of the cullin ubiquitin ligase family, forms a multiprotein complex known as SCF and plays an essential role in numerous cellular and biological activities. A Cul1 homologue, p185 (Cul7), has been isolated as an simian virus 40 large T antigen-binding protein. To understand the physiological role of p185, we generated mice lacking p185. p185–/– embryos are runted and die immediately after birth because of respiratory distress. Dermal and hypodermal hemorrhage is detected in mutant embryos at late gestational stage. p185–/– placentas show defects in the differentiation of the trophoblast lineage with an abnormal vascular structure. We demonstrate that p185 forms an SCF-like complex with Skp1, Rbx1, Fbw6 (Fbx29), and FAP68 (FAP48, glomulin). FAP68 has recently been identified as a gene responsible for familial glomuvenous malformation. These results suggest that p185 forms a multiprotein complex and plays an important role in vascular morphogenesis. PMID:12904573

  11. Oncostatin M Promotes Osteoblastic Differentiation of Human Vascular Smooth Muscle Cells Through JAK3-STAT3 Pathway.

    PubMed

    Kakutani, Yoshinori; Shioi, Atsushi; Shoji, Tetsuo; Okazaki, Hirokazu; Koyama, Hidenori; Emoto, Masanori; Inaba, Masaaki

    2015-07-01

    Vascular calcification is a clinically significant component of atherosclerosis and arises from chronic vascular inflammation. Oncostatin M (OSM) derived from plaque macrophages may contribute to the development of atherosclerotic calcification. Here, we investigated the stimulatory effects of OSM on osteoblastic differentiation of human vascular smooth muscle cells (HVSMC) derived from various arteries including umbilical artery, aorta, and coronary artery and its signaling pathway. Osteoblastic differentiation was induced by exposure of HVSMC to osteogenic differentiation medium (ODM) (10% fetal bovine serum, 0.1 μM dexamethasone, 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid 2-phosphate in Dulbecco's modified Eagle's medium [DMEM]). OSM significantly increased alkaline phosphate (ALP) activity and matrix mineralization in HVSMC from all sources. Osteoblast marker genes such as ALP and Runx2 were also up-regulated by OSM in these cells. OSM treatment induced activation of STAT3 in HVSMC from umbilical artery as evidenced by immunoblot. Moreover, not only a JAK3 inhibitor, WHI-P154, but also knockdown of JAK3 by siRNA prevented the OSM-induced ALP activity and matrix mineralization in umbilical artery HVSMC. On the other hand, silencing of STAT3 almost completely suppressed OSM-induced ALP expression and matrix mineralization in HVSMC from all sources. These data suggest that OSM promotes osteoblastic differentiation of vascular smooth muscle cells through JAK3/STAT3 pathway and may contribute to the development of atherosclerotic calcification.

  12. Plumericin inhibits proliferation of vascular smooth muscle cells by blocking STAT3 signaling via S-glutathionylation

    PubMed Central

    Heiss, Elke H; Liu, Rongxia; Waltenberger, Birgit; Khan, Shafaat; Schachner, Daniel; Kollmann, Paul; Zimmermann, Kristin; Cabaravdic, Muris; Uhrin, Pavel; Stuppner, Hermann; Breuss, Johannes M; Atanasov, Atanas G; Dirsch, Verena M

    2016-01-01

    The etiology of atherosclerosis and restenosis involves aberrant inflammation and proliferation, rendering compounds with both anti-inflammatory and anti-mitogenic properties as promising candidates for combatting vascular diseases. A recent study identified the iridoid plumericin as a new scaffold inhibitor of the pro-inflammatory NF-κB pathway in endothelial cells. We here examined the impact of plumericin on the proliferation of primary vascular smooth muscle cells (VSMC). Plumericin inhibited serum-stimulated proliferation of rat VSMC. It arrested VSMC in the G1/G0-phase of the cell cycle accompanied by abrogated cyclin D1 expression and hindered Ser 807/811-phosphorylation of retinoblastoma protein. Transient depletion of glutathione by the electrophilic plumericin led to S-glutathionylation as well as hampered Tyr705-phosphorylation and activation of the transcription factor signal transducer and activator of transcription 3 (Stat3). Exogenous addition of glutathione markedly prevented this inhibitory effect of plumericin on Stat3. It also overcame downregulation of cyclin D1 expression and the reduction of biomass increase upon serum exposure. This study revealed an anti-proliferative property of plumericin towards VSMC which depends on plumericin’s thiol reactivity and S-glutathionylation of Stat3. Hence, plumericin, by targeting at least two culprits of vascular dysfunction –inflammation and smooth muscle cell proliferation -might become a promising electrophilic lead compound for vascular disease therapy. PMID:26858089

  13. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    SciTech Connect

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret; Kusch, Angelika; Korenbaum, Elena; Haller, Hermann; Dumler, Inna

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  14. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep

    PubMed Central

    Volk, Kenneth A.; Roghair, Robert D.; Jung, Felicia; Scholz, Thomas D.; Lamb, Fred S.

    2010-01-01

    Exposure of the early-gestation ovine fetus to exogenous glucocorticoids induces changes in postnatal cardiovascular physiology. We sought to characterize coronary artery vascular function in this model by elucidating the contribution of nitric oxide and reactive oxygen species to altered coronary vascular reactivity and examining the proliferative potential of coronary artery vascular smooth muscle cells. Dexamethasone (dex, 0.28 mg·kg−1·day−1 for 48 h) was administered to pregnant ewes at 27–28-day gestation (term 145 days). Coronary arteries were isolated from 1- to 2-wk-old dex-exposed offspring and aged-matched controls. Compared with controls, coronary arteries from dex-exposed lambs demonstrated enhanced vasoconstriction to endothelin-1 and ACh that was abolished by endothelial removal or preincubation with the nitric oxide synthase inhibitor l-NNA, membrane-permeable superoxide dismutase + catalase, or apamin + charybdotoxin, but not indomethacin. The rate of coronary vascular smooth muscle cell (VSMC) proliferation was also significantly greater in dex-exposed lambs. Protein levels of the proliferating cell nuclear antigen were increased and α-smooth muscle actin decreased in dex-exposed coronary VSMC, consistent with a proliferative state. Finally, expression of the NADPH oxidase Nox 4, but not Nox 1, mRNA was also decreased in coronary VSMC from dex-exposed lambs. These findings suggest an important interaction exists between early-gestation glucocorticoid exposure and reactive oxygen species that is associated with alterations in endothelial function and coronary VSMC proliferation. These changes in coronary physiology are consistent with those associated with the development of atherosclerosis and may provide an important link between an adverse intrauterine environment and increased risk for coronary artery disease. PMID:20335378

  15. Vasorelaxant effects of Brillantaisia nitens Lindau (Acanthaceae) extracts on isolated rat vascular smooth muscle.

    PubMed

    Dimo, T; Mtopi, O-S Bopda; Nguelefack, T B; Kamtchouing, P; Zapfack, L; Asongalem, E A; Dongo, E

    2007-04-20

    Brillantaisia nitens Lindau (Acanthaceae) is traditionally used in Cameroon for the treatment of many diseases including cardiovascular disorders. We have studied its vasorelaxant effects in rat vascular smooth muscle. In this study, aqueous, methylene chloride, methanol, and methylene chloride/methanol leaves extracts of Brillantaisia nitens were tested for their relaxing ability in vitro. Strips of rat aorta, with or without intact endothelium, were mounted in tissue baths, contracted with KCl (60mM) or norepinephrine (10(-4)M), and then exposed to the plant extracts. These extracts exhibited concentration-dependent vasorelaxations of norepinephrine-induced contractions of intact aortic strips. The EC(50) were 0.42+/-0.01mg/ml (aqueous extract), 0.63+/-0.02mg/ml (methylene chloride extract), 0.73+/-0.02mg/ml (methanol extract) and 0.36+/-0.02mg/ml (methylene chloride/methanol extract). The methylene chloride/methanol (CH(2)Cl(2)/CH(3)OH) extract was the most potent relaxing extract. It caused a concentration-dependent and endothelium-independent relaxation of the rat aortic strips contracted by KCl or norepinephrine. On the NE-induced contraction, its maximal relaxant activity (109%) due to the dose of 1.5mg/ml, was not significantly modified by the pretreatment of aortic strips with indomethacin (89%, P>0.05) or with l-NAME (103%, P>0.05). This suggests that the vasorelaxation elicited by CH(2)Cl(2)/CH(3)OH extract was not mediated via endothelium-derived prostacyclin or nitric oxide. In contrast, this relaxation was markedly reduced by tetraethylammonium, a blocker of non-selective K(+) channels and glibenclamide, a blocker of ATP-sensitive K(+) channels. The CH(2)Cl(2)/CH(3)OH extract significantly inhibited Ca(2+)-induced concentration-contraction and the Ca(2+) influx in aortic strips incubated with 60mM KCl. These results indicate that the vasorelaxant effect of the CH(2)Cl(2)/CH(3)OH extract of Brillantaisia nitens is due to an inhibition of Ca(2+) influx

  16. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells

    PubMed Central

    Damián-Zamacona, Salvador; Toledo-Ibelles, Paola; Ibarra-Abundis, Mabel Z.; Uribe-Figueroa, Laura; Hernández-Lemus, Enrique; Macedo-Alcibia, Karla Paola; Delgado–Coello, Blanca; Mas-Oliva, Jaime; Reyes-Grajeda, Juan Pablo

    2016-01-01

    Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and

  17. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  18. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor.

    PubMed

    Bi, Rui; Ding, Fangbao; He, Yi; Jiang, Lianyong; Jiang, Zhaolei; Mei, Ju; Liu, Hao

    2016-12-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMC) is a common feature of disease progression in atherosclerosis. Here, we investigated the potential role of miR-503 in platelet-derived growth factor (PDGF)-induced proliferation and migration of human aortic smooth muscle cells and the underlying mechanisms of action. miR-503 expression was significantly downregulated in a dose- and time-dependent manner following PDGF treatment. Introduction of miR-503 mimics into cultured SMCs significantly attenuated cell proliferation and migration induced by PDGF. Bioinformatics analyses revealed that the insulin receptor (INSR) is a target candidate of miR-503. miR-503 suppressed luciferase activity driven by a vector containing the 3'-untranslated region of INSR in a sequence-specific manner. Downregulation of INSR appeared critical for miR-503-mediated inhibitory effects on PDGF-induced cell proliferation and migration in human aortic SMCs. Based on the collective data, we suggest a novel role of miR-503 as a regulator of VSMC proliferation and migration through modulating INSR.

  19. Induction of B(1)-kinin receptors in vascular smooth muscle cells: cellular mechanisms of map kinase activation.

    PubMed

    Christopher, J; Velarde, V; Jaffa, A A

    2001-09-01

    Vascular smooth muscle cell (VSMC) proliferation is a prominent feature of the atherosclerotic process that occurs after endothelial injury. Although a vascular wall kallikrein-kinin system has been described, its contribution to vascular disease remains undefined. Because the B(1)-kinin receptor subtype (B1KR) is induced in VSMCs only in response to injury, we hypothesize that this receptor may be mediating critical events in the progression of vascular disease. In the present study, we provide evidence that des-Arg(9)-bradykinin (dABK) (10(-8) M), acting through B1KR, stimulates the phosphorylation of mitogen-activated protein kinase (MAPK) (p42(mapk) and p44(mapk)). Activation of MAPK by dABK is mediated via a cholera toxin-sensitive pathway and appears to involve protein kinase C, Src kinase, and MAPK kinase. These findings demonstrate that the activation of B1KR in VSMCs leads to the generation of second messengers that converge to activate MAPK and provide a rationale to investigate the mitogenic actions of dABK in vascular injury.

  20. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    PubMed

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-03

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  1. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells.

    PubMed

    Viceconte, Nikenza; McKenna, Tomás; Eriksson, Maria

    2014-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.

  2. Low Levels of the Reverse Transactivator Fail to Induce Target Transgene Expression in Vascular Smooth Muscle Cells

    PubMed Central

    Viceconte, Nikenza; McKenna, Tomás; Eriksson, Maria

    2014-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time. PMID:25090270

  3. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  4. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization*

    PubMed Central

    Hien, Tran Thi; Turczyńska, Karolina M.; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F.; Albinsson, Sebastian

    2016-01-01

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility. PMID:26683376

  5. Phosphate binders prevent phosphate-induced cellular senescence of vascular smooth muscle cells and vascular calcification in a modified, adenine-based uremic rat model.

    PubMed

    Yamada, S; Tatsumoto, N; Tokumoto, M; Noguchi, H; Ooboshi, H; Kitazono, T; Tsuruya, K

    2015-04-01

    Clinical and experimental studies have reported that phosphate overload plays a central role in the pathogenesis of vascular calcification in chronic kidney disease. However, it remains undetermined whether phosphate induces cellular senescence during vascular calcification. We established a modified uremic rat model induced by a diet containing 0.3% adenine that showed more slowly progressive kidney failure, more robust vascular calcification, and longer survival than the conventional model (0.75% adenine). To determine the effect of phosphate on senescence of vascular smooth muscle cells (VSMCs) and the protective effect of phosphate binders, rats were divided into four groups: (1) normal control rats; (2) rats fed with the modified adenine-based diet (CKD); (3) CKD rats treated with 6% lanthanum carbonate (CKD-LaC); and (4) CKD rats treated with 6% calcium carbonate (CKD-CaC). After 8 weeks, CKD rats showed circumferential arterial medial calcification, which was inhibited in CKD-LaC and CKD-CaC rats. CKD rats showed increased protein expression of senescence-associated β-galactosidase, bone-related proteins, p16 and p21, and increased oxidative stress levels in the calcified area, which were inhibited by both phosphate binders. However, serum levels of oxidative stress and inflammatory markers, serum fibroblast growth factor 23, and aortic calcium content in CKD-CaC rats were higher than those in CKD-LaC rats. In conclusion, phosphate induces cellular senescence of VSMCs in the modified uremic rat model, and phosphate binders can prevent both cellular senescence and calcification of VSMCs via phosphate unloading. Our modified adenine-based uremic rat model is useful for evaluating uremia-related complications, including vascular calcification.

  6. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  7. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.

    PubMed

    Miller, Derick C; Thapa, Anil; Haberstroh, Karen M; Webster, Thomas J

    2004-01-01

    Biomaterials that successfully integrate into surrounding tissue should match not only the tissue's mechanical properties, but also its topography. The cellular response to a biomaterial may be enhanced in synthetic polymer formulations by mimicking the surface roughness created by the associated nano-structured extra-cellular matrix components of natural tissue. As a first step towards this endeavor, the goal of the present in vitro study was to use these design parameters to develop a synthetic, nano-structured, polymeric biomaterial that promotes cell adhesion and growth for vascular applications. In a novel manner, poly(lactic-co-glycolic acid) (PLGA) (50/50wt% mix) was synthesized to possess a range (from micron to nanometer) of surface features. Reduction of surface features was accomplished by treating conventional PLGA with various concentrations of NaOH for select periods of time. Results from cell experiments indicated that, compared to conventional PLGA, NaOH treated PLGA enhanced vascular smooth muscle cell adhesion and proliferation. However, PLGA prepared by soaking in NaOH decreased endothelial cell adhesion and proliferation compared to conventional PLGA. After further investigation, this finding was determined to be a result of chemical (and not topographical) changes during polymer synthesis. Surface chemistry effects were removed while retaining nano-structured topography by using polymer/elastomer casting methods. Results demonstrated that endothelial and smooth muscle cell densities increased on nano-structured cast PLGA. For these reasons, the present in vitro study provided the first evidence that nano-structured surface features can significantly improve vascular cell densities; such design criteria can be used in the synthesis of the next-generation of more successful tissue-engineered vascular grafts.

  8. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  9. Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells.

    PubMed

    Nakamoto, Tomoko; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2014-10-01

    In recent years, various approaches have been taken to generate functional muscle tissue by tissue engineering. However, in vitro methods to generate smooth muscle with physiologically aligned structure remains limited. In order to mimic the in vivo highly organized structure of smooth muscle cells, we used micropatterning technology for engineering parallel aligned cells. In this study, a gradient micropattern of different width of cell-adhesive polystyrene stripes (5, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800 and 1000μm) was prepared and the effects of micropattern width on human mesenchymal stem cells (hMSCs) orientation, morphology and smooth muscle cell differentiation were investigated. The width of micropattern stripes showed obvious effect on cell orientation, morphology and smooth muscle cell differentiation. The cells showed higher degree of orientation when the micropattern stripes became narrower. Higher expression of calponin and smooth muscle actin was observed among the narrow micropatterns ranging from 200μm to 20μm, compared to the non-patterned area and wide micropattern areas which showed similar levels of expression.

  10. Influences on vascular wall smooth muscle cells with novel short-duration thermal angioplasty

    NASA Astrophysics Data System (ADS)

    Kunio, M.; Shimazaki, N.; Arai, T.; Sakurada, M.

    2012-02-01

    We investigated the influences on smooth muscle cells after our novel short-duration thermal angioplasty, Photo-thermo Dynamic Balloon Angioplasty (PTDBA), to reveal the mechanism that can suppress neo-intimal hyperplasia after PTDBA. We obtained the sufficient arterial dilatations by short-duration heating (<=15 s, <70°C) and low dilatation pressure (<0.4 MPa) without arterial injuries in our previous in vivo studies. Smooth muscle cells, which play most important role in chronic treatment effects, were heated during PTDBA and stretch-fixed after PTDBA. The dead cell rate by heating, estimated by Arrhenius equation with A=2.5x1016 s-1 and Ea=1.17×105 J mol-1, was 15.7+/-2.2% after PTDBA. The measured deformation rate of smooth muscle cells' nuclei was 1.6+/-0.1 after PTDBA in vivo. We found that the expression of smooth muscle cells' growth factor after PTDBA was inhibited 0.52 fold compared to that after the conventional balloon angioplasty in vivo. The measured neo-intimal hyperplasia occupancy rate was less than 20% after PTDBA in vivo. We prospect that the inhibition of the growth factor's expression by stretch-fixing may result to suppress the neo-intimal hyperplasia. In addition, the decrease of smooth muscle cells' density in the vessel media by heating might be another reason for the neo-intimal hyperplasia suppression.

  11. Nonlinear relationship between alpha 1-adrenergic receptor occupancy and norepinephrine-stimulated calcium flux in cultured vascular smooth muscle cells

    SciTech Connect

    Colucci, W.S.; Brock, T.A.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1985-05-01

    To determine the relationship between vascular alpha 1-adrenergic receptor occupancy and receptor-coupled calcium flux, the authors have studied (/sup 3/H)prazosin binding and l-norepinephrine-induced /sup 45/Ca efflux in cultured vascular smooth muscle cells isolated from the rabbit aorta. In a crude cellular homogenate, (/sup 3/H)prazosin bound to a single high affinity site, whereas l-norepinephrine (NE) binding was best described by a two-site model. NE-stimulated /sup 45/Ca efflux was concentration-dependent (EC/sup 50/ = 108 nM) and potently inhibited by prazosin (IC/sup 50/ = 0.15 nM). For the total receptor pool identified by (/sup 3/H)prazosin binding, the relationship between receptor occupancy by NE and NE-stimulated /sup 45/Ca efflux was markedly nonlinear, such that 50% of maximum NE-stimulated efflux occurred with occupancy of only approximately 7% of receptors. These two experimental approaches provide direct evidence for the presence in cultured rabbit aortic smooth muscle cells of a sizable pool of alpha 1-adrenergic receptors in excess of those needed for maximum NE-stimulated /sup 45/Ca efflux. This evidence of ''spare'' receptors, together with the finding of two affinity states of agonist binding, raises the possibility of functional heterogeneity of alpha 1-adrenergic receptors in this system.

