Sample records for abnormal visual input

  1. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  2. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  3. Visual processing in anorexia nervosa and body dysmorphic disorder: similarities, differences, and future research directions

    PubMed Central

    Madsen, Sarah K.; Bohon, Cara; Feusner, Jamie D.

    2013-01-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are psychiatric disorders that involve distortion of the experience of one’s physical appearance. In AN, individuals believe that they are overweight, perceive their body as “fat,” and are preoccupied with maintaining a low body weight. In BDD, individuals are preoccupied with misperceived defects in physical appearance, most often of the face. Distorted visual perception may contribute to these cardinal symptoms, and may be a common underlying phenotype. This review surveys the current literature on visual processing in AN and BDD, addressing lower- to higher-order stages of visual information processing and perception. We focus on peer-reviewed studies of AN and BDD that address ophthalmologic abnormalities, basic neural processing of visual input, integration of visual input with other systems, neuropsychological tests of visual processing, and representations of whole percepts (such as images of faces, bodies, and other objects). The literature suggests a pattern in both groups of over-attention to detail, reduced processing of global features, and a tendency to focus on symptom-specific details in their own images (body parts in AN, facial features in BDD), with cognitive strategy at least partially mediating the abnormalities. Visuospatial abnormalities were also evident when viewing images of others and for non-appearance related stimuli. Unfortunately no study has directly compared AN and BDD, and most studies were not designed to disentangle disease-related emotional responses from lower-order visual processing. We make recommendations for future studies to improve the understanding of visual processing abnormalities in AN and BDD. PMID:23810196

  4. Infant Face Preferences after Binocular Visual Deprivation

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Lewis, Terri L.; Levin, Alex V.; Maurer, Daphne

    2013-01-01

    Early visual deprivation impairs some, but not all, aspects of face perception. We investigated the possible developmental roots of later abnormalities by using a face detection task to test infants treated for bilateral congenital cataract within 1 hour of their first focused visual input. The seven patients were between 5 and 12 weeks old…

  5. Neuron analysis of visual perception

    NASA Technical Reports Server (NTRS)

    Chow, K. L.

    1980-01-01

    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.

  6. Relationship between Odor Identification and Visual Distractors in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kumazaki, Hirokazu; Kikuchi, Mitsuru; Yoshimura, Yuko; Miyao, Masutomo; Okada, Ken-ichi; Mimura, Masaru; Minabe, Yoshio

    2018-01-01

    Understanding the nature of olfactory abnormalities is crucial for optimal interventions in children with autism spectrum disorders (ASD). However, previous studies that have investigated odor identification in children with ASD have produced inconsistent results. The ability to correctly identify an odor relies heavily on visual inputs in the…

  7. How cortical neurons help us see: visual recognition in the human brain

    PubMed Central

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  8. Recognizing patterns of visual field loss using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Yousefi, Siamak; Goldbaum, Michael H.; Zangwill, Linda M.; Medeiros, Felipe A.; Bowd, Christopher

    2014-03-01

    Glaucoma is a potentially blinding optic neuropathy that results in a decrease in visual sensitivity. Visual field abnormalities (decreased visual sensitivity on psychophysical tests) are the primary means of glaucoma diagnosis. One form of visual field testing is Frequency Doubling Technology (FDT) that tests sensitivity at 52 points within the visual field. Like other psychophysical tests used in clinical practice, FDT results yield specific patterns of defect indicative of the disease. We used Gaussian Mixture Model with Expectation Maximization (GEM), (EM is used to estimate the model parameters) to automatically separate FDT data into clusters of normal and abnormal eyes. Principal component analysis (PCA) was used to decompose each cluster into different axes (patterns). FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal (i.e., glaucomatous) FDT results, recruited from a university-based, longitudinal, multi-center, clinical study on glaucoma. The GEM input was the 52-point FDT threshold sensitivities for all eyes. The optimal GEM model separated the FDT fields into 3 clusters. Cluster 1 contained 94% normal fields (94% specificity) and clusters 2 and 3 combined, contained 77% abnormal fields (77% sensitivity). For clusters 1, 2 and 3 the optimal number of PCA-identified axes were 2, 2 and 5, respectively. GEM with PCA successfully separated FDT fields from healthy and glaucoma eyes and identified familiar glaucomatous patterns of loss.

  9. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy.

    PubMed

    Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne

    2017-04-01

    We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.

  10. Degraded attentional modulation of cortical neural populations in strabismic amblyopia

    PubMed Central

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628

  11. Degraded attentional modulation of cortical neural populations in strabismic amblyopia.

    PubMed

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.

  12. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.

    PubMed

    Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui

    2014-05-14

    Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The case from animal studies for balanced binocular treatment strategies for human amblyopia.

    PubMed

    Mitchell, Donald E; Duffy, Kevin R

    2014-03-01

    Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  14. Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality.

    PubMed

    Cecere, Roberto; Gross, Joachim; Thut, Gregor

    2016-06-01

    The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. The measurement and treatment of suppression in amblyopia.

    PubMed

    Black, Joanna M; Hess, Robert F; Cooperstock, Jeremy R; To, Long; Thompson, Benjamin

    2012-12-14

    Amblyopia, a developmental disorder of the visual cortex, is one of the leading causes of visual dysfunction in the working age population. Current estimates put the prevalence of amblyopia at approximately 1-3%(1-3), the majority of cases being monocular(2). Amblyopia is most frequently caused by ocular misalignment (strabismus), blur induced by unequal refractive error (anisometropia), and in some cases by form deprivation. Although amblyopia is initially caused by abnormal visual input in infancy, once established, the visual deficit often remains when normal visual input has been restored using surgery and/or refractive correction. This is because amblyopia is the result of abnormal visual cortex development rather than a problem with the amblyopic eye itself(4,5) . Amblyopia is characterized by both monocular and binocular deficits(6,7) which include impaired visual acuity and poor or absent stereopsis respectively. The visual dysfunction in amblyopia is often associated with a strong suppression of the inputs from the amblyopic eye under binocular viewing conditions(8). Recent work has indicated that suppression may play a central role in both the monocular and binocular deficits associated with amblyopia(9,10) . Current clinical tests for suppression tend to verify the presence or absence of suppression rather than giving a quantitative measurement of the degree of suppression. Here we describe a technique for measuring amblyopic suppression with a compact, portable device(11,12) . The device consists of a laptop computer connected to a pair of virtual reality goggles. The novelty of the technique lies in the way we present visual stimuli to measure suppression. Stimuli are shown to the amblyopic eye at high contrast while the contrast of the stimuli shown to the non-amblyopic eye are varied. Patients perform a simple signal/noise task that allows for a precise measurement of the strength of excitatory binocular interactions. The contrast offset at which neither eye has a performance advantage is a measure of the "balance point" and is a direct measure of suppression. This technique has been validated psychophysically both in control(13,14) and patient(6,9,11) populations. In addition to measuring suppression this technique also forms the basis of a novel form of treatment to decrease suppression over time and improve binocular and often monocular function in adult patients with amblyopia(12,15,16) . This new treatment approach can be deployed either on the goggle system described above or on a specially modified iPod touch device(15).

  16. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  17. Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception.

    PubMed

    Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne

    2017-02-20

    Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia.

    PubMed

    Spiegel, Daniel P; Byblow, Winston D; Hess, Robert F; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision that is associated with abnormal patterns of neural inhibition within the visual cortex. This disorder is often considered to be untreatable in adulthood because of insufficient visual cortex plasticity. There is increasing evidence that interventions that target inhibitory interactions within the visual cortex, including certain types of noninvasive brain stimulation, can improve visual function in adults with amblyopia. We tested the hypothesis that anodal transcranial direct current stimulation (a-tDCS) would improve visual function in adults with amblyopia by enhancing the neural response to inputs from the amblyopic eye. Thirteen adults with amblyopia participated and contrast sensitivity in the amblyopic and fellow fixing eye was assessed before, during and after a-tDCS or cathodal tDCS (c-tDCS). Five participants also completed a functional magnetic resonance imaging (fMRI) study designed to investigate the effect of a-tDCS on the blood oxygen level-dependent response within the visual cortex to inputs from the amblyopic versus the fellow fixing eye. A subgroup of 8/13 participants showed a transient improvement in amblyopic eye contrast sensitivity for at least 30 minutes after a-tDCS. fMRI measurements indicated that the characteristic cortical response asymmetry in amblyopes, which favors the fellow eye, was reduced by a-tDCS. These preliminary results suggest that a-tDCS deserves further investigation as a potential tool to enhance amblyopia treatment outcomes in adults.

  19. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Beckenbach, E. S.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    A computer image processing technique was developed to estimate the degree of atherosclerosis in the human femoral artery. With an angiographic film of the vessel as input, the computer was programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements were combined into an atherosclerosis index, which was found to correlate well with both visual and chemical estimates of atherosclerotic disease.

  20. Transient visual pathway critical for normal development of primate grasping behavior.

    PubMed

    Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A

    2018-02-06

    An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.

  1. Amblyopic deficits in detecting a dotted line in noise.

    PubMed

    Mussap, A J; Levi, D M

    2000-01-01

    We compared detectability of a dotted line masked by random-dot noise for the amblyopic versus non-amblyopic eye of two strabismic amblyopes. Small but consistent deficits in the amblyopic eye of these observers were found, and shown to be limited to dotted-line targets composed of greater than seven dots (with performance being normal for targets of less than seven dots). These deficits were unrelated to impaired visual acuity, impaired sensitivity to dot density, and differential positional uncertainty between the eyes of our observers. The deficits were also unlikely to be due to CSF losses due to abnormal low-spatial-frequency filters involved in detecting long chains of collinear dots. Instead, the results of simulations indicate that the inefficiency in utilising large numbers of dots is due to deficits of global, integrative processes in strabismic amblyopes. These simulations also show that while neither undersampling nor positional uncertainty of inputs into integrative processes can themselves account for the amblyopic deficits, if such abnormal inputs lead to the development of stunted integrative processes then impaired sensitivity to long chains of collinear dots is indeed predicted.

  2. Normal form from biological motion despite impaired ventral stream function.

    PubMed

    Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P

    2011-04-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia.

    PubMed

    Li, Qian; Zhai, Liying; Jiang, Qinying; Qin, Wen; Li, Qingji; Yin, Xiaohui; Guo, Mingxia

    2015-06-15

    Amblyopia is a neurological disorder of vision that follows abnormal binocular interaction or visual deprivation during early life. Previous studies have reported multiple functional or structural cortical alterations. Although white matter was also studied, it still cannot be clarified clearly which fasciculus was affected by amblyopia. In the present study, tract-based spatial statistics analysis was applied to diffusion tensor imaging (DTI) to investigate potential diffusion changes of neural tracts in anisometropic amblyopia. Fractional anisotropy (FA) value was calculated and compared between 20 amblyopic children and 18 healthy age-matched controls. In contrast to the controls, significant decreases in FA values were found in right optic radiation (OR), left inferior longitudinal fasciculus/inferior fronto-occipital fasciculus (ILF/IFO) and right superior longitudinal fasciculus (SLF) in the amblyopia. Furthermore, FA values of these identified tracts showed positive correlation with visual acuity. It can be inferred that abnormal visual input not only hinders OR from well developed, but also impairs fasciculi associated with dorsal and ventral visual pathways, which may be responsible for the amblyopic deficiency in object discrimination and stereopsis. Increased FA was detected in right posterior part of corpus callosum (CC) with a medium effect size, which may be due to compensation effect. DTI with subsequent measurement of FA is a useful tool for investigating neuronal tract involvement in amblyopia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. I - Sensory adaptation to weightlessness and readaptation to one-g: An overview

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.

    1986-01-01

    Human sensory/motor adaptation to weightlessness and readaptation to earth's gravity are assessed. Preflight and postflight vestibular and visual responses for the crew on the Spacelab-1 mission are studied; the effect of the abnormal pattern of otolith afferent signals caused by weightlessness on the pitch and roll perception and postural adjustments of the subjects are examined. It is observed that body position and postural reactions change due to weightlessness in order to utilize the varied sensory inputs in a manner suited to microgravity conditions. The aspects of reinterpretation include: (1) tilt acceleration reinterpretation, (2) reduced postural response to z-axis linear acceleration, and (3) increased attention to visual cues.

  5. External self-representations improve self-awareness in a child with autism.

    PubMed

    Root, Nicholas B; Case, Laura K; Burrus, Caley J; Ramachandran, V S

    2015-01-01

    We have previously suggested that the social symptoms of autism spectrum disorder (ASD) could be caused in part by a dysfunctional mirror neuron system (MNS). Since the recursive activity of a functioning MNS might enable the brain to integrate visual and motor sensations into a coherent body schema, the deficits in self-awareness often seen in ASD might be caused by the same mirror neuron dysfunction. CL is an autistic adolescent who is profoundly fascinated with his reflection, looking in mirrors at every opportunity. We demonstrate that CL's abnormal gait improves significantly when using a mirror for visual feedback. We also show that both the fascination and the happiness that CL derives from looking at a computer-generated reflection diminish when a delay is introduced between the camera input and screen output. We believe that immediate, real-time visual feedback allows CL to integrate motor sensations with external visual ones into a coherent body schema that he cannot internally generate, perhaps due to a dysfunctional MNS.

  6. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.

  7. Isolated cortical visual loss with subtle brain MRI abnormalities in a case of hypoxic-ischemic encephalopathy.

    PubMed

    Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D

    2007-12-01

    A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.

  8. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.

    PubMed

    Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.

  9. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694

  10. Enhanced visualization of abnormalities in digital-mammographic images

    NASA Astrophysics Data System (ADS)

    Young, Susan S.; Moore, William E.

    2002-05-01

    This paper describes two new presentation methods that are intended to improve the ability of radiologists to visualize abnormalities in mammograms by enhancing the appearance of the breast parenchyma pattern relative to the fatty-tissue surroundings. The first method, referred to as mountain- view, is obtained via multiscale edge decomposition through filter banks. The image is displayed in a multiscale edge domain that causes the image to have a topographic-like appearance. The second method displays the image in the intensity domain and is referred to as contrast-enhancement presentation. The input image is first passed through a decomposition filter bank to produce a filtered output (Id). The image at the lowest resolution is processed using a LUT (look-up table) to produce a tone scaled image (I'). The LUT is designed to optimally map the code value range corresponding to the parenchyma pattern in the mammographic image into the dynamic range of the output medium. The algorithm uses a contrast weight control mechanism to produce the desired weight factors to enhance the edge information corresponding to the parenchyma pattern. The output image is formed using a reconstruction filter bank through I' and enhanced Id.

  11. Suppressive mechanisms in visual motion processing: from perception to intelligence

    PubMed Central

    Tadin, Duje

    2015-01-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386

  12. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images.

    PubMed

    Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai

    2016-07-01

    Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.

  13. Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.

    PubMed

    Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C

    2008-02-01

    To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.

  14. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies

    NASA Astrophysics Data System (ADS)

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2017-10-01

    The ‘bionic eye’—so long a dream of the future—is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.

  15. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    PubMed

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind's eye after termination of its retinal input. It is hypothesized that information maintained in visual working memory relies on the same neural populations that process visual input. Accordingly, the content of visual working memory is known to affect our conscious perception of concurrent visual input. Here, we demonstrate for the first time that visual input elicits an enhanced neural response when it matches the content of visual working memory, both in terms of signal strength and information content. Copyright © 2017 the authors 0270-6474/17/376638-10$15.00/0.

  16. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: Implications for pursuit eye tracking

    PubMed Central

    Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.

    2011-01-01

    Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035

  17. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  18. Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity.

    PubMed

    Sisto, Dario; Trojano, Maria; Vetrugno, Michele; Trabucco, Tiziana; Iliceto, Giovanni; Sborgia, Carlo

    2005-04-01

    To evaluate the effectiveness of visual evoked potentials (VEPs), frequency-doubling perimetry (FDP), standard achromatic perimetry (SAP), contrast sensitivity (CS) test, and magnetic resonance imaging (MRI), isolated or in combination, in detecting subclinical impairment of visual function in multiple sclerosis (MS). Twenty-two eyes of 11 patients affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, underwent full ophthalmic examination and, in addition, VEPs, FDP, SAP, CS, and MRI. Abnormal results were taken to be as follows: for VEPs, a P100 latency >115 ms; for FDP, abnormal mean deviation (MD) or pattern SD (PSD); for SAP, abnormal MD or PSD; for CS, abnormal CS at one spatial frequency, at least; and for MRI, evidence of at least one demyelinating plaque along the visual pathway. VEPs showed abnormal results in 12 eyes (54.4%), FDP in 11 (50%), SAP in 14 (63.6%), CS in 17 (77.1%), and MRI in 16 (72.7%). In only two (9.1%) eyes of the same patient was no abnormality found. No single test detected all the abnormal eyes. Four (18.2%) eyes had pure optic nerve involvement and the remaining 16 (72.7%) had both pre- and postchiasmal involvement. In patients affected by clinically definite MS without history of optic neuritis and no visual symptoms, there is a large prevalence of visual pathway involvement that can be diagnosed only by performing multiple tests. The comparison of the tests is also useful to detect the presence of multiple lesions in the same patient.

  19. Impaired force control in writer's cramp showing a bilateral deficit in sensorimotor integration.

    PubMed

    Bleton, Jean-Pierre; Teremetz, Maxime; Vidailhet, Marie; Mesure, Serge; Maier, Marc A; Lindberg, Påvel G

    2014-01-01

    Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC. Copyright © 2013 Movement Disorder Society.

  20. Suppressive mechanisms in visual motion processing: From perception to intelligence.

    PubMed

    Tadin, Duje

    2015-10-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Abnormalities in the Visual Processing of Viewing Complex Visual Stimuli Amongst Individuals With Body Image Concern.

    PubMed

    Duncum, A J F; Atkins, K J; Beilharz, F L; Mundy, M E

    2016-01-01

    Individuals with body dysmorphic disorder (BDD) and clinically concerning body-image concern (BIC) appear to possess abnormalities in the way they perceive visual information in the form of a bias towards local visual processing. As inversion interrupts normal global processing, forcing individuals to process locally, an upright-inverted stimulus discrimination task was used to investigate this phenomenon. We examined whether individuals with nonclinical, yet high levels of BIC would show signs of this bias, in the form of reduced inversion effects (i.e., increased local processing). Furthermore, we assessed whether this bias appeared for general visual stimuli or specifically for appearance-related stimuli, such as faces and bodies. Participants with high-BIC (n = 25) and low-BIC (n = 30) performed a stimulus discrimination task with upright and inverted faces, scenes, objects, and bodies. Unexpectedly, the high-BIC group showed an increased inversion effect compared to the low-BIC group, indicating perceptual abnormalities may not be present as local processing biases, as originally thought. There was no significant difference in performance across stimulus types, signifying that any visual processing abnormalities may be general rather than appearance-based. This has important implications for whether visual processing abnormalities are predisposing factors for BDD or develop throughout the disorder.

  2. Abnormal visual scan paths: a psychophysiological marker of delusions in schizophrenia.

    PubMed

    Phillips, M L; David, A S

    1998-02-09

    The role of the visual scan path as a psychophysiological marker of visual attention has been highlighted previously (Phillips and David, 1994). We investigated information processing in schizophrenic patients with severe delusions and again when the delusions were subsiding using visual scan path measurements. We aimed to demonstrate a specific deficit in processing human faces in deluded subjects by relating this to abnormal viewing strategies. Scan paths were measured in six deluded and five non-deluded schizophrenics (matched for medication and negative symptoms), and nine age-matched normal controls. Deluded subjects had abnormal scan paths in a recognition task, fixating non-feature areas significantly more than controls, but were equally accurate. Re-testing after improvement in delusional conviction revealed fewer group differences. The results suggest state-dependent abnormal information processing in schizophrenics when deluded, with reliance on less-salient visual information for decision-making.