  12. Alteration of Contractile Function and Calcium Ion Movements in Vascular Smooth Muscle by Gentamicin and Other Aminoglycoside Antibiotics

    PubMed Central

    Adams, H. Richard; Goodman, Frank R.; Weiss, George B.

    1974-01-01

    Experiments were conducted to examine the effects of certain aminoglycoside antibiotics on contractile responses and related calcium ion (Ca2+) movements in isolated vascular smooth muscle. Gentamicin, kanamycin, and streptomycin decreased contractile responses produced by norepinephrine, histamine, and high K+ in rabbit aortic strips. The inhibitory action of these antibiotics on mechanical function was more pronounced when the Ca2+ concentration of the bathing solution was decreased from 1.5 mM (normal Ca2+ solution) to 0.05 mM (low Ca2+ solution). The uptake of radiocalcium (45Ca) into the isolated media-intimal layer of rabbit aortae was decreased in a maintained manner by each antibiotic. With gentamicin, the inhibitory effect on 45Ca uptake was shown to be dependent upon the concentration of gentamicin employed and to be more evident in a 0.1 mM Ca2+ solution than in a normal Ca2+ solution. In addition, the rate of 45Ca efflux from the rabbit aortic media-intimal layer was increased in a sustained manner by gentamicin, streptomycin, and kanamycin. Furthermore, contractile responses induced by high K+ and norepinephrine in canine carotid arterial strips were inhibited by gentamicin. Present findings indicate that aminoglycoside antibiotics interfere with Ca2+-linked events leading to activation of the contractile mechanism of vascular smooth muscle. These in vitro findings may partially explain the occurrence of in vivo cardiovascular depression that has occasionally been observed after the administration of chemically related antimicrobial agents. PMID:15825418

  13. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid.

    PubMed

    Bhugra, Praveen; Xu, Yan-Jun; Rathi, Satyajeet; Dhalla, Naranjan S

    2003-06-15

    Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC.

  14. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    PubMed

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  15. Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues.

    PubMed Central

    Leff, P.; Martin, G. R.; Morse, J. M.

    1987-01-01

    In ring preparations of the rabbit external jugular vein contracted with the thromboxane-mimetic U-46619, submicromolar concentrations of 5-hydroxytryptamine (5-HT) and chemically related analogues produced relaxations that were dependent on the integrity of the vascular endothelium. The receptor mediating endothelium-dependent relaxations was evidently similar to previously described endothelial 5-HT receptors since relaxation responses to alpha-methyl-5-HT were not blocked by atropine, (+/-)-propranolol, yohimbine, indomethacin, ketanserin or MDL-72222, but were non-competitively antagonized by methysergide, methiothepin and cyproheptadine. The activities of some tryptamine agonists and antagonists at the endothelial 5-HT receptor in rabbit jugular vein were compared with their activities at the smooth muscle 5-HT2-receptor in rabbit aortic rings. Differences in the tryptamines' affinities and relative efficacies showed that the endothelial 5-HT receptor was not of the 5-HT2-type. The high agonist potencies of 5-HT and 5-carboxamidotryptamine, the susceptibility to antagonism by both methiothepin and methysergide and the resistance to blockade by selective 5-HT2 and 5-HT3 ('M') receptor antagonists implies that the endothelial receptor belongs to the '5-HT1-like' class. However, the agonist potency order 5-HT = alpha-methyl-5-HT greater than 5-carboxamidotryptamine suggested that the receptor is not the same as the peripheral '5-HT1-like' receptors reported to mediate directly contraction of the dog saphenous vein or relaxation of vascular and non-vascular smooth muscles. At these receptors, the potency order is 5-carboxamidotryptamine greater than 5-HT greater than alpha-methyl-5-HT. These results constitute preliminary evidence that peripheral '5-HT1-like' receptors, like central 5-HT1 recognition sites, are a heterogeneous population. Further comparative studies with a wider range of receptor probes are necessary to establish whether or not these receptors

  16. The Influence of RGD-Bearing Hydrogels on the Re-expression of Contractile Vascular Smooth Muscle Cell Phenotype

    PubMed Central

    Beamish, Jeffrey A.; Fu, Alexander; Choi, Ae-jin; Haq, Nada; Kottke-Marchant, Kandice; Marchant, Roger E.

    2009-01-01

    This study reports on the ability of poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds with pendant integrin-binding GRGDSP peptides (RGD-gels) to support the re-differentiation of cultured vascular smooth muscle cells (SMCs) toward a contractile phenotype. Human coronary SMCs were seeded on RGD-gels, hydrogels with other extracellular matrix derived peptides, fibronectin (FN) and laminin (LN). Differentiation was induced on RGD-gels with low serum medium containing soluble heparin, and the differentiation status was monitored by mRNA expression, protein expression, and intracellular protein organization of the contractile smooth muscle markers, smooth muscle α-actin, calponin and SM-22α. RGD-gels supported a rapid induction (2.7- to 25-fold up-regulation) of SMC marker gene mRNA, with expression levels that were equivalent to FN and LN controls. Marker protein levels mirrored the changes in mRNA expression, with levels on RGD-gels indistinguishable from FN and LN controls. Furthermore, these markers co-localized in stress fibers within SMCs on RGD-gels suggesting the recapitulation of a contractile apparatus within the cells. These results indicate that SMCs cultured on RGD-bearing hydrogels can re-differentiate toward a contractile phenotype suggesting this material is an excellent candidate for further development as a bioactive scaffold that regulates SMC phenotype. PMID:19481795

  17. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension

    PubMed Central

    Bai, Xue; Lenhart, Kaitlin C.; Bird, Kim E.; Suen, Alisa A.; Rojas, Mauricio; Kakoki, Masao; Li, Feng; Smithies, Oliver; Mack, Christopher P.; Taylor, Joan M.

    2014-01-01

    Although hypertension is a worldwide health issue, an incomplete understanding of its etiology has hindered our ability to treat this complex disease. Here we identify arhgap42 (also known as GRAF3) as a Rho-specific GAP expressed specifically in smooth muscle cells in mice and humans. We show that GRAF3-deficient mice exhibit significant hypertension and increased pressor responses to angiotensin II and endothelin-1; these effects are prevented by treatment with the Rho-kinase inhibitor, Y-27632. RhoA activity and myosin light chain phosphorylation are elevated in GRAF3-depleted smooth muscle cells in vitro and in vivo, and isolated vessel segments from GRAF3-deficient mice show increased contractility. Taken together our data indicate that GRAF3-mediated inhibition of RhoA activity in vascular smooth muscle cells is necessary for maintaining normal blood pressure homeostasis. Moreover, these findings provide a potential mechanism for a hypertensive locus recently identified within arhgap42 and provide a foundation for the future development of innovative hypertension therapies. PMID:24335996

  18. Severe Sprengel deformity associated with Klippel-Feil syndrome and a complex vascular abnormality that determined the corrective surgery technique.

    PubMed

    Fontecha, Cesar G; Navarro Cano, Ester; Soldado, Francisco; Barber, Ignasi

    2014-11-01

    Sprengel deformity (SD), a congenital condition characterized by elevation of the scapula, is a cause of functional and aesthetic defects that can be improved by surgical correction. Many cases of SD are associated with Klippel-Feil syndrome (KFS), in which there may be abnormalities of the supra-aortic vessels. We present the case of an 11-year-old girl with severe SD and KFS. The left vertebral artery arose from the subclavian artery in a very high cervical location, which made surgical descent of the scapula unfeasible. The patient was treated using a Mears procedure, with osteotomy of the scapula and tenotomy of the long head of the triceps. The appearance and range of motion of the shoulders improved considerably, and there were no vascular complications. A morphologic vascular assessment is essential in children with SD and concomitant KFS to avoid potentially serious iatrogenic vascular injury when performing a scapular-descending surgical technique.

  19. Silencing of osterix expression by siRNA inhibits aldosterone‑induced calcification of vascular smooth muscle cells in mice.

    PubMed

    Gong, Yan-Chun; He, Yue; Wang, Hao; Niu, Wen-Quan; Ji, Kai-Da; Li, Hua

    2016-09-01

    The process of vascular calcification shares numerous similarities with that of skeletal mineralization and involves the deposition of hydroxyapatite crystals in arteries and cardiac valves. However, the underlying cellular mechanism remains to be fully elucidated. Microarray analysis in the present study demonstrated that greater than 2,000 genes were upregulated during the calcification of murine vascular smooth muscle cells (VSMCs), of which osterix (OSX) and integrin‑binding sialoprotein (IBSP) were the most significantly differentially expressed genes. Following the validation of increased OSX and IBSP expression by reverse transcription‑quantitative polymerase chain reaction in calcifying murine VSMCs induced by aldosterone. Subsequent to transfection with siRNA‑OSX, results indicated that OSX may inhibit calcification of VSMCs via IBSP. It was suggested that the increased OSX expression in calcifying VSMCs may reflect the well‑established prenatal role of OSX. A full understanding of the importance of OSX in this pathological process would improve understanding of the pathogenesis of vascular calcification.

  20. CADASIL mutations and shRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells.

    PubMed

    Tikka, Saara; Ng, Yan Peng; Di Maio, Giuseppe; Mykkänen, Kati; Siitonen, Maija; Lepikhova, Tatiana; Pöyhönen, Minna; Viitanen, Matti; Virtanen, Ismo; Kalimo, Hannu; Baumann, Marc

    2012-12-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia caused by mutations in NOTCH3 gene. Pathology is manifested in small- and middle-sized arteries throughout the body, though primarily in cerebral white matter. Hemodynamics is altered in CADASIL and NOTCH3 is suggested to regulate actin filament polymerization and thereby vascular tone. We analyzed NOTCH3 expression and morphology of actin cytoskeleton in genetically genuine cultured human CADASIL vascular smooth muscle cells (VSMCs) (including a cell line homozygous for p.Arg133Cys mutation) derived from different organs, and in control VSMCs with short hairpin RNA (shRNA)-silenced NOTCH3. NOTCH3 protein level was higher in VSMCs derived from adult than newborn arteries in both CADASIL and control VSMCs. CADASIL VSMCs showed altered actin cytoskeleton including increased branching and node formation, and more numerous and smaller adhesion sites than control VSMCs. Alterations in actin cytoskeleton in shRNA-silenced VSMCs were similar as in CADASIL VSMCs. Severity of the alterations in actin filaments corresponded to NOTCH3 expression level being most severe in VSMCs derived from adult cerebral arteries. These observations suggest that hypomorphic NOTCH3 activity causes alterations in actin organization in CADASIL. Furthermore, arteries from different organs have specific characteristics, which modify the effects of the NOTCH3 mutation and which is one explanation for the exceptional susceptibility of cerebral white matter arteries.

  1. G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation

    PubMed Central

    McCallum, Jennifer E.; Mackenzie, Amanda E.; Divorty, Nina; Clarke, Carolyn; Delles, Christian; Milligan, Graeme; Nicklin, Stuart A.

    2016-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation is central to neointima formation in vein graft failure following coronary artery bypass. However, there are currently no pharmacological interventions that prevent vein graft failure through intimal occlusion. It is hence a therapeutic target. Here, we investigated the contribution of GPR35 to human VSMC and endothelial cell (EC) migration, using a scratch-wound assay, and also the contribution to proliferation, using MTS and BrdU assays, in in vitro models using recently characterized human GPR35 ortholog-selective small-molecule agonists and antagonists. Real-time PCR studies showed GPR35 to be robustly expressed in human VSMCs and ECs. Stimulation of GPR35, with either the human-selective agonist pamoic acid or the reference agonist zaprinast, promoted VSMC migration in the scratch-wound assay. These effects were blocked by coincubation with either of the human GPR35-specific antagonists, CID-2745687 or ML-145. These GPR35-mediated effects were produced by inducing alterations in the actin cytoskeleton via the Rho A/Rho kinase signaling axis. Additionally, the agonist ligands stimulated a proliferative response in ECs. These studies highlight the potential that small molecules that stimulate or block GPR35 activity can modulate vascular proliferation and migration. These data propose GPR35 as a translational therapeutic target in vascular remodeling. PMID:27064272

  2. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway

    SciTech Connect

    Luo, Di-xian; Cheng, Jiming; Xiong, Yan; Li, Junmo; Xia, Chenglai; Xu, Canxin; Wang, Chun; Zhu, Bingyang; Hu, Zhuowei; Liao, Duan-fang

    2010-01-22

    Intimal hyperplasia plays an important role in various types of vascular remodeling. Mechanical forces derived from blood flow are associated with the proliferation of vascular smooth muscle cells (VSMC). This contributes to many vascular disorders such as hypertension, atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTA). In this study, we show that static pressure induces the proliferation of VSMC and activates its related signal pathway. VSMC from a rat aorta were treated with different pressures (0, 60, 90, 120, 150 and 180 mm Hg) in a custom-made pressure incubator for 24 h. The most active proliferation of VSMC was detected at a pressure of 120 mm Hg. VSMC was also incubated under a static pressure of 120 mm Hg for different time intervals (0, 2, 4, 8, 12 and 24 h). We found that static pressure significantly stimulates VSMC proliferation. Extracellular signal-regulated kinases 1/2 (ERK1/2) activation showed a peak at the pressure of 120 mm Hg at 4-h time point. Moreover, caveolin-1 expression was significantly inhibited by rising static pressure. Downregulation of VSMC proliferation could be found after PD98059 (ERK1/2 phosphorylation inhibitor) treatment. Our data also showed that a siRNA-mediated caveolin-1 knock down increased ERK1/2 phosphorylation and VSMC proliferation. These results demonstrate that static pressure promotes VSMC proliferation via the Caveolin-1/ERK1/2 pathway.

  3. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.

  4. Involvement of large conductance Ca(2+)-activated K (+) channel in laminar shear stress-induced inhibition of vascular smooth muscle cell proliferation.

    PubMed

    Jia, Xiaoling; Yang, Jingyun; Song, Wei; Li, Ping; Wang, Xia; Guan, Changdong; Yang, Liu; Huang, Yan; Gong, Xianghui; Liu, Meili; Zheng, Lisha; Fan, Yubo

    2013-02-01

    The large conductance Ca(2+)-activated K(+) (BK(Ca)) channel in vascular smooth muscle cell (VSMC) is an important potassium channel that can regulate vascular tone. Recent work has demonstrated that abnormalities in BK(Ca) channel function are associated with changes in cell proliferation and the onset of vascular disease. However, until today there are rare reports to show whether this channel is involved in VSMC proliferation in response to fluid shear stress (SS). Here we investigated a possible role of BK(Ca) channel in VSMC proliferation under laminar SS. Rat aortic VSMCs were plated in parallel-plate flow chambers and exposed to laminar SS with varied durations and magnitudes. VSMC proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA) expression and DNA synthesis. BK(Ca) protein and gene expression was determined by flow cytometery and RT-PCR. The involvement of BK(Ca) in SS-induced inhibition of proliferation was examined by BK(Ca) inhibition using a BK(Ca) specific blocker, iberiotoxin (IBTX), and by BK(Ca) transfection in BK(Ca) non-expressing CHO cells. The changes in [Ca(2+)](i) were determined using a calcium-sensitive dye, fluo 3-AM. Membrane potential changes were detected with a potential-sensitive dye, DiBAC(4)(3). We found that laminar SS inhibited VSMC proliferation and stimulated BK(Ca) channel expression. Furthermore, laminar SS induced an increase in [Ca(2+)](i) and membrane hyperpolarization. Besides in VSMC, the inhibitory effect of BK(Ca) channel activity on cell proliferation in response to SS was also confirmed in BK(Ca)-transfected CHO cells showing a decline in proliferation. Blocking BK(Ca) channel reversed its inhibitory effect, providing additional support for the involvement of BK(Ca) in SS-induced proliferation reduction. Our results suggest, for the first time, that BK(Ca) channel mediates laminar SS-induced inhibition of VSMC proliferation. This finding is important for understanding the mechanism by

  5. Down-regulation of hsa-miR-148b inhibits vascular smooth muscle cells proliferation and migration by directly targeting HSP90 in atherosclerosis

    PubMed Central

    Zhang, Xinqi; Shi, Hua; Wang, Yuanlin; Hu, Jianxin; Sun, Zhaolin; Xu, Shuxiong

    2017-01-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are crucial pathological processes that are involved in atherosclerosis. Growing evidence suggests that microRNAs (miRNAs) play critical roles in VSMCs functions. Here, we analyzed the expression of four atherosclerosis-related miRNAs and found that hsa-miR-148b was significantly down-regulated in plaques from atherosclerotic patients compared to a healthy control group. The restoration of hsa-miR-148b function in cells transfected with a hsa-miR-148b mimicmarkedly inhibited VSMCs proliferation and migration compared to a hsa-miR-148b mimic control. Furthermore, we discovered that heat shock protein 90 (HSP90) was a direct target of hsa-miR-148b in VSMCs. Hsa-miR-148b suppressed HSP90 expression by directly binding its 3’-untranslated region (UTR). In addition, the expression of hsa-miR-148b was negatively correlated with the HSP90 mRNA levels in plaques of atherosclerotic patients. Interestingly, the overexpression of HSP90 partly abrogated the hsa-miR-148b-mediated inhibition of VSMCs proliferation and migration. Our study provides the first evidence that hsa-miR-148b has anti-proliferative and migratory functions by targeting HSP90 in VSMCs and may aidin the development of new biomarkers and potential therapeutic targets for atherosclerosis. PMID:28337290

  6. Phenotypic modifications of vascular smooth muscle cells could be responsible for vascular hyporeactivity to contracting agent in mechanically injured rat carotid artery.

    PubMed

    Popolo, A; Marzocco, S; Nasti, C; Lippolis, L; di Villa Bianca, R d'Emmanuele; Sorrentino, R; Autore, G; Pinto, A

    2005-12-01

    Vascular smooth muscle cells (VSMCs) that accumulate in neointima after angioplastic injury show different phenotypic characteristics from those of medial layer and an impaired reactivity to contracting agents. The aim of the study was to correlate the vascular hyporesponsiveness to the changes in intracellular calcium concentration [Ca(2+)](i) and the expression of proteins necessary for its utilization in mechanically injured rat carotid arteries (IC) at 14 and 28 days after angioplastic balloon. IC showed a significant reduction (P<0.01) to PE- or KCl-induced contraction as compared to uninjured carotid (UC). Fura-2AM-loaded VSMCs isolated from IC revealed that this hyporeactivity to PE or KCl was accompanied by the impairment of the increase in [Ca(2+)](i) induced by contracting agents in both Ca(2+)-free or -containing medium. Similar results were observed following the ryanodine challenge in VSMC. Western blot analysis showed a significant (P<0.05) reduction in myosin heavy chain (MHC) and IP(3)-type III receptor expression in IC isolated at 14 days from injury compared to UC, while an improvement of these proteins expression was observed at 28 days after damage. On the other hand, in IC tissue, SERCA2 and alpha-actin expression, compared to UC was significantly higher at 14 days than at 28 days. These data indicate that vascular hyporeactivity induced by mechanical injury may be due to alterations of either [Ca(2+)](i) or contractile proteins. These modifications could be related to the changes of VSMC phenotypic characteristics, as supported by the observed modifications in MHC, SERCA2 and alpha-actin expression, proteins considered as biological markers of cellular differentiation.

  7. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    SciTech Connect

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R.; Redondo, Santiago; Peçanha, Franck; Martín, Angela; Fortuño, Ana; Cachofeiro, Victoria; Tejerina, Teresa; Salaices, Mercedes; and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  8. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    PubMed Central

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  9. Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: possible relationship to aortic dissection, atherosclerosis, and hypertension.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella; Altura, Burton

    2004-01-01

    Cocaine abuse is known to induce many adverse cardiovascular effects, including hypertension, atherosclerosis, and aortic dissection. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. This study was designed to investigate if primary cultured rat aortic vascular smooth muscle cells (VSMCs) can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6) to 10(-4) M), morphological analysis of aortic VSMCs using confocal fluoresence microscopy showed that the percentage of apoptotic aortic VSMCs increased after cocaine (10(-6) to 10(-4) M) treatment for 12, 24, and 48 h. These results demonstrate that aortic VSMCs can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in cocaine abuse-induced aortic dissection, atherosclerosis, and hypertension.

  10. Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Li, Wenyan; Su, Jialin; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-12-15

    Recently, reactive oxygen species (ROS) have been suggested as important mediators of brain damage in a number of disease states, including traumatic brain injury, neurodegenerative diseases and strokes. Apoptosis has been suggested to play an important role in neurodegenerative diseases, traumatic brain injury and strokes. The aim of this study was to determine whether or not cerebral vascular smooth muscle cells (CVSMCs) undergo apoptosis following treatment with hydrogen peroxide (H2O2). Herein, we demonstrate, for the first time, that H2O2 can induce apoptosis in a concentration-dependent manner in primary cultured CVSMCs, as measured by several morphological and biochemical criteria. H2O2-induced apoptosis may be initiated by stimulating Ca2+-dependent endonuclease activity. The present new data suggest that apoptosis in cerebral VSMCs, induced by ROS, such as H2O2, could play important roles in neruodegenerative processes, traumatic brain injury and strokes.

  11. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    PubMed

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  12. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    PubMed

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues.

  13. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells

    PubMed Central

    Shi, Jian; Miralles, Francesc; Birnbaumer, Lutz; Large, William A.; Albert, Anthony P.

    2016-01-01

    Depletion of sarcoplasmic reticulum (SR) Ca2+ stores activates store-operated channels (SOCs) composed of canonical transient receptor potential (TRPC) 1 proteins in vascular smooth muscle cells (VSMCs), which contribute to important cellular functions. We have previously shown that PKC is obligatory for activation of TRPC1 SOCs in VSMCs, and the present study investigates if the classic phosphoinositol signaling pathway involving Gαq-mediated PLC activity is responsible for driving PKC-dependent channel gating. The G-protein inhibitor GDP-β-S, anti-Gαq antibodies, the PLC inhibitor U73122, and the PKC inhibitor GF109203X all inhibited activation of TRPC1 SOCs, and U73122 and GF109203X also reduced store-operated PKC-dependent phosphorylation of TRPC1 proteins. Three distinct SR Ca2+ store-depleting agents, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, cyclopiazonic acid, and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethane-1,2-diamineed, induced translocations of the fluorescent biosensor GFP-PLCδ1-PH from the cell membrane to the cytosol, which were inhibited by U73122. Knockdown of PLCβ1 with small hairpin RNA reduced both store-operated PLC activity and stimulation of TRPC1 SOCs. Immunoprecipitation studies and proximity ligation assays revealed that store depletion induced interactions between TRPC1 and Gαq, and TRPC1 and PLCβ1. We propose a novel activation mechanism for TRPC1 SOCs in VSMCs, in which store depletion induces formation of TRPC1-Gαq-PLCβ1 complexes that lead to PKC stimulation and channel gating.—Shi, J., Miralles, F., Birnbaumer, L., Large, W. A., Albert, A. P. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. PMID:26467792

  14. Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells.

    PubMed

    Lassègue, B; Alexander, R W; Clark, M; Akers, M; Griendling, K K

    1993-06-01

    In cultured vascular smooth-muscle cells, angiotensin II produces a sustained formation of diacylglycerol (DG) and phosphatidic acid (PtdOH). Since the fatty acid composition of these molecules is likely to determine their efficacy as second messengers, it is important to ascertain the phospholipid precursors and the biochemical pathways from which they are produced. Our experiments suggest that phospholipase D (PLD)-mediated phosphatidylcholine (PtdCho) hydrolysis is the major source of both DG and PtdOH during the late signalling phase. First, in cells labelled with [3H]myristate, which preferentially labels PtdCho, formation of [3H]PtdOH precedes formation of [3H]DG. Second, in contrast with phospholipase C (PLC) activation, DG mass accumulation is dependent on extracellular Ca2+. Similarly, DG mass accumulation is not attenuated by protein kinase C activation, which we have previously shown to inhibit the phosphoinositide-specific PLC. Third, the fatty acid composition of late-phase DG and PtdOH more closely resembles that of PtdCho than that of phosphatidylinositol. Finally, in cells labelled for a short time with [3H]glycerol, the radioactivity incorporated into [3H]DG and PtdOH was greater than that incorporated into PtdIns, but not into PtdCho. We found no evidence that synthesis de novo or phosphatidylethanolamine breakdown contributes to sustained DG and PtdOH formation. Thus, in angiotensin II-stimulated cultured vascular smooth-muscle cells, PLD-mediated PtdCho hydrolysis is the major source of sustained DG and PtdOH, whereas phosphoinositide breakdown is a minor contributor. Furthermore, PtdOH phosphohydrolase, which determines the relative levels of DG and PtdOH, appears to be regulated by protein kinase C. These results have important implications for the role of these second messengers in growth and contraction.

  15. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells.

    PubMed

    Absher, M P; Baldor, L; Warshaw, D M

    1988-01-01

    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  16. Non-genomic mechanism of 17 beta-oestradiol-induced inhibition of contraction in mammalian vascular smooth muscle.

    PubMed Central

    Kitazawa, T; Hamada, E; Kitazawa, K; Gaznabi, A K

    1997-01-01

    17 beta-Oestradiol (E2) at 0.1-10 microM directly inhibited various tonic and phasic smooth muscle contractions. The mechanism(s) of oestrogen-induced inhibition of contraction was studied using intact and permeabilized strips and isolated single cells of smooth muscle. 2. In endothelium-denuded vascular smooth muscle, E2 attenuated high K(+)-induced force development and myosin light chain phosphorylation, and produced rapid and reversible relaxation. There were no significant differences in these inhibitory effects between tissue types (femoral artery vs. portal vein), species (rat vs. rabbit) or sexes. 3. The inhibitory potencies of several steroidal and non-steroidal oestrogen analogues were examined and their effects were for the most part stereo-specific. However, two steroids with negligible affinities for the nuclear oestrogen receptor also strongly inhibited high K(+)-induced contraction. 4. Genomic modulators including a protein synthesis inhibitor, an RNA synthesis inhibitor, and oestrogen receptor antagonists did not affect the inhibitory actions of E2. Inhibitors of cyclic nucleotide-dependent protein kinases did not reduce the E2 effect. 5. Ca2+ release from intracellular stores by agonists and by inositol 1,4,5-trisphosphate (IP3) does not appear to be modulated by E2. Neither pretreatment with ryanodine nor with thapsigargin affected the E2-induced inhibition of high K(+)-induced contraction. 6. E2 had no effect on either normal or GTP gamma S-increased Ca2+ sensitivity of the regulatory and contractile apparatus. 7. E2 and its analogues rapidly inhibited voltage-dependent L-type Ca2+ channel currents in isolated smooth muscle cells. Repetitive stimulation was not required for E2-induced inhibition of the currents. 8. This study strongly suggests that at pharmacological concentrations oestrogen primarily reduces Ca2+ influx through inhibition of L-type Ca2+ channels in a non-genomic manner and decreases myosin light chain phosphorylation and

  17. Inhibitory Effects of Hydrogen on Proliferation and Migration of Vascular Smooth Muscle Cells via Down-Regulation of Mitogen/Activated Protein Kinase and Ezrin-Radixin-Moesin Signaling Pathways.

    PubMed

    Zhang, Ya-Xing; Xu, Jing-Ting; You, Xin-Chao; Wang, Chen; Zhou, Ke-Wen; Li, Ping; Sun, Peng; Wang, Ling; Wang, Ting-Huai

    2016-02-29

    Molecular hydrogen (H₂) has recently attracted considerable attention for the prevention of oxidative stress-related vascular diseases. The purpose of this study is to evaluate the effects of hydrogen on proliferation and migration of vascular smooth muscle cells (VSMCs) stimulated by angiotensin II (Ang II) in vitro, and on vascular hypertrophy induced by abdominal aortic coarctation (AAC) in vivo. Hydrogen-rich medium (0.6~0.9 ppm) was added 30 min before 10⁻⁷ M Ang II administration, then the proliferation and migration index were determined 24 h after Ang II stimulation. Hydrogen gas (99.999%) was given by intraperitoneal injection at the dose of 1 ml/100 g/day consecutively for one week before AAC and lasted for 6 weeks in vivo. Hydrogen inhibited proliferation and migration of VSMCs with Ang II stimulation in vitro, and improved the vascular hypertrophy induced by AAC in vivo. Treatment with hydrogen reduced Ang II- or AAC-induced oxidative stress, which was reflected by diminishing the induction of reactive oxygen species (ROS) in Ang II-stimulated VSMCs, inhibiting the levels of 3-nitrotyrosine (3-NT) in vascular and serum malondialdehyde (MDA). Hydrogen treatment also blocked Ang II-induced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, c-Jun NH₂-terminal kinase (JNK) and the ezrin/radixin/moesin (ERM) in vitro. Taken together, our studies indicate that hydrogen prevents AAC-induced vascular hypertrophy in vivo, and inhibits Ang II-induced proliferation and migration of VSMCs in vitro possibly by targeting ROS-dependent ERK1/2, p38 MAPK, JNK and ERM signaling. It provides the molecular basis of hydrogen on inhibiting the abnormal proliferation and migration of VSMCs and improving vascular remodeling diseases.

  18. MiR-21 inhibits c-Ski signaling to promote the proliferation of rat vascular smooth muscle cells.

    PubMed

    Li, Jun; Zhao, Li; He, Xie; Yang, Ting; Yang, Kang

    2014-04-01

    Previously, we reported that the decrease of endogenous c-Ski expression is implicated in the progression of vascular smooth muscle cell (VSMC) proliferation after arterial injury. However, the molecular mechanism of the down-regulation of c-Ski is not clear. In this study, a potential miR-21 recognition element was identified in the 3'-untranslated region (UTR) of rat c-Ski mRNA. A reporter assay revealed that miR-21 could recognize the miR-21 recognition element of c-Ski mRNA. In A10 rat aortic smooth muscle cells, overexpression of miR-21 significantly inhibited the expression of c-Ski protein and promoted cell proliferation, which could be blocked by inhibition of miR-21 or overexpression of c-Ski. Further investigation demonstrated that the effect of miR-21 on VSMC proliferation resulted from negative regulation of c-Ski to suppress p38-p21/p27 signaling, the downstream pathway of c-Ski in VSMCs. These results indicate that c-Ski is a target gene of miR-21. miR-21 specifically binds to the 3'-untranslated region of c-Ski and negatively regulates c-Ski expression to diminish the protective effects of c-Ski and stimulate VSMC proliferation in the progression of arterial injury.

  19. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake.

    PubMed

    El Hadri, Khadija; Moldes, Marthe; Mercier, Nathalie; Andreani, Marise; Pairault, Jacques; Feve, Bruno

    2002-01-01

    Cultured vascular smooth muscle cells (VSMCs) derived from rat aortic media were used to examine semicarbazide-sensitive amine oxidase (SSAO) expression during their differentiation process. In a defined serum-free medium permissive for in vitro VSMC differentiation, there was a large increase in SSAO mRNA and protein levels and in the related enzyme activity during the course of cell culture. This pattern of expression was concomitant with that of some smooth muscle-specific mRNA markers of differentiation. mRNAs in differentiated cultured VSMCs were comparable to those detected in total aorta and media. Pharmacological properties of SSAO present in VSMCs were similar to enzyme activities previously described in the aortic wall. In this model, we also demonstrated that methylamine, a physiological substrate of SSAO, activated 2-deoxyglucose transport in a time- and dose-dependent manner. This methylamine effect was reproduced by other SSAO substrates and was prevented by the SSAO inhibitor semicarbazide. It was antagonized in the presence of catalase, suggesting that SSAO-activated glucose transport was mediated through H(2)O(2) production. In addition, methylamine promoted glucose transporter 1 accumulation at the cell surface. Thus, we demonstrate for the first time the differentiation-dependent expression of SSAO in VSMCs and its role in the regulation of VSMC glucose uptake.

  20. [THE ROLE OF HYDROGEN SULFIDE IN VOLUME-DEPENDENT MECHANISMS OF REGULATION OF VASCULAR SMOOTH MUSCLE CELLS CONTRACTILE ACTIVITY].

    PubMed

    Smagliy, L V; Gusakova, S V; Birulina, Yu G; Kovalev, I V; Orlov, S N

    2015-04-01

    The hydrogen sulfide (H2S) influence on the contractile activity of vascular smooth muscle cells (SMC) was studied on endothelium-denuded aortic ring segments of male Wistar rats with method of mechanography. Contractions of SMS were induced by incubation in high potassium solution as well as in hyper-, hypo- and isosmotic solutions. 5-100 LM of H2S donor--sodium hydrosulfide (NaHS) increased mechanical tension of SMC precontracted with high potassium solution that was abolished by bumetanide--the inhibitor of Na+, K+, 2Cl(-) -cotransporter (NKCC), but 100-1000 microM of NaHS relaxed SMS. NaHS (10 microM) increased the amplitude of hyper- and isosmotic contraction, but not of hyposmotic contraction. NaHS (ImM) decreased the amplitude of hyper-, iso-, and hyposmotic contractions. The direct measurements of NKCC activity with radionuclide method showed an increase in NKCC activity under the action of 5-100 microM of NaHS. These findings suggest that low concentrations of H2S participate in the NKCC activation. This mechanism underlines constrictive action of H2S on smooth muscle cells.

  1. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells

    PubMed Central

    Al-Ghabkari, Abdulhameed; Deng, Jing-Ti; McDonald, Paul C.; Dedhar, Shoukat; Alshehri, Mana; Walsh, Michael P.; MacDonald, Justin A.

    2016-01-01

    The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII. PMID:27573465

  2. Effects of matrix metalloproteinase 13 on vascular smooth muscle cells migration via Akt-ERK dependent pathway.

    PubMed

    Yang, Sung Won; Lim, Leejin; Ju, Sujin; Choi, Dong-Hyun; Song, Heesang

    2015-02-01

    Migration of vascular smooth muscle cells (VSMCs) is an early event of atherosclerosis, which is mediated mainly by matrix metalloproteinase (MMP) 2 and 9. Because MMP13 is associated with tumor cells migration, we hypothesized that MMP13 participates in VSMC migration induced by certain stimuli such as platelet-derived growth factor (PDGF) and angiotensin II (Ang II). We found that the mRNA level of MMP13 in rat aortic smooth muscle cells (RAoSMCs) was increased by both PDGF and Ang II. We observed the significant decrease of migration in PDGF- or Ang II-treated RAoSMCs by MMP13 specific inhibitor treatment. Silencing of MMP13 by a specific small interfering RNA (siRNA) significantly decreased expression of the active form of MMP13, which is followed by the decreased migration of PDGF- or Ang II-treated RAoSMCs. Interestingly, we observed synergistic inhibitory effects on migration by treatment with MMP2 and 13 or MMP9 and 13 inhibitors compared with that in single treatments. Moreover, we found that cordycepin, a known inhibitor of VSMC migration, caused significant downregulation of MMP2, 9, and 13 expression in PDGF-treated RAoSMCs. We further show that the expression level of MMP13 was significantly decreased by the treatment of Akt or ERK specific inhibitor in PDGF-treated RAoSMCs. Together, our data strongly suggest that MMP13 involves VSMCs migration via an Akt and ERK-dependent regulation [corrected].

  3. Irisin reverses platelet derived growth factor-BB-induced vascular smooth muscle cells phenotype modulation through STAT3 signaling pathway.

    PubMed

    Song, Haibo; Xu, Jia; Lv, Nan; Zhang, Yuzhu; Wu, Fei; Li, Huanjie; Shao, Lei; Mu, Qian; Wang, Fang; Tang, Dongqi; Fang, Xu

    2016-10-14

    Vascular smooth muscle cells (VSMCs) phenotype modulation toward a synthetic phenotype is the main cause of cardiovascular disease. As a newly discovered myokine, Irisin is thought to be a promising candidate for the treatment of metabolic disturbances, as well as cardiovascular disease. However, no evidence has been shown for the direct effect of Irisin on VSMCs phenotype modulation and its underling mechanisms. The aim of this study was to explore the effect of Irisin on VSMCs phenotype modulation and the mechanisms involved. In the present study, it was found that Irisin restored the PDGF-BB-induced VSMCs phenotype modulation which exhibited down-regulation of smooth muscle cells (SMC) expression and up-regulation of matrix synthesis related marker expression, as well as proliferative phenotype. Moreover, our research demonstrated that Irisin further activated STAT3 signaling pathways. Finally, by applying an STAT3 inhibitor, WP1066, we revealed the roles of STAT3 in the PDGF-BB-induced VSMCs phenotype modulation when they were treated with Irisin. Taken together, these results demonstrated that Irisin may play a crucial role in regulating VSMCs phenotype modulation via the STAT3 signaling pathway.

  4. Role of guanine nucleotide binding protein(s) in vasopressin-induced responses of a vascular smooth muscle cell line

    SciTech Connect

    Nambi, P.; Aiyar, N.; Whitman, M.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Rat aortic smooth muscle cells (A-10) carry vascular V1 vasopressin receptors. In these cells, vasopressin inhibits isoproterenol-induced cAMP accumulation and stimulates phosphatidylinositol turnover and Ca/sup 2 +/ mobilization. Pretreatment of the cells with phorbol esters resulted in inhibition of the vasopressin-induced responses. The inactive phorbol ester aPDD was ineffective. These data suggested that phorbol ester might cause phosphorylation of the vasopressin receptor and/or coupling protein(s). Here, they studied the role of guanine nucleotide binding proteins by employing the novel radiolabeled vasopressin antagonist (/sup 3/H)-SKF 101926. In competition experiments with cell membranes, Gpp(NH)p shifted the vasopressin curve to the right indicating decreased agonist affinity. Phorbol ester pretreatment abolished the Gpp(NH)p effect. Pretreatment of the cells with N-ethylmaleimide (NEM) resulted in inhibition of vasopressin-induced phosphatidyinositol turnover. NEM also abolished the decrease in agonist affinity caused by Gpp(NH)p. These data showed that NEM and phorbol ester pretreatment of smooth muscle cells functionally uncoupled the vasopressin receptors and suggested that vasopressin V1 receptor responses are mediated through guanine nucleotide binding protein(s).