  3. Learning to see again: Biological constraints on cortical plasticity and the implications for sight restoration technologies

    PubMed Central

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2018-01-01

    The “bionic eye” – so long a dream of the future – is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the vision provided by these devices differs substantially from normal sight. Consequently, the ability to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients. PMID:28612755

  4. Long-term visual outcomes in extremely low-birth-weight children (an American Ophthalmological Society thesis).

    PubMed

    Spencer, Rand

    2006-01-01

    The goal is to analyze the long-term visual outcome of extremely low-birth-weight children. This is a retrospective analysis of eyes of extremely low-birth-weight children on whom vision testing was performed. Visual outcomes were studied by analyzing acuity outcomes at >/=36 months of adjusted age, correlating early acuity testing with final visual outcome and evaluating adverse risk factors for vision. Data from 278 eyes are included. Mean birth weight was 731g, and mean gestational age at birth was 26 weeks. 248 eyes had grating acuity outcomes measured at 73 +/- 36 months, and 183 eyes had recognition acuity testing at 76 +/- 39 months. 54% had below normal grating acuities, and 66% had below normal recognition acuities. 27% of grating outcomes and 17% of recognition outcomes were /=3 years of age. A slower-than-normal rate of early visual development was predictive of abnormal grating acuity (P < .0001) and abnormal recognition acuity (P < .0001) at >/=3 years of age. Eyes diagnosed with maximal retinopathy of prematurity in zone I had lower acuity outcomes (P = .0002) than did those with maximal retinopathy of prematurity in zone II/III. Eyes of children born at 28 weeks gestational age. Eyes of children with poorer general health after premature birth had a 5.3 times greater risk of abnormal recognition acuity. Long-term visual development in extremely low-birth-weight infants is problematic and associated with a high risk of subnormal acuity. Early acuity testing is useful in identifying children at greatest risk for long-term visual abnormalities. Gestational age at birth of

  5. Postural stability changes during large vertical diplopia induced by prism wear in normal subjects.

    PubMed

    Matsuo, Toshihiko; Yamasaki, Hanako; Yasuhara, Hirotaka; Hasebe, Kayoko

    2013-01-01

    To test the effect of double vision on postural stability, we measured postural stability by electric stabilometry before prism-wearing and immediately, 15, 30, and 60min after continuous prism-wearing with 6 prism diopters in total (a 3-prism-diopter prism placed with the base up in front of one eye and with the base down in front of the other eye) in 20 normal adult individuals with their eyes open or closed. Changes in stabilometric parameters in the time course of 60min were analyzed statistically by repeated-measure analysis of variance. When subjectsセ eyes were closed, the total linear length (cm) and the unit-time length (cm/sec) of the sway path were significantly shortened during the 60-minute prism-wearing (p<0.05). No significant change was noted in any stabilometric parameters obtained with the eyes open during the time course. In conclusion, postural stability did not change with the eyes open in the condition of large vertical diplopia, induced by prism-wearing for 60min, while the stability became better when measured with the eyes closed. A postural control mechanism other than that derived from visual input might be reinforced under abnormal visual input such as non-fusionable diplopia.

  6. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    ERIC Educational Resources Information Center

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  8. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  9. Visual and proprioceptive interaction in patients with bilateral vestibular loss☆

    PubMed Central

    Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564

  10. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    PubMed

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.

  11. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    PubMed

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less

  13. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.

    PubMed

    Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio

    2015-02-19

    Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A systematic review of visual processing and associated treatments in body dysmorphic disorder.

    PubMed

    Beilharz, F; Castle, D J; Grace, S; Rossell, S L

    2017-07-01

    Recent advances in body dysmorphic disorder (BDD) have explored abnormal visual processing, yet it is unclear how this relates to treatment. The aim of this study was to summarize our current understanding of visual processing in BDD and review associated treatments. The literature was collected through PsycInfo and PubMed. Visual processing articles were included if written in English after 1970, had a specific BDD group compared to healthy controls and were not case studies. Due to the lack of research regarding treatments associated with visual processing, case studies were included. A number of visual processing abnormalities are present in BDD, including face recognition, emotion identification, aesthetics, object recognition and gestalt processing. Differences to healthy controls include a dominance of detailed local processing over global processing and associated changes in brain activation in visual regions. Perceptual mirror retraining and some forms of self-exposure have demonstrated improved treatment outcomes, but have not been examined in isolation from broader treatments. Despite these abnormalities in perception, particularly concerning face and emotion recognition, few BDD treatments attempt to specifically remediate this. The development of a novel visual training programme which addresses these widespread abnormalities may provide an effective treatment modality. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Resilience to the contralateral visual field bias as a window into object representations

    PubMed Central

    Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.

    2016-01-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  16. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  17. LONG-TERM VISUAL OUTCOMES IN EXTREMELY LOW-BIRTH-WEIGHT CHILDREN (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Spencer, Rand

    2006-01-01

    Purpose The goal is to analyze the long-term visual outcome of extremely low-birth-weight children. Methods This is a retrospective analysis of eyes of extremely low-birth-weight children on whom vision testing was performed. Visual outcomes were studied by analyzing acuity outcomes at ≥36 months of adjusted age, correlating early acuity testing with final visual outcome and evaluating adverse risk factors for vision. Results Data from 278 eyes are included. Mean birth weight was 731g, and mean gestational age at birth was 26 weeks. 248 eyes had grating acuity outcomes measured at 73 ± 36 months, and 183 eyes had recognition acuity testing at 76 ± 39 months. 54% had below normal grating acuities, and 66% had below normal recognition acuities. 27% of grating outcomes and 17% of recognition outcomes were ≤20/200. Abnormal early grating acuity testing was predictive of abnormal grating (P < .0001) and recognition (P = .0001) acuity testing at ≥3 years of age. A slower-than-normal rate of early visual development was predictive of abnormal grating acuity (P < .0001) and abnormal recognition acuity (P < .0001) at ≥3 years of age. Eyes diagnosed with maximal retinopathy of prematurity in zone I had lower acuity outcomes (P = .0002) than did those with maximal retinopathy of prematurity in zone II/III. Eyes of children born at ≤28 weeks gestational age had 4.1 times greater risk for abnormal recognition acuity than did those of children born at >28 weeks gestational age. Eyes of children with poorer general health after premature birth had a 5.3 times greater risk of abnormal recognition acuity. Conclusions Long-term visual development in extremely low-birth-weight infants is problematic and associated with a high risk of subnormal acuity. Early acuity testing is useful in identifying children at greatest risk for long-term visual abnormalities. Gestational age at birth of ≤ 28 weeks was associated with a higher risk of an abnormal long-term outcome. PMID:17471358

  18. Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation.

    PubMed

    Sue, C M; Mitchell, P; Crimmins, D S; Moshegov, C; Byrne, E; Morris, J G

    1997-10-01

    Fourteen patients from four unrelated families were studied to determine the prevalence of retinal pigmentary abnormalities associated with the MELAS A to G 3243 point mutation. Neurologic and ophthalmic examinations, retinal photography, pattern shift visual evoked potentials, and electroretinography were performed in all patients. Eight of the 14 patients had retinal pigmentary abnormalities characterized by symmetric areas of depigmentation involving predominantly the posterior pole and midperipheral retina. None of the patients had optic atrophy and only one patient with pigmentary retinal abnormalities had impaired visual acuity. None of the diabetic subjects (n = 6) had signs of diabetic retinopathy. Fluorescein angiography demonstrated mottled hyper- and hypofluorescent areas indicating multiple window defects in the retinal pigmentary epithelium. Visual evoked potentials showed delayed P100 responses in four of the eight patients with retinal pigmentary abnormalities. We conclude that there is a high prevalence of retinal pigmentary abnormalities in patients with MELAS A to G 3243 point mutation. These abnormalities are usually asymptomatic and best detected by retinal photography.

  19. Is exposure to cocaine or cigarette smoke during pregnancy associated with infant visual abnormalities?

    PubMed

    Hajnal, Beatrice Latal; Ferriero, Donna M; Partridge, J Colin; Dempsey, Delia A; Good, William V

    2004-08-01

    The aim of this study was to assess the association between cocaine or cigarette smoke exposure in utero and visual outcome. A total of 153 healthy infants (89 males, 64 females; gestational age range 34 to 42 weeks) were prospectively enrolled in a masked, race-matched study. Quantitative analyses of urine and meconium were used to document exposure to cigarette smoke and cocaine. Infants with exposure to other illicit drugs, excepting marijuana, were excluded. At 6 weeks of age, grating acuity and visual system abnormalities (VSA; eyelid oedema, gaze abnormalities, and visual inattention) of 96 infants from the original study sample were assessed with the Teller acuity card procedure and a detailed neurological examination. Neither cocaine nor cigarette smoke exposure was associated with acuity or VSA. However, VSAs were associated with abnormal neurological examination, independent of drug exposure and other risk factors (odds ratio 7.9; 95% confidence interval 2.0 to 31.5;p=0.004). This unexpected finding could prove a helpful clinical marker for the infant at risk for neurological abnormalities.

  20. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  1. The Puzzle of Visual Development: Behavior and Neural Limits.

    PubMed

    Kiorpes, Lynne

    2016-11-09

    The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.

  2. Visual search for verbal material in patients with obsessive-compulsive disorder.

    PubMed

    Botta, Fabiano; Vibert, Nicolas; Harika-Germaneau, Ghina; Frasca, Mickaël; Rigalleau, François; Fakra, Eric; Ros, Christine; Rouet, Jean-François; Ferreri, Florian; Jaafari, Nematollah

    2018-06-01

    This study aimed at investigating attentional mechanisms in obsessive-compulsive disorder (OCD) by analysing how visual search processes are modulated by normal and obsession-related distracting information in OCD patients and whether these modulations differ from those observed in healthy people. OCD patients were asked to search for a target word within distractor words that could be orthographically similar to the target, semantically related to the target, semantically related to the most typical obsessions/compulsions observed in OCD patients, or unrelated to the target. Patients' performance and eye movements were compared with those of individually matched healthy controls. In controls, the distractors that were visually similar to the target mostly captured attention. Conversely, patients' attention was captured equally by all kinds of distractor words, whatever their similarity with the target, except obsession-related distractors that attracted patients' attention less than the other distractors. OCD had a major impact on the mostly subliminal mechanisms that guide attention within the search display, but had much less impact on the distractor rejection processes that take place when a distractor is fixated. Hence, visual search in OCD is characterized by abnormal subliminal, but not supraliminal, processing of obsession-related information and by an impaired ability to inhibit task-irrelevant inputs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Childhood visual impairment: normal and abnormal visual function in the context of developmental disability.

    PubMed

    Nyong'o, Omondi L; Del Monte, Monte A

    2008-12-01

    Abnormal or failed development of vision in children may give rise to varying degrees of visual impairment and disability. Disease and organ-specific mechanisms by which visual impairments arise are presented. The presentation of these mechanisms, along with an explanation of established pathologic processes and correlative up-to-date clinical and social research in the field of pediatrics, ophthalmology, and rehabilitation medicine are discussed. The goal of this article is to enhance the practitioner's recognition and care for children with developmental disability associated with visual impairment.

  4. Effect of Power Point Enhanced Teaching (Visual Input) on Iranian Intermediate EFL Learners' Listening Comprehension Ability

    ERIC Educational Resources Information Center

    Sehati, Samira; Khodabandehlou, Morteza

    2017-01-01

    The present investigation was an attempt to study on the effect of power point enhanced teaching (visual input) on Iranian Intermediate EFL learners' listening comprehension ability. To that end, a null hypothesis was formulated as power point enhanced teaching (visual input) has no effect on Iranian Intermediate EFL learners' listening…

  5. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients

    PubMed Central

    Laron, Michal; Cheng, Han; Zhang, Bin; Schiffman, Jade S.; Tang, Rosa A.; Frishman, Laura J.

    2010-01-01

    Background Multifocal visual evoked potentials (mfVEP) measure local response amplitude and latency in the field of vision Objective To compare the sensitivity of mfVEP, Humphrey visual field (HVF) and optical coherence tomography (OCT) in detecting visual abnormality in multiple sclerosis (MS) patients. Methods MfVEP, HVF, and OCT (retinal nerve fiber layer [RNFL]) were performed in 47 MS-ON eyes (last optic neuritis (ON) attack ≥ 6 months prior) and 65 MS-no-ON eyes without ON history. Criteria to define an eye as abnormal were: mfVEP 1) amplitude/latency: either amplitude or latency probability plots meeting cluster criteria with 95% specificity 2) amplitude or latency alone (specificity: 97% and 98%, respectively); HVF and OCT, mean deviation and RNFL thickness meeting p < 0.05, respectively. Results MfVEP (amplitude/latency) identified more abnormality in MS-ON eyes (89%) than HVF (72%), OCT (62%), mfVEP amplitude (66%) or latency (67%) alone. 18% of MS-no-ON eyes were abnormal for both mfVEP (amplitude/latency) and HVF compared to 8% with OCT. Agreement between tests ranged from 60% to 79%. MfVEP (amplitude/latency) categorized an additional 15% of MS-ON eyes as abnormal compared to HVF and OCT combined. Conclusions MfVEP, which detects both demyelination (increased latency) and neural degeneration (reduced amplitude) revealed more abnormality than HVF or OCT in MS patients. PMID:20207786

  6. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  7. [Treatment of amblyopia].

    PubMed

    von Noorden, G K

    1990-01-01

    Animal experiments have explored the structural and functional alterations of the afferent visual pathways in amblyopia and have emphasized the extraordinary sensitivity of the immature visual system to abnormal visual stimulation. The practical consequences of these experiments are obvious: early diagnosis of amblyopia and energetic occlusion therapy as early in life as possible. At the same time, measures must be taken to prevent visual deprivation amblyopia in the occluded eye. After successful treatment, alternating penalization with two pairs of spectacles is recommended. Pleoptics involves an enormous commitment in terms of time, personnel and costs. In view of the fact that the superiority of this treatment over occlusion therapy has yet to be proven, the current value of pleoptics appears dubious. Moreover, overtreated patients may end up with intractable diplopia. Diverging opinions exist with regard to the use of penalization as a primary treatment of amblyopia. We employ it only in special cases as an alternative to occlusion therapy. Visual deprivation in infancy caused by opacities of the ocular media, especially when they occur unilaterally, must be eliminated, and deprivation amblyopia must be treated without delay to regain useful vision. Brief periods of bilateral occlusion are recommended to avoid the highly amblyopiogenic imbalance between binocular afferent visual input. Future developments will hopefully include new objective methods to diagnose amblyopia in preverbal children and infants. The application of positron emission tomography is perhaps the first step in the direction of searching for new approaches to this problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Comparison of Text-Based and Visual-Based Programming Input Methods for First-Time Learners

    ERIC Educational Resources Information Center

    Saito, Daisuke; Washizaki, Hironori; Fukazawa, Yoshiaki

    2017-01-01

    Aim/Purpose: When learning to program, both text-based and visual-based input methods are common. However, it is unclear which method is more appropriate for first-time learners (first learners). Background: The differences in the learning effect between text-based and visual-based input methods for first learners are compared the using a…

  9. The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.

    PubMed

    Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R

    2017-08-01

    Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.

    PubMed

    Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J

    2001-05-15

    Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.

  11. Visual evoked potentials in patients after methanol poisoning.

    PubMed

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  13. Visual Occlusion Decreases Motion Sickness in a Flight Simulator.

    PubMed

    Ishak, Shaziela; Bubka, Andrea; Bonato, Frederick

    2018-05-01

    Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore "blackout" goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit's interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.

  14. Evaluation of Hydroxychloroquine Retinopathy With Multifocal Electroretinography

    PubMed Central

    So, Scott C.; Hedges, Thomas R.; Schuman, Joel S.; Quireza, Maria Luz Amaro

    2007-01-01

    BACKGROUND AND OBJECTIVE To describe the changes revealed by multifocal electroretinography (ERG) in patients taking hydroxychloroquine. PATIENTS AND METHODS Six patients being treated for various inflammatory conditions with hydroxychloroquine for periods ranging from 8 months to 7 years were consecutively evaluated. Each examination included measurement of Snellen visual acuities, Amsler grid assessment, and automated visual field testing. In some cases, funduscopic examinations were complimented by photography and fluorescein angiography. Multifocal ERG was performed for all patients. RESULTS Three patients (six eyes) were found to have distinctive abnormalities on multifocal ERG consisting of pericentral depression of ERG signals. The abnormalities on multifocal ERG corresponded with the patients’ subjective descriptions and the visual field depiction of their pericentral scotomas. All affected patients had been taking hydroxychloroquine for at least 7 years. One patient with generalized depression on multifocal ERG had possible hydroxychloroquine retinopathy. Two patients (three eyes) had relatively normal results on multifocal ERG. CONCLUSION Multifocal ERG objectively demonstrates depression of signals in the perifoveal region in visually symptomatic patients with long-term hydroxychloroquine use. Even patients with normal visual acuity and no fundus abnormalities can have abnormal results. Although we have not yet identified patients with abnormalities on multifocal ERG before the onset of symptoms, multifocal ERG may be useful in monitoring patients at risk and may provide an earlier opportunity to identify maculopathy. PMID:12757106

  15. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  16. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  17. Cone Photoreceptor Abnormalities Correlate with Vision Loss in Patients with Stargardt Disease

    PubMed Central

    Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. Harini; Roorda, Austin

    2011-01-01

    Purpose. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). Methods. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. Results. Patients were 15 to 55 years old, and visual acuity ranged from 20/25–20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. Conclusions. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death. (ClinicalTrials.gov number, NCT00254605.) PMID:21296825

  18. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  19. Sound effects: Multimodal input helps infants find displaced objects.

    PubMed

    Shinskey, Jeanne L

    2017-09-01

    Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion, suggesting auditory input is more salient in the absence of visual input. This article addresses how audiovisual input affects 10-month-olds' search for displaced objects. In AB tasks, infants who previously retrieved an object at A subsequently fail to find it after it is displaced to B, especially following a delay between hiding and retrieval. Experiment 1 manipulated auditory input by keeping the hidden object audible versus silent, and visual input by presenting the delay in the light versus dark. Infants succeeded more at B with audible than silent objects and, unexpectedly, more after delays in the light than dark. Experiment 2 presented both the delay and search phases in darkness. The unexpected light-dark difference disappeared. Across experiments, the presence of auditory input helped infants find displaced objects, whereas the absence of visual input did not. Sound might help by strengthening object representation, reducing memory load, or focusing attention. This work provides new evidence on when bimodal input aids object processing, corroborates claims that audiovisual processing improves over the first year of life, and contributes to multisensory approaches to studying cognition. Statement of contribution What is already known on this subject Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion. This suggests they find auditory input more salient in the absence of visual input in simple search tasks. After 9 months, infants' object processing appears more sensitive to multimodal (e.g., audiovisual) input. What does this study add? This study tested how audiovisual input affects 10-month-olds' search for an object displaced in an AB task. Sound helped infants find displaced objects in both the presence and absence of visual input. Object processing becomes more sensitive to bimodal input as multisensory functions develop across the first year. © 2016 The British Psychological Society.

  20. Neurophysiological model of the normal and abnormal human pupil

    NASA Technical Reports Server (NTRS)

    Krenz, W.; Robin, M.; Barez, S.; Stark, L.

    1985-01-01

    Anatomical, experimental, and computer simulation studies were used to determine the structure of the neurophysiological model of the pupil size control system. The computer simulation of this model demonstrates the role played by each of the elements in the neurological pathways influencing the size of the pupil. Simulations of the effect of drugs and common abnormalities in the system help to illustrate the workings of the pathways and processes involved. The simulation program allows the user to select pupil condition (normal or an abnormality), specific site along the neurological pathway (retina, hypothalamus, etc.) drug class input (barbiturate, narcotic, etc.), stimulus/response mode, display mode, stimulus type and input waveform, stimulus or background intensity and frequency, the input and output conditions, and the response at the neuroanatomical site. The model can be used as a teaching aid or as a tool for testing hypotheses regarding the system.

  1. The primary visual cortex in the neural circuit for visual orienting

    NASA Astrophysics Data System (ADS)

    Zhaoping, Li

    The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.

  2. Novel Models of Visual Topographic Map Alignment in the Superior Colliculus

    PubMed Central

    El-Ghazawi, Tarek A.; Triplett, Jason W.

    2016-01-01

    The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309

  3. Influence of Visual Prism Adaptation on Auditory Space Representation.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2017-01-01

    Prisms shifting the visual input sideways produce a mismatch between the visual versus felt position of one's hand. Prism adaptation eliminates this mismatch, realigning hand proprioception with visual input. Whether this realignment concerns exclusively the visuo-(hand)motor system or it generalizes to acoustic inputs is controversial. We here show that there is indeed a slight influence of visual adaptation on the perceived direction of acoustic sources. However, this shift in perceived auditory direction can be fully explained by a subconscious head rotation during prism exposure and by changes in arm proprioception. Hence, prism adaptation does only indirectly generalize to auditory space perception.

  4. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys

    PubMed Central

    Shooner, Christopher; Hallum, Luke E.; García-Marín, Virginia; Kiorpes, Lynne

    2017-01-01

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina), using 96-channel “Utah” arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. PMID:28760867

  5. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys.

    PubMed

    Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D; García-Marín, Virginia; Kelly, Jenna G; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-09-06

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina ), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. Copyright © 2017 the authors 0270-6474/17/378734-08$15.00/0.

  6. The influence of unilateral saccular impairment on functional balance performance and self-report dizziness.

    PubMed

    McCaslin, Devin L; Jacobson, Gary P; Grantham, Sarah L; Piker, Erin G; Verghese, Susha

    2011-09-01

    Postural stability in humans is largely maintained by vestibular, visual, and somatosensory inputs to the central nervous system. Recent clinical advances in the assessment of otolith function (e.g., cervical and ocular vestibular evoked myogenic potentials [cVEMPs and oVEMPs], subjective visual vertical [SVV] during eccentric rotation) have enabled investigators to identify patients with unilateral otolith impairments. This research has suggested that patients with unilateral otolith impairments perform worse than normal healthy controls on measures of postural stability. It is not yet known if patients with unilateral impairments of the saccule and/or inferior vestibular nerve (i.e., unilaterally abnormal cVEMP) perform differently on measures of postural stability than patients with unilateral impairments of the horizontal SCC (semicircular canal) and/or superior vestibular nerve (i.e., unilateral caloric weakness). Further, it is not known what relationship exists, if any, between otolith system impairment and self-report dizziness handicap. The purpose of this investigation was to determine the extent to which saccular impairments (defined by a unilaterally absent cVEMP) and impairments of the horizontal semicircular canal (as measured by the results of caloric testing) affect vestibulospinal function as measured through the Sensory Organization Test (SOT) of the computerized dynamic posturography (CDP). A secondary objective of this investigation was to measure the effects, if any, that saccular impairment has on a modality-specific measure of health-related quality of life. A retrospective cohort study. Subjects were assigned to one of four groups based on results from balance function testing: Group 1 (abnormal cVEMP response only), Group 2 (abnormal caloric response only), Group 3 (abnormal cVEMP and abnormal caloric response), and Group 4 (normal control group). Subjects were 92 adult patients: 62 were seen for balance function testing due to complaints of dizziness, vertigo, or unsteadiness, and 30 served as controls. All subjects underwent videonystagmography or electronystagmography (VNG/ENG), vestibular evoked myogenic potentials (VEMPs), self-report measures of self-perceived dizziness disability/handicap (Dizziness Handicap Inventory), and tests of postural control (Neurocom Equitest). Subjects were categorized into one of four groups based on balance function test results. All variables were subjected to a multifactor analysis of variance (ANOVA). The Dizziness Handicap Inventory (DHI) total scores and equilibrium scores served as the dependent variables. Results showed that patients with abnormal unilateral saccular or inferior vestibular nerve function (i.e., abnormal cVEMP) demonstrated significantly impaired postural control when compared to normal participants. However, this group demonstrated significantly better postural stability when compared to the group with abnormal caloric responses alone and the group with abnormal caloric responses and abnormal cVEMP results. Patients with an abnormal cVEMP did not differ significantly on the DHI compared to the other two impaired groups. We interpret these findings as evidence that a significantly asymmetrical cVEMP in isolation negatively impacts performance on measures of postural control compared to normal subjects but not compared to patients with significant caloric weaknesses. However, patients with a unilaterally abnormal cVEMP do not differ from patients with significant caloric weaknesses in regard to self-perceived dizziness handicap. American Academy of Audiology.

  7. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD

    ERIC Educational Resources Information Center

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman

    2006-01-01

    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  8. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study

    PubMed Central

    Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David

    2010-01-01

    Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699

  9. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Electrophysiological Correlates of Language Processing in Schizotypal Personality Disorder

    PubMed Central

    Niznikiewicz, Margaret A.; Voglmaier, Martina; Shenton, Martha E.; Seidman, Larry J.; Dickey, Chandlee C.; Rhoads, Richard; Teh, Enkeat; McCarley, Robert W.

    2010-01-01

    Objective This study examined whether the electrophysiological correlates of language processing found previously to be abnormal in schizophrenia are also abnormal in schizotypal individuals. The authors used the N400 component to evaluate language dysfunction in schizotypal individuals. Method Event-related potentials were recorded in 16 comparison subjects and 17 schizotypal individuals (who met full DSM-III-R criteria) to sentences presented both visually and aurally; half of the sentences ended with an expected word completion (congruent condition), and the other half ended with an unexpected word completion (incongruent condition). Results In the congruent condition, the N400 amplitude was more negative in individuals with schizotypal personality disorder than in comparison subjects in both the visual and auditory modalities. In addition, in the visual modality, the N400 latency was prolonged in the individuals with schizotypal personality disorder. Conclusions The N400 was found to be abnormal in the individuals with schizotypal personality disorder relative to comparison subjects. The abnormality was similar to the abnormality the authors’ laboratory reported earlier in schizophrenic subjects, in which the N400 amplitude was found to be more negative in both congruent and incongruent sentence completions. The N400 abnormality is consistent with the inefficient use of context. PMID:10401451

  11. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  12. [Amblyopia].

    PubMed

    Orssaud, C

    2014-06-01

    Amblyopia is a developmental disorder of the entire visual system, including the extra-striate cortex. It manifests mainly by impaired visual acuity in the amblyopic eye. However, other abnormalities of visual function can be observed, such as decreased contrast sensitivity and stereoscopic vision, and some abnormalities can be found in the "good" eye. Amblyopia occurs during the critical period of brain development. It may be due to organic pathology of the visual pathways, visual deprivation or functional abnormalities, mainly anisometropia or strabismus. The diagnosis of amblyopia must be confirmed prior to treatment. Confirmation is based on cycloplegic refraction, visual acuity measurement and orthoptic assessment. However, screening for amblyopia and associated risk factors permits earlier diagnosis and treatment. The younger the child, the more effective the treatment, and it can only be achieved during the critical period. It requires parental cooperation in order to be effective and is based on occlusion or penalization of the healthy eye. The amblyopic eye may then develop better vision. Maintenance therapy must be performed until the end of the critical period to avoid recurrence. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  14. Learning Complex Grammar in the Virtual Classroom: A Comparison of Processing Instruction, Structured Input, Computerized Visual Input Enhancement, and Traditional Instruction

    ERIC Educational Resources Information Center

    Russell, Victoria

    2012-01-01

    This study investigated the effects of processing instruction (PI) and structured input (SI) on the acquisition of the subjunctive in adjectival clauses by 92 second-semester distance learners of Spanish. Computerized visual input enhancement (VIE) was combined with PI and SI in an attempt to increase the salience of the targeted grammatical form…

  15. Visual impairment in children with congenital Zika syndrome.

    PubMed

    Ventura, Liana O; Ventura, Camila V; Lawrence, Linda; van der Linden, Vanessa; van der Linden, Ana; Gois, Adriana L; Cavalcanti, Milena M; Barros, Eveline A; Dias, Natalia C; Berrocal, Audina M; Miller, Marilyn T

    2017-08-01

    To describe the visual impairment associated with ocular and neurological abnormalities in a cohort of children with congenital Zika syndrome (CZS). This cross-sectional study included infants with microcephaly born in Pernambuco, Brazil, from May to December 2015. Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for the Zika virus on the cerebrospinal fluid samples was positive for all infants. Clinical evaluation consisted of comprehensive ophthalmologic examination including visual acuity, visual function assessment, visual developmental milestone, neurologic examination, and neuroimaging. A total of 32 infants (18 males [56%]) were included. Mean age at examination was 5.7 ± 0.9 months (range, 4-7 months). Visual function and visual developmental milestone could not be tested in 1 child (3%). Visual impairment was detected in 32 infants (100%). Retinal and/or optic nerve findings were observed in 14 patients (44%). There was no statistical difference between the patients with ocular findings and those without (P = 0.180). All patients (100%) demonstrated neurological and neuroimaging abnormalities; 3 (9%) presented with late-onset of microcephaly. Children with CZS demonstrated visual impairment regardless of retina and/or optic nerve abnormalities. This finding suggests that cortical/cerebral visual impairment may be the most common cause of blindness identified in children with CZS. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  16. Amblyopia: neural basis and therapeutic approaches.

    PubMed

    Bretas, Caio César Peixoto; Soriano, Renato Nery

    2016-01-01

    Abnormalities in visual processing caused by visual deprivation or abnormal binocular interaction may induce amblyopia, which is characterized by reduced visual acuity. Occlusion therapy, the conventional treatment, requires special attention as occlusion of the fellow normal eye may reduce its visual acuity and impair binocular vision. Besides recovering visual acuity, some researchers have recommended restoration of stereoacuity and motor fusion and reverse suppression in order to prevent diplopia. Recent studies have documented that the amblyopic visual cortex has a normal complement of cells but reduced spatial resolution and a disordered topographical map. Changes occurring in the late sensitive period selectively impact the parvocellular pathway. Distinct morphophysiologic and psychophysical deficits may demand individualization of therapy, which might provide greater and longer-lasting residual plasticity in some children.

  17. Medio-lateral postural instability in subjects with tinnitus.

    PubMed

    Kapoula, Zoi; Yang, Qing; Lê, Thanh-Thuan; Vernet, Marine; Berbey, Nolwenn; Orssaud, Christophe; Londero, Alain; Bonfils, Pierre

    2011-01-01

    Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration, and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor) and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus. Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right, and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40 cm for 51 s; posturography was performed with the platform (Technoconcept, 40 Hz) for both the eyes open and eyes closed conditions. For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx). This was corroborated by fast Fourrier Transformation (FFTx) and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus eye position and attention.

  18. Relationship Between Rates of Binocular Visual Field Loss and Vision-Related Quality of Life in Glaucoma

    PubMed Central

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M.; Weinreb, Robert N.; Rosen, Peter N.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Medeiros, Felipe A.

    2013-01-01

    Objective To evaluate the relationship between binocular rates of visual field change and vision-related quality of life (VRQOL) in glaucoma. Methods The study included 796 eyes of 398 participants that had diagnosed or suspected glaucoma followed for an average of 7.3 ± 2.0 years. Subjects were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). VRQOL was evaluated using the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. Integrated binocular visual fields (BVF) were calculated from the monocular fields of each patient. Linear regression of mean deviation (MD) values was used to evaluate rates of visual field change during the follow-up period. Logistic regression models were used to investigate the relationship between abnormal VRQOL and rates of visual field change, while adjusting for potentially confounding socio-economic and demographic variables. Results Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25 questionnaire. Subjects with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (−0.18 db/year vs. −0.06 dB/year, respectively; P < 0.001). Rates of BVF change were significantly associated with abnormality in VRQOL (OR = 1.31 per 0.1dB/year faster; P = 0.038), after adjustment for confounding variables. Conclusions Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma. PMID:23450425

  19. Strabismus and the Oculomotor System: Insights from Macaque Models

    PubMed Central

    Das, Vallabh E.

    2017-01-01

    Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system. PMID:28532347

  20. Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    PubMed Central

    Lee, Young-Sook; Chung, Wan-Young

    2012-01-01

    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486

  1. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  2. A special role for binocular visual input during development and as a component of occlusion therapy for treatment of amblyopia.

    PubMed

    Mitchell, Donald E

    2008-01-01

    To review work on animal models of deprivation amblyopia that points to a special role for binocular visual input in the development of spatial vision and as a component of occlusion (patching) therapy for amblyopia. The studies reviewed employ behavioural methods to measure the effects of various early experiential manipulations on the development of the visual acuity of the two eyes. Short periods of concordant binocular input, if continuous, can offset much longer daily periods of monocular deprivation to allow the development of normal visual acuity in both eyes. It appears that the visual system does not weigh all visual input equally in terms of its ability to impact on the development of vision but instead places greater weight on concordant binocular exposure. Experimental models of patching therapy for amblyopia imposed on animals in which amblyopia had been induced by a prior period of early monocular deprivation, indicate that the benefits of patching therapy may be only temporary and decline rapidly after patching is discontinued. However, when combined with critical amounts of binocular visual input each day, the benefits of patching can be both heightened and made permanent. Taken together with demonstrations of retained binocular connections in the visual cortex of monocularly deprived animals, a strong argument is made for inclusion of specific training of stereoscopic vision for part of the daily periods of binocular exposure that should be incorporated as part of any patching protocol for amblyopia.

  3. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  4. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  5. Retinal architecture and mfERG: Optic nerve head component response characteristics in MS.

    PubMed

    Schnurman, Zane S; Frohman, Teresa C; Beh, Shin C; Conger, Darrel; Conger, Amy; Saidha, Shiv; Galetta, Steven; Calabresi, Peter A; Green, Ari J; Balcer, Laura J; Frohman, Elliot M

    2014-05-27

    To describe a novel neurophysiologic signature of the retinal ganglion cell and to elucidate its relationship to abnormalities in validated structural and functional measures of the visual system. We used multifocal electroretinogram-generated optic nerve head component (ONHC) responses from normal subjects (n = 18), patients with multiple sclerosis (MS) (n = 18), and those with glaucoma (n = 3). We then characterized the relationship between ONHC response abnormalities and performance on low-contrast visual acuity, multifocal visual-evoked potential-induced cortical responses, and average and quadrant retinal nerve fiber layer (RNFL) thicknesses, as measured by spectral-domain optical coherence tomography. Compared with the eyes of normal subjects, the eyes of patients with MS exhibited an increased number of abnormal or absent ONHC responses (p < 0.0001). For every 7-letter reduction in low-contrast letter acuity, there were corresponding 4.6 abnormal ONHC responses at 2.5% contrast (p < 0.0001) and 6.6 abnormalities at the 1.25% contrast level (p < 0.0001). Regarding average RNFL thickness, for each 10-μm thickness reduction, we correspondingly observed 6.8 abnormal ONHC responses (p = 0.0002). The most robust association was between RNFL thinning in the temporal quadrant and ONHC response abnormalities (p < 0.0001). Further characterization of ONHC abnormalities (those that are reversible and irreversible) may contribute to the development of novel neurotherapeutic strategies aimed at achieving neuroprotective, and perhaps even neurorestorative, effects in disorders that target the CNS in general, and MS in particular. © 2014 American Academy of Neurology.

  6. Dizziness, Unsteadiness, Visual Disturbances, and Sensorimotor Control in Traumatic Neck Pain.

    PubMed

    Treleaven, Julia

    2017-07-01

    Synopsis There is considerable evidence to support the importance of cervical afferent dysfunction in the development of dizziness, unsteadiness, visual disturbances, altered balance, and altered eye and head movement control following neck trauma, especially in those with persistent symptoms. However, there are other possible causes for these symptoms, and secondary adaptive changes should also be considered in differential diagnosis. Understanding the nature of these symptoms and differential diagnosis of their potential origin is important for rehabilitation. In addition to symptoms, the evaluation of potential impairments (altered cervical joint position and movement sense, static and dynamic balance, and ocular mobility and coordination) should become an essential part of the routine assessment of those with traumatic neck pain, including those with concomitant injuries such as concussion and vestibular or visual pathology or deficits. Once adequately assessed, appropriate tailored management should be implemented. Research to further assist differential diagnosis and to understand the most important contributing factors associated with abnormal cervical afferent input and subsequent disturbances to the sensorimotor control system, as well as the most efficacious management of such symptoms and impairments, is important for the future. J Orthop Sports Phys Ther 2017;47(7):492-502. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7052.

  7. Processing of Visual Imagery by an Adaptive Model of the Visual System: Its Performance and its Significance. Final Report, June 1969-March 1970.

    ERIC Educational Resources Information Center

    Tallman, Oliver H.

    A digital simulation of a model for the processing of visual images is derived from known aspects of the human visual system. The fundamental principle of computation suggested by a biological model is a transformation that distributes information contained in an input stimulus everywhere in a transform domain. Each sensory input contributes under…

  8. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    PubMed

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  9. When viewing natural scenes, do abnormal colors impact on spatial or temporal parameters of eye movements?

    PubMed

    Ho-Phuoc, Tien; Guyader, Nathalie; Landragin, Frédéric; Guérin-Dugué, Anne

    2012-02-03

    Since Treisman's theory, it has been generally accepted that color is an elementary feature that guides eye movements when looking at natural scenes. Hence, most computational models of visual attention predict eye movements using color as an important visual feature. In this paper, using experimental data, we show that color does not affect where observers look when viewing natural scene images. Neither colors nor abnormal colors modify observers' fixation locations when compared to the same scenes in grayscale. In the same way, we did not find any significant difference between the scanpaths under grayscale, color, or abnormal color viewing conditions. However, we observed a decrease in fixation duration for color and abnormal color, and this was particularly true at the beginning of scene exploration. Finally, we found that abnormal color modifies saccade amplitude distribution.

  10. Visual scan paths are abnormal in deluded schizophrenics.

    PubMed

    Phillips, M L; David, A S

    1997-01-01

    One explanation for delusion formation is that they result from distorted appreciation of complex stimuli. The study investigated delusions in schizophrenia using a physiological marker of visual attention and information processing, the visual scan path-a map tracing the direction and duration of gaze when an individual views a stimulus. The aim was to demonstrate the presence of a specific deficit in processing meaningful stimuli (e.g. human faces) in deluded schizophrenics (DS) by relating this to abnormal viewing strategies. Visual scan paths were measured in acutely-deluded (n = 7) and non-deluded (n = 7) schizophrenics matched for medication, illness duration and negative symptoms, plus 10 age-matched normal controls. DS employed abnormal strategies for viewing single faces and face pairs in a recognition task, staring at fewer points and fixating non-feature areas to a significantly greater extent than both control groups (P < 0.05). The results indicate that DS direct their attention to less salient visual information when viewing faces. Future paradigms employing more complex stimuli and testing DS when less-deluded will allow further clarification of the relationship between viewing strategies and delusions.

  11. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.

    PubMed

    Paulk, Angelique C; Gronenberg, Wulfila

    2008-11-01

    To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.

  12. Grating test of contrast sensitivity in patients with Minamata disease.

    PubMed Central

    Mukuno, K; Ishikawa, S; Okamura, R

    1981-01-01

    Thirty cases of Minamata disease caused by methyl mercury poisoning with the lesion mainly at the occipital cortex were selected and their spatial contrast sensitivity of vision was examined by the Arden grating chart. At the same time their visual acuity, visual field, and visual evoked cortical potential (VECP) were also investigated. In all cases the results of the Arden test indicated abnormality. Poor results were obtained at higher frequencies of the gratings. VECP elicited by grating pattern reversal stimulus was undertaken in 12 cases out of the 30. The results revealed abnormality almost equal to that shown by the Arden test. Seven out of the 12 cases showed no VECP response. The other 5, giving a response, showed abnormality: when the size of the grating became smaller at higher frequencies, the VECP paused or was not recorded, whereas at low frequencies it was recorded. This finding was in good agreement or was not recorded, whereas at low frequencies it was recorded. This finding was in good agreement with the results of the Arden test. Visual acuity and visual field tests were less sensitive in detecting abnormality. The Arden chart is a sensitive clinical tool for patients with lesions at the cerebral cortex. Furthermore, the test can be used for screening patients who may have come in contrast with organic mercury. PMID:7236573

  13. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer’s disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer’s disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. PMID:25895507

  14. Sensory interaction on static balance: a comparison concerning the history of falls of community-dwelling elderly.

    PubMed

    Ricci, Natalia Aquaroni; de Faria Figueiredo Gonçalves, Daniele; Coimbra, Arlete Maria Valente; Coimbra, Ibsen Bellini

    2009-06-01

    To determine whether elderly subjects with distinct histories of falls presented differences concerning the influence of sensory interaction on balance. Cross-sectional research. Ninety-six community-dwelling elderly subjects were divided into three groups, according to the history of falls within the past year (group 1, no falls; group 2, one fall; and group 3, recurrent falls). The Clinical Test of Sensory Interaction and Balance was used to evaluate the influence of sensory inputs on standing balance. The test required the subject to maintain stability during 30 s, under six conditions: (i) firm surface with eyes open; (ii) firm surface with eyes closed; (iii) firm surface with visual conflict; (iv) unstable surface with eyes open; (v) unstable surface with eyes closed; and (vi) unstable surface with visual conflict. The time expended on conditions and the number of abnormal cases were compared between groups. Each group was evaluated in relation to its performance in the progression of conditions. More abnormal cases occurred in group 3 compared to group 1 for conditions (iv) and (v); and compared to group 2 for condition (iv). Group 3 remained less time than group 1 under conditions (iv), (v) and (vi). Groups 1, 2 and 3 presented relevant decrements in trial duration from conditions (iv) to (v). For group 3, a significant decay was also noted from condition (i) to (ii). Sensorial interaction in the elderly varies according to their history of falls. Thus, it is possible to correctly guide the rehabilitation process and to prevent sensorial decays according to an individual's history of falls.

  15. Speaking Math--A Voice Input, Speech Output Calculator for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Flanagan, Sara; Joshi, Gauri S.; Sheikh, Waseem; Schleppenbach, Dave

    2011-01-01

    This project explored a newly developed computer-based voice input, speech output (VISO) calculator. Three high school students with visual impairments educated at a state school for the blind and visually impaired participated in the study. The time they took to complete assessments and the average number of attempts per problem were recorded…

  16. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  17. Visual Impairment Screening at the Geriatric Frailty Clinic for Assessment of Frailty and Prevention of Disability at the Gérontopôle.