  5. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells

    SciTech Connect

    Kiyan, Julia Haller, Hermann; Dumler, Inna

    2009-04-01

    The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor {beta} (PDGFR-{beta}), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-{beta}. Active PDGFR-{beta} was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-{beta} and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.

  6. Effects of integrin α5β1 on the proliferation and migration of human aortic vascular smooth muscle cells

    PubMed Central

    SONG, YAN; QIN, XIAOYU; WANG, HANJIE; MIAO, RENYING; ZHANG, YONGGAN; MIAO, CHAOFENG; WANG, ZIFAN

    2016-01-01

    Integrin (ITG) α5β1 is a dominant fibronectin receptor that is abundantly expressed on the surface of vascular smooth muscle cells (VSMCs). However, the association between integrin α5β1 and the proliferation and migration of VSMCs has yet to be elucidated. The aim of the present study was to characterize the roles of ITGα5 and ITGβ1 in the proliferation and migration of VSMCs, and to determine the effects of ITGα5β1 on integrin-linked kinase (ILK) and focal adhesion kinase (FAK) mRNA expression. Lentiviral expression vectors as well as RNA interference vectors of ITGα5 and ITGβ1 were successfully constructed and transfected into VSMCs to obtain ITGα5- and ITGβ1-overexpressing or -silenced cells, respectively. Cell cycle distribution, proliferation and migration were analyzed in the transfected VSMCs in order to clarify the roles of ITGβ1 and ITGα5 in the proliferation and migration of VSMCs. ITGβ1 was markedly associated with the proliferation and migration of VSMCs, and FAK was shown to be involved in the signaling pathways of ITGβ1. ITGα5 did not exert any effects on VSMCs. The results of the present study may provide a possible therapeutic target for the prevention and treatment of early vascular disease associated with VSMCs. PMID:26648324

  7. A comparative study of potassium-induced relaxation in vascular smooth muscle of tiger salamanders and rats.

    PubMed

    Malvin, G M; Webb, R C

    1984-07-01

    This study compares potassium-induced relaxation in vascular tissue of an amphibian (Ambystoma tigrinum) and a mammal (rat). Aortas (salamanders) and tail arteries (rats) were cut into helical strips for isometric force recording. After norepinephrine-induced contraction in potassium-free solution, arteries relaxed in response to added potassium (1-20 mmol/l). Potassium-induced relaxation was greater in rat tail arteries than in salamander aortas. Half-maximal relaxation occurred at a potassium concentration of approximately 3 mmol/l in both species. Ouabain inhibited potassium-induced relaxation; salamanders were more sensitive to the glycoside than rats. Potassium-induced relaxation decreased as the temperature of the bathing medium was lowered; half-maximal inhibition occurred at 19 and 29 degrees C for salamander aortas and rat tail arteries, respectively. Potassium-induced relaxation also varied with the interval in potassium-free solution, the hydrogen ion concentration (rats only), and the magnitude of norepinephrine-induced contraction. It appears that the cellular mechanism causing potassium-induced relaxation is similar in blood vessels of salamanders and rats. The observations are consistent with the hypothesis that stimulated electrogenic sodium transport produced membrane hyperpolarization and relaxation in vascular smooth muscle.

  8. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells.

    PubMed

    Dai, Yao; Mercanti, Federico; Dai, Dongsheng; Wang, Xianwei; Ding, Zufeng; Pothineni, Naga Venkata; Mehta, Jawahar L

    2013-07-19

    A growing body of evidence indicates that glucagon-like peptide-1 (GLP-1) agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors play an important role in modulating oxidant stress in vascular beds. However, the underlying mechanism of this process remains unclear. In recent studies, we observed an increase in GLP-1 receptor (GLP-1R) expression in the aorta of LOX-1 knock-out mice. Since LOX-1 is a pivotal regulator of reactive oxygen species (ROS), we conducted studies to identify relationship between LOX-1, ROS and GLP-1 agonism or DPP-4 antagonism. We observed a sustained decrease in GLP-1R expression in human vascular smooth muscle cells (VSMCs) treated with ox-LDL. When VSMCs were treated with different concentration of liraglutide (a GLP-1 agonist) or NVPDPP728 (a DPP-4 inhibitor), expression of ROS decreased compared with ox-LDL alone treatment. To further prove that LOX-1 plays a pivotal role in ROS and GLP-1R expression, we treated VSMCs with LOX-1 antibody or transfected cells with human LOX-1 cDNA. The inhibitory effect of ox-LDL on GLP-1R expression was reversed with anti-LOX-1 antibody treatment, while the inhibitory effect of liraglutide and NVPDPP728 on ROS generation was attenuated when cells were transfected with LOX-1 cDNA. Our results suggest that LOX-1 may play a bridging role in GLP-1 activation and ROS interaction.

  9. Alcohol-induced apoptosis of canine cerebral vascular smooth muscle cells: role of extracellular and intracellular calcium ions.

    PubMed

    Li, Wenyan; Li, Jianfeng; Liu, Weiming; Altura, Bella T; Altura, Burton M

    2004-01-16

    Exposure of canine cerebral vascular smooth muscle cells (VSMCs) to ethanol (10, 25 and 100 mM) for 1, 3 and 5 days induced apoptosis with its typical characteristics of nuclear shrinkage, condensation, and DNA breakage as well as formation of apoptotic bodies observed by fluorescence staining, terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling and comet assays. Such effects of alcohol on cerebral VSMCs were time- and concentration-dependent. The threshold ethanol concentration for induction of the apoptotic process was found to be 10 mM. Extracellular and intracellular Ca2+ chelators, i.e. ethylglycol-bisbeta-aminoethylether-N,N,N'N'-tetraacetic acid (EGTA, 5 mM) and 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid AM (BAPTA, 10(-6) M), respectively, ameliorated greatly the number of cerebral VSMCs which underwent apoptosis. Verapamil, however, failed to inhibit apoptosis of cerebral VSMCs. From these new findings, we suggest that alcohol-induced apoptosis may contribute to alcohol-induced brain-vascular damage and stroke. In addition, our findings point to potential caution for humans who imbibe two or more standard drinks per day or who undergo 'binge drinking'.

  10. Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate

    PubMed Central

    Obier, Nadine; Cauchy, Pierre; Assi, Salam A.; Gilmour, Jane; Lie-A-Ling, Michael; Lichtinger, Monika; Hoogenkamp, Maarten; Noailles, Laura; Cockerill, Peter N.; Lacaud, Georges; Kouskoff, Valerie

    2016-01-01

    The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals. PMID:27802171

  11. Effects of integrin α5β1 on the proliferation and migration of human aortic vascular smooth muscle cells.

    PubMed

    Song, Yan; Qin, Xiaoyu; Wang, Hanjie; Miao, Renying; Zhang, Yonggan; Miao, Chaofeng; Wang, Zifan

    2016-02-01

    Integrin (ITG) α5β1 is a dominant fibronectin receptor that is abundantly expressed on the surface of vascular smooth muscle cells (VSMCs). However, the association between integrin α5β1 and the proliferation and migration of VSMCs has yet to be elucidated. The aim of the present study was to characterize the roles of ITGα5 and ITGβ1 in the proliferation and migration of VSMCs, and to determine the effects of ITGα5β1 on integrin-linked kinase (ILK) and focal adhesion kinase (FAK) mRNA expression. Lentiviral expression vectors as well as RNA interference vectors of ITGα5 and ITGβ1 were successfully constructed and transfected into VSMCs to obtain ITGα5‑ and ITGβ1‑overexpressing or -silenced cells, respectively. Cell cycle distribution, proliferation and migration were analyzed in the transfected VSMCs in order to clarify the roles of ITGβ1 and ITGα5 in the proliferation and migration of VSMCs. ITGβ1 was markedly associated with the proliferation and migration of VSMCs, and FAK was shown to be involved in the signaling pathways of ITGβ1. ITGα5 did not exert any effects on VSMCs. The results of the present study may provide a possible therapeutic target for the prevention and treatment of early vascular disease associated with VSMCs.

  12. CD154-stimulated GM-CSF release by vascular smooth muscle cells elicits monocyte activation--role in atherogenesis.

    PubMed

    Stojakovic, Milica; Krzesz, Robert; Wagner, Andreas H; Hecker, Markus

    2007-11-01

    During the early phase of atherosclerosis, T cells and monocytes attach to and migrate through the endothelium into the vessel wall. To provide an insight into the potential cross talk between T cells and smooth muscle cells (SMC) in atherogenesis, we investigated changes in gene expression caused by CD40 ligation in cultured vascular SMC and their consequences for monocyte activation. CD40 expression in human-cultured SMC was induced by 24-h treatment with tumor necrosis factor-alpha plus interferon-gamma followed by 12-h exposure to mouse myeloma cells stably expressing human CD154 or the corresponding control cells. DNA microarray analysis (Affymetrix HG-U952A chip) indicated 33 up-regulated genes in three individual experiments of which 19 encoded pro-inflammatory adhesion molecules, cytokines, chemokines, and receptors. One functional consequence of this change in gene expression was an activation of transformed human promonocytic-1 monocytes exposed to the conditioned medium of the stimulated SMC. Subsequent antibody neutralization experiments identified granulocyte-macrophage colony-stimulating factor (GM-CSF) as the SMC-derived cytokine responsible for this effect. Thus, vascular SMC-like endothelial cells appear to contribute to the maintenance of an inflammatory response in the atherosclerotic vessel wall upon CD40-CD154 co-stimulation. Among 19 up-regulated pro-inflammatory gene products, GM-CSF plays an important role in SMC-dependent monocyte activation.

  13. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  14. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-12-10

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.

  15. Kindlin-2 siRNA inhibits vascular smooth muscle cell proliferation, migration and intimal hyperplasia via Wnt signaling.

    PubMed

    Wu, Xiaolin; Liu, Wenwei; Jiang, Hong; Chen, Jing; Wang, Jichun; Zhu, Rui; Li, Bin

    2016-02-01

    It is known that vascular smooth muscle cell (VSMC) proliferation and migration leads to intimal hyperplasia in cases of atherosclerosis and restenosis. In the present study, we investigated the effects of kindlin-2 on VSMC proliferation, migration and intimal hyperplasia, and the underlying mechanisms. The left common carotid artery of Sprague‑Dawley rats were subjected to balloon injury in order to induce intimal hyperplasia, and then transfected with kindlin-2 small interfering RNA (siRNA) lentivirus or negative control siRNA lentivirus. We noted that the degree of intimal hyperplasia 4 weeks after balloon injury was significantly reduced in arteries transfected with kindlin-2 siRNA lentivirus (P<0.05). In vitro, kindlin-2 siRNA suppressed VSMC proliferation and migration induced by Wnt3a (100 ng/ml). Western blot analyses and RT-qPCR revealed that kindlin-2 regulated Wnt/β-catenin signaling and thereby modulated the expression of β-catenin target genes, including c-myc and cyclin D1. This study demonstrated that kindlin-2 plays a critical role in VSMC proliferation, migration and intimal hyperplasia via Wnt signaling. Therefore, blocking the activity of kindlin-2 represents a novel therapeutic strategy for vascular injury.

  16. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    SciTech Connect

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi; Kurabayashi, Masahiko

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  17. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II.

    PubMed

    Utsunomiya, Hirotoshi; Takekoshi, Susumu; Gato, Nobuki; Utatsu, Hisao; Motley, Evangeline D; Eguchi, Kunie; Fitzgerald, Trinita G; Mifune, Mizuo; Frank, Gerald D; Eguchi, Satoru

    2002-12-27

    Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.

  18. Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate.

    PubMed

    Obier, Nadine; Cauchy, Pierre; Assi, Salam A; Gilmour, Jane; Lie-A-Ling, Michael; Lichtinger, Monika; Hoogenkamp, Maarten; Noailles, Laura; Cockerill, Peter N; Lacaud, Georges; Kouskoff, Valerie; Bonifer, Constanze

    2016-12-01

    The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.

  19. Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells.

    PubMed

    Selli, Cigdem; Tosun, Metiner

    2016-06-01

    We previously observed that sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) blockade by cyclopiazonic acid (CPA) significantly potentiates serotonin (5-hydroxytryptamine (5-HT))-induced vascular contractions. Furthermore, 5-HT receptor antagonist methysergide partially inhibited CPA-potentiated 5-HT contractions. In the present study, we further investigated whether SERCA inhibition potentiates 5-HT-induced Ca(2+) responses along with attenuating the receptor antagonism by store-operated Ca(2+) (SOC) entry and protein kinase C (PKC)-mediated mechanisms. The effects of dexamethasone that was previously shown to induce SOC entry and enhance 5-HT responses were also tested. For this purpose, intracellular Ca(2+) levels were monitored in A7r5 embryonic rat vascular smooth muscle cells by spectrofluorometry using the fluorescent indicator fura-2. The results showed that CPA, although not dexamethasone, significantly potentiated 5-HT-induced Ca(2+) elevations. Ketanserin partially decreased 5-HT-induced and CPA-potentiated Ca(2+) elevations whereas both PKC inhibitor D-sphingosine and SOC entry blocker 2-aminoethoxydiphenyl borate (2-APB) abolished the remaining responses. The data suggests that diminished antagonistic effect on 5-HT-induced Ca(2+) elevations in the presence of SERCA inhibition is induced by SOC entry and PKC activation.

  20. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  1. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells.

    PubMed

    Chang, Kyung-Hwa; Park, Jung-Min; Lee, Chang Hoon; Kim, Bumseok; Choi, Kyung-Chul; Choi, Seong-Jin; Lee, Kyuhong; Lee, Moo-Yeol

    2017-02-01

    Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking.

  2. TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation

    PubMed Central

    Franco, Sarah R.; Wang, Bowen; Seedial, Stephen; Kent, K. Craig

    2014-01-01

    Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes. PMID:24718260

  3. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  4. Cholera toxin treatment of vascular smooth muscle cells decreases smooth muscle α-actin content and abolishes the platelet-derived growth factor-BB-stimulated DNA synthesis

    PubMed Central

    Sachinidis, Agapios; Seul, Claudia; Gouni-Berthold, Ioanna; Seewald, Stefan; Ko, Yon; Vetter, Hans; Fingerle, Jürgen; Hoppe, Jürgen

    2000-01-01

    The second messenger cyclic AMP regulates diverse biological processes such as cell morphology and cell growth. We examined the role of the second messenger cyclic AMP on rat aortic vascular smooth muscle cell (VSMC) morphology and the intracellular transduction pathway mediated by platelet-derived growth factor β-receptor (PDGF-Rβ). The effect of PDGF-BB on VSMCs growth was assessed by [3H]-thymidine incorporation. Tyrosine phosphorylation of PDGF-Rβ, PLC-γ1, ERK1 and ERK2, p125FAK and paxillin as well as Sm α-actin was examined by the chemiluminescence Western blotting method. Actin mRNA level was quantitated by Northern blotting. Visualization of Sm α-actin filaments, paxillin and PDGF-Rβ was performed by immunfluorescence microscopy. Cholera toxin (CTX; 10 nM) treatment lead to a large and sustained increase in the cyclic AMP concentration after 2 h which correlated with change of VSMC morphology including complete disruption of the Sm α-actin filament array and loss of focal adhesions. Treatment of VSMCs with CTX did not influence tyrosine phosphorylation of p125FAK and paxillin but decreased the content of a Sm α-actin protein. Maximal decrease of 70% was observed after 24 h of treatment. CTX also caused a 90% decrease of the actin mRNA level. CTX treatment completely abolished PDGF-BB stimulated DNA-synthesis although PDGF-Rβ level and subcellular distribution and translocation was not altered. Furthermore CTX attenuated the PDGF-BB-induced tyrosine phosphorylation of the PDGF-Rβ, PI 3′-K, PLC-γ1 and ERK1/2 indicating an action of cyclic AMP on PDGF-β receptor. We conclude that although cyclic AMP attenuates the PDGF-Rβ mediated intracellular transduction pathway, an intact actin filament may be required for the PDGF-BB-induced DNA synthesis in VSMCs. PMID:10928958

  5. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway

    PubMed Central

    Zhu, Dongxing; Mackenzie, Neil Charles Wallace; Shanahan, Catherine M; Shroff, Rukshana C; Farquharson, Colin; MacRae, Vicky Elizabeth

    2015-01-01

    The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention. PMID:25297851

  6. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds.

    PubMed

    Wang, Yongyu; Hu, Jiang; Jiao, Jiao; Liu, Zhongning; Zhou, Zhou; Zhao, Chao; Chang, Lung-Ji; Chen, Y Eugene; Ma, Peter X; Yang, Bo

    2014-10-01

    Tissue-engineered blood vessels (TEBVs) are promising in the replacement of diseased vascular tissues. However, it remains a great challenge to obtain a sufficient number of functional smooth muscle cells (SMCs) in a clinical setting to construct patient-specific TEBVs. In addition, it is critical to develop a scaffold to accommodate these cells and retain their functional phenotype for the regeneration of TEBVs. In this study, human induced pluripotent stem cells (iPSCs) were established from primary human aortic fibroblasts, and characterized with the pluripotency markers expression and cells' capabilities to differentiate into all three germ layer cells. A highly efficient method was then developed to induce these human iPSCs into proliferative SMCs. After multiple times of expansion, the expanded SMCs retained the potential to be induced into the functional contractile phenotype of mature SMCs, which was characterized by the contractile response to carbachol treatment, up-regulation of specific collagen genes under transforming growth factor β1 treatment, and up-regulation of specific matrix metalloproteinase genes under cytokine stimulation. We also developed an advanced macroporous and nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffold with suitable pore size and interpore connectivity to seed these human iPSC-derived SMCs and maintain their differentiated phenotype. Subcutaneous implantation of the SMC-scaffold construct in nude mice demonstrated vascular tissue formation, with robust collagenous matrix deposition inside the scaffold and the maintenance of differentiated SMC phenotype. Taken together, this study established an exciting approach towards the construction of patient-specific TEBVs. We established patient-specific human iPSCs, derived proliferative SMCs for expansion, turned on their mature contractile SMC phenotype, and developed an advanced scaffold for these cells to regenerate vascular tissue in vivo.

  7. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    PubMed

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-05

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, P<0.05) to 48h (25.25±5.51% vs. 97.54±13.12%, P<0.01) after injury. Transwell Migration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  8. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease.

    PubMed

    MacKay, Charles E; Knock, Greg A

    2015-09-01

    Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca(2+) concentration, including transient receptor potential channels, voltage-gated Ca(2+) channels and various types of K(+) channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension.

  9. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  10. Vascular Smooth Muscle LRP6 Limits Arteriosclerotic Calcification in Diabetic LDLR-/- Mice by Restraining Noncanonical Wnt Signals

    PubMed Central

    Cheng, Su-Li; Ramachandran, Bindu; Behrmann, Abraham; Shao, Jian-Su; Mead, Megan; Smith, Carolyn; Krchma, Karen; Arredondo, Yoanna Bello; Kovacs, Attila; Kapoor, Kapil; Brill, Laurence M.; Perera, Ranjan; Williams, Bart O.; Towler, Dwight A.

    2015-01-01

    Rationale Wnt signaling regulates key aspects of diabetic vascular disease. Objective We generated SM22-Cre;LRP6(fl/fl);LDLR-/- mice to determine contributions of Wnt co-receptor LRP6 in the vascular smooth muscle lineage (VSM) of male LDLR-null mice, a background susceptible to diet (HFD) - induced diabetic arteriosclerosis. Methods and Results As compared to LRP6(fl/fl);LDLR-/- controls, SM22-Cre;LRP6(fl/fl);LDLR-/- (LRP6-VKO) siblings exhibited increased aortic calcification on HFD without changes in fasting glucose, lipids, or body composition. Pulse wave velocity (index of arterial stiffness) was also increased. Vascular calcification paralleled enhanced aortic osteochondrogenic programs and circulating osteopontin (OPN), a matricellular regulator of arteriosclerosis. Survey of ligands and Frizzled (Fzd) receptor profiles in LRP6-VKO revealed upregulation of canonical and noncanonical Wnts alongside Fzd10. Fzd10 stimulated noncanonical signaling and OPN promoter activity via an USF-activated cognate inhibited by LRP6. RNAi revealed that USF1 but not USF2 supports OPN expression in LRP6-VKO VSM, and immunoprecipitation confirmed increased USF1 association with OPN chromatin. ML141, an antagonist of cdc42/Rac1 noncanonical signaling, inhibited USF1 activation, osteochondrogenic programs, alkaline phosphatase, and VSM calcification. Mass spectrometry identified LRP6 binding to protein arginine methyltransferase (PRMT) - 1, and nuclear asymmetric dimethylarginine modification was increased with LRP6-VKO. RNAi demonstrated that PRMT1 inhibits OPN and TNAP while PRMT4 supports expression. USF1 complexes containing the H3R17Me2a signature of PRMT4 are increased with LRP6-VKO. Jmjd6, a demethylase downregulated with LRP6 deficiency, inhibits OPN and TNAP expression, USF1:H3R17Me2a complex formation and transactivation. Conclusions LRP6 restrains VSM noncanonical signals that promote osteochondrogenic differentiation, mediated in part via USF1- and arginine methylation

  11. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway.

    PubMed

    Chen, Yan-qing; Zhao, Jing; Jin, Cheng-wei; Li, Yi-hui; Tang, Meng-xiong; Wang, Zhi-hao; Zhang, Wei; Zhang, Yun; Li, Li; Zhong, Ming

    2016-06-01

    Testosterone deficiency is associated with a higher incidence of cardiovascular diseases in men. However, its effect on cell senescence, which plays a causal role in vascular aging, remains unclear. Here, we tested the hypothesis that testosterone alleviated vascular smooth muscle cell (VSMC) senescence and collagen synthesis via growth arrest-specific protein 6 (Gas6)/Axl- and Akt/FoxO1a-dependent pathways. Testosterone significantly ameliorated angiotensin II-induced VSMC senescence and collagen overexpression. In addition, testosterone inhibited angiotensin II-induced matrix metalloproteinase-2 (MMP-2) activity, which played a pivotal role in facilitating age-related collagen deposition. Testosterone increased the expression of tissue inhibitor of metalloproteinase-2 but decreased the expression of MMP-2 and membrane type-1 metalloproteinase which contributed to increase MMP-2 activity. The effects on VSMCs senescence and collagen synthesis were mediated by restoration of angiotensin II-induced downregulation of Gas6 and Axl expression and a subsequent reduction of Akt and FoxO1a phosphorylation. The effects of testosterone were reversed by a Gas6 blocker, Axl-Fc, and a specific inhibitor of Axl, R428. Treatment of VSMCs with PI3K inhibitor LY294002 abrogated the downregulating effect of testosterone on MMP-2 activity. Furthermore, when FoxO1a expression was silenced by using a specific siRNA, the inhibitory effect of testosterone on MMP-2 activity was revered as well, that indicated this process was Akt/FoxO1a dependence. Taken together, Gas6/Axl and Akt/FoxO1a were involved in protective effects of testosterone on VSMCs senescence and collagen synthesis. Our results provide a novel mechanism underlying the protective effect of testosterone on vascular aging and may serve as a theoretical basis for testosterone replacement therapy.

  12. Attenuation of Chondrogenic Transformation in Vascular Smooth Muscle by Dietary Quercetin in the MGP-Deficient Mouse Model

    PubMed Central

    Borras, Teresa; Nurminskaya, Maria

    2013-01-01

    Rationale Cartilaginous metaplasia of vascular smooth muscle (VSM) is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP). A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification. Objective This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling. Methods and Results Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae. Conclusion Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin. PMID:24098781

  13. An Investigation of Horizontal Combined Eye-Head Tracking in Patients with Abnormal Vestibular and Smooth Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Huebner, William P.; Leigh, R. John; Seidman, Scott H.; Billian, Carl

    1993-01-01

    We investigated the interaction of smooth ocular pursuit (SP) and the vestibulo-ocular reflex (VOR) during horizontal, combined eye-head tracking (CEHT) in patients with abnormalities of either the VOR or SP movements. Our strategy was to apply transient stimuli that capitalized on the different latencies to onset of SP and the VOR. During CEHT of a target moving at 15 deg/sec, normal subjects and patients with VOR deficits all tracked the target with a gain close to 1.O. When the heads of normal subjects were suddenly and unexpectedly braked to a halt during CEHT, the eye promptly began to move in the orbit to track the target, but eye-in-orbit velocity transiently fell to about 60-70% of target velocity. In patients with deficient labyrinthine function, following the onset of the head brake, eye movements to track the target were absent, and SP movements were not generated until about 100 msec later. In patients with deficient SP, CEHT was superior to SP tracking with the head stationary; after the onset of the head brake, tracking eye movements were initiated promptly, but eye velocity was less than 50% of target velocity and increased only slightly thereafter. These results indicate that at least two mechanisms operate to overcome the VOR and allow gaze to track the target during CEHT: (1) the SP system provides a signal to cancel a normally-operating VOR (this cancellation signal is not needed by labyrinthine-deficient patients who have no VOR to cancel), and (2) a reduction of the gain of the VOR is achieved, an ability that is preserved even in patients with cerebral lesions that impair SP.

  14. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle

    SciTech Connect

    Broderick, R.; Somlyo, A.P.

    1987-10-01

    The extent, time course, and reversibility of mitochondrial Ca/sup 2 +/ uptake secondary to cellular Ca/sup 2 +/ influx stimulated by massive Na+ efflux were evaluated by electron probe microanalysis of rabbit portal vein smooth muscle. Strips of portal vein were Na+ loaded for 3 hours at 37/sup 0/C in a K+-free 1 mM ouabain solution, after which rapid Na+ efflux was induced by washing with a Na+-free K+-Li+ solution (1 mM ouabain). Li+ washing Na+-loaded portal vein produced a large transient contraction accompanied by an increase (over 100-fold) in mitochondrial Ca/sup 2 +/ and also significant (p less than 0.05) increases in phosphorus and Mg/sup 2 +/. The Ca/sup 2 +/ loading of the mitochondria was reversed during prolonged Li+ wash, and by 2 hours, mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus had returned to control levels. The maximal contractile response to stimulation remained normal, demonstrating that pathologic Ca/sup 2 +/ loading of mitochondria is reversible in situ and compatible with normal maximal force developed by the smooth muscle. Mitochondrial Ca/sup 2 +/ and phosphorus uptake were reduced but still significant when the Li+ wash contained 0.2 mM Ca/sup 2 +/ or when ouabain was omitted. The fact that mitochondrial Ca/sup 2 +/ loading accompanied submaximal contractions during 0.2 mM Ca/sup 2 +/-Li wash suggests supranormal affinity of mitochondria for Ca/sup 2 +/ and may be due, in part, to reverse operation of the mitochondrial Na+-Ca/sup 2 +/ exchanger. Mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus uptake were eliminated when the Li+ wash was performed at 2/sup 0/C or when the wash contained no Ca/sup 2 +/.

  15. Characterization of (/sup 3/H)nifedipine binding to intact vascular smooth muscle cells

    SciTech Connect

    Sumimoto, K.; Hirata, M.; Kuriyama, H.

    1988-01-01

    Specific binding of the dihydropyridine Ca2+ antagonist (/sup 3/H)nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of (/sup 3/H)nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of (/sup 3/H)nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl/sub 2/ and BaCl/sub 2/ increased the Bmax, but the Kd value remained unchanged. MnCl/sub 2/ and CdCl/sub 2/ had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high (K+)o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that (/sup 3/H)nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.

  16. A phosphorus nuclear magnetic resonance study of metabolites and intracellular pH in rabbit vascular smooth muscle.

    PubMed Central

    Spurway, N C; Wray, S

    1987-01-01

    1. 31P nuclear magnetic resonance (n.m.r.) spectroscopy was used to investigate metabolites, intracellular pH (pHi) and the effects of pHi on tone in rabbit blood vessels. The vessels were bathed in mammalian Ringer solution and maintained at 20 degrees C while inside the spectrometer. 2. Vascular spectra showed relatively low phosphocreatine (PCr) concentrations compared to skeletal muscle. The [PCr]/[ATP] ratio was only 1.32 +/- 0.09 (n = 7). There was also a prominent phosphomonoester (PME) peak. Similar features have been reported for other smooth muscles examined by 31P n.m.r. 3. The [PCr] was higher and the inorganic phosphate (Pi) concentration lower than values deduced from chemical analysis of arterial extracts. However, the [PCr] value fell within the range obtained for other smooth muscles when studied by 31P n.m.r. 4. Measurement of pHi under control conditions (external pH 7.25) gave a mean value of 7.19 +/- 0.03 at 20 degrees C (n = 5). Metabolic inhibition brought about by 0.5 mM-cyanide and 0.2 mM-fluoride did not significantly alter pHi. At higher inhibitor concentrations (3 and 1 mM respectively) there was a significant acidosis. 5. The effects of NH4Cl upon pH were investigated in metabolically inhibited preparations. During 10 min applications of 30 mM-NH4Cl (isosmotically substituted for NaCl) the pHi rose; during subsequent NH4Cl removal it fell below control values. In the least inhibited tissues the total pHi excursion between NH4Cl applications and removals was 0.5 unit. 6. Rabbit ear vessels have been found to increase vascular tone during manoeuvres which were expected to decrease pHi. From the direct measurement of pHi reported in this study, it is concluded that the vascular tone changes brought about by NH4Cl application and withdrawal may be attributed to the alteration of pHi. PMID:3446806

  17. Indirect co‑culture of vascular smooth muscle cells with bone marrow mesenchymal stem cells inhibits vascular calcification and downregulates the Wnt signaling pathways.

    PubMed

    Zhu, Meng'en; Fang, Xin; Zhou, Shaoqiong; Li, Wei; Guan, Siming

    2016-06-01

    Vascular calcification (VC) is widely considered to be a crucial clinical indicator of cardiovascular disease. Recently, certain properties of mesenchymal stem cells (MSCs) have been hypothesized to have potential in treating cardiovascular diseases. However, their effect on the initiation and progression of VC remains controversial. The present study aimed to investigate whether MSCs indirectly mediate VC and their impact on the Wnt signaling pathways. A Transwell system was selected to establish the indirect co‑culture environment, and hence, vascular smooth muscle cells (VSMCs) were indirectly co‑cultured in the presence or absence of MSCs at a ratio of 1:1. Osteogenic medium (OS) was added to imitate a calcifying environment. Fourteen days later, VSMCs in the lower layers of the Transwell plates were harvested. Alkaline phosphatase activity and calcium nodules were markedly increased in calcific VSMCs induced by OS. However, these parameters were significantly decreased in VSMCs by indirectly co‑culturing with MSCs in the same medium. Furthermore, the messenger RNA expression levels of osteopontin and osteoprotegerin were notably increased in VSMCs cultured in OS, but reduced by indirect interaction with MSCs. In addition, the activities of canonical and noncanonical Wnt ligands, wingless‑type MMTV integration site family, number 5A (Wnt5a), receptor tyrosine kinase‑like orphan receptor 2 (Ror2) and β‑catenin, which are important in the process of VC, were downregulated by indirect contact with MSCs in OS. Thus, indirect co‑culture with MSCs inhibits VC and downregulates the Wnt signaling pathways.

  18. Fibroblast growth factor stimulates angiotensin converting enzyme expression in vascular smooth muscle cells. Possible mediator of the response to vascular injury.

    PubMed Central

    Fishel, R S; Thourani, V; Eisenberg, S J; Shai, S Y; Corson, M A; Nabel, E G; Bernstein, K E; Berk, B C

    1995-01-01

    Angiotensin converting enzyme (ACE) activity contributes to the vascular response to injury because ACE inhibition limits neointima formation in rat carotid arteries after balloon injury. To investigate the mechanisms by which ACE may contribute to vascular smooth muscle cell (VSMC) proliferation, we studied expression of ACE in vivo after injury and in vitro after growth factor stimulation. ACE activity 14 d after injury was increased 3.6-fold in the injured vessel. ACE expression, measured by immunohistochemistry, became apparent at 7 d in the neointima and at 14 d was primarily in the most luminal neointimal cells. To characterize hormones that induce ACE in vivo, cultured VSMC were exposed to steroids and growth factors. Among steroids, only glucocorticoids stimulated ACE expression with an 8.0 +/- 2.1-fold increase in activity and a 6.5-fold increase in mRNA (30 nM dexamethasone for 72 h). Among growth factors tested, only fibroblast growth factor (FGF) stimulated ACE expression (4.2 +/- 0.7-fold increase in activity and 1.6-fold increase in mRNA in response to 10 ng/ml FGF for 24 h). Dexamethasone and FGF were synergistic at the indicated concentrations inducing 50.6 +/- 12.4-fold and 32.5-fold increases in activity and mRNA expression, respectively. In addition, when porcine iliac arteries were transfected with recombinant FGF-1 (in the absence of injury), ACE expression increased in neointimal VSMC, to the same extent as injured, nontransfected arteries. The data suggest a temporal sequence for the response to injury in which FGF induces ACE, ACE generates angiotensin II, and angiotensin II stimulates VSMC growth in concert with FGF. Images PMID:7814638

  19. Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle

    PubMed Central

    Chalmers, Susan; Saunter, Christopher D.; Girkin, John M.

    2016-01-01

    Key points Age is proposed to be associated with altered structure and function of mitochondria; however, in fully‐differentiated cells, determining the structure of more than a few mitochondria at a time is challenging. In the present study, the structures of the entire mitochondrial complements of cells were resolved from a pixel‐by‐pixel covariance analysis of fluctuations in potentiometric fluorophore intensity during ‘flickers’ of mitochondrial membrane potential.Mitochondria are larger in vascular myocytes from aged rats compared to those in younger adult rats.A subpopulation of mitochondria in myocytes from aged, but not younger, animals is highly‐elongated.Some mitochondria in myocytes from younger, but not aged, animals are highly‐motile.Mitochondria that are motile are located more peripherally in the cell than non‐motile mitochondria. Abstract Mitochondrial function, motility and architecture are each central to cell function. Age‐associated mitochondrial dysfunction may contribute to vascular disease. However, mitochondrial changes in ageing remain ill‐defined because of the challenges of imaging in native cells. We determined the structure of mitochondria in live native cells, demarcating boundaries of individual organelles by inducing stochastic ‘flickers’ of membrane potential, recorded as fluctuations in potentiometric fluorophore intensity (flicker‐assisted localization microscopy; FaLM). In freshly‐isolated myocytes from rat cerebral resistance arteries, FaLM showed a range of mitochondrial X‐Y areas in both young adult (3 months; 0.05–6.58 μm2) and aged rats (18 months; 0.05–13.4 μm2). In cells from young animals, most mitochondria were small (mode area 0.051 μm2) compared to aged animals (0.710 μm2). Cells from older animals contained a subpopulation of highly‐elongated mitochondria (5.3% were >2 μm long, 4.2% had a length:width ratio >3) that was rare in younger animals (0.15% of mitochondria >2

  20. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells

    PubMed Central

    1996-01-01

    SM22alpha is a putative calcium-binding protein that is expressed in cardiac, smooth, and skeletal muscle lineages during mouse embryogenesis and in adult smooth muscle cells (SMC). To define the mechanisms that regulate smooth muscle-specific gene transcription, we isolated the SM22alpha gene and analyzed its 5'-flanking region for elements that direct smooth muscle expression in transgenic mice. Using a series of promoter deletions, a region of the SM22alpha promoter containing 445 base pairs of 5'-flanking sequence was found to be sufficient to direct the specific expression of a lacZ transgene in mouse embryos in the vascular smooth, cardiac, and skeletal muscle lineages in a temporospatial pattern similar to the endogenous SM22alpha gene. However, in contrast to the endogenous gene, transgene expression was not detected in venous, nor visceral SMCs. This SM22alpha-lacZ transgene was therefore able to distinguish between the transcriptional regulatory programs that control gene expression in vascular and visceral SMCs and revealed heretofore unrecognized differences between these SMC types. These results suggest that distinct transcriptional regulation programs control muscle gene expression in vascular and visceral SMCs. PMID:8603917

  1. Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development.

    PubMed

    Huang, Jianhe; Wang, Tao; Wright, Alexander C; Yang, Jifu; Zhou, Su; Li, Li; Yang, Jisheng; Small, Aeron; Parmacek, Michael S

    2015-04-07

    Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes.

  2. Effect of Shear Stress on Permeability of Vascular Endothelial Monolayer Cocultured with Smooth Muscle Cells

    NASA Astrophysics Data System (ADS)

    Sakamoto, Naoya; Ohashi, Toshiro; Sato, Masaaki

    Effect of fluid shear stress on permeability of endothelial monolayer was investigated using an endothelial cell (EC)-smooth muscle cell (SMC) cocultured model (CM). Permeability of ECs to bovine serum albumin was measured after exposure to shear stress of 1.5Pa for 48 hours. Morphology and VE-cadherin expression of ECs in CM was almost same as of ECs cultured alone (monocultured model, MM). Under static condition, EC permeability was 5.1±3.0 × 10-6cm/sec (mean±SD) in MM and 6.5±3.4 × 10-6cm/sec in CM. After exposure to shear stress, EC permeability in CM (2.2±1.9 × 10-6cm/sec, p < 0.05) significantly decreased compared with the static model. However, EC permeability in MM (3.9±3.2 × 10-6cm/sec) did not significantly change compared with static cultured condition. These results suggested that cellular interactions between ECs and SMCs have important influences on EC permeability.