    PubMed

    Soler, V; Sourdet, S; Balardy, L; Abellan van Kan, G; Brechemier, D; Rougé-Bugat, M E; Tavassoli, N; Cassagne, M; Malecaze, F; Nourhashémi, F; Vellas, B

    2016-01-01

    To evaluate visual performance and factors associated with abnormal vision in patients screened for frailty at the Geriatric Frailty Clinic (GFC) for Assessment of Frailty and Prevention of Disability at Toulouse University Hospital. Retrospective, observational cross-sectional, single-centre study. Institutional practice. Patients were screened for frailty during a single-day hospital stay between October 2011 and October 2014 (n = 1648). Collected medical records included sociodemographic data (including living environment and educational level), anthropometric data, and clinical data. The general evaluation included the patient's functional status using the Activities of Daily Living (ADL) scale and the Instrumental Activity of Daily Living (IADL) scale, the Mini-Mental State Examination (MMSE) for cognition testing, and the Short Physical Performance Battery (SPPB) for physical performance. We also examined Body Mass Index (BMI), the Mini-Nutritional Assessment (MNA), and the Hearing Handicap Inventory for the Elderly Screening (HHIE-S) tool. The ophthalmologic evaluation included assessing visual acuity using the Snellen decimal chart for distant vision, and the Parinaud chart for near vision. Patients were divided into groups based on normal distant/near vision (NDV and NNV groups) and abnormal distant/near vision (ADV and ANV groups). Abnormal distant or near vision was defined as visual acuity inferior to 20/40 or superior to a Parinaud score of 2, in at least one eye. Associations with frailty-associated factors were evaluated in both groups. The mean age of the population was 82.6 ± 6.2 years. The gender distribution was 1,061 females (64.4%) and 587 males (35.6%). According to the Fried criteria, 619 patients (41.1%) were pre-frail and 771 (51.1%) were frail. Distant and near vision data were available for 1425 and 1426 patients, respectively. Distant vision was abnormal for 437 patients (30.7%). Near vision was abnormal for 199 patients (14%). Multiple regression analysis showed that abnormal distant vision as well as abnormal near vision were independently associated with greater age (P < 0.01), lower educational level (P < 0.05), lower performance on the MMSE (P < 0.001), and lower autonomy (P < 0.02), after controlling for age, gender, educational level, Fried criteria, and MMSE score. The high prevalence of visual disorders observed in the study population and their association with lower autonomy and cognitive impairment emphasises the need for systematic screening of visual impairments in the elderly. Frailty was not found to be independently associated with abnormal vision.

  18. Semantic-based crossmodal processing during visual suppression.

    PubMed

    Cox, Dustin; Hong, Sang Wook

    2015-01-01

    To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.

  19. Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.

    PubMed

    Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A

    2007-06-01

    We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.

  20. Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party".

    PubMed

    Zion Golumbic, Elana; Cogan, Gregory B; Schroeder, Charles E; Poeppel, David

    2013-01-23

    Our ability to selectively attend to one auditory signal amid competing input streams, epitomized by the "Cocktail Party" problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared with responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker's face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a Cocktail Party setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive.

  1. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

    PubMed

    Gonchar, Yuri; Burkhalter, Andreas

    2003-11-26

    Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.

  2. Hypoglycemia-occipital syndrome: a specific neurologic syndrome following neonatal hypoglycemia?

    PubMed

    Karimzadeh, Parvaneh; Tabarestani, Sepideh; Ghofrani, Mohammad

    2011-02-01

    This study attempted to elaborate the existence of a specific neurologic pattern observed in children who experienced neonatal hypoglycemia. Twenty-seven patients with seizure and history of neonatal hypoglycemia were compared with 28 children suffering from idiopathic occipital epilepsy. In both groups the most common type of seizure activities included eye movements and impaired consciousness responding well to treatment; however, ictal vomiting was more common in controls. Subjects were in epileptic and nonepileptic groups. Ninety percent of cases showed abnormal signal of the posterior head region on magnetic resonance imaging (MRI). A large number showed posterior abnormalities on electroencephalography (EEG). Visual loss with abnormal visual evoked potential was the most frequent visual finding. Fifty-five percent showed mild psychomotor retardation. This study demonstrates that neonatal hypoglycemia can induce a syndrome with a specific clinical spectrum consisting of epilepsy, visual disturbances, and psychomotor retardation. Hypoglycemia-occipital syndrome is an entity without statistically significant semiologic differences from the idiopathic type.

  3. CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society

    PubMed Central

    Austin, John H. M.; Hogg, James C.; Grenier, Philippe A.; Kauczor, Hans-Ulrich; Bankier, Alexander A.; Barr, R. Graham; Colby, Thomas V.; Galvin, Jeffrey R.; Gevenois, Pierre Alain; Coxson, Harvey O.; Hoffman, Eric A.; Newell, John D.; Pistolesi, Massimo; Silverman, Edwin K.; Crapo, James D.

    2015-01-01

    The purpose of this statement is to describe and define the phenotypic abnormalities that can be identified on visual and quantitative evaluation of computed tomographic (CT) images in subjects with chronic obstructive pulmonary disease (COPD), with the goal of contributing to a personalized approach to the treatment of patients with COPD. Quantitative CT is useful for identifying and sequentially evaluating the extent of emphysematous lung destruction, changes in airway walls, and expiratory air trapping. However, visual assessment of CT scans remains important to describe patterns of altered lung structure in COPD. The classification system proposed and illustrated in this article provides a structured approach to visual and quantitative assessment of COPD. Emphysema is classified as centrilobular (subclassified as trace, mild, moderate, confluent, and advanced destructive emphysema), panlobular, and paraseptal (subclassified as mild or substantial). Additional important visual features include airway wall thickening, inflammatory small airways disease, tracheal abnormalities, interstitial lung abnormalities, pulmonary arterial enlargement, and bronchiectasis. © RSNA, 2015 PMID:25961632

  4. Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury.

    PubMed

    Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie

    2013-06-01

    Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.

    2012-01-01

    Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014

  6. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans.

    PubMed

    Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori

    2013-01-01

    In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.

  7. Looking you in the mouth: abnormal gaze in autism resulting from impaired top-down modulation of visual attention.

    PubMed

    Neumann, Dirk; Spezio, Michael L; Piven, Joseph; Adolphs, Ralph

    2006-12-01

    People with autism are impaired in their social behavior, including their eye contact with others, but the processes that underlie this impairment remain elusive. We combined high-resolution eye tracking with computational modeling in a group of 10 high-functioning individuals with autism to address this issue. The group fixated the location of the mouth in facial expressions more than did matched controls, even when the mouth was not shown, even in faces that were inverted and most noticeably at latencies of 200-400 ms. Comparisons with a computational model of visual saliency argue that the abnormal bias for fixating the mouth in autism is not driven by an exaggerated sensitivity to the bottom-up saliency of the features, but rather by an abnormal top-down strategy for allocating visual attention.

  8. SNP ID-info: SNP ID searching and visualization platform.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei

    2008-09-01

    Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.

  9. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  10. Sensitivity of visual evoked potentials and spectral domain optical coherence tomography in early relapsing remitting multiple sclerosis.

    PubMed

    Behbehani, Raed; Ahmed, Samar; Al-Hashel, Jasem; Rousseff, Rossen T; Alroughani, Raed

    2017-02-01

    Visual evoked potentials and spectral-domain optical coherence tomography are common ancillary studies that assess the visual pathways from a functional and structural aspect, respectively. To compare prevalence of abnormalities of Visual evoked potentials (VEP) and spectral-domain optical coherence tomography (SDOCT) in patients with relapsing remitting multiple sclerosis (RRMS). A cross-sectional study of 100 eyes with disease duration of less than 5 years since the diagnosis. Correlation between retinal nerve fiber layer and ganglion-cell/inner plexiform layer with pattern-reversal visual evoked potentials amplitude and latency and contrast sensitivity was performed. The prevalence of abnormalities in pattern-reversal visual VEP was 56% while that of SOCT was 48% in all eyes. There was significant negative correlations between the average RNFL (r=-0.34, p=0.001) and GCIPL (r=-0.39, p<0.001) with VEP latency. In eyes with prior optic neuritis, a significant negative correlation was seen between average RNFL (r=-0.33, p=0.037) and GCIPL (r=-0.40, p=0.010) with VEP latency. We have found higher prevalence of VEP abnormalities than SCOCT in early relapsing-remitting multiple sclerosis. This suggests that VEP has a higher sensitivity for detecting lesions of the visual pathway in patients with early RRMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The Role of Eye Movement Driven Attention in Functional Strabismic Amblyopia

    PubMed Central

    2015-01-01

    Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia. PMID:25838941

  13. Sensory Eye Dominance in Treated Anisometropic Amblyopia

    PubMed Central

    Chen, Yao

    2017-01-01

    Amblyopia results from inadequate visual experience during the critical period of visual development. Abnormal binocular interactions are believed to play a critical role in amblyopia. These binocular deficits can often be resolved, owing to the residual visual plasticity in amblyopes. In this study, we quantitatively measured the sensory eye dominance in treated anisometropic amblyopes to determine whether they had fully recovered. Fourteen treated anisometropic amblyopes with normal or corrected to normal visual acuity participated, and their sensory eye dominance was assessed by using a binocular phase combination paradigm. We found that the two eyes were unequal in binocular combination in most (11 out of 14) of our treated anisometropic amblyopes, but none of the controls. We concluded that the treated anisometropic amblyopes, even those with a normal range of visual acuity, exhibited abnormal binocular processing. Our results thus suggest that there is potential for improvement in treated anisometropic amblyopes that may further enhance their binocular visual functioning. PMID:28573051

  14. Cognitive processing of visual images in migraine populations in between headache attacks.

    PubMed

    Mickleborough, Marla J S; Chapman, Christine M; Toma, Andreea S; Handy, Todd C

    2014-09-25

    People with migraine headache have altered interictal visual sensory-level processing in between headache attacks. Here we examined the extent to which these migraine abnormalities may extend into higher visual processing such as implicit evaluative analysis of visual images in between migraine events. Specifically, we asked two groups of participants--migraineurs (N=29) and non-migraine controls (N=29)--to view a set of unfamiliar commercial logos in the context of a target identification task as the brain electrical responses to these objects were recorded via event-related potentials (ERPs). Following this task, participants individually identified those logos that they most liked or disliked. We applied a between-groups comparison of how ERP responses to logos varied as a function of hedonic evaluation. Our results suggest migraineurs have abnormal implicit evaluative processing of visual stimuli. Specifically, migraineurs lacked a bias for disliked logos found in control subjects, as measured via a late positive potential (LPP) ERP component. These results suggest post-sensory consequences of migraine in between headache events, specifically abnormal cognitive evaluative processing with a lack of normal categorical hedonic evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1

    PubMed Central

    Matsui, Teppei; Ohki, Kenichi

    2013-01-01

    Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

  16. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    PubMed Central

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  17. Visual impairment evaluation in 119 children with congenital Zika syndrome.

    PubMed

    Ventura, Liana O; Ventura, Camila V; Dias, Natália de C; Vilar, Isabelle G; Gois, Adriana L; Arantes, Tiago E; Fernandes, Luciene C; Chiang, Michael F; Miller, Marilyn T; Lawrence, Linda

    2018-06-01

    To assess visual impairment in a large sample of infants with congenital Zika syndrome (CZS) and to compare with a control group using the same assessment protocol. The study group was composed of infants with confirmed diagnosis of CZS. Controls were healthy infants matched for age, sex, and socioeconomic status. All infants underwent comprehensive ophthalmologic evaluation including visual acuity, visual function assessment, and visual developmental milestones. The CZS group included 119 infants; the control group, 85 infants. At examination, the mean age of the CZS group was 8.5 ± 1.2 months (range, 6-13 months); of the controls, 8.4 ± 1.8 months (range, 5-12 months; P = 0.598). Binocular Teller Acuity Card (TAC) testing was abnormal in 107 CZS infants and in 4 controls (89.9% versus 5% [P < 0.001]). In the study group, abnormal monocular TAC results were more frequent in eyes with funduscopic alterations (P = 0.008); however, 104 of 123 structurally normal eyes (84.6%) also presented abnormal TAC results. Binocular contrast sensitivity was reduced in 87 of 107 CZS infants and in 8 of 80 controls (81.3% versus 10% [P < 0.001]). The visual development milestones were less achieved by infants with CZS compared to controls (P < 0.001). Infants with CZS present with severe visual impairment. A protocol for assessment of the ocular findings, visual acuity, and visual developmental milestones tested against age-matched controls is suggested. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  18. Sharpening of Hierarchical Visual Feature Representations of Blurred Images.

    PubMed

    Abdelhack, Mohamed; Kamitani, Yukiyasu

    2018-01-01

    The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.

  19. Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, Albert Comstock

    We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.

  20. Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy.

    PubMed

    Kupersmith, Mark J; Anderson, Susan; Durbin, Mary; Kardon, Randy

    2013-08-15

    Scanning laser polarimetry (SLP) reveals abnormal retardance of birefringence in locations of the edematous peripapillary retinal nerve fiber layer (RNFL), which appear thickened by optical coherence tomography (OCT), in nonarteritic anterior ischemic optic neuropathy (NAION). We hypothesize initial sector SLP RNFL abnormalities will correlate with long-term regional visual field loss due to ischemic injury. We prospectively performed automated perimetry, SLP, and high definition OCT (HD-OCT) of the RNFL in 25 eyes with acute NAION. We grouped visual field threshold and RNFL values into Garway-Heath inferior/superior disc sectors and corresponding superior/inferior field regions. We compared sector SLP RNFL thickness with corresponding visual field values at presentation and at >3 months. At presentation, 12 eyes had superior sector SLP reduction, 11 of which had inferior field loss. Six eyes, all with superior field loss, had inferior sector SLP reduction. No eyes had reduced OCT-derived RNFL acutely. Eyes with abnormal field regions had corresponding SLP sectors thinner (P = 0.003) than for sectors with normal field regions. During the acute phase, the SLP-derived sector correlated with presentation (r = 0.59, P = 0.02) and with >3-month after presentation (r = 0.44, P = 0.02) corresponding superior and inferior field thresholds. Abnormal RNFL birefringence occurs in sectors corresponding to regional visual field loss during acute NAION when OCT-derived RNFL shows thickening. Since the visual field deficits show no significant recovery, SLP can be an early marker for axonal injury, which may be used to assess recovery potential at RNFL locations with respect to new treatments for acute NAION.

  1. Postural response to predictable and nonpredictable visual flow in children and adults.

    PubMed

    Schmuckler, Mark A

    2017-11-01

    Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space

    PubMed Central

    Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil

    2011-01-01

    Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934

  3. Multisensory integration across the senses in young and old adults

    PubMed Central

    Mahoney, Jeannette R.; Li, Po Ching Clara; Oh-Park, Mooyeon; Verghese, Joe; Holtzer, Roee

    2011-01-01

    Stimuli are processed concurrently and across multiple sensory inputs. Here we directly compared the effect of multisensory integration (MSI) on reaction time across three paired sensory inputs in eighteen young (M=19.17 yrs) and eighteen old (M=76.44 yrs) individuals. Participants were determined to be non-demented and without any medical or psychiatric conditions that would affect their performance. Participants responded to randomly presented unisensory (auditory, visual, somatosensory) stimuli and three paired sensory inputs consisting of auditory-somatosensory (AS) auditory-visual (AV) and visual-somatosensory (VS) stimuli. Results revealed that reaction time (RT) to all multisensory pairings was significantly faster than those elicited to the constituent unisensory conditions across age groups; findings that could not be accounted for by simple probability summation. Both young and old participants responded the fastest to multisensory pairings containing somatosensory input. Compared to younger adults, older adults demonstrated a significantly greater RT benefit when processing concurrent VS information. In terms of co-activation, older adults demonstrated a significant increase in the magnitude of visual-somatosensory co-activation (i.e., multisensory integration), while younger adults demonstrated a significant increase in the magnitude of auditory-visual and auditory-somatosensory co-activation. This study provides first evidence in support of the facilitative effect of pairing somatosensory with visual stimuli in older adults. PMID:22024545

  4. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    PubMed

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Determining the Effectiveness of Visual Input Enhancement across Multiple Linguistic Cues

    ERIC Educational Resources Information Center

    Comeaux, Ian; McDonald, Janet L.

    2018-01-01

    Visual input enhancement (VIE) increases the salience of grammatical forms, potentially facilitating acquisition through attention mechanisms. Native English speakers were exposed to an artificial language containing four linguistic cues (verb agreement, case marking, animacy, word order), with morphological cues either unmarked, marked in the…

  6. A library of programmable DNAzymes that operate in a cellular environment.

    PubMed

    Kahan-Hanum, Maya; Douek, Yehonatan; Adar, Rivka; Shapiro, Ehud

    2013-01-01

    DNAzymes were used as inhibitory agents in a variety of experimental disease settings, such as cancer, viral infections and even HIV. Drugs that become active only upon the presence of preprogrammed abnormal environmental conditions may enable selective molecular therapy by targeting abnormal cells without injuring normal cells. Here we show a novel programmable DNAzyme library composed of variety of Boolean logic gates, including YES, AND, NOT, OR, NAND, ANDNOT, XOR, NOR and 3-input-AND gate, that uses both miRNAs and mRNAs as inputs. Each gate is based on the c-jun cleaving Dz13 DNAzyme and active only in the presence of specific input combinations. The library is modular, supports arbitrary inputs and outputs, cascadable, highly specific and robust. We demonstrate the library's potential diagnostic abilities on miRNA and mRNA combinations in cell lysate and its ability to operate in a cellular environment by using beacon-like c-jun mimicking substrate in living mammalian cells.

  7. A library of programmable DNAzymes that operate in a cellular environment

    PubMed Central

    Kahan-Hanum, Maya; Douek, Yehonatan; Adar, Rivka; Shapiro, Ehud

    2013-01-01

    DNAzymes were used as inhibitory agents in a variety of experimental disease settings, such as cancer, viral infections and even HIV. Drugs that become active only upon the presence of preprogrammed abnormal environmental conditions may enable selective molecular therapy by targeting abnormal cells without injuring normal cells. Here we show a novel programmable DNAzyme library composed of variety of Boolean logic gates, including YES, AND, NOT, OR, NAND, ANDNOT, XOR, NOR and 3-input-AND gate, that uses both miRNAs and mRNAs as inputs. Each gate is based on the c-jun cleaving Dz13 DNAzyme and active only in the presence of specific input combinations. The library is modular, supports arbitrary inputs and outputs, cascadable, highly specific and robust. We demonstrate the library's potential diagnostic abilities on miRNA and mRNA combinations in cell lysate and its ability to operate in a cellular environment by using beacon-like c-jun mimicking substrate in living mammalian cells. PMID:23525068

  8. Postural Ataxia in Cerebellar Downbeat Nystagmus: Its Relation to Visual, Proprioceptive and Vestibular Signals and Cerebellar Atrophy.

    PubMed

    Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas

    2017-01-01

    The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.

  9. Postural Ataxia in Cerebellar Downbeat Nystagmus: Its Relation to Visual, Proprioceptive and Vestibular Signals and Cerebellar Atrophy

    PubMed Central

    Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas

    2017-01-01

    Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109

  10. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron

    PubMed Central

    Zhu, Ying

    2016-01-01

    Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157

  11. Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders.

    PubMed

    Stroganova, Tatiana A; Butorina, Anna V; Sysoeva, Olga V; Prokofyev, Andrey O; Nikolaeva, Anastasia Yu; Tsetlin, Marina M; Orekhova, Elena V

    2015-01-01

    Recent studies link autism spectrum disorders (ASD) with an altered balance between excitation and inhibition (E/I balance) in cortical networks. The brain oscillations in high gamma-band (50-120 Hz) are sensitive to the E/I balance and may appear useful biomarkers of certain ASD subtypes. The frequency of gamma oscillations is mediated by level of excitation of the fast-spiking inhibitory basket cells recruited by increasing strength of excitatory input. Therefore, the experimental manipulations affecting gamma frequency may throw light on inhibitory networks dysfunction in ASD. Here, we used magnetoencephalography (MEG) to investigate modulation of visual gamma oscillation frequency by speed of drifting annular gratings (1.2, 3.6, 6.0 °/s) in 21 boys with ASD and 26 typically developing boys aged 7-15 years. Multitaper method was used for analysis of spectra of gamma power change upon stimulus presentation and permutation test was applied for statistical comparisons. We also assessed in our participants visual orientation discrimination thresholds, which are thought to depend on excitability of inhibitory networks in the visual cortex. Although frequency of the oscillatory gamma response increased with increasing velocity of visual motion in both groups of participants, the velocity effect was reduced in a substantial proportion of children with ASD. The range of velocity-related gamma frequency modulation correlated inversely with the ability to discriminate oblique line orientation in the ASD group, while no such correlation has been observed in the group of typically developing participants. Our findings suggest that abnormal velocity-related gamma frequency modulation in ASD may constitute a potential biomarker for reduced excitability of fast-spiking inhibitory neurons in a subset of children with ASD.

  12. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  13. Improving visual observation skills through the arts to aid radiographic interpretation in veterinary practice: A pilot study.

    PubMed

    Beck, Cathy; Gaunt, Heather; Chiavaroli, Neville

    2017-09-01

    Radiographic interpretation is a perceptual and cognitive skill. Recently core veterinary radiology textbooks have focused on the cognitive (i.e., the clinical aspects of radiographic interpretation) rather than the features of visual observation that improve identification of abnormalities. As a result, the skill of visual observation is underemphasized and thus often underdeveloped by trainees. The study of the arts in medical education has been used to train and improve visual observation and empathy. The use of the arts to improve visual observation skills in Veterinary Science has not been previously described. Objectives of this pilot study were to adapt the existing Visual Arts in Health Education Program for medical and dental students at the University of Melbourne, Australia to third year Doctor of Veterinary Medicine students and evaluate their perceptions regarding the program's effects on visual observation skills and confidence with respect to radiographic interpretation. This adaptation took the form of a single seminar given to third year Doctor of Veterinary Medicine students. Following the seminar, students reported an improved approach to radiographic interpretation and felt they had gained skills which would assist them throughout their career. In the year following the seminar, written reports of the students who attended the seminar were compared with reports from a matched cohort of students who did not attend the seminar. This demonstrated increased identification of abnormalities and greater description of the abnormalities identified. Findings indicated that explicit training in visual observation may be a valuable adjunct to the radiology training of Doctor of Veterinary Medicine students. © 2017 American College of Veterinary Radiology.

  14. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  15. Intact anger recognition in depression despite aberrant visual facial information usage.

    PubMed

    Clark, Cameron M; Chiu, Carina G; Diaz, Ruth L; Goghari, Vina M

    2014-08-01

    Previous literature has indicated abnormalities in facial emotion recognition abilities, as well as deficits in basic visual processes in major depression. However, the literature is unclear on a number of important factors including whether or not these abnormalities represent deficient or enhanced emotion recognition abilities compared to control populations, and the degree to which basic visual deficits might impact this process. The present study investigated emotion recognition abilities for angry versus neutral facial expressions in a sample of undergraduate students with Beck Depression Inventory-II (BDI-II) scores indicative of moderate depression (i.e., ≥20), compared to matched low-BDI-II score (i.e., ≤2) controls via the Bubbles Facial Emotion Perception Task. Results indicated unimpaired behavioural performance in discriminating angry from neutral expressions in the high depressive symptoms group relative to the minimal depressive symptoms group, despite evidence of an abnormal pattern of visual facial information usage. The generalizability of the current findings is limited by the highly structured nature of the facial emotion recognition task used, as well as the use of an analog sample undergraduates scoring high in self-rated symptoms of depression rather than a clinical sample. Our findings suggest that basic visual processes are involved in emotion recognition abnormalities in depression, demonstrating consistency with the emotion recognition literature in other psychopathologies (e.g., schizophrenia, autism, social anxiety). Future research should seek to replicate these findings in clinical populations with major depression, and assess the association between aberrant face gaze behaviours and symptom severity and social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    PubMed

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  17. Neural network system for purposeful behavior based on foveal visual preprocessor

    NASA Astrophysics Data System (ADS)

    Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.

    1996-10-01

    Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.

  18. Closed head injury and perceptual processing in dual-task situations.

    PubMed

    Hein, G; Schubert, T; von Cramon, D Y

    2005-01-01

    Using a classical psychological refractory period (PRP) paradigm we investigated whether increased interference between dual-task input processes is one possible source of dual-task deficits in patients with closed-head injury (CHI). Patients and age-matched controls were asked to give speeded motor reactions to an auditory and a visual stimulus. The perceptual difficulty of the visual stimulus was manipulated by varying its intensity. The results of Experiment 1 showed that CHI patients suffer from increased interference between dual-task input processes, which is related to the salience of the visual stimulus. A second experiment indicated that this input interference may be specific to brain damage following CHI. It is not evident in other groups of neurological patients like Parkinson's disease patients. We conclude that the non-interfering processing of input stages in dual-tasks requires cognitive control. A decline in the control of input processes should be considered as one source of dual-task deficits in CHI patients.

  19. Allocentric but not egocentric visual memory difficulties in adults with ADHD may represent cognitive inefficiency.

    PubMed

    Brown, Franklin C; Roth, Robert M; Katz, Lynda J

    2015-08-30

    Attention Deficit Hyperactivity Disorder (ADHD) has often been conceptualized as arising executive dysfunctions (e.g., inattention, defective inhibition). However, recent studies suggested that cognitive inefficiency may underlie many ADHD symptoms, according to reaction time and processing speed abnormalities. This study explored whether a non-timed measure of cognitive inefficiency would also be abnormal. A sample of 23 ADHD subjects was compared to 23 controls on a test that included both egocentric and allocentric visual memory subtests. A factor analysis was used to determine which cognitive variables contributed to allocentric visual memory. The ADHD sample performed significantly lower on the allocentric but not egocentric conditions. Allocentric visual memory was not associated with timed, working memory, visual perception, or mental rotation variables. This paper concluded by discussing how these results supported a cognitive inefficiency explanation for some ADHD symptoms, and discussed future research directions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Causes and anatomical site of blindness and severe visual loss in Isfahan, Islamic Republic of Iran.

    PubMed

    Dehghan, A; Kianersi, F; Moazam, E; Ghanbari, H

    2010-02-01

    This study in 2005 evaluated the causes and major anatomical site of blindness and severe visual loss at a school for blind children in Isfahan province, Islamic Republic of Iran. All 211 students were examined according to the modified WHO/PBL eye examination record: 70.4% were blind, 24.3% had severe visual loss and 5.3% were visually impaired. The major causes of abnormality were hereditary factors (42.7%), prenatal/neonatal (18.5%) and unknown etiology (35.5%). The main sites of abnormality were the retina (62.6%), whole globe (17.5%), lens (7.1%) and optic nerve (7.1%). A high proportion of parents were in a consanguineous marriage (49.2%). The pattern of blindness in Isfahan encompasses characteristics of both developed and developing countries.

  1. Effect of Developmental Binocular Vision Abnormalities on Visual Vertigo Symptoms and Treatment Outcome.

    PubMed

    Pavlou, Marousa; Acheson, James; Nicolaou, Despina; Fraser, Clare L; Bronstein, Adolfo M; Davies, Rosalyn A

    2015-10-01

    Customized vestibular rehabilitation incorporating optokinetic (OK) stimulation improves visual vertigo (VV) symptoms; however, the degree of improvement varies among individuals. Binocular vision abnormalities (misalignment of ocular axis, ie, strabismus) may be a potential risk factor. This study aimed to investigate the influence of binocular vision abnormalities on VV symptoms and treatment outcome. Sixty subjects with refractory peripheral vestibular symptoms underwent an orthoptic assessment after being recruited for participation in an 8-week customized program incorporating OK training via a full-field visual environment rotator or video display, supervised or unsupervised. Treatment response was assessed at baseline and at 8 weeks with dynamic posturography, Functional Gait Assessment (FGA), and questionnaires for symptoms, symptom triggers, and psychological state. As no significant effect of OK training type was noted for any variables, data were combined and new groups identified on the basis of the absence or presence of a binocular vision abnormality. A total of 34 among 60 subjects consented to the orthoptic assessment, of whom 8 of the 34 had binocular vision abnormalities and 30 of the 34 subjects completed both the binocular function assessment and vestibular rehabilitation program. No significant between-group differences were noted at baseline. The only significant between-group difference was observed for pre-/post-VV symptom change (P = 0.01), with significant improvements noted only for the group without binocular vision abnormalities (P < 0.0005). Common vestibular symptoms, posturography, and the FGA improved significantly for both groups (P < 0.05). Binocular vision abnormalities may affect VV symptom improvement. These findings may have important implications for the management of subjects with refractory vestibular symptoms.Video Abstract available for insights from the authors regarding clinical implication of the study findings (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A115).

  2. Multifocal visual evoked potentials reveal normal optic nerve projections in human carriers of oculocutaneous albinism type 1a.

    PubMed

    Hoffmann, Michael B; Wolynski, Barbara; Meltendorf, Synke; Behrens-Baumann, Wolfgang; Käsmann-Kellner, Barbara

    2008-06-01

    In albinism, part of the temporal retina projects abnormally to the contralateral hemisphere. A residual misprojection is also evident in feline carriers that are heterozygous for tyrosinase-related albinism. This study was conducted to test whether such residual abnormalities can also be identified in human carriers of oculocutaneous tyrosinase-related albinism (OCA1a). In eight carriers heterozygous for OCA1a and in eight age- and sex-matched control subjects, monocular pattern-reversal and -onset multifocal visual evoked potentials (mfVEPs) were recorded at 60 locations comprising a visual field of 44 degrees diameter (VERIS 5.01; EDI, San Mateo, CA). For each eye and each stimulus location, interhemispheric difference potentials were calculated and correlated with each other, to assess the lateralization of the responses: positive and negative correlations indicate lateralizations on the same or opposite hemispheres, respectively. Misrouted optic nerves are expected to yield negative interocular correlations. The analysis also allowed for the assessment of the sensitivity and specificity of the detection of projection abnormalities. No significant differences were obtained for the distributions of the interocular correlation coefficients of controls and carriers. Consequently, no local representation abnormalities were observed in the group of OCA1a carriers. For pattern-reversal and -onset stimulation, an assessment of the control data yielded similar specificity (97.9% and 94.6%) and sensitivity (74.4% and 74.8%) estimates for the detection of projection abnormalities. The absence of evidence for projection abnormalities in human OCA1a carriers contrasts with the previously reported evidence for abnormalities in cat-carriers of tyrosinase-related albinism. This discrepancy suggests that animal models of albinism may not provide a match to human albinism.

  3. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.

  4. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.

  5. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    PubMed Central

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew

    2008-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. This study tests the hypothesis that differences between the memory of a stimulus array and the perception of a new array are detected in a manner that is analogous to the detection of simple features in visual search tasks. That is, just as the presence of a task-relevant feature in visual search can be detected in parallel, triggering a rapid shift of attention to the object containing the feature, the presence of a memory-percept difference along a task-relevant dimension can be detected in parallel, triggering a rapid shift of attention to the changed object. Supporting evidence was obtained in a series of experiments that examined manual reaction times, saccadic reaction times, and event-related potential latencies. However, these experiments also demonstrated that a slow, limited-capacity process must occur before the observer can make a manual change-detection response. PMID:19653755

  7. Natural History of the Central Structural Abnormalities in Choroideremia: A Prospective Cross-Sectional Study.

    PubMed

    Aleman, Tomas S; Han, Grace; Serrano, Leona W; Fuerst, Nicole M; Charlson, Emily S; Pearson, Denise J; Chung, Daniel C; Traband, Anastasia; Pan, Wei; Ying, Gui-Shuang; Bennett, Jean; Maguire, Albert M; Morgan, Jessica I W

    2017-03-01

    To describe in detail the central retinal structure of a large group of patients with choroideremia (CHM). A prospective, cross-sectional, descriptive study. Patients (n = 97, age 6-71 years) with CHM and subjects with normal vision (n = 44; ages 10-50 years) were included. Subjects were examined with spectral-domain optical coherence tomography (SD OCT) and near-infrared reflectance imaging. Visual acuity (VA) was measured during their encounter or obtained from recent ophthalmic examinations. Visual thresholds were measured in a subset of patients (n = 24) with automated static perimetry within the central regions (±15°) examined with SD OCT. Visual acuity and visual thresholds; total nuclear layer, inner nuclear layer (INL), and outer nuclear layer (ONL) thicknesses; and horizontal extent of the ONL and the photoreceptor outer segment (POS) interdigitation zone (IZ). Earliest abnormalities in regions with normally appearing retinal pigment epithelium (RPE) were the loss of the POS and ellipsoid zone associated with rod dysfunction. Transition zones (TZs) from relatively preserved retina to severe ONL thinning and inner retinal thickening moved centripetally with age. Most patients (88%) retained VAs better than 20/40 until their fifth decade of life. The VA decline coincided with migration of the TZ near the foveal center. There were outer retinal tubulations in degenerated, nonatrophic retina in the majority (69%) of patients. In general, RPE abnormalities paralleled photoreceptor degeneration, although there were regions with detectable but abnormally thin ONL co-localizing with severe RPE depigmentation and choroidal thinning. Abnormalities of the POS and rod dysfunction are the earliest central abnormalities observed in CHM. Foveal function is relatively preserved until the fifth decade of life. Migration of the TZs to the foveal center with foveal thinning and structural disorganization heralded central VA loss. The relationships established may help outline the eligibility criteria and outcome measures for clinical trials for CHM. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization.

    PubMed

    Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-10-01

    Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.

  9. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis.

    PubMed

    Siu, Timothy L; Morley, John W

    2007-12-01

    The development of a visual prosthesis has been limited by an incomplete understanding of functional changes of the visual cortex accompanying deafferentation. In particular, the role of the corpus callosum in modulating these changes has not been fully evaluated. Recent experimental evidence suggests that through synaptic modulation, short-term (4-5 days) visual deafferentation can induce plastic changes in the visual cortex, leading to adaptive enhancement of residual visual input. We therefore investigated whether a compensatory rerouting of visual information can occur via the indirect transcallosal linkage after deafferentation and the influence of this interhemispheric communication on the visual evoked response of each hemisphere. In albino rabbits, misrouting of uncrossed optic fibres reduces ipsilateral input to a negligible degree. We thus took advantage of this congenital anomaly to model unilateral cortical and ocular deafferentation by eliminating visual input from one eye and recorded the visual evoked potential (VEP) from the intact eye. In keeping with the chiasmal anomaly, no VEP was elicited from the hemisphere ipsilateral to the intact eye. This remained unchanged following unilateral visual deafferentation. The amplitude and latency of the VEP in the fellow hemisphere, however, were significantly decreased in the deafferented animals. Our data suggest that callosal linkage does not contribute to visual evoked responses and this is not changed after short-term deafferentation. The decrease in amplitude and latency of evoked responses in the hemisphere ipsilateral to the treated eye, however, confirms the facilitatory role of callosal transfer. This observation highlights the importance of bicortical stimulation in the future design of a cortical visual prosthesis.

  10. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  11. How does visual manipulation affect obstacle avoidance strategies used by athletes?

    PubMed

    Bijman, M P; Fisher, J J; Vallis, L A

    2016-01-01

    Research examining our ability to avoid obstacles in our path has stressed the importance of visual input. The aim of this study was to determine if athletes playing varsity-level field sports, who rely on visual input to guide motor behaviour, are more able to guide their foot over obstacles compared to recreational individuals. While wearing kinematic markers, eight varsity athletes and eight age-matched controls (aged 18-25) walked along a walkway and stepped over stationary obstacles (180° motion arc). Visual input was manipulated using PLATO visual goggles three or two steps pre-obstacle crossing and compared to trials where vision was given throughout. A main effect between groups for peak trail toe elevation was shown with greater values generated by the controls for all crossing conditions during full vision trials only. This may be interpreted as athletes not perceiving this obstacle as an increased threat to their postural stability. Collectively, findings suggest the athletic group is able to transfer their abilities to non-specific conditions during full vision trials; however, varsity-level athletes were equally reliant on visual cues for these visually guided stepping tasks as their performance was similar to the controls when vision is removed.

  12. Visual functions of commercial drivers in relation to road accidents in Nigeria

    PubMed Central

    Oladehinde, M. K.; Adeoye, A. O.; Adegbehingbe, B. O.; Onakoya, A. O.

    2007-01-01

    Objective: To determine the effects of the visual functions on the occurrence of road traffic accidents (RTA) amongst commercial drivers in Ife central local government area (LGA) of Osun state of Nigeria. Design: A cross-sectional study. Settings: Four major motor parks located at Ife Central LGA. Materials and Methods: Of the estimated 270 commercial drivers in the four major parks of the LGA, 215 consecutive drivers were interviewed and had their eyes examined. Structured questionnaires were administered by an ophthalmologist. Results: The prevalence of visual impairment (visual acuity < 6/18) in the better eye without correction was 3.3% ± 2.4 and there was a significant association between uncorrected visual acuity impairment in the better eye and RTA (P = 0.0152). Refractive error was seen in 8.4% of the drivers, but none of these wear corrective glasses. Visual field defect, abnormal stereopsis and color vision impairment did not have any significant association with RTA. Conclusion: Poor visual acuity is strongly associated with RTA amongst Nigerian commercial drivers as opposed to visual field defect, abnormal color vision and stereopsis. A significant proportion of visual impairment was due to uncorrected refractive errors. PMID:21938219

  13. Visual and Auditory Input in Second-Language Speech Processing

    ERIC Educational Resources Information Center

    Hardison, Debra M.

    2010-01-01

    The majority of studies in second-language (L2) speech processing have involved unimodal (i.e., auditory) input; however, in many instances, speech communication involves both visual and auditory sources of information. Some researchers have argued that multimodal speech is the primary mode of speech perception (e.g., Rosenblum 2005). Research on…

  14. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  15. Your Child's Vision

    MedlinePlus

    ... 3½, kids should have eye health screenings and visual acuity tests (tests that measure sharpness of vision) ... eye rubbing extreme light sensitivity poor focusing poor visual tracking (following an object) abnormal alignment or movement ...

  16. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1

    PubMed Central

    Tal, Zohar; Geva, Ran; Amedi, Amir

    2016-01-01

    Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. PMID:26673114

  17. Validation of the Preverbal Visual Assessment (PreViAs) questionnaire.

    PubMed

    García-Ormaechea, Inés; González, Inmaculada; Duplá, María; Andres, Eva; Pueyo, Victoria

    2014-10-01

    Visual cognitive integrative functions need to be evaluated by a behavioral assessment, which requires an experienced evaluator. The Preverbal Visual Assessment (PreViAs) questionnaire was designed to evaluate these functions, both in general pediatric population or in children with high risk of visual cognitive problems, through primary caregivers' answers. We aimed to validate the PreViAs questionnaire by comparing caregiver reports with results from a comprehensive clinical protocol. A total of 220 infants (<2 years old) were divided into two groups according to visual development, as determined by the clinical protocol. Their primary caregivers completed the PreViAs questionnaire, which consists of 30 questions related to one or more visual domains: visual attention, visual communication, visual-motor coordination, and visual processing. Questionnaire answers were compared with results of behavioral assessments performed by three pediatric ophthalmologists. Results of the clinical protocol classified 128 infants as having normal visual maturation, and 92 as having abnormal visual maturation. The specificity of PreViAs questionnaire was >80%, and sensitivity was 64%-79%. More than 80% of the infants were correctly classified, and test-retest reliability exceeded 0.9 for all domains. The PreViAs questionnaire is useful to detect abnormal visual maturation in infants from birth to 24months of age. It improves the anamnesis process in infants at risk of visual dysfunctions. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  19. Impact of enhanced sensory input on treadmill step frequency: infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D

    2011-01-01

    To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Twenty-seven infants aged 2 to 10 months with MMC lesions at, or caudal to, L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30 seconds long. Enhanced sensory inputs within each set were presented in random order and included baseline, visual flow, unloading, weights, Velcro, and friction. Overall friction and visual flow significantly increased step rate, particularly for the older subjects. Friction and Velcro increased stance-phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. : Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear to be more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC.

  20. Impact of Enhanced Sensory Input on Treadmill Step Frequency: Infants Born With Myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Smith, Beth A; Moerchen, Victoria; Ulrich, Beverly D.

    2012-01-01

    Purpose To determine the effect of enhanced sensory input on the step frequency of infants with myelomeningocele (MMC) when supported on a motorized treadmill. Methods Twenty seven infants aged 2 to 10 months with MMC lesions at or caudal to L1 participated. We supported infants upright on the treadmill for 2 sets of 6 trials, each 30s long. Enhanced sensory inputs within each set were presented in random order and included: baseline, visual flow, unloading, weights, Velcro and friction. Results Overall friction and visual flow significantly increased step rate, particularly for the older group. Friction and Velcro increased stance phase duration. Enhanced sensory input had minimal effect on leg activity when infants were not stepping. Conclusions Increased friction via Dycem and enhancing visual flow via a checkerboard pattern on the treadmill belt appear more effective than the traditional smooth black belt surface for eliciting stepping patterns in infants with MMC. PMID:21266940

  1. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Effects of Audiovisual Inputs on Solving the Cocktail Party Problem in the Human Brain: An fMRI Study.