  3. Examining the Role of Mitochondria in Ca2+ Signaling in Native Vascular Smooth Muscle

    PubMed Central

    McCarron, John G; Olson, Marnie L; Wilson, Calum; Sandison, Mairi E; Chalmers, Susan

    2013-01-01

    Mitochondrial Ca2+ uptake contributes important feedback controls to limit the time course of Ca2+signals. Mitochondria regulate cytosolic [Ca2+] over an exceptional breath of concentrations (∼200 nM to >10 μM) to provide a wide dynamic range in the control of Ca2+ signals. Ca2+ uptake is achieved by passing the ion down the electrochemical gradient, across the inner mitochondria membrane, which itself arises from the export of protons. The proton export process is efficient and on average there are less than three protons free within the mitochondrial matrix. To study mitochondrial function, the most common approaches are to alter the proton gradient and to measure the electrochemical gradient. However, drugs which alter the mitochondrial proton gradient may have substantial off target effects that necessitate careful consideration when interpreting their effect on Ca2+ signals. Measurement of the mitochondrial electrochemical gradient is most often performed using membrane potential sensitive fluorophores. However, the signals arising from these fluorophores have a complex relationship with the electrochemical gradient and are altered by changes in plasma membrane potential. Care is again needed in interpreting results. This review provides a brief description of some of the methods commonly used to alter and measure mitochondrial contribution to Ca2+ signaling in native smooth muscle. PMID:23305516

  4. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism

    PubMed Central

    Yu, Dan; Makkar, George; Dong, Tuo; Strickland, Dudley K.; Sarkar, Rajabrata; Monahan, Thomas Stacey

    2015-01-01

    Background Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo. Methods and Results siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization. Conclusions MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular

  5. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells.

    PubMed

    Song, Haibo; Wang, Hui; Wu, Weiwei; Qi, Lei; Shao, Lei; Wang, Fang; Lai, Yimu; Leach, Desiree; Mathis, Bryan; Janicki, Joseph S; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2015-10-01

    Proliferative or synthetic vascular smooth muscle cells (VSMCs) are widely accepted to be mainly derived from the dedifferentiation or phenotypic modulation of mature contractile VSMCs, i.e., a phenotype switch from a normally quiescent and contractile type into a proliferative or synthetic form. However, this theory has been challenged by recent evidence that synthetic VSMCs predominantly originate instead from media-derived multipotent vascular stem cells (MVSCs). To test these hypotheses further, we re-examine whether the conventional rat aortic SMC (RASMC) culture involves the VSMC differentiation of MVSCs or the dedifferentiation of mature VSMCs and the potential mechanism for controlling the synthetic phenotype of RASMCs. We enzymatically isolated RASMCs and cultured the cells in both a regular growth medium (RGM) and a stem cell growth medium (SCGM). Regardless of culture conditions, only a small portion of freshly isolated RASMCs attaches, survives and grows slowly during the first 7 days of primary culture, while expressing both SMC- and MVSC-specific markers. RGM-cultured cells undergo a process of synthetic SMC differentiation, whereas SCGM-cultured cells can be differentiated into not only synthetic SMCs but also other somatic cells. Notably, compared with the RGM-cultured differentiated RASMCs, the SCGM-cultured undifferentiated cells exhibit the phenotype of MVSCs and generate greater amounts of reactive oxygen species (ROS) that act as a negative regulator of differentiation into synthetic VSMCs. Knockdown of phospholipase A2, group 7 (Pla2g7) suppresses ROS formation in the MVSCs while enhancing SMC differentiation of MVSCs. These results suggest that cultured synthetic VSMCs can be derived from the SMC differentiation of MVSCs with ROS as a negative regulator.

  6. Messenger molecules of the phospholipase signaling system have dual effects on vascular smooth muscle contraction.

    PubMed

    Vidulescu, Cristina; Mironneau, J.; Mironneau, Chantal; Popescu, L. M.

    2000-01-01

    Background and methods. In order to investigate the role of phospholipases and their immediately derived messengers in agonist-induced contraction of portal vein smooth muscle, we used the addition in the organ bath of exogenous molecules such as: phospholipases C, A(2), and D, diacylglycerol, arachidonic acid, phosphatidic acid, choline. We also used substances modulating activity of downstream molecules like protein kinase C, phosphatidic acid phosphohydrolase, or cyclooxygenase. Results. a) Exogenous phospholipases C or A(2), respectively, induced small agonist-like contractions, while exogenous phospholipase D did not. Moreover, phospholipase D inhibited spontaneous contractions. However, when added during noradrenaline-induced plateau, phospholipase D shortly potentiated it. b) The protein kinase C activator, phorbol dibutyrate potentiated both the exogenous phospholipase C-induced contraction and the noradrenaline-induced plateau, while the protein kinase C inhibitor 1-(-5-isoquinolinesulfonyl)-2-methyl-piperazine relaxed the plateau. c) When added before noradrenaline, indomethacin inhibited both phasic and tonic contractions, but when added during the tonic contraction shortly potentiated it. Arachidonic acid strongly potentiated both spontaneous and noradrenaline-induced contractions, irrespective of the moment of its addition. d) In contrast, phosphatidic acid inhibited spontaneous contractile activity, nevertheless it was occasionally capable of inducing small contractions, and when repetitively added during the agonist-induced tonic contraction, produced short potentiations of the plateau. Pretreatment with propranolol inhibited noradrenaline-induced contractions and further addition of phosphatidic acid augmented this inhibition. Choline augmented the duration and amplitude of noradrenaline-induced tonic contraction and final contractile oscillations. Conclusions. These data suggest that messengers produced by phospholipase C and phospholipase A(2

  7. A Novel System for Studying Mechanical Strain Waveform-Dependent Responses in Vascular Smooth Muscle Cells

    PubMed Central

    Lee, Jason; Wong, Mitchell; Smith, Quentin; Baker, Aaron B.

    2013-01-01

    While many studies have examined the effects mechanical forces on vSMCs, there is a limited understanding of how the different arterial strain waveforms that occur in disease and different vascular beds alter vSMC mechanotransduction and phenotype. Here, we present a novel system for applying complex, time-varying strain waveforms to cultured cells and use this system to understand how these waveforms can alter vSMC phenotype and signaling. We have developed a highly adaptable cell culture system that allows the application of mechanical strain to cells in culture and can reproduce the complex dynamic mechanical environment experienced by arterial cells in the body. Using this system, we examined whether the type of applied strain waveform altered phenotypic modulation of vSMCs by mechanical forces. Cells exposed to the brachial waveform had increased phosphorylation of AKT, EGR-1, c-Fos expression and cytoskeletal remodeling in comparison to cells treated with the aortic waveform. In addition, vSMCs exposed to physiological waveforms had adopted a more differentiated phenotype in comparison to those treated with static or sinusoidal cyclic strain, with increased expression of vSMC markers desmin, calponin and SM-22 as well as increased expression of regulatory miRNAs including miR-143, -145 and -221. Taken together, our studies demonstrate the development of a novel system for applying complex, timevarying mechanical forces to cells in culture. In addition, we have shown that physiological strain waveforms have powerful effects on vSMC phenotype. PMID:24096612

  8. Microstructural White Matter Abnormalities and Cognitive Dysfunction in Subcortical Ischemic Vascular Disease: an Atlas-Based Diffusion Tensor Analysis Study.

    PubMed

    Lin, Lin; Xue, Yunjing; Duan, Qing; Sun, Bin; Lin, Hailong; Chen, Xiaodan; Luo, Ling; Wei, Xiaofan; Zhang, Zhongping

    2015-06-01

    Recent studies in subcortical ischemic vascular disease (SIVD) suggest the involvement of white matter (WM) abnormalities underlying the pathogenesis of cognitive function impairment. Here, we performed magnetic resonance diffusion tensor imaging (DTI) on detecting WM damage and to investigate the correlations between DTI measures and cognitive dysfunction in SIVD patients. Fifty right-handed SIVD patients were recruited and divided into vascular cognitive impairment on dementia (VCIND) group and normal cognition (NC) group. Twenty-two VCIND patients and 28 NC patients underwent DTI scanning and neuropsychological assessment. Atlas-based analysis (ABA) was performed on each subject for extracting FA and MD measures from supratentorial tracts. Among VCIND, as compared to NC patients, decreased FA and increased MD were observed in all projection fibers (bilateral anterior, posterior limb, and retrolenticular part of internal capsule, anterior, superior, and posterior corona radiata and posterior thalamic radiation), association fibers (bilateral sagittal stratum, external capsule, cingulum, fornix, and stria terminalis, superior longitudinal fasciculus, superior fronto-occipital fasciculus, and uncinate fasciculus), and commissural fibers (genu, body, splenium, and bilateral tapetum of corpus callosum). Furthermore, we also found that MoCA scores correlated with DTI values in all supratentorial WM tracts. The results suggested that SIVD patients demonstrated abnormal WM connectivity in all supratentorial regions. Moreover, the severity of damage in WM tracts correlated with cognitive dysfunction.

  9. Resveratrol Increases Serum BDNF Concentrations and Reduces Vascular Smooth Muscle Cells Contractility via a NOS-3-Independent Mechanism.

    PubMed

    Wiciński, Michał; Malinowski, Bartosz; Węclewicz, Mateusz M; Grześk, Elżbieta; Grześk, Grzegorz

    2017-01-01

    Resveratrol is a polyphenol that presents both antineuroinflammatory properties and the ability to interact with NOS-3, what contributes to vasorelaxation. Brain-derived neurotrophic factor (BNDF), a molecule associated with neuroprotection in many neurodegenerative disorders, is considered as an important element of maintaining stable cerebral blood flow. Vascular smooth muscle cells (VSMCs) are considered to be an important element in the pathogenesis of neurodegeneration and a potential preventative target by agents which reduce the contractility of the vessels. Our main objectives were to define the relationship between serum and long-term oral resveratrol administration in the rat model, as well as to assess the effect of resveratrol on phenylephrine- (PHE-) induced contraction of vascular smooth muscle cells (VSMCs). Moreover, we attempt to define the dependence of contraction mechanisms on endothelial NO synthase. Experiments were performed on Wistar rats (n = 17) pretreated with resveratrol (4 weeks; 10 mg/kg p.o.) or placebo. Serum BDNF levels were quantified after 2 and 4 weeks of treatment with ELISA. Contraction force was measured on isolated and perfused tail arteries as the increase of perfusion pressure with a constant flow. Values of serum BNDF in week 0 were 1.18 ± 0.12 ng/mL (treated) and 1.17 ± 0.13 ng/mL (control) (p = ns). After 2 weeks of treatment, BDNF in the treatment group was higher than in controls, 1.52 ± 0.23 ng/mL and 1.24 ± 0.13 ng/mL, respectively. (p = 0.02) Following 4 weeks of treatment, BDNF values were higher in the resveratrol group compared to control 1.64 ± 0.31 ng/mL and 1.32 ± 0.26 ng/mL, respectively (p = 0.031). EC50 values obtained for PHE in resveratrol pretreated arteries were significantly higher than controls (5.33 ± 1.7 × 10(-7 )M/L versus 4.53 ± 1.2 × 10(-8 )M/L, p < 0.05). These results show a significant increase in BDNF concentration in the resveratrol pretreated group. The

  10. Resveratrol Increases Serum BDNF Concentrations and Reduces Vascular Smooth Muscle Cells Contractility via a NOS-3-Independent Mechanism

    PubMed Central

    Malinowski, Bartosz; Grześk, Elżbieta; Grześk, Grzegorz

    2017-01-01

    Resveratrol is a polyphenol that presents both antineuroinflammatory properties and the ability to interact with NOS-3, what contributes to vasorelaxation. Brain-derived neurotrophic factor (BNDF), a molecule associated with neuroprotection in many neurodegenerative disorders, is considered as an important element of maintaining stable cerebral blood flow. Vascular smooth muscle cells (VSMCs) are considered to be an important element in the pathogenesis of neurodegeneration and a potential preventative target by agents which reduce the contractility of the vessels. Our main objectives were to define the relationship between serum and long-term oral resveratrol administration in the rat model, as well as to assess the effect of resveratrol on phenylephrine- (PHE-) induced contraction of vascular smooth muscle cells (VSMCs). Moreover, we attempt to define the dependence of contraction mechanisms on endothelial NO synthase. Experiments were performed on Wistar rats (n = 17) pretreated with resveratrol (4 weeks; 10 mg/kg p.o.) or placebo. Serum BDNF levels were quantified after 2 and 4 weeks of treatment with ELISA. Contraction force was measured on isolated and perfused tail arteries as the increase of perfusion pressure with a constant flow. Values of serum BNDF in week 0 were 1.18 ± 0.12 ng/mL (treated) and 1.17 ± 0.13 ng/mL (control) (p = ns). After 2 weeks of treatment, BDNF in the treatment group was higher than in controls, 1.52 ± 0.23 ng/mL and 1.24 ± 0.13 ng/mL, respectively. (p = 0.02) Following 4 weeks of treatment, BDNF values were higher in the resveratrol group compared to control 1.64 ± 0.31 ng/mL and 1.32 ± 0.26 ng/mL, respectively (p = 0.031). EC50 values obtained for PHE in resveratrol pretreated arteries were significantly higher than controls (5.33 ± 1.7 × 10−7 M/L versus 4.53 ± 1.2 × 10−8 M/L, p < 0.05). These results show a significant increase in BDNF concentration in the resveratrol pretreated group. The

  11. Vascular smooth muscle dysfunction induced by monomethylarsonous acid (MMA III): a contributing factor to arsenic-associated cardiovascular diseases.

    PubMed

    Bae, Ok-Nam; Lim, Eun-Kyung; Lim, Kyung-Min; Noh, Ji-Yoon; Chung, Seung-Min; Lee, Moo-Yeol; Yun, Yeo-Pyo; Kwon, Seong-Chun; Lee, Jun-Ho; Nah, Seung-Yeol; Chung, Jin-Ho

    2008-11-01

    While arsenic in drinking water is known to cause various cardiovascular diseases in human, exact mechanism still remains elusive. Recently, trivalent-methylated arsenicals, the metabolites of inorganic arsenic, were shown to have higher cytotoxic potential than inorganic arsenic. To study the role of these metabolites in arsenic-induced cardiovascular diseases, we investigated the effect of monomethylarsonous acid (MMA III), a major trivalent-methylated arsenical, on vasomotor tone of blood vessels. In isolated rat thoracic aorta and small mesenteric arteries, MMA III irreversibly suppressed normal vasoconstriction induced by three distinct agonists of phenylephrine (PE), serotonin and endothelin-1. Inhibition of vasoconstriction was retained in aortic rings without endothelium, suggesting that MMA III directly impaired the contractile function of vascular smooth muscle. The effect of MMA III was mediated by inhibition of PE-induced Ca2+ increase as found in confocal microscopy and fluorimeter in-lined organ chamber technique. The attenuation of Ca2+ increase was from concomitant inhibition of release from intracellular store and extracellular Ca2+ influx via L-type Ca2+ channel, which was blocked by MMA III as shown in voltage-clamp assay in Xenopus oocytes. MMA III did not affect downstream process of Ca2+, as shown in permeabilized arterial strips. In in vivo rat model, MMA III attenuated PE-induced blood pressure increase indeed, supporting the clinical relevance of these in vitro findings. In conclusion, MMA III-induced smooth muscle dysfunction through disturbance of Ca2+ regulation, which results in impaired vasoconstriction and aberrant blood pressure change. This study will provide a new insight into the role of trivalent-methylated arsenicals in arsenic-associated cardiovascular diseases.

  12. Phosphotidylinositol turnover in vascular, uterine, fundal, and tracheal smooth muscle: effect of serotonin (5HT)

    SciTech Connect

    Cohen, M.L.; Wittenauer, L.A.

    1986-03-01

    In brain, platelets, and aorta, 5HT has been reported to increase phosphotidylinositol turnover, an effect linked to 5HT/sub 2/ receptors. The authors examined the effect of 5HT on /sup 3/H-inositol-1-phosphate (/sup 3/H-I-P) in tissues possessing 5HT/sub 2/ receptors that mediate contraction to 5HT (rat jugular vein, aorta, uterus and guinea pig trachea) and in a tissue in which contraction to 5HT is not mediated by 5HT/sub 2/ receptors (rat stomach fundus). Tissues were incubated (37/sup 0/C, 95% O/sub 2/, 5% CO/sub 2/) with /sup 3/H-inositol (90 min), washed, LiCl/sub 2/ (10 mM) and 5HT added for 90 min, extracted, and /sup 3/H-I-P eluted from a Dowex-1 column. Basal /sup 3/H-I-P was 10-fold higher in the uterus than in the other tissues. 5HT (10/sup -6/-10/sup -4/M) increased /sup 3/H-I-P in the jugular vein, aorta, and uterus but not in the trachea or fundus. Maximum increase was greatest in the jugular vein (8-fold) with an ED/sub 50/ of 0.4 ..mu..M 5HT. The selective 5HT/sub 2/ receptor blocker, LY53857 (10/sup -8/M) antagonized the increase in /sup 3/H-I-P by 5HT in the jugular vein, aorta and uterus. Pargyline (10/sup -5/M) added to the trachea and fundus did not unmask an effect of 5HT (10/sup -4/M). These data suggest that (1) the jugular vein produced the most sensitive response to 5HT-induced increases in /sup 3/H-I-P, (2) increases in /sup 3/H-I-P by 5HT in smooth muscle may be linked to 5HT/sub 2/ receptors and (3) activation of 5HT/sub 2/ receptors as occurred in the trachea will not always increase /sup 3/H-I-P.

  13. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression.

    PubMed

    Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.

  14. Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells.

    PubMed

    Beck, R; Bertolino, S; Abbot, S E; Aaronson, P I; Smirnov, S V

    1998-11-02

    Albumin is the major plasma protein circulating in blood. Albumin potently decreases capillary permeability, although the mechanisms are not understood completely. Albumin also effectively binds arachidonic acid (AA), which increases capillary permeability. To investigate the interactions of BSA and AA with the cell membrane, the effect of these substances on [3H]AA release and membrane fluidity was studied in vascular myocytes and endothelial cells. BSA (0.2 and 1 mg . mL-1) stimulated a significant release of [3H]AA from both intact rat aorta and cultured smooth muscle cells. This effect was not mimicked by gamma-globulin or myoglobin (both 1 mg . mL-1) in intact tissue. BSA, but not gamma-globulin and myoglobin, decreased the membrane fluidity (assessed as changes in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene) in a concentration-dependent manner with a half-maximum concentration between 0.007 and 0.4 mg . mL-1 in both freshly isolated and cultured rat aortic myocytes and human umbilical vein endothelial cells. AA (1 to 200 micromol/L) caused the opposite effect, increasing membrane fluidity and antagonizing the effect of BSA. BSA modified at its arginine residues, which are thought to be important in AA binding, did not stimulate [3H]AA release and was significantly less potent than native BSA in altering the membrane fluidity. The effect of BSA can be explained by a high-affinity binding of AA to the protein and extraction of AA from the cell membrane. The interaction between BSA and AA could play a role in the regulation of vascular permeability.