    PubMed

    Li, Yuanqing; Wang, Fangyi; Chen, Yongbin; Cichocki, Andrzej; Sejnowski, Terrence

    2017-09-25

    At cocktail parties, our brains often simultaneously receive visual and auditory information. Although the cocktail party problem has been widely investigated under auditory-only settings, the effects of audiovisual inputs have not. This study explored the effects of audiovisual inputs in a simulated cocktail party. In our fMRI experiment, each congruent audiovisual stimulus was a synthesis of 2 facial movie clips, each of which could be classified into 1 of 2 emotion categories (crying and laughing). Visual-only (faces) and auditory-only stimuli (voices) were created by extracting the visual and auditory contents from the synthesized audiovisual stimuli. Subjects were instructed to selectively attend to 1 of the 2 objects contained in each stimulus and to judge its emotion category in the visual-only, auditory-only, and audiovisual conditions. The neural representations of the emotion features were assessed by calculating decoding accuracy and brain pattern-related reproducibility index based on the fMRI data. We compared the audiovisual condition with the visual-only and auditory-only conditions and found that audiovisual inputs enhanced the neural representations of emotion features of the attended objects instead of the unattended objects. This enhancement might partially explain the benefits of audiovisual inputs for the brain to solve the cocktail party problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-05-01

    Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”

  4. Visual-Spatial Orienting in Autism.

    ERIC Educational Resources Information Center

    Wainwright, J. Ann; Bryson, Susan E.

    1996-01-01

    Visual-spatial orienting in 10 high-functioning adults with autism was examined. Compared to controls, subjects responded faster to central than to lateral stimuli, and showed a left visual field advantage for stimulus detection only when laterally presented. Abnormalities in attention shifting and coordination of attentional and motor systems are…

  5. On the cyclic nature of perception in vision versus audition

    PubMed Central

    VanRullen, Rufin; Zoefel, Benedikt; Ilhan, Barkin

    2014-01-01

    Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in approximately 7–13 Hz cycles rather than continuously. On the other hand, experimental attempts at applying similar tools to demonstrate the discreteness of auditory awareness have been largely unsuccessful. We argue and demonstrate experimentally that visual and auditory perception are not equally affected by temporal subsampling of their respective input streams: video sequences remain intelligible at sampling rates of two to three frames per second, whereas audio inputs lose their fine temporal structure, and thus all significance, below 20–30 samples per second. This does not mean, however, that our auditory perception must proceed continuously. Instead, we propose that audition could still involve perceptual cycles, but the periodic sampling should happen only after the stage of auditory feature extraction. In addition, although visual perceptual cycles can follow one another at a spontaneous pace largely independent of the visual input, auditory cycles may need to sample the input stream more flexibly, by adapting to the temporal structure of the auditory inputs. PMID:24639585

  6. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637

  7. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    PubMed

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a long-lasting reverberation between a rapidly changing visual input and evoked neural activity, apparent in cross-correlations between occipital EEG and stimulus sequences, peaking in the alpha (∼10 Hz) range. We indeed found that perceptual echo is enhanced by repeatedly presenting the same visual sequence, indicating that the human visual system can rapidly and automatically learn regularities embedded within fast-changing dynamic sequences. These results point to a previously undiscovered regularity learning mechanism, operating at a rate defined by the alpha frequency. Copyright © 2017 the authors 0270-6474/17/378486-12$15.00/0.

  9. In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.

  10. Color vision defects in adrenomyeloneuropathy.

    PubMed Central

    Sack, G H; Raven, M B; Moser, H W

    1989-01-01

    The relationship between abnormal color vision and adrenomyeloneuropathy (AMN) was investigated in 27 AMN patients and 31 age-matched controls by using the Farnsworth-Munsell 100 Hue test. Twelve (44%) of 27 patients showed test scores significantly above normal. The axes of bipolarity determined by the testing differed widely between the patients with abnormal scores, compatible with the notion that different alterations in visual pigment genes occur in different AMN kindreds. These observations confirm our earlier impression that the frequency of abnormal color vision is increased in these kindreds, and it supports our contentions that (1) AMN (and its companion, adrenoleukodystrophy) are very closely linked to the visual pigment loci at Xq28 and (2) this proximity might provide the opportunity to observe contiguous gene defects. PMID:2729274

  11. On the effects of multimodal information integration in multitasking.

    PubMed

    Stock, Ann-Kathrin; Gohil, Krutika; Huster, René J; Beste, Christian

    2017-07-07

    There have recently been considerable advances in our understanding of the neuronal mechanisms underlying multitasking, but the role of multimodal integration for this faculty has remained rather unclear. We examined this issue by comparing different modality combinations in a multitasking (stop-change) paradigm. In-depth neurophysiological analyses of event-related potentials (ERPs) were conducted to complement the obtained behavioral data. Specifically, we applied signal decomposition using second order blind identification (SOBI) to the multi-subject ERP data and source localization. We found that both general multimodal information integration and modality-specific aspects (potentially related to task difficulty) modulate behavioral performance and associated neurophysiological correlates. Simultaneous multimodal input generally increased early attentional processing of visual stimuli (i.e. P1 and N1 amplitudes) as well as measures of cognitive effort and conflict (i.e. central P3 amplitudes). Yet, tactile-visual input caused larger impairments in multitasking than audio-visual input. General aspects of multimodal information integration modulated the activity in the premotor cortex (BA 6) as well as different visual association areas concerned with the integration of visual information with input from other modalities (BA 19, BA 21, BA 37). On top of this, differences in the specific combination of modalities also affected performance and measures of conflict/effort originating in prefrontal regions (BA 6).

  12. Young children's recall and reconstruction of audio and audiovisual narratives.

    PubMed

    Gibbons, J; Anderson, D R; Smith, R; Field, D E; Fischer, C

    1986-08-01

    It has been claimed that the visual component of audiovisual media dominates young children's cognitive processing. This experiment examines the effects of input modality while controlling the complexity of the visual and auditory content and while varying the comprehension task (recall vs. reconstruction). 4- and 7-year-olds were presented brief stories through either audio or audiovisual media. The audio version consisted of narrated character actions and character utterances. The narrated actions were matched to the utterances on the basis of length and propositional complexity. The audiovisual version depicted the actions visually by means of stop animation instead of by auditory narrative statements. The character utterances were the same in both versions. Audiovisual input produced superior performance on explicit information in the 4-year-olds and produced more inferences at both ages. Because performance on utterances was superior in the audiovisual condition as compared to the audio condition, there was no evidence that visual input inhibits processing of auditory information. Actions were more likely to be produced by the younger children than utterances, regardless of input medium, indicating that prior findings of visual dominance may have been due to the salience of narrative action. Reconstruction, as compared to recall, produced superior depiction of actions at both ages as well as more constrained relevant inferences and narrative conventions.

  13. Visual attention shifting in autism spectrum disorders.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be related to restricted and repetitive behaviors in these disorders.

  14. Abnormal late visual responses and alpha oscillations in neurofibromatosis type 1: a link to visual and attention deficits

    PubMed Central

    2014-01-01

    Background Neurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods. Methods Electroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow. Results We found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups. Conclusions Our findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1. PMID:24559228

  15. Stimulation from Cochlear Implant Electrodes Assists with Recovery from Asymmetric Perceptual Tilt: Evidence from the Subjective Visual Vertical Test

    PubMed Central

    Gnanasegaram, Joshua J.; Parkes, William J.; Cushing, Sharon L.; McKnight, Carmen L.; Papsin, Blake C.; Gordon, Karen A.

    2016-01-01

    Vestibular end organ impairment is highly prevalent in children who have sensorineural hearing loss (SNHL) rehabilitated with cochlear implants (CIs). As a result, spatial perception is likely to be impacted in this population. Of particular interest is the perception of visual vertical because it reflects a perceptual tilt in the roll axis and is sensitive to an imbalance in otolith function. The objectives of the present study were thus to identify abnormalities in perception of the vertical plane in children with SNHL and determine whether such abnormalities could be resolved with stimulation from the CI. Participants included 53 children (15.2 ± 4.0 years of age) with SNHL and vestibular loss, confirmed with vestibular evoked myogenic potential (VEMP) testing. Testing protocol was validated in a sample of nine young adults with normal hearing (28.8 ± 7.7 years). Perception of visual vertical was assessed using the static Subjective Visual Vertical (SVV) test performed with and without stimulation in the participants with cochleovestibular loss. Trains of electrical pulses were delivered by an electrode in the left and/or right ear. Asymmetric spatial orientation deficits were found in nearly half of the participants with CIs (24/53 [45%]). The abnormal perception in this cohort was exacerbated by visual tilts in the direction of their deficit. Electric pulse trains delivered using the CI shifted this abnormal perception towards center (i.e., normal; p = 0.007). Importantly, this benefit was realized regardless of which ear was stimulated. These results suggest a role for CI stimulation beyond the auditory system, in particular, for improving vestibular/balance function. PMID:27679562

  16. Comparison of multifocal visual evoked potential, static automated perimetry, and optical coherence tomography findings for assessing visual pathways in patients with pituitary adenomas.

    PubMed

    Qiao, Nidan; Zhang, Yichao; Ye, Zhao; Shen, Ming; Shou, Xuefei; Wang, Yongfei; Li, Shiqi; Wang, Min; Zhao, Yao

    2015-10-01

    There have been no studies investigating the correlation between structural [thickness of the retinal nerve fiber layer (RNFL) as determined by optical coherence tomography (OCT)] and functional [Humphrey visual field (HVF) or visual evoked potential (VEP) amplitude] measures of optic nerve integrity in patients with pituitary adenomas (PA). Patients with PAs were recruited between September 2010 and September 2013. OCT, standard automated perimetry (SAP), and multifical VEP (mfVEP) were performed. Agreement between OCT, SAP, and mfVEP values in classifying eyes/quadrants was determined using AC1 statistics. Pearson's correlation was used to examine relationships between structural and functional data. In total, 88.7% of the eyes tested showed abnormal SAP findings and 93.7% showed abnormal mfVEP findings. Only 14.8% of the eyes showed abnormal OCT findings. The agreement between SAP and mfVEP findings was 88.9% (AC1 = 0.87). The agreement between OCT and mfVEP findings was 24.2% (AC1 = -0.52), and that between OCT and SAP findings was 21.5% (AC1 = -0.56). The correlation values between RNFL thickness and the functional measurements were -0.601 for the mfVEP score (P = 0.000) and -0.441 for the SAP score (P = 0.000). The correlation between the mfVEP and SAP scores was -0.617 (P = 0.000). mfVEP, SAP, and OCT provided complementary information for detecting visual pathway abnormalities in patients with PAs. Good agreement was demonstrated between SAP and mfVEP and quantitative analysis of structure-function measurements revealed a moderate correlation.

  17. Normal versus High Tension Glaucoma: A Comparison of Functional and Structural Defects

    PubMed Central

    Thonginnetra, Oraorn; Greenstein, Vivienne C.; Chu, David; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.

    2009-01-01

    Purpose To compare visual field defects obtained with both multifocal visual evoked potential (mfVEP) and Humphrey visual field (HVF) techniques to topographic optic disc measurements in patients with normal tension glaucoma (NTG) and high tension glaucoma (HTG). Methods We studied 32 patients with NTG and 32 with HTG. All patients had reliable 24-2 HVFs with a mean deviation (MD) of −10 dB or better, a glaucomatous optic disc and an abnormal HVF in at least one eye. Multifocal VEPs were obtained from each eye and probability plots created. The mfVEP and HVF probability plots were divided into a central 10-degree (radius) and an outer arcuate subfield in both superior and inferior hemifields. Cluster analyses and counts of abnormal points were performed in each subfield. Optic disc images were obtained with the Heidelberg Retina Tomograph III (HRT III). Eleven stereometric parameters were calculated. Moorfields regression analysis (MRA) and the glaucoma probability score (GPS) were performed. Results There were no significant differences in MD and PSD values between NTG and HTG eyes. However, NTG eyes had a higher percentage of abnormal test points and clusters of abnormal points in the central subfields on both mfVEP and HVF than HTG eyes. For HRT III, there were no significant differences in the 11 stereometric parameters or in the MRA and GPS analyses of the optic disc images. Conclusions The visual field data suggest more localized and central defects for NTG than HTG. PMID:19223786

  18. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  19. Visually Guided Step Descent in Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Cowie, Dorothy; Braddick, Oliver; Atkinson, Janette

    2012-01-01

    Individuals with Williams syndrome (WS) have impairments in visuospatial tasks and in manual visuomotor control, consistent with parietal and cerebellar abnormalities. Here we examined whether individuals with WS also have difficulties in visually controlling whole-body movements. We investigated visual control of stepping down at a change of…

  20. FMRI of visual working memory in high school football players.

    PubMed

    Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M

    2015-01-01

    Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.

  1. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  2. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  3. Density of Visual Input Enhancement and Grammar Learning: A Research Proposal

    ERIC Educational Resources Information Center

    Tran, Thu Hoang

    2009-01-01

    Research in the field of second language acquisition (SLA) has been done to ascertain the effectiveness of visual input enhancement (VIE) on grammar learning. However, one issue remains unexplored: the effects of VIE density on grammar learning. This paper presents a research proposal to investigate the effects of the density of VIE on English…

  4. Localized direction selective responses in the dendrites of visual interneurons of the fly

    PubMed Central

    2010-01-01

    Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983

  5. Retinal detachment in hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome: Color vision abnormality as the first and predominant manifestation.

    PubMed

    Morisawa, Hiroyuki; Makino, Shinji; Takahashi, Hironori; Sorita, Mari; Matsubara, Shigeki

    2015-11-01

    Serous retinal detachment is sometimes caused by hypertensive disorders in pregnancy and its associated conditions, in which the predominant eye symptoms are blurred vision, distorted vision, and reduced visual acuity. To our best knowledge, this is the first report of a puerperal woman with hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome in whom color vision abnormality was the first and predominant manifestation of serous retinal detachment. At 32 weeks of gestation, the 34-year-old Japanese woman underwent cesarean section due to HELLP syndrome. She complained of color vision abnormality on day 1 post-partum and ophthalmological examination revealed serous retinal detachment of both eyes. The visual acuity was preserved. With supportive therapy, her color vision abnormality gradually ameliorated and retinal detachment completely resolved on day 34 post-partum without any sequelae. Obstetricians should be aware that color vision abnormality can be the first and predominant symptom of HELLP-related serous retinal detachment. © 2015 Japan Society of Obstetrics and Gynecology.

  6. Visual outcome after endoscopic third ventriculostomy for hydrocephalus.

    PubMed

    Jung, Ji-Ho; Chai, Yong-Hyun; Jung, Shin; Kim, In-Young; Jang, Woo-Youl; Moon, Kyung-Sub; Kim, Seul-Kee; Chong, Sangjoon; Kim, Seung-Ki; Jung, Tae-Young

    2018-02-01

    Hydrocephalus-related symptoms are mostly improved after successful endoscopic third ventriculostomy (ETV). However, visual symptoms can be different. This study was focused on visual symptoms. We analyzed the magnetic resonance images (MRI) of the orbit and visual outcomes. From August 2006 to November 2016, 50 patients with hydrocephalus underwent ETV. The male-to-female ratio was 33:17, and the median age was 61 years (range, 5-74 years). There were 18 pediatric and 32 adult patients. Abnormal orbital MRI findings included prominent subarachnoid space around the optic nerves and vertical tortuosity of the optic nerves. We retrospectively analyzed clinical symptoms, causes of hydrocephalus, ETV success score (ETVSS), ETV success rate, ETV complications, orbital MRI findings, and visual impairment score (VIS). The median duration of follow-up was 59 months (range, 3-113 months). The most common symptoms were headache, vomiting, and gait disturbance. Visual symptoms were found in 6 patients (12%). The most common causes of hydrocephalus were posterior fossa tumor in 13 patients, pineal tumor in 12, aqueductal stenosis in 8, thalamic malignant glioma in 7, and tectal glioma in 4. ETVSS was 70 in 3 patients, 80 in 34 patients, and 90 in 13 patients. ETV success rate was 80%. ETVSS 70 showed the trend in short-term survival compared to ETVSS 90 and 80. ETV complications included epidural hematoma requiring operation in one patient, transient hemiparesis in two patients, and infection in two patients. Preoperative abnormal orbital MRI findings were found in 18 patients and postoperative findings in 7 patients. Four of six patients with visual symptoms had abnormal MR findings. Three patients did not show VIS improvement, including two with severe visual symptoms. Patients with severe visual impairment were found to have bad outcomes. The visual symptoms related with increased intracranial pressure should be carefully monitored and controlled to improve outcomes.

  7. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.

    PubMed

    Tay, Su Ann; Sanjay, Srinivasan

    2012-07-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  8. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults.

    PubMed

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-08-15

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early-onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations.

  9. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  10. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.

    PubMed

    Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M

    2003-03-01

    A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.

  11. Standing postural reaction to visual and proprioceptive stimulation in chronic acquired demyelinating polyneuropathy.

    PubMed

    Provost, Clement P; Tasseel-Ponche, Sophie; Lozeron, Pierre; Piccinini, Giulia; Quintaine, Victorine; Arnulf, Bertrand; Kubis, Nathalie; Yelnik, Alain P

    2018-02-28

    To investigate the weight of visual and proprioceptive inputs, measured indirectly in standing position control, in patients with chronic acquired demyelinating polyneuropathy (CADP). Prospective case study. Twenty-five patients with CADP and 25 healthy controls. Posture was recorded on a double force platform. Stimulations were optokinetic (60°/s) for visual input and vibration (50 Hz) for proprioceptive input. Visual stimulation involved 4 tests (upward, downward, rightward and leftward) and proprioceptive stimulation 2 tests (triceps surae and tibialis anterior). A composite score, previously published and slightly modified, was used for the recorded postural signals from the different stimulations. Despite their sensitivity deficits, patients with CADP were more sensitive to proprioceptive stimuli than were healthy controls (mean composite score 13.9 ((standard deviation; SD) 4.8) vs 18.4 (SD 4.8), p = 0.002). As expected, they were also more sensitive to visual stimuli (mean composite score 10.5 (SD 8.7) vs 22.9 (SD 7.5), p <0.0001). These results encourage balance rehabilitation of patients with CADP, aimed at promoting the use of proprioceptive information, thereby reducing too-early development of visual compensation while proprioception is still available.

  12. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

    PubMed Central

    Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano

    2017-01-01

    The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631

  13. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus.

    PubMed

    Trick, G L; Burde, R M; Gordon, M O; Santiago, J V; Kilo, C

    1988-05-01

    In an attempt to elucidate more fully the pathophysiologic basis of early visual dysfunction in patients with diabetes mellitus, color vision (hue discrimination) and spatial resolution (contrast sensitivity) were tested in diabetic patients with little or no retinopathy (n = 57) and age-matched visual normals (n = 35). Some evidence of visual dysfunction was observed in 37.8% of the diabetics with no retinopathy and 60.0% of the diabetics with background retinopathy. Although significant hue discrimination and contrast sensitivity deficits were observed in both groups of diabetic patients, contrast sensitivity was abnormal more frequently than hue discrimination. However, only 5.4% of the diabetics with no retinopathy and 10.0% of the diabetics with background retinopathy exhibited both abnormal hue discrimination and abnormal contrast sensitivity. Contrary to previous reports, blue-yellow (B-Y) and red-green (R-G) hue discrimination deficits were observed with approximately equal frequency. In the diabetic group, contrast sensitivity was reduced at all spatial frequencies tested, but for individual diabetic patients, significant deficits were only evident for the mid-range spatial frequencies. Among diabetic patients, the hue discrimination deficits, but not the contrast sensitivity abnormalities, were correlated with the patients' hemoglobin A1 level. A negative correlation between contrast sensitivity at 6.0 cpd and the duration of diabetes also was observed.

  14. The effects of chlorpromazine and lorazepam on abnormal antisaccade and no-saccade distractibility.

    PubMed

    Green, J F; King, D J

    1998-10-15

    Abnormally high levels of saccadic distractibility have been demonstrated to occur in patients with schizophrenia. Converging evidence implicates frontal cortical dysfunction as a mechanism; however, much of the neuropharmacology of saccadic distractibility has not yet been established. We measured antisaccade, no-saccade, and visually guided saccade components in healthy subjects following single doses of lorazepam 2 mg, chlorpromazine 50-100 mg, and placebo. Visual analogue rating scales (VARS) provided a subjective measure of sedation. Lorazepam, but not chlorpromazine, was shown to cause an increase in saccadic distractibility in both the antisaccade and no-saccade tasks. Peak visually guided saccade velocity was decreased by lorazepam and chlorpromazine in a dose-dependent manner, with corresponding changes seen in VARS. Lorazepam, unexpectedly, did not affect peak antisaccade velocity. The background level of antisaccade directional errors was 6.43%, which is relatively low compared to control groups in patient studies. These results support the view that abnormal saccadic distractibility in patients with schizophrenia is not due to an acute effect of antipsychotic medication. The use of benzodiazepines and the level of task practice are highlighted as possible confounding variables in patient studies. The implications of these results for the current neuropathological theories of abnormal saccadic distractibility are discussed.