  15. Andrographolide, a Novel NF-κB Inhibitor, Inhibits Vascular Smooth Muscle Cell Proliferation and Cerebral Endothelial Cell Inflammation

    PubMed Central

    Chang, Chao-Chien; Duann, Yeh-Fang; Yen, Ting-Lin; Chen, Yu-Ying; Jayakumar, Thanasekaran; Ong, Eng-Thiam; Sheu, Joen-Rong

    2014-01-01

    Background Aberrant vascular smooth muscle cell (VSMC) proliferation and cerebral endothelial cell (CEC) dysfunction contribute significantly in the pathogenesis of cardiovascular diseases. Therefore, inhibition of these cellular events would be by candidate agents for treating these diseases. In the present study, the mechanism of anti-proliferative and anti-inflammatory effects of andrographolides, a novel nuclear factor-κB inhibitor, was investigated in VSMC and CEC cells. Methods VSMCs and CECs were isolated from rat artery and mouse brain, respectively, and cultured before experimentation. The effect of andro on platelet-derived growth factor-BB (PDGF-BB) induced VSMC cell proliferation was evaluated by cell number, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of extracellular signal regulated kinase 1/2 (ERK1/2), proliferating cell nuclear antigen (PCNA), and the effects on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and, cyclooxygenase-2 (COX2) were detected by Western blotting. Results Andro significantly inhibited PDGF-BB (10 ng/ml) induced cell proliferation in a concentration (20-100 μM) dependent manner, which may be due to reducing the expression of ERK1/2, and by inhibiting the expression of PCNA. Andro also remarkably diminished LPS-induced iNOS and COX2 expression. Conclusions The results of this study suggested that the effects of andro against VSMCs proliferation and CECs dysfunction may represent a promising approach for treatment of vascular diseases. PMID:27122804

  16. MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification

    PubMed Central

    Shen, Yingying; Chen, Ling; Xu, Canxin; Zhao, Heng; Wu, Ying; Zhang, Qinghai; Zhong, Jing; Tang, Zhenwang; Liu, Changhui; Zhao, Qiang; Zheng, Yi; Cao, Renxian; Zu, Xuyu

    2017-01-01

    Cardiovascular calcification is one of the most severe outcomes associated with cardiovascular disease and often results in significant morbidity and mortality. Previous reports indicated that epigenomic regulation of microRNAs (miRNAs) might play important roles in vascular smooth muscle cell (VSMC) calcification. Here, we identified potential key miRNAs involved in vascular calcification in vivo and investigated the role of miR-32-5p (miR-32). According to microarray analysis, we observed increased expression of miR-125b, miR-30a, and miR-32 and decreased expression of miR-29a, miR-210, and miR-320 during the progression of vascularcalcification. Additionally, gain- and loss-of-function studies of miR-32 confirmed promotion of VSMC calcification in mice through the enhanced expression of bonemorphogenetic protein-2, runt-related transcription factor-2(RUNX2), osteopontin, and the bone-specific phosphoprotein matrix GLA protein in vitro. Moreover, miR-32 modulated vascularcalcification progression by activating phosphoinositide 3-kinase (PI3K)signaling and increasing RUNX2 expression and phosphorylation by targeting the 3′-untranslated region of phosphatase and tensin homolog Mrna (PTEN) in mouse VSMCs. Furthermore, we detected higher miR-32 levels in plasmafrom patients with coronary artery disease with coronary artery calcification (CAC) as compared with levels observed in non-CAC patients (P = 0.016), further confirming miR-32 as a critical modulator and potential diagnostic marker for CAC. PMID:28319142

  17. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    PubMed Central

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  18. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  19. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  20. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth.

    PubMed

    Tan, Xiaoling; Feng, Lan; Huang, Xiaoyong; Yang, Yidong; Yang, Chengzhong; Gao, Yuqi

    2017-03-07

    Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.

  1. Abnormal thallium kinetics in postoperative coarctation of the aorta: evidence for diffuse hypertension-induced vascular pathology

    SciTech Connect

    Kimball, B.P.; Shurvell, B.L.; Mildenberger, R.R.; Houle, S.; McLaughlin, P.R.

    1986-03-01

    After operative correction of congenital coarctation of the aorta, patients continue to have excess cardiovascular mortality, including manifestations of ischemic heart disease. Previous morphologic studies support the concept of direct hypertensive vascular injury in these patients. To determine whether abnormalities of myocardial perfusion were present in an asymptomatic group of patients with coarctation repair, 18 men and 9 women with a mean age of 26 years (range 19 to 41) were studied between 2 and 25 years after operative correction. Stress electrocardiography and quantitative thallium imaging by a circumferential profile technique were used. These patients were compared with a normal group, statistically defined as having a less than 1% prevalence of significant obstructive coronary artery disease. The postoperative coarctation group demonstrated a reduction in global thallium redistribution in each view analyzed. As compared with findings in the control subjects, thallium washout in the anterior view (41.9 versus 48.6%, p = 0.02) and left anterior oblique projection (40.5 versus 48.2%, p = 0.007) was significantly diminished. Although the postoperative coarctation group had a lower thallium redistribution rate in the lateral view (41.4 versus 46.3%, p = 0.09) this difference did not reach statistical significance because of the intrinsic variability of this projection. Plots of the median percent thallium washout revealed independence from circumferential profile angle, indicating global abnormalities in perfusion. No correlation between clinical variables and thallium kinetics could be established, suggesting marked individual variability in the development of this vascular lesion. The observation of abnormal thallium kinetics in patients with coarctation repair may have consequences for long-term follow-up and therapy.

  2. miR-185/P2Y6 Axis Inhibits Angiotensin II-Induced Human Aortic Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Wang, Shunmin; Tang, Lujun; Zhou, Qian; Lu, Duomei; Duan, Wulei; Chen, Cheng; Huang, Lu; Tan, Yuansheng

    2017-03-09

    The abnormal proliferation and apoptosis of human aortic vascular smooth muscle cells (HAVSMCs) play an important role in the pathogenesis of hypertension. Recent study revealed that angiotensin II (Ang II) could elicit HAVSMC dysfunction, to induce or aggravate hypertension. Purinergic receptor P2Y6, an inflammation-inducible G protein-coupled receptor, promoted Ang II-induced hypertension. In the present study, we revealed that Ang II induced HAVSMC proliferation and upregulated P2Y6 protein levels. After knockdown of P2Y6, the promotive effect of Ang II on HAVSMC proliferation was restored. microRNAs (miRNAs) involve in most biological processes. In this study, we scanned out seven candidate miRNAs, which were predicted to contain binding site of P2Y6's 3'-UTR by online tools. Among them, miR-185 was significantly downregulated by Ang II treatment. miR-185 reduced P2Y6 protein levels by direct binding to the 3'UTR of P2Y6. miR-185 overexpression suppressed HAVSMC proliferation; P2Y6 overexpression or Ang II treatment promoted HAVSMC proliferation, and restored the suppressive effect of miR-185 on HAVSMC proliferation. Besides, miR-185/P2Y6 axis also affected pERK1/2 protein levels. Taken together, the present study indicated that miR-185/P2Y6 axis might inhibit Ang II-induced HAVSMC proliferation through miR-185 negatively regulating P2Y6 expression and the downstream ERK pathway; rescuing miR-185 expression to inhibit P2Y6 may represent a therapeutic strategy against HAVSMC dysfunction and hypertension.

  3. Lithium Chloride Inhibits Vascular Smooth Muscle Cell Proliferation and Migration and Alleviates Injury-Induced Neointimal Hyperplasia via Induction of PGC-1α

    PubMed Central

    Wang, Danfeng; Wu, Jun; Liang, Tingming; Liu, Chang

    2013-01-01

    The proliferation and migration of vascular smooth muscle cells (VSMCs) contributes importantly to the development of in-stent restenosis. Lithium has recently been shown to have beneficial effects on the cardiovascular system, but its actions in VSMCs and the direct molecular target responsible for its action remains unknown. On the other hand, PGC-1α is a transcriptional coactivator which negatively regulates the pathological activation of VSMCs. Therefore, the purpose of the present study is to determine if lithium chloride (LiCl) retards VSMC proliferation and migration and if PGC-1α mediates the effects of lithium on VSMCs. We found that pretreatment of LiCl increased PGC-1α protein expression and nuclear translocation in a dose-dependent manner. MTT and EdU incorporation assays indicated that LiCl inhibited serum-induced VSMC proliferation. Similarly, deceleration of VSMC migration was confirmed by wound healing and transwell assays. LiCl also suppressed ROS generation and cell cycle progression. At the molecular level, LiCl reduced the protein expression levels or phosphorylation of key regulators involved in the cell cycle re-entry, adhesion, inflammation and motility. In addition, in vivo administration of LiCl alleviated the pathophysiological changes in balloon injury-induced neointima hyperplasia. More importantly, knockdown of PGC-1α by siRNA significantly attenuated the beneficial effects of LiCl on VSMCs both in vitro and in vivo. Taken together, our results suggest that LiCl has great potentials in the prevention and treatment of cardiovascular diseases related to VSMC abnormal proliferation and migration. In addition, PGC-1α may serve as a promising drug target to regulate cardiovascular physiological homeostasis. PMID:23383200

  4. The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification

    SciTech Connect

    Ciceri, Paola; Volpi, Elisa; Brenna, Irene; Elli, Francesca; Borghi, Elisa; Brancaccio, Diego; Cozzolino, Mario

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Lanthanum reduces the progression of high phosphate-induced calcium deposition. Black-Right-Pointing-Pointer Calcium receptor agonists and the calcimimetic calindol reduce calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol cooperate on reducing calcium deposition. Black-Right-Pointing-Pointer Lanthanum and calindol may interact with the same receptor. -- Abstract: Phosphate (Pi)-binders are commonly used in dialysis patients to control high Pi levels, that associated with vascular calcification (VC). The aim of this study was to investigate the effects of lanthanum chloride (LaCl{sub 3}) on the progression of high Pi-induced VC, in rat vascular smooth muscle cells (VSMCs). Pi-induced Ca deposition was inhibited by LaCl{sub 3}, with a maximal effect at 100 {mu}M (59.0 {+-} 2.5% inhibition). Furthermore, we studied the effects on VC of calcium sensing receptor (CaSR) agonists. Gadolinium chloride, neomycin, spermine, and the calcimimetic calindol significantly inhibited Pi-induced VC (55.9 {+-} 2.2%, 37.3 {+-} 4.7%, 30.2 {+-} 5.7%, and 63.8 {+-} 5.7%, respectively). To investigate the hypothesis that LaCl{sub 3} reduces the progression of VC by interacting with the CaSR, we performed a concentration-response curve of LaCl{sub 3} in presence of a sub-effective concentration of calindol (10 nM). Interestingly, this curve was shifted to the left (IC{sub 50} 9.6 {+-} 2.6 {mu}M), compared to the curve in the presence of LaCl{sub 3} alone (IC{sub 50} 19.0 {+-} 4.8 {mu}M). In conclusion, we demonstrated that lanthanum chloride effectively reduces the progression of high phosphate-induced vascular calcification. In addition, LaCl{sub 3} cooperates with the calcimimetic calindol in decreasing Ca deposition in this in vitro model. These results suggest the potential role of lanthanum in the treatment of VC induced by high Pi.

  5. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    PubMed

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.

  6. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling.

    PubMed

    Morales, Pablo E; Torres, Gloria; Sotomayor-Flores, Cristian; Peña-Oyarzún, Daniel; Rivera-Mejías, Pablo; Paredes, Felipe; Chiong, Mario

    2014-03-28

    Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.

  7. Sesamin Inhibits PDGF-Mediated Proliferation of Vascular Smooth Muscle Cells by Upregulating p21 and p27.

    PubMed

    Han, Joo-Hui; Lee, Sang-Gil; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Kim, Young Ho; Myung, Chang-Seon

    2015-08-26

    Sesamin, an active ingredient of Asiasarum heterotropoides, is known to exhibit many bioactive functions, but the effect thereof on vascular smooth muscle cell (VSMC) proliferation remains poorly understood. Hence, we explored the antiproliferative action of sesamin on VSMCs and the underlying mechanism thereof, focusing on possible effects of sesamin on cell cycle progression. Sesamin significantly inhibited platelet-derived growth factor (PDGF)-induced VSMC proliferation (inhibition percentage at 1, 5, and 10 μM sesamin was 49.8 ± 22.0%, 74.6 ± 19.9%, and 87.8 ± 13.0%, respectively) in the absence of cytotoxicity and apoptosis, and PDGF-induced DNA synthesis; and arrested cell cycle progression in the G0/G1-to-S phase. Sesamin potently inhibited cyclin D1 and CDK4 expression, pRb phosphorylation, and expression of the proliferating cell nuclear antigen (PCNA); and upregulated p27(KIP1), p21(CIP1), and p53. The results thus indicate that the antiproliferative effect of sesamin on PDGF-stimulated VSMCs is attributable to arrest of the cell cycle in G0/G1 caused, in turn, by upregulation of p27(KIP1), p21(CIP1), and p53, and inhibition of cyclin E-CDK2 and cyclin D1-CDK4 expression.

  8. Adhesion, growth, and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substances.

    PubMed

    Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Svindrych, Zdenek; Slepicka, Petr; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav

    2013-01-01

    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  9. A Theoretical Model for F-actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch

    PubMed Central

    Na, S.; Meininger, G.A.; Humphrey, J.D.

    2007-01-01

    A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30 minutes. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2 minutes of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30 minutes of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of “tensional homeostasis” whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity. PMID:17240401

  10. Phorbol 12-myristate 13-acetate prevents isoproterenol-induced morphological change in cultured vascular smooth muscle cells

    SciTech Connect

    Nabika, Toru; Chaldakov, G.N.; Nara, Yasuo; Endo, Jiro; Yamori, Yukio )

    1988-10-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on isoproterenol (ISO)- and dibutyryl cAMP (dBcAMP)-induced morphological change and cytoskeletal reorganization was studied in cultured vascular smooth muscle cells (VSMC) using the fluorescence staining of actin and microtubules. The treatment of VSMC with 1.0 {mu}M of ISO or with 1.0 mM of dBcAMP for 90 min induced the disruption of actin-containing stress fibers followed by cytoplasmic arborization. The addition of 100 nM of PMA prevented both the destruction of actin fibers and cell arborization induced either by ISO or by dBcAMP. These results indicated that the inhibition of arborization by PMA was mediated through the activation of protein kinase C. Colchicine at 5.0 {mu}M also had an inhibitory effect on ISO- and dBcAMP-induced cell arborization. However, immunofluorescence studies revealed that colchicine but not PMA elicited the reorganization of microtubules, suggesting that the effect of PMA was mediated through a mechanism different from that of colchicine. The observations indicated that the morphology of VSMC was regulated through the alteration of cytoskeletal organization induced by cAMP-mediated and by protein kinase C-dependent systems.

  11. The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility

    PubMed Central

    Wang, Yujia; Wu, Zenghui; Luo, Hongyu; Peng, Junzheng; Raelson, John; Ehret, Georg B.; Munroe, Patricia B.; Stoyanova, Ekatherina; Qin, Zhao; Cloutier, Guy; Bradley, W. Edward; Wu, Tao; Shen, Jian-Zhong; Hu, Shenjiang; Wu, Jiangping

    2016-01-01

    Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.000389, approaching the critical p-value of 0.000302, for association with diastolic blood pressure of 60,396 individuals. According to echocardiography, we found that Efnb3 gene knockout mice showed enhanced constriction in the carotid arteries. In vitro studies revealed that in mouse vascular smooth muscle cells, siRNA knockdown of GRIP1, which is in the EFNB3 reverse signalling pathway, resulted in increased contractility of these cells. These data suggest that molecules in the EPHB/EFNB signalling pathways, specifically EFNB3 and GRIP1, are involved blood pressure regulation. PMID:27941904

  12. Investigation of calcium antagonist-L-type calcium channel interactions by a vascular smooth muscle cell membrane chromatography method.

    PubMed

    Du, Hui; He, Jianyu; Wang, Sicen; He, Langchong

    2010-07-01

    The dissociation equilibrium constant (K(D)) is an important affinity parameter for studying drug-receptor interactions. A vascular smooth muscle (VSM) cell membrane chromatography (CMC) method was developed for determination of the K(D) values for calcium antagonist-L-type calcium channel (L-CC) interactions. VSM cells, by means of primary culture with rat thoracic aortas, were used for preparation of the cell membrane stationary phase in the VSM/CMC model. All measurements were performed with spectrophotometric detection (237 nm) at 37 degrees C. The K(D) values obtained using frontal analysis were 3.36 x 10(-6) M for nifedipine, 1.34 x 10(-6) M for nimodipine, 6.83 x 10(-7) M for nitrendipine, 1.23 x 10(-7) M for nicardipine, 1.09 x 10(-7) M for amlodipine, and 8.51 x 10(-8) M for verapamil. This affinity rank order obtained from the VSM/CMC method had a strong positive correlation with that obtained from radioligand binding assay. The location of the binding region was examined by displacement experiments using nitrendipine as a mobile-phase additive. It was found that verapamil occupied a class of binding sites on L-CCs different from those occupied by nitrendipine. In addition, nicardipine, amlodipine, and nitrendipine had direct competition at a single common binding site. The studies showed that CMC can be applied to the investigation of drug-receptor interactions.

  13. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells*

    PubMed Central

    Baeten, Jeremy T.; Lilly, Brenda

    2015-01-01

    Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. PMID:25957400

  14. Tetrahydroxystilbene glucoside inhibits TNF-α-induced migration of vascular smooth muscle cells via suppression of vimentin.

    PubMed

    Yao, Wenjuan; Sun, Qinju; Huang, Lei; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-07-28

    Vascular smooth muscle cell (VSMC) migration triggered by TNF-α is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) has been proven to exhibit significant anti-atherosclerotic activity. Herein we investigate the inhibitory effect of TSG on TNF-α-induced VSMC migration and explore the underlying mechanisms. TSG pretreatment markedly inhibited TNF-α-induced cell migration. The inhibition of vimentin redistribution and expression was involved in the inhibitory effect of TSG on VSMC migration. The suppression of vimentin expression by shRNA in VSMCs significantly inhibited TNF-α-induced cell migration. Furthermore, TSG inhibited the TNF-α-induced expression of TGFβ1 and TGFβR1, and phosphorylation of TGFβR1 and Smad2/3. TSG also suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG inhibits VSMC migration induced by TNF-α through inhibiting vimentin rearrangement and expression. The interruption of TGFβ/Smad pathway appears to be responsible for the suppression of TSG on vimentin expression.

  15. Paeonol Inhibits the Proliferation, Invasion, and Inflammatory Reaction Induced by TNF-α in Vascular Smooth Muscle Cells.

    PubMed

    Meng, Liang; Xu, Weidong; Guo, Lihong; Ning, Wenqi; Zeng, Xiandong

    2015-11-01

    The aim of this study was to evaluate the effect of paeonol on the proliferation, migration, and inflammation induced by tumor necrosis factor (TNF-α) of rat vascular smooth muscle cells (VSMCs). Primary rat VSMCs were identified by immunofluorescence assay. The inhibition of VSMCs proliferation induced by TNF-α was observed after paeonol treatment in a dose-dependent manner. Treatment with 100 μM paeonol significantly reduced the expression of proliferating cell nuclear antigen (PCNA). On the other hand, transwell assay showed that treatment with paeonol suppressed the invasion of TNF-α-induced VSMCs and the production of inflammation factors stimulated by TNF-α. For apoptosis induced by paeonol, Western blot analysis showed that cleaved caspase-3 and -9 were detected, and pro-apoptotic protein Bax was up-regulated, whereas anti-apoptotic protein Bcl-2 was down-regulated by paeonol in TNF-α-stimulated VSMCs. ELISA analysis data showed that both levels of IL-1β and IL-6 produced by the stimulation of TNF-α were decreased by paeonol in a dose-dependent manner in VSMCs. These results suggest that paeonol can effectively inhibit the proliferation through apoptotic induction through caspase pathway in VSMCs induced by TNF-α. Also, paeonol significantly reduced the invasion and the inflammation stimulated by TNF-α in VSMCs.

  16. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    PubMed Central

    Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav

    2013-01-01

    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted. PMID:23586032

  17. Prelamin A Accumulation Attenuates Rac1 Activity and Increases the Intrinsic Migrational Persistence of Aged Vascular Smooth Muscle Cells

    PubMed Central

    Porter, Lauren J.; Holt, Mark R.; Soong, Daniel; Shanahan, Catherine M.; Warren, Derek T.

    2016-01-01

    Vascular smooth muscle cell (VSMC) motility is essential during both physiological and pathological vessel remodeling. Although ageing has emerged as a major risk factor in the development of cardiovascular disease, our understanding of the impact of ageing on VSMC motility remains limited. Prelamin A accumulation is known to drive VSMC ageing and we show that presenescent VSMCs, that have accumulated prelamin A, display increased focal adhesion dynamics, augmented migrational velocity/persistence and attenuated Rac1 activity. Importantly, prelamin A accumulation in proliferative VSMCs, induced by depletion of the prelamin A processing enzyme FACE1, recapitulated the focal adhesion, migrational persistence and Rac1 phenotypes observed in presenescent VSMCs. Moreover, lamin A/C-depleted VSMCs also display reduced Rac1 activity, suggesting that prelamin A influences Rac1 activity by interfering with lamin A/C function at the nuclear envelope. Taken together, these data demonstrate that lamin A/C maintains Rac1 activity in VSMCs and prelamin A disrupts lamin A/C function to reduce Rac1 activity and induce migrational persistence during VSMC ageing. PMID:27854297

  18. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    PubMed

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  19. 12S-lipoxygenase protein associates with {alpha}-actin fibers in human umbilical artery vascular smooth muscle cells

    SciTech Connect

    Weisinger, Gary . E-mail: gary_w@tasmc.health.gov.il; Limor, Rona; Marcus-Perlman, Yonit; Knoll, Esther; Kohen, Fortune; Schinder, Vera; Firer, Michael; Stern, Naftali

    2007-05-11

    The current study sets out to characterize the intracellular localization of the platelet-type 12S-lipoxygenase (12-LO), an enzyme involved in angiotensin-II induced signaling in vascular smooth muscle cells (VSMC). Immunohistochemical analysis of VSMC in vitro or human umbilical arteries in vivo showed a clear cytoplasmic localization. On immunogold electron microscopy, 12-LO was found primarily associated with cytoplasmic VSMC muscle fibrils. Upon angiotensin-II treatment of cultured VSMC, immunoprecipitated 12-LO was found bound to {alpha}-actin, a component of the cytoplasmic myofilaments. 12-LO/{alpha}-actin binding was blocked by VSMC pretreatment with the 12-LO inhibitors, baicalien or esculetine and the protein synthesis inhibitor, cycloheximide. Moreover, the binding of 12-LO to {alpha}-actin was not associated with 12-LO serine or tyrosine phosphorylation. These observations suggest a previously unrecognized angiotensin-II dependent protein interaction in VSMC through which 12-LO protein may be trafficked, for yet undiscovered purposes towards the much more abundantly expressed cytoskeletal protein {alpha}-actin.

  20. The bestrophin- and TMEM16A-associated Ca2+-activated Cl– channels in vascular smooth muscles

    PubMed Central

    Dam, Vibeke Secher; Boedtkjer, Donna MB; Aalkjaer, Christian; Matchkov, Vladimir

    2014-01-01

    The presence of Ca2+-activated Cl– currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl– current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl– channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins. PMID:25478625

  1. Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension.

    PubMed

    Resta, Thomas C; Broughton, Brad R S; Jernigan, Nikki L

    2010-01-01

    Increases in myofilament Ca2+ sensitivity resulting from stimulation of RhoA and Rho kinase represent a primary mechanism of vasoconstriction and associated pulmonary hypertension resulting from chronic hypoxia (CH). This chapter summarizes recent advances in the understanding of RhoA/Rho kinase signaling mechanisms in pulmonary vascular smooth muscle (VSM) that increase the sensitivity of the contractile apparatus to Ca2+ and contribute to vasoconstriction in this setting. Such advances include the discovery of myogenic tone in small pulmonary arteries from CH rats that contributes to vasoconstriction through a mechanism inherent to the VSM, dependent on Rho kinase-induced Ca2+ sensitization but independent of L-type voltage-gated Ca2+ channels. Additional studies have revealed an important contribution of superoxide anion (O2-)-induced RhoA activation to both receptor-mediated and membrane depolarization-induced myofilament Ca2+ sensitization in hypertensive pulmonary arteries. Xanthine oxidase and NADPH oxidase isoforms are potential sources of O2- that mediate RhoA-dependent vasoconstriction and associated pulmonary hypertension.

  2. Oxygen-Sensitive Calcium Channels in Vascular Smooth Muscle and Their Possible Role in Hypoxic Arterial Relaxation

    NASA Astrophysics Data System (ADS)

    Franco-Obregon, A.; Urena, J.; Lopez-Barneo, J.

    1995-05-01

    We have investigated the modifications of cytosolic [Ca2+] and the activity of Ca2+ channels in freshly dispersed arterial myocytes to test whether lowering O_2 tension (PO_2) directly influences Ca2+ homeostasis in these cells. Unclamped cells loaded with fura-2 AM exhibit oscillations of cytosolic Ca2+ whose frequency depends on extracellular Ca2+ influx. Switching from a PO_2 of 150 to 20 mmHg leads to a reversible attenuation of the Ca2+ oscillations. In voltage-clamped cells, hypoxia reversibly reduces the influx of Ca2+ through voltage-dependent channels, which can account for the inhibition of the Ca2+ oscillations. Low PO_2 selectively inhibits L-type Ca2+ channel activity, whereas the current mediated by T-type channels is unaltered by hypoxia. The effect of low PO_2 on the L-type channels is markedly voltage dependent, being more apparent with moderate depolarizations. These findings demonstrate the existence of O_2-sensitive, voltage-dependent, Ca2+ channels in vascular smooth muscle that may critically contribute to the local regulation of circulation.

  3. Cultured rat vascular smooth muscle cells are resistant to methylamine toxicity: no correlation to semicarbazide-sensitive amine oxidase

    NASA Technical Reports Server (NTRS)

    Langford, S. D.; Trent, M. B.; Boor, P. J.

    2001-01-01

    Methylamine (MA), a component of serum and a metabolite of nicotine and certain insecticides and herbicides, is metabolized by semicarbazide-sensitive amine oxidase (SSAO). MA is toxic to cultured human umbilical vein and calf pulmonary artery endothelial cells. Endothelial cells, which do not exhibit endogenous SSAO activity, are exposed to SSAO circulating in serum. In contrast, vascular smooth muscle cells (VSMC) do exhibit innate SSAO activity both in vivo and in vitro. This property, together with the critical localization of VSMC within the arterial wall, led us to investigate the potential toxicity of MA to VSMC. Cultured rat VSMC were treated with MA (10-5 to 1 M). In some cultures, SSAO was selectively inhibited with semicarbazide or MDL-72145 [(E)-2-(3,4-dimethoxyphenyl)-3-fluoroallylamine]. Cytotoxicity was measured via MTT, vital dye exclusion, and clonogenic assays. MA proved to be toxic to VSMC only at relatively high concentrations (LC(50) of 0.1 M). The inhibition of SSAO with semicarbazide or MDL-72145 did not increase MA toxicity, suggesting that the production of formaldehyde via tissue-bound, SSAO-mediated MA metabolism does not play a role in the minimal toxicity observed in isolated rat VSMC. The omission of fetal calf serum (FCS), which contains high SSAO activity, from media similarly showed little effect on cytotoxicity. We conclude that VSMC--in contrast to previous results in endothelial cells--are relatively resistant to MA toxicity, and SSAO does not play a role in VSMC injury by MA.

  4. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors

    PubMed Central

    Hu, Desheng; Mohanta, Sarajo K.; Yin, Changjun; Peng, Li; Ma, Zhe; Srikakulapu, Prasad; Grassia, Gianluca; MacRitchie, Neil; Dever, Gary; Gordon, Peter; Burton, Francis L.; Ialenti, Armando; Sabir, Suleman R.; McInnes, Iain B.; Brewer, James M.; Garside, Paul; Weber, Christian; Lehmann, Thomas; Teupser, Daniel; Habenicht, Livia; Beer, Michael; Grabner, Rolf; Maffia, Pasquale; Weih, Falk; Habenicht, Andreas J.R.

    2015-01-01

    Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs. PMID:26084025

  5. In vitro photodynamic therapy with chlorin e6 leads to apoptosis of human vascular smooth muscle cells.

    PubMed

    Wawrzyńska, Magdalena; Kałas, Wojciech; Biały, Dariusz; Zioło, Ewa; Arkowski, Jacek; Mazurek, Walentyna; Strzadała, Leon

    2010-02-01

    Percutaneous coronary intervention has become the most common and widely implemented method of heart revascularization. However, the development of restenosis remains the major limitation of this method. Photodynamic therapy (PDT) recently emerged as a new and promising method for the prevention of arterial restenosis. Here the efficacy of chlorin e6 in PDT was investigated in vitro using human vascular smooth muscle cells (TG/HA-VSMCs) as one of the cell types crucial in the development of restenosis. PDT-induced cell death was studied on many levels,including annexin V staining, measurement of the generation reactive oxygen species (ROS) and caspase-3 activity,and assessment of changes in mitochondrial membrane potential and fragmentation of DNA. Photosensitization of TG/HA-VSMCs with a 170 lM of chlorin e6 and subsequent illumination with the light of a 672-nm diode laser(2 J/cm2) resulted in the generation of ROS, a decrease in cell membrane polarization, caspase-3 activation, as well as DNA fragmentation. Interestingly, the latter two apoptotic events could not be observed in photosensitized and illuminated NIH3T3 fibroblasts, suggesting different outcomes of the model of PDT in various types of cells. The results obtained with human VSMCs show that chlorin e6 may be useful in the PDT of aerial restenosis, but its efficacy still needs to be established in an animal model.

  6. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    SciTech Connect

    Friedrich, Erik B. . E-mail: efriedrich@med-in.uni-sb.de; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-10-27

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.

  7. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    SciTech Connect

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho . E-mail: chkimbio@skku.edu

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  8. DHEA attenuates PDGF-induced phenotypic proliferation of vascular smooth muscle A7r5 cells through redox regulation

    SciTech Connect

    Urata, Yoshishige; Goto, Shinji; Kawakatsu, Miho; Yodoi, Junji; Eto, Masato; Akishita, Masahiro; Kondo, Takahito

    2010-05-28

    It is known that dehydroepiandrosterone (DHEA) inhibits a phenotypic switch in vascular smooth muscle cells (VSMC) induced by platelet-derived growth factor (PDGF)-BB. However, the mechanism behind the effect of DHEA on VSMC is not clear. Previously we reported that low molecular weight-protein tyrosine phosphatase (LMW-PTP) dephosphorylates PDGF receptor (PDGFR)-{beta} via a redox-dependent mechanism involving glutathione (GSH)/glutaredoxin (GRX)1. Here we demonstrate that the redox regulation of PDGFR-{beta} is involved in the effect of DHEA on VSMC. DHEA suppressed the PDGF-BB-dependent phosphorylation of PDGFR-{beta}. As expected, DHEA increased the levels of GSH and GRX1, and the GSH/GRX1 system maintained the redox state of LMW-PTP. Down-regulation of the expression of LMW-PTP using siRNA restored the suppression of PDGFR-{beta}-phosphorylation by DHEA. A promoter analysis of GRX1 and {gamma}-glutamylcysteine synthetase ({gamma}-GCS), a rate-limiting enzyme of GSH synthesis, showed that DHEA up-regulated the transcriptional activity at the peroxisome proliferator-activated receptor (PPAR) response element, suggesting PPAR{alpha} plays a role in the induction of GRX1 and {gamma}-GCS expression by DHEA. In conclusion, the redox regulation of PDGFR-{beta} is involved in the suppressive effect of DHEA on VSMC proliferation through the up-regulation of GSH/GRX system.

  9. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis.

    PubMed

    Hou, Jianghong; Xue, Xiaolin; Li, Junnong

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future.

  10. Effects of low-intensity laser irradiation on the apoptosis of rabbit vascular smooth muscle cells in culture

    NASA Astrophysics Data System (ADS)

    Li, S. D.; Chen, P.; Zhang, C. P.; Wen, J. X.; Liang, J.; Kang, H. X.; Gao, R. L.; Fu, X. B.

    2011-11-01

    Restenosis is a major complication after coronary intervention therapy. Excessive proliferation of vascular smooth muscle cells (VSMCs) and a decline in their apoptosis, which eventually leads to excessive neointimal thickening in coronary arteries, are the main causes of restenosis. Induction of the apoptosis of VSMCs and inhibition of excessive proliferation of VSMCs are therefore crucial for the prevention of restenosis, and low-intensity laser irradiation of coronary arteries may play a promising role in keeping this in balance. In this study, we used in vitro cultured rabbit VSMCs to investigate the effects of low-intensity laser irradiation at a wavelength of 532 nm on the apoptosis of VSMCs via morphological observation and molecular biology. The results showed that apoptotic bodies and obvious intranuclear apoptosis-positive particles formed within VSMCs 24 h after laser irradiation, suggesting that low-intensity laser irradiation at certain doses can inhibit the proliferation of VSMCs by promoting their apoptosis. This experiment provides evidences for further animal experiments and clinical trials on prevention and treatment of restenosis by intracoronary low-intensity laser irradiation at a wavelength of 532 nm.

  11. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    PubMed

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  12. ANGIOTENSIN II-INDUCED VASCULAR SMOOTH MUSCLE CELL MIGRATION AND GROWTH ARE MEDIATED BY CYTOCHROME P450 1B1-DEPENDENT SUPEROXIDE GENERATION

    PubMed Central

    Yaghini, Fariborz A.; Song, Chi Young; Lavrentyev, Eduard N.; Ghafoor, Hafiz U. B.; Fang, Xiao R.; Estes, Anne M.; Campbell, William B.; Malik, Kafait U.

    2010-01-01

    Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine if cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation and protein synthesis. Ang II stimulated migration of these cells, measured by the wound healing approach, by 1.78 fold and DNA synthesis, measured by [3H]thymidine incorporation, by 1.44 fold after 24 hours, and protein synthesis, measured by [3H]leucine incorporation, by 1.40 fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor, 2, 4, 3′, 5′-tetramethoxystilbene, or transduction of these cells with adenovirus cytochrome P450 1B1 shRNA, but not its scrambled control, reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, [3H]thymidine and [3H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15- and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase, activity were inhibited by 2, 4, 3′, 5′-tetramethoxystilbene and cytochrome P450 1B1 shRNA, and by tempol that inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. PMID:20439821

  13. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    SciTech Connect

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  14. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    SciTech Connect

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  15. Effects of rosuvastatin on the production and activation of matrix metalloproteinase-2 and migration of cultured rat vascular smooth muscle cells induced by homocysteine*

    PubMed Central

    Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan

    2013-01-01

    Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50–5 000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10−9–10−5 mol/L) were added when VSMCs were induced with 1 000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50–1 000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5 000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50–5 000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50–1 000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease

  16. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    PubMed

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction.

  17. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation

    PubMed Central

    Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine; Lisk, Christina; Karoor, Vijaya; Nozik-Grayck, Eva; Ferguson, Scott K.; Hassell, Kathryn; Nuss, Rachelle; Stenmark, Kurt; Buehler, Paul; Irwin, David C.

    2017-01-01

    It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype. PMID:28152051

  18. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    SciTech Connect

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong Tang Jian

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.

  19. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    PubMed Central

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  20. Sensitization of vascular smooth muscle cell to TNF-{alpha}-mediated death in the presence of palmitate

    SciTech Connect

    Rho, Mun-Chual; Ah Lee, Kyeong; Mi Kim, Sun; Sik Lee, Chang; Jeong Jang, Min; Kook Kim, Young; Sun Lee, Hyun; Hyun Choi, Yung; Yong Rhim, Byung; Kim, Koanhoi . E-mail: koanhoi@pusan.ac.kr

    2007-05-01

    Saturated free fatty acids (FFAs), including palmitate, can activate the intrinsic death pathway in cells. However, the relationship between FFAs and receptor-mediated death pathway is still unknown. In this study, we have investigated whether FFAs are able to trigger receptor-mediated death. In addition, to clarify the mechanisms responsible for the activation, we examined the biochemical changes in dying vascular smooth muscle cell (VSMC) and the effects of various molecules to the receptor-mediated VSMC death. Tumor necrosis factor (TNF)-{alpha}-mediated VSMC death occurred in the presence of sub-cytotoxic concentration of palmitate as determined by assessing viability and DNA degradation, while the cytokine did not influence VSMC viability in the presence of oleate. The VSMC death was inhibited by the gene transfer of a dominant-negative Fas-associated death domain-containing protein and the baculovirus p35, but not by the bcl-xL or the c-Jun N-terminal kinase (JNK) binding domain of JNK-interacting protein-1, in tests utilizing recombinant adenoviruses. The VSMC death was also inhibited by a neutralizing anti-TNF receptor 1 antibody, the caspase inhibitor z-VAD, and the cathepsin B inhibitor CA074, a finding indicative of the role of both caspases and cathepsin B in this process. Consistent with this finding, caspase-3 activation and an increase in cytosolic cathepsin B activity were detected in the dying VSMC. Palmitate inhibited an increase of TNF-{alpha}-mediated nuclear factor kappa B (NF-{kappa}B) activity, the survival pathway activated by the cytokine, by hindering the translocation of the NF-{kappa}B subunit of p65 from the cytosol into the nucleus. The gene transfer of inhibitor of NF-{kappa}B predisposed VSMC to palmitate-induced cell death. To the best of our knowledge, this study is the first report to demonstrate the activation of TNF-{alpha}-mediated cell death in the presence of palmitate. The current study proposes that FFAs would take part in

  1. Abnormal Mammary Adipose Tissue Environment of Brca1 Mutant Mice Show a Persistent Deposition of Highly Vascularized Multilocular Adipocytes.

    PubMed

    Jones, Laundette P; Buelto, Destiney; Tago, Elaine; Owusu-Boaitey, Kwadwo E

    2011-12-08

    A major challenge to breast cancer research is the identification of alterations in the architecture and composition of the breast that are associated with breast cancer progression. The aim of the present investigation was to characterize the mammary adipose phenotype from Brca1 mutant mice in the expectation that this would shed light on the role of the mammary tissue environment in the early stages of breast tumorigenesis. We observed that histological sections of mammary tissue from adult Brca1 mutant mice abnormally display small, multilocular adipocytes that are reminiscent of brown adipose tissue (BAT) as compared to wildtype mice. Using a marker for BAT, the uncoupling protein 1 (UCP1), we demonstrated that these multilocular adipose regions in Brca1 mutant mice stain positive for UCP1. Transcriptionally, UCP1 mRNA levels in the Brca1 mutant mice were elevated greater than 50-fold compared to age-matched mammary glands from wildtype mice. Indeed, BAT has characteristics that are favorable for tumor growth, including high vascularity. Therefore, we also demonstrated that the multilocular brown adipose phenotype in the mammary fat pad of Brca1 mutant mice displayed regions of increased vascularity as evidenced by a significant increase in the protein expression of CD31, a marker for angiogenesis. This Brca1 mutan