  15. The effect of transcutaneous electrical nerve stimulation on postural sway on fatigued dorsi-plantar flexor.

    PubMed

    Yu, JaeHo; Lee, SoYeon; Kim, HyongJo; Seo, DongKwon; Hong, JiHeon; Lee, DongYeop

    2014-01-01

    The application of transcutaneous electrical nerve stimulation (TENS) enhances muscle weakness and static balance by muscle fatigue. It was said that TENS affects decrease of the postural sway. On the other hand, the applications of TENS to separate dorsi-plantar flexor and the comparison with and without visual input have not been studied. Thus, the aim of this study was to compare the effects of TENS on fatigued dorsi-plantar flexor with and without visual input. 13 healthy adult males and 12 females were recruited and agreed to participate as the subject (mean age 20.5 ± 1.4, total 25) in this study after a preliminary research. This experiment was a single group repeated measurements design in three days. The first day, after exercise-induced fatigue, the standing position was maintained for 30 minutes and then the postural sway was measured on eyes open(EO) and eyes closed(EC). The second, TENS was applied to dorsi flexor in standing position for 30 minutes after conducting exercise-induced fatigue. On the last day, plantar flexor applied by TENS was measured to the postural sway on EO and EC after same exercise-induced fatigue. The visual input was not statistically difference between the groups. However, when compared of dorsi-plantar flexor after applied to TENS without visual input, the postural sway of plantar flexor was lower than the dorsi flexor (p< 0.05). As the result, the application of TENS in GCM clinically decreases the postural sway with visual input it helps to stable posture control and prevent to falling down.

  16. Slow changing postural cues cancel visual field dependence on self-tilt detection.

    PubMed

    Scotto Di Cesare, C; Macaluso, T; Mestre, D R; Bringoux, L

    2015-01-01

    Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants had to indicate whether they felt being tilted forward at successive angles. Results show that thresholds for self-tilt detection substantially differed between visual field dependent/independent subjects, when only the visual scene was rotated. This difference was no longer present when the body was actually rotated, whatever the visual scene condition (i.e., absent, static or rotated relative to the observer). These results suggest that the cancellation of visual field dependence by dynamic postural cues may rely on a multisensory reweighting process, where slow changing vestibular/somatosensory inputs may prevail over visual inputs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Factors Related to Impaired Visual Orienting Behavior in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J .J. M.; Evenhuis, H. M.; van der Steen, J.

    2012-01-01

    It is generally assumed that children with intellectual disabilities (ID) have an increased risk of impaired visual information processing due to brain damage or brain development disorder. So far little evidence has been presented to support this assumption. Abnormal visual orienting behavior is a sensitive tool to evaluate impaired visual…

  18. Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex

    PubMed Central

    Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu

    2013-01-01

    The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796

  19. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development

    PubMed Central

    Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin

    2017-01-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122

  20. V1 projection zone signals in human macular degeneration depend on task, not stimulus.

    PubMed

    Masuda, Yoichiro; Dumoulin, Serge O; Nakadomari, Satoshi; Wandell, Brian A

    2008-11-01

    We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization).

  1. V1 Projection Zone Signals in Human Macular Degeneration Depend on Task, not Stimulus

    PubMed Central

    Dumoulin, Serge O.; Nakadomari, Satoshi; Wandell, Brian A.

    2008-01-01

    We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization). PMID:18250083

  2. Visual information processing of faces in body dysmorphic disorder.

    PubMed

    Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan

    2007-12-01

    Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.

  3. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Top-down influence on the visual cortex of the blind during sensory substitution

    PubMed Central

    Murphy, Matthew C.; Nau, Amy C.; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2017-01-01

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. PMID:26584776

  5. Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration.

    PubMed

    Aslam, Tariq M; Zaki, Haider R; Mahmood, Sajjad; Ali, Zaria C; Ahmad, Nur A; Thorell, Mariana R; Balaskas, Konstantinos

    2018-01-01

    To develop a neural network for the estimation of visual acuity from optical coherence tomography (OCT) images of patients with neovascular age-related macular degeneration (AMD) and to demonstrate its use to model the impact of specific controlled OCT changes on vision. Artificial intelligence (neural network) study. We assessed 1400 OCT scans of patients with neovascular AMD. Fifteen physical features for each eligible OCT, as well as patient age, were used as input data and corresponding recorded visual acuity as the target data to train, validate, and test a supervised neural network. We then applied this network to model the impact on acuity of defined OCT changes in subretinal fluid, subretinal hyperreflective material, and loss of external limiting membrane (ELM) integrity. A total of 1210 eligible OCT scans were analyzed, resulting in 1210 data points, which were each 16-dimensional. A 10-layer feed-forward neural network with 1 hidden layer of 10 neurons was trained to predict acuity and demonstrated a root mean square error of 8.2 letters for predicted compared to actual visual acuity and a mean regression coefficient of 0.85. A virtual model using this network demonstrated the relationship of visual acuity to specific, programmed changes in OCT characteristics. When ELM is intact, there is a shallow decline in acuity with increasing subretinal fluid but a much steeper decline with equivalent increasing subretinal hyperreflective material. When ELM is not intact, all visual acuities are reduced. Increasing subretinal hyperreflective material or subretinal fluid in this circumstance reduces vision further still, but with a smaller gradient than when ELM is intact. The supervised machine learning neural network developed is able to generate an estimated visual acuity value from OCT images in a population of patients with AMD. These findings should be of clinical and research interest in macular degeneration, for example in estimating visual prognosis or highlighting the importance of developing treatments targeting more visually destructive pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gestural Communication With Accelerometer-Based Input Devices and Tactile Displays

    DTIC Science & Technology

    2008-12-01

    and natural terrain obstructions, or concealment often impede visual communication attempts. To overcome some of these issues, “daisy-chaining” or...the intended recipients. Moreover, visual communication demands a focus on the visual modality possibly distracting a receiving soldier’s visual

  7. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  9. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

    PubMed

    Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B

    2016-01-01

    Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.

  10. Operational Based Vision Assessment Cone Contrast Test: Description and Operation

    DTIC Science & Technology

    2016-06-01

    designed to detect abnormalities and characterize the contrast sensitivity of the color mechanisms of the human visual system. The OBVA CCT will...than 1, the individual is determined to have an abnormal L-M mechanism. The L-M sensitivity of mildly abnormal individuals (anomalous trichromats...response pads. This hardware is integrated with custom software that generates the stimuli, collects responses, and analyzes the results as outlined in

  11. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina

    PubMed Central

    Venkataramani, Sowmya

    2016-01-01

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041

  12. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.

    PubMed

    Venkataramani, Sowmya; Taylor, W Rowland

    2016-03-16

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.

  13. Transdiagnostic psychiatric symptoms related to visual evoked potential abnormalities.

    PubMed

    Bedwell, Jeffrey S; Butler, Pamela D; Chan, Chi C; Trachik, Benjamin J

    2015-12-15

    Visual processing abnormalities have been reported across a range of psychotic and mood disorders, but are typically examined within a particular disorder. The current study used a novel transdiagnostic approach to examine diagnostic classes, clinician-rated current symptoms, and self-reported personality traits in relation to visual processing abnormalities. We examined transient visual-evoked potentials (VEPs) from 48 adults (56% female), representing a wide range of psychotic and mood disorders, as well as individuals with no history of psychiatric disorder. Stimuli were low contrast check arrays presented on green and red backgrounds. Pairwise comparisons between individuals with schizophrenia-spectrum disorders (SSD), chronic mood disorders (CMD), and nonpsychiatric controls (NC) revealed no overall differences for either P1 or N1 amplitude. However, there was a significant interaction with the color background in which the NC group showed a significant increase in P1 amplitude to the red, vs. green, background, while the SSD group showed no change. This was related to an increase in social anhedonia and general negative symptoms. Stepwise regressions across the entire sample revealed that individuals with greater apathy and/or eccentric behavior had a reduced P1 amplitude. These relationships provide clues for uncovering the underlying causal pathology for these transdiagnostic symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    PubMed

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  15. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  16. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. High-Speed Ultra-High-Resolution Optical Coherence Tomography Findings in Hydroxychloroquine Retinopathy

    PubMed Central

    Rodriguez-Padilla, Julio A.; Hedges, Thomas R.; Monson, Bryan; Srinivasan, Vivek; Wojtkowski, Maciej; Reichel, Elias; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.

    2007-01-01

    Objectives To compare structural changes in the retina seen on high-speed ultra–high-resolution optical coherence tomography (hsUHR-OCT) with multifocal electroretinography (mfERG) and automated visual fields in patients receiving hydroxychloroquine. Methods Fifteen patients receiving hydroxychloroquine were evaluated clinically with hsUHR-OCT, mfERG, and automated visual fields. Six age-matched subjects were imaged with hsUHR-OCT and served as controls. Results Distinctive discontinuity of the perifoveal photoreceptor inner segment/outer segment junction and thinning of the outer nuclear layer were seen with hsUHR-OCT in patients with mild retinal toxic effects. Progression to complete loss of the inner segment/outer segment junction and hyperscattering at the outer segment level were seen in more advanced cases. The mfERG abnormalities correlated with the hsUHR-OCT findings. Asymptomatic patients had normal hsUHR-OCT and mfERG results. Conclusion Distinctive abnormalities in the perifoveal photoreceptor inner segment/outer segment junction were seen on hsUHR-OCT in patients receiving hydroxychloroquine who also were symptomatic and had abnormalities on automated visual fields and mfERG. PMID:17562988

  18. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  19. Top-Down and Bottom-Up Visual Information Processing of Non-Social Stimuli in High-Functioning Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Maekawa, Toshihiko; Tobimatsu, Shozo; Inada, Naoko; Oribe, Naoya; Onitsuka, Toshiaki; Kanba, Shigenobu; Kamio, Yoko

    2011-01-01

    Individuals with high-functioning autism spectrum disorder (HF-ASD) often show superior performance in simple visual tasks, despite difficulties in the perception of socially important information such as facial expression. The neural basis of visual perception abnormalities associated with HF-ASD is currently unclear. We sought to elucidate the…

  20. Ophthalmological, Cognitive, Electrophysiological and MRI Assessment of Visual Processing in Preterm Children without Major Neuromotor Impairment

    ERIC Educational Resources Information Center

    O'Reilly, Michelle; Vollmer, Brigitte; Vargha-Khadem, Faraneh; Neville, Brian; Connelly, Alan; Wyatt, John; Timms, Chris; De Haan, Michelle

    2010-01-01

    Many studies report chronic deficits in visual processing in children born preterm. We investigated whether functional abnormalities in visual processing exist in children born preterm but without major neuromotor impairment (i.e. cerebral palsy). Twelve such children (less than 33 weeks gestation or birthweight less than 1000 g) without major…

  1. Role of Visual Feedback Treatment for Defective /s/ Sounds in Patients with Cleft Palate.

    ERIC Educational Resources Information Center

    Michi, Ken-ichi; And Others

    1993-01-01

    Six patients with cleft palate were provided treatment using either visual feedback for tongue placement and frication or no visual feedback. Results indicated the feedback was especially useful in the treatment of defective /s/ sounds in the patients who exhibited abnormal posterior tongue posturing during dental or alveolar sounds. (Author/DB)

  2. Adapting the iSNOBAL model for improved visualization in a GIS environment

    NASA Astrophysics Data System (ADS)

    Johansen, W. J.; Delparte, D.

    2014-12-01

    Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.

  3. Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.

    PubMed

    Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M

    2016-05-01

    In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Serial and semantic encoding of lists of words in schizophrenia patients with visual hallucinations.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2011-03-30

    Previous research has suggested that visual hallucinations in schizophrenia are associated with abnormal salience of visual mental images. Since visual imagery is used as a mnemonic strategy to learn lists of words, increased visual imagery might impede the other commonly used strategies of serial and semantic encoding. We had previously published data on the serial and semantic strategies implemented by patients when learning lists of concrete words with different levels of semantic organisation (Brébion et al., 2004). In this paper we present a re-analysis of these data, aiming at investigating the associations between learning strategies and visual hallucinations. Results show that the patients with visual hallucinations presented less serial clustering in the non-organisable list than the other patients. In the semantically organisable list with typical instances, they presented both less serial and less semantic clustering than the other patients. Thus, patients with visual hallucinations demonstrate reduced use of serial and semantic encoding in the lists made up of fairly familiar concrete words, which enable the formation of mental images. Although these results are preliminary, we propose that this different processing of the lists stems from the abnormal salience of the mental images such patients experience from the word stimuli. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  6. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    PubMed Central

    Tay, Su Ann; Sanjay, Srinivasan

    2012-01-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia. PMID:22824610

  7. Automated detection of nerve fiber layer defects on retinal fundus images using fully convolutional network for early diagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryusuke; Muramatsu, Chisako; Ishida, Kyoko; Sawada, Akira; Hatanaka, Yuji; Yamamoto, Tetsuya; Fujita, Hiroshi

    2017-03-01

    Early detection of glaucoma is important to slow down progression of the disease and to prevent total vision loss. We have been studying an automated scheme for detection of a retinal nerve fiber layer defect (NFLD), which is one of the earliest signs of glaucoma on retinal fundus images. In our previous study, we proposed a multi-step detection scheme which consists of Gabor filtering, clustering and adaptive thresholding. The problems of the previous method were that the number of false positives (FPs) was still large and that the method included too many rules. In attempt to solve these problems, we investigated the end-to-end learning system without pre-specified features. A deep convolutional neural network (DCNN) with deconvolutional layers was trained to detect NFLD regions. In this preliminary investigation, we investigated effective ways of preparing the input images and compared the detection results. The optimal result was then compared with the result obtained by the previous method. DCNN training was carried out using original images of abnormal cases, original images of both normal and abnormal cases, ellipse-based polar transformed images, and transformed half images. The result showed that use of both normal and abnormal cases increased the sensitivity as well as the number of FPs. Although NFLDs are visualized with the highest contrast in green plane, the use of color images provided higher sensitivity than the use of green image only. The free response receiver operating characteristic curve using the transformed color images, which was the best among seven different sets studied, was comparable to that of the previous method. Use of DCNN has a potential to improve the generalizability of automated detection method of NFLDs and may be useful in assisting glaucoma diagnosis on retinal fundus images.

  8. Deficits in agency in schizophrenia, and additional deficits in body image, body schema, and internal timing, in passivity symptoms.

    PubMed

    Graham, Kyran T; Martin-Iverson, Mathew T; Holmes, Nicholas P; Jablensky, Assen; Waters, Flavie

    2014-01-01

    Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input.

  9. Holistic component of image perception in mammogram interpretation: gaze-tracking study.

    PubMed

    Kundel, Harold L; Nodine, Calvin F; Conant, Emily F; Weinstein, Susan P

    2007-02-01

    To test the hypothesis that rapid and accurate performance of the proficient observer in mammogram interpretation involves a shift in the mechanism of image perception from a relatively slow search-to-find mode to a relatively fast holistic mode. This HIPAA-compliant study had institutional review board approval, and participant informed consent was obtained; patient informed consent was not required. The eye positions of three full-time mammographers, one attending radiologist, two mammography fellows, and three radiology residents were recorded during the interpretation of 20 normal and 20 subtly abnormal mammograms. The search time required to first locate a cancer, as well as the initial eye scan path, was determined and compared with diagnostic performance as measured with receiver operating characteristic (ROC) analysis. The median time for all observers to fixate a cancer, regardless of the decision outcome, was 1.13 seconds, with a range of 0.68 second to 3.06 seconds. Even though most of the lesions were fixated, recognition of them as cancerous ranged from 85% (17 of 20) to 10% (two of 20), with corresponding areas under the ROC curve of 0.87-0.40. The ROC index of detectability, d(a), was linearly related to the time to first fixate a cancer with a correlation (r(2)) of 0.81. The rapid initial fixation of a true abnormality is evidence for a global perceptual process capable of analyzing the visual input of the entire retinal image and pinpointing the spatial location of an abnormality. It appears to be more highly developed in the most proficient observers, replacing the less efficient initial search-to-find strategies. (c) RSNA, 2007.

  10. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.

    PubMed

    Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph

    2016-09-12

    Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults

    PubMed Central

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-01-01

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early–onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations. PMID:17627994

  12. The right cerebral hemisphere: emotion, music, visual-spatial skills, body-image, dreams, and awareness.

    PubMed

    Joseph, R

    1988-09-01

    Based on a review of numerous studies conducted on normal, neurosurgical and brain-injured individuals, the right cerebral hemisphere appears to be dominant in the perception and identification of environmental and nonverbal sounds; the analysis of geometric and visual space (e.g., depth perception, visual closure); somesthesis, stereognosis, the maintenance of the body image; the production of dreams during REM sleep; the perception of most aspects of musical stimuli; and the comprehension and expression of prosodic, melodic, visual, facial, and verbal emotion. When the right hemisphere is damaged a variety of cognitive abnormalities may result, including hemi-inattention and neglect, prosopagnosia, constructional apraxia, visual-perceptual disturbances, and agnosia for environmental, musical, and emotional sounds. Similarly, a myriad of affective abnormalities may occur, including indifference, depression, hysteria, gross social-emotional disinhibition, florid manic excitement, childishness, euphoria, impulsivity, and abnormal sexual behavior. Patients may become delusional, engage in the production of bizzare confabulations and experience a host of somatic disturbances such as pain and body-perceptual distortions. Based on studies of normal and "split-brain" functioning, it also appears that the right hemisphere maintains a highly developed social-emotional mental system and can independently perceive, recall and act on certain memories and experiences without the aid or active reflective participation of the left. This leads to situations in which the right and left halves of the brain sometime act in an uncooperative fashion, which gives rise to inter-manual and intra-psychic conflicts.

  13. Assessing visual requirements for social context-dependent activation of the songbird song system

    PubMed Central

    Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.

    2008-01-01

    Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930

  14. [Usefulness of computed tomography with three-dimensional reconstructions in visualization of cervical spine malformation of a child with Sprengel's deformity].

    PubMed

    Wawrzynek, Wojciech; Siemianowicz, Anna; Koczy, Bogdan; Kasprowska, Sabina; Besler, Krzysztof

    2005-01-01

    The Sprengel's deformity is a congenital anomaly of the shoulder girdle with an elevation of the scapula and limitation of movement of the shoulder. Sprengel's deformity is frequently associated with cervical spine malformations such as: spinal synostosis, spina bifida and an abnormal omovertebral fibrous, cartilaginous or osseus connection. The diagnosis of Sprengel's deformity is based on a clinical examination and radiological procedures. In every case of Sprengel's deformity plain radiography and computed tomography should be performed. Three-dimensional (3D) reconstructions allow to visualize precise topography and spatial proportions of examined bone structures. 3D reconstruction also enables an optional rotation of visualized bone structures in order to clarify the anatomical abnormalities and to plan surgical treatment.

  15. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex

    PubMed Central

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2011-01-01

    Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788

  16. Predicting Cortical Dark/Bright Asymmetries from Natural Image Statistics and Early Visual Transforms

    PubMed Central

    Cooper, Emily A.; Norcia, Anthony M.

    2015-01-01

    The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624

  17. Inter-Rater Reliability for Speech-Language Therapists' Judgement of Oesophageal Abnormality during Oesophageal Visualization

    ERIC Educational Resources Information Center

    Miles, Anna

    2017-01-01

    Background: Oesophageal abnormalities are common findings in a speech-language therapy videofluoroscopy clinic. Fluoroscopic screening involving oropharynx alone fails to identify these patients. Oesophageal screening as an adjunct to videofluoroscopy is gaining popularity. Yet currently, little is known about the reliability of speech and…

  18. Visual Attention in Autism Families: "Unaffected" Sibs Share Atypical Frontal Activation

    ERIC Educational Resources Information Center

    Belmonte, Matthew K.; Gomot, Marie; Baron-Cohen, Simon

    2010-01-01

    Background: In addition to their more clinically evident abnormalities of social cognition, people with autism spectrum conditions (ASC) manifest perturbations of attention and sensory perception which may offer insights into the underlying neural abnormalities. Similar autistic traits in ASC relatives without a diagnosis suggest a continuity…

  19. 78 FR 734 - Medical Imaging Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ..., LLC. The proposed indication (use) for this product is for magnetic resonance imaging in brain...) to detect and visualize areas with disruption of the blood brain barrier (specialized tissues that help protect the brain) and/or abnormal vascularity (abnormal blood circulation). FDA intends to make...

  20. Should we add visual acuity ratios to referral criteria for potential cerebral visual impairment?

    PubMed

    van der Zee, Ymie J; Stiers, Peter; Evenhuis, Heleen M

    To determine whether the assessment of visual acuity ratios might improve the referral of children with (sub)normal visual acuity but at risk of cerebral visual impairment. In an exploratory study, we assessed visual acuity, crowding ratio and the ratios between grating acuity (Teller Acuity Cards-II) and optotype acuity (Cambridge Crowding Cards) in 60 typically developing school children (mean age 5y8m±1y1m), 21 children with ocular abnormalities only (5y7m±1y9m) and 26 children with (suspected) brain damage (5y7m±1y11m). Sensitivities and specificities were calculated for targets and controls from the perspective of different groups of diagnosticians: youth health care professionals (target: children with any visual abnormalities), ophthalmologists and low vision experts (target: children at risk of cerebral visual impairment). For youth health care professionals subnormal visual acuity had the best sensitivity (76%) and specificity (70%). For ophthalmologists and low vision experts the crowding ratio had the best sensitivity (67%) and specificity (79 and 86%). Youth health care professionals best continue applying subnormal visual acuity for screening, whereas ophthalmologists and low vision experts best add the crowding ratio to their routine diagnostics, to distinguish children at risk of visual impairment in the context of brain damage from children with ocular pathology only. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  1. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  2. Normal-tension glaucoma (Low-tension glaucoma)

    PubMed Central

    Anderson, Douglas R

    2011-01-01

    Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042

  3. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  4. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  5. Top-down influence on the visual cortex of the blind during sensory substitution.

    PubMed

    Murphy, Matthew C; Nau, Amy C; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C

    2016-01-15

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  7. Combined contributions of feedforward and feedback inputs to bottom-up attention

    PubMed Central

    Khorsand, Peyman; Moore, Tirin; Soltani, Alireza

    2015-01-01

    In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention. PMID:25784883

  8. The Effect of Conventional and Transparent Surgical Masks on Speech Understanding in Individuals with and without Hearing Loss.

    PubMed

    Atcherson, Samuel R; Mendel, Lisa Lucks; Baltimore, Wesley J; Patro, Chhayakanta; Lee, Sungmin; Pousson, Monique; Spann, M Joshua

    2017-01-01

    It is generally well known that speech perception is often improved with integrated audiovisual input whether in quiet or in noise. In many health-care environments, however, conventional surgical masks block visual access to the mouth and obscure other potential facial cues. In addition, these environments can be noisy. Although these masks may not alter the acoustic properties, the presence of noise in addition to the lack of visual input can have a deleterious effect on speech understanding. A transparent ("see-through") surgical mask may help to overcome this issue. To compare the effect of noise and various visual input conditions on speech understanding for listeners with normal hearing (NH) and hearing impairment using different surgical masks. Participants were assigned to one of three groups based on hearing sensitivity in this quasi-experimental, cross-sectional study. A total of 31 adults participated in this study: one talker, ten listeners with NH, ten listeners with moderate sensorineural hearing loss, and ten listeners with severe-to-profound hearing loss. Selected lists from the Connected Speech Test were digitally recorded with and without surgical masks and then presented to the listeners at 65 dB HL in five conditions against a background of four-talker babble (+10 dB SNR): without a mask (auditory only), without a mask (auditory and visual), with a transparent mask (auditory only), with a transparent mask (auditory and visual), and with a paper mask (auditory only). A significant difference was found in the spectral analyses of the speech stimuli with and without the masks; however, no more than ∼2 dB root mean square. Listeners with NH performed consistently well across all conditions. Both groups of listeners with hearing impairment benefitted from visual input from the transparent mask. The magnitude of improvement in speech perception in noise was greatest for the severe-to-profound group. Findings confirm improved speech perception performance in noise for listeners with hearing impairment when visual input is provided using a transparent surgical mask. Most importantly, the use of the transparent mask did not negatively affect speech perception performance in noise. American Academy of Audiology

  9. MEG-guided analysis of 7T-MRI in patients with epilepsy.

    PubMed

    Colon, A J; Osch, M J P van; Buijs, M; Grond, J V D; Hillebrand, A; Schijns, O; Wagner, G J; Ossenblok, P; Hofman, P; Buchem, M A V; Boon, P

    2018-05-26

    To study possible detection of structural abnormalities on 7T MRI that were not detected on 3T MRI and estimate the added value of MEG-guidance. For abnormalities found, analysis of convergence between clinical, MEG and 7T MRI localization of suspected epileptogenic foci. In adult patients with well-documented localization-related epilepsy in whom a previous 3T MRI did not demonstrate an epileptogenic lesion but MEG indicated a plausible epileptogenic focus, 7T MRI was performed. Based on semiologic data, visual analysis of the 7T images was performed as well as based on prior MEG results. Correlation with other data from the patient charts, for as far as these were available, was analysed. To establish the level of concordance between the three observers the generalized or Fleiss kappa was calculated. In 3/19 patients abnormalities that, based on semiology, could plausibly represent an epileptogenic lesion were detected using 7T MRI. In an additional 3/19 an abnormality was detected after MEG-guidance. However, in these later cases there was no concordance among the three observers with regard to the presence of a structural abnormality. In one of these three cases intracranial recording was performed, proving the possible abnormality on 7T MRI to be the epileptogenic focus. In 32% of patients 7T MRI showed abnormalities that could indicate an epileptogenic lesion whereas previous 3T MRI did not, especially when visual inspection was guided by the presence of focal interictal MEG abnormalities. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. Using Correlative Properties of Neighboring Pixels to Enhance Contrast-to-Noise Ratio of Abnormal Hippocampus in Patients With Intractable Epilepsy and Mesial Temporal Sclerosis.

    PubMed

    Parsons, Matthew S; Sharma, Aseem; Hildebolt, Charles

    2018-06-12

    To test whether an image-processing algorithm can aid in visualization of mesial temporal sclerosis on magnetic resonance imaging by selectively increasing contrast-to-noise ratio (CNR) between abnormal hippocampus and normal brain. In this Institutional Review Board-approved and Health Insurance Portability and Accountability Act-compliant study, baseline coronal fluid-attenuated inversion recovery images of 18 adults (10 females, eight males; mean age 41.2 years) with proven mesial temporal sclerosis were processed using a custom algorithm to produce corresponding enhanced images. Average (Hmean) and maximum (Hmax) CNR for abnormal hippocampus were calculated relative to normal ipsilateral white matter. CNR values for normal gray matter (GM) were similarly calculated using ipsilateral cingulate gyrus as the internal control. To evaluate effect of image processing on visual conspicuity of hippocampal signal alteration, a neuroradiologist masked to the side of hippocampal abnormality rated signal intensity (SI) of hippocampi on baseline and enhanced images using a five-point scale (definitely abnormal to definitely normal). Differences in Hmean, Hmax, GM, and SI ratings for abnormal hippocampi on baseline and enhanced images were assessed for statistical significance. Both Hmean and Hmax were significantly higher in enhanced images as compared to baseline images (p < 0.0001 for both). There was no significant difference in the GM between baseline and enhanced images (p = 0.9375). SI ratings showed a more confident identification of abnormality on enhanced images (p = 0.0001). Image-processing resulted in increased CNR of abnormal hippocampus without affecting the CNR of normal gray matter. This selective increase in conspicuity of abnormal hippocampus was associated with more confident identification of hippocampal signal alteration. Copyright © 2018 Academic Radiology. Published by Elsevier Inc. All rights reserved.

  11. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

    PubMed

    Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam

    2011-08-03

    Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.

  12. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.

    PubMed

    Stephany, Céleste-Élise; Ikrar, Taruna; Nguyen, Collins; Xu, Xiangmin; McGee, Aaron W

    2016-10-26

    A characteristic of the developing mammalian visual system is a brief interval of plasticity, termed the "critical period," when the circuitry of primary visual cortex is most sensitive to perturbation of visual experience. Depriving one eye of vision (monocular deprivation [MD]) during the critical period alters ocular dominance (OD) by shifting the responsiveness of neurons in visual cortex to favor the nondeprived eye. A disinhibitory microcircuit involving parvalbumin-expressing (PV) interneurons initiates this OD plasticity. The gene encoding the neuronal nogo-66-receptor 1 (ngr1/rtn4r) is required to close the critical period. Here we combined mouse genetics, electrophysiology, and circuit mapping with laser-scanning photostimulation to investigate whether disinhibition is confined to the critical period by ngr1 We demonstrate that ngr1 mutant mice retain plasticity characteristic of the critical period as adults, and that ngr1 operates within PV interneurons to restrict the loss of intracortical excitatory synaptic input following MD in adult mice, and this disinhibition induces a "lower PV network configuration" in both critical-period wild-type mice and adult ngr1 -/- mice. We propose that ngr1 limits disinhibition to close the critical period for OD plasticity and that a decrease in PV expression levels reports the diminished recent cumulative activity of these interneurons. Life experience refines brain circuits throughout development during specified critical periods. Abnormal experience during these critical periods can yield enduring maladaptive changes in neural circuits that impair brain function. In the developing visual system, visual deprivation early in life can result in amblyopia (lazy-eye), a prevalent childhood disorder comprising permanent deficits in spatial vision. Here we identify that the nogo-66 receptor 1 gene restricts an early and essential step in OD plasticity to the critical period. These findings link the emerging circuit-level description of OD plasticity to the genetic regulation of the critical period. Understanding how plasticity is confined to critical periods may provide clues how to better treat amblyopia. Copyright © 2016 the authors 0270-6474/16/3611006-07$15.00/0.

  13. Replacement of the Faces subtest by Visual Reproductions within Wechsler Memory Scale-Third Edition (WMS-III) visual memory indexes: implications for discrepancy analysis.

    PubMed

    Hawkins, Keith A; Tulsky, David S

    2004-06-01

    Within discrepancy analysis differences between scores are examined for abnormality. Although larger differences are generally associated with rising impairment probabilities, the relationship between discrepancy size and abnormality varies across score pairs in relation to the correlation between the contrasted scores in normal subjects. Examinee ability level also affects the size of discrepancies observed normally. Wechsler Memory Scale-Third Edition (WMS-III) visual index scores correlate only modestly with other Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) and WMS-III index scores; consequently, differences between these scores and others have to be very large before they become unusual, especially for subjects of higher intelligence. The substitution of the Faces subtest by Visual Reproductions within visual memory indexes formed by the combination of WMS-III visual subtests (creating immediate recall, delayed recall, and combined immediate and delayed index scores) results in higher correlation coefficients, and a decline in the discrepancy size required to surpass base rate thresholds for probable impairment. This gain appears not to occur at the cost of a diminished sensitivity to diverse pathologies. New WMS-III discrepancy base rate data are supplied to complement those currently available to clinicians.

  14. Visual Functions of the Thalamus

    PubMed Central

    Usrey, W. Martin; Alitto, Henry J.

    2017-01-01

    The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context. PMID:28217740

  15. Vision Function in HIV-infected Individuals without Retinitis; Report of the Studies of Ocular Complications of AIDS Research Group

    PubMed Central

    Freeman, William R.; Van Natta, Mark L.; Jabs, Douglas; Sample, Pamela A.; Sadun, Alfredo A.; Thorne, Jennifer; Shah, Kayur H.; Holland, Gary N.

    2008-01-01

    Purpose To evaluate the prevalence and risk factors for vision loss in patients with clinical or immunologic AIDS without infectious retinitis. Design A prospective multicentered cohort study of patients with AIDS. Methods 1,351 patients (2,671 eyes) at 19 clinical trials centers diagnosed with AIDS but without major ocular complications of HIV. Standardized measurements of visual acuity, automated perimetry, and contrast sensitivity were analyzed and correlated with measurements of patients’ health and medical data relating to HIV infection. We evaluated correlations between vision function testing and HIV-related risk factors and medical testing. Results There were significant (p<0.05) associations between measures of decreasing vision function and indices of increasing disease severity including Karnofsky score and hemoglobin. A significant relationship was seen between low contrast sensitivity and decreasing levels of CD4+ T-cell count. Three percent of eyes had a visual acuity worse than 20/40 Snellen equivalents, which was significantly associated with a history of opportunistic infections and low Karnofsky score. When compared to external groups with normal vision, 39% of eyes had abnormal mean deviation on automated perimetry, 33% had abnormal pattern standard deviation, and 12% of eyes had low contrast sensitivity. Conclusions This study confirms that visual dysfunction is common in patients with AIDS but without retinitis. The most prevalent visual dysfunction is loss of visual field; nearly 40% of patients have some abnormal visual field. There is an association between general disease severity and less access to care and vision loss. The pathophysiology of this vision loss is unknown but is consistent with retinovascular disease or optic nerve disease. PMID:18191094

  16. Multifocal and pattern-reversal visual evoked potentials vs. automated perimetry frequency-doubling technology matrix in optic neuritis

    PubMed Central

    Nebbioso, Marcella; Steigerwalt, Robert D; Pecori-Giraldi, Josè; Vingolo, Enzo M

    2013-01-01

    Background: To compare the usefulness of the traditional pattern-reversal Visual Evoked Potentials (VEP) with multifocal VEP (mfVEP) and Frequency-Doubling Technology (FDT) perimetry in the evaluation of the ocular abnormalities induced by acute or subacute optic neuritis (ON). Materials and Methods: The test results of 24 ON patients were compared with those obtained in 40 normal control subjects. MfVEP recordings were obtained by using an Optoelectronic Stimulator that extracts topographic VEP using a pseudorandom m-sequence stimulus. Receiver operator characteristic (ROC) curves were calculated to determine the sensitivity and specificity of abnormal values. Results: The frequency of the abnormal ocular findings differed in the ON patients according to the used technique. Reduced visual sensitivity was demonstrated in 12 eyes (54.5%) using FDT perimetry; 17 eyes (77.2%) showed decreased amplitude and/or an increase in the implicit time of the P1 wave in mfVEP and 20 eyes (90.9%) showed an abnormal decrease in the amplitude and/or an increase in the latency of the P100 peak at VEP examination. The areas under the ROC curves ranged from 0.743 to 0.935, with VEP having the largest areas. The VEP and mfVEP amplitudes and latencies yielded the greatest sensitivity and specificity. Conclusions: The mfVEP and the FDT perimetry can be used for the evaluation and monitoring of visual impairment in patients with ON. The most sensitive and practical diagnostic tool in patients with ON is, however, the traditional VEP. The mfVEP can be utilized in those cases with doubtful or negative VEP results. PMID:23412522

  17. Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding.

    PubMed

    Ponce, Carlos R; Lomber, Stephen G; Livingstone, Margaret S

    2017-05-10

    In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated "PIT" units with different input histories (lacking "V2|3" or "V4" input) allowed for comparable levels of object-decoding performance and that removing a large fraction of "PIT" activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT. SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary "ventral stream" (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel "bypass" pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways. Copyright © 2017 the authors 0270-6474/17/375019-16$15.00/0.

  18. Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding

    PubMed Central

    2017-01-01

    In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated “PIT” units with different input histories (lacking “V2|3” or “V4” input) allowed for comparable levels of object-decoding performance and that removing a large fraction of “PIT” activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT. SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary “ventral stream” (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel “bypass” pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways. PMID:28416597

  19. Functional and structural comparison of visual lateralization in birds – similar but still different

    PubMed Central

    Ströckens, Felix

    2014-01-01

    Vertebrate brains display physiological and anatomical left-right differences, which are related to hemispheric dominances for specific functions. Functional lateralizations likely rely on structural left-right differences in intra- and interhemispheric connectivity patterns that develop in tight gene-environment interactions. The visual systems of chickens and pigeons show that asymmetrical light stimulation during ontogeny induces a dominance of the left hemisphere for visuomotor control that is paralleled by projection asymmetries within the ascending visual pathways. But structural asymmetries vary essentially between both species concerning the affected pathway (thalamo- vs. tectofugal system), constancy of effects (transient vs. permanent), and the hemisphere receiving stronger bilateral input (right vs. left). These discrepancies suggest that at least two aspects of visual processes are influenced by asymmetric light stimulation: (1) visuomotor dominance develops within the ontogenetically stronger stimulated hemisphere but not necessarily in the one receiving stronger bottom-up input. As a secondary consequence of asymmetrical light experience, lateralized top-down mechanisms play a critical role in the emergence of hemispheric dominance. (2) Ontogenetic light experiences may affect the dominant use of left- and right-hemispheric strategies. Evidences from social and spatial cognition tasks indicate that chickens rely more on a right-hemispheric global strategy whereas pigeons display a dominance of the left hemisphere. Thus, behavioral asymmetries are linked to a stronger bilateral input to the right hemisphere in chickens but to the left one in pigeons. The degree of bilateral visual input may determine the dominant visual processing strategy when redundant encoding is possible. This analysis supports that environmental stimulation affects the balance between hemispheric-specific processing by lateralized interactions of bottom-up and top-down systems. PMID:24723898

  20. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS.

    PubMed

    Silva, Mauro Sb; Prescott, Melanie; Campbell, Rebecca E

    2018-04-05

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.

  1. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS

    PubMed Central

    Silva, Mauro S.B.; Prescott, Melanie; Campbell, Rebecca E.

    2018-01-01

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP–transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype. PMID:29618656

  2. New Perspectives in Amblyopia Therapy on Adults: A Critical Role for the Excitatory/Inhibitory Balance

    PubMed Central

    Baroncelli, Laura; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. This pathology is caused by early abnormal visual experience with a functional imbalance between the two eyes owing to anisometropia, strabismus, or congenital cataract, resulting in a dramatic loss of visual acuity in an apparently healthy eye and various other perceptual abnormalities, including deficits in contrast sensitivity and in stereopsis. It is currently accepted that, due to a lack of sufficient plasticity within the brain, amblyopia is untreatable in adulthood. However, recent results obtained both in clinical trials and in animal models have challenged this traditional view, unmasking a previously unsuspected potential for promoting recovery after the end of the critical period for visual cortex plasticity. These studies point toward the intracortical inhibitory transmission as a crucial brake for therapeutic rehabilitation and recovery from amblyopia in the adult brain. PMID:22144947

  3. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development.

    PubMed

    Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin

    2017-06-01

    Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Detection of flow limitation in obstructive sleep apnea with an artificial neural network.

    PubMed

    Norman, Robert G; Rapoport, David M; Ayappa, Indu

    2007-09-01

    During sleep, the development of a plateau on the inspiratory airflow/time contour provides a non-invasive indicator of airway collapsibility. Humans recognize this abnormal contour easily, and this study replicates this with an artificial neural network (ANN) using a normalized shape. Five 10 min segments were selected from each of 18 sleep records (respiratory airflow measured with a nasal cannula) with varying degrees of sleep disordered breathing. Each breath was visually scored for shape, and breaths split randomly into a training and test set. Equally spaced, peak amplitude normalized flow values (representing breath shape) formed the only input to a back propagation ANN. Following training, breath-by-breath agreement of the ANN with the manual classification was tabulated for the training and test sets separately. Agreement of the ANN was 89% in the training set and 70.6% in the test set. When the categories of 'probably normal' and 'normal', and 'probably flow limited' and 'flow limited' were combined, the agreement increased to 92.7% and 89.4% respectively, similar to the intra- and inter-rater agreements obtained by a visual classification of these breaths. On a naive dataset, the agreement of the ANN to visual classification was 57.7% overall and 82.4% when the categories were collapsed. A neural network based only on the shape of inspiratory airflow succeeded in classifying breaths as to the presence/absence of flow limitation. This approach could be used to provide a standardized, reproducible and automated means of detecting elevated upper airway resistance.

  5. Early Monocular Defocus Disrupts the Normal Development of Receptive-Field Structure in V2 Neurons of Macaque Monkeys

    PubMed Central

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi

    2014-01-01

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110

  6. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder

    PubMed Central

    Mohanty, Suman; Greene, Rachel K.; Cook, Edwin H.; Vaillancourt, David E.; Sweeney, John A.

    2015-01-01

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. PMID:25653359

  7. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  8. Retinal Origin of Direction Selectivity in the Superior Colliculus

    PubMed Central

    Shi, Xuefeng; Barchini, Jad; Ledesma, Hector Acaron; Koren, David; Jin, Yanjiao; Liu, Xiaorong; Wei, Wei; Cang, Jianhua

    2017-01-01

    Detecting visual features in the environment such as motion direction is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. Here, we optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly-tuned retinal ganglion cells. The direction selective retinal input is linearly amplified by the intracollicular circuits without changing its preferred direction or level of selectivity. Finally, using 2-photon calcium imaging, we show that SC direction selectivity is dramatically reduced in transgenic mice that have decreased retinal selectivity. Together, our studies demonstrate a retinal origin of direction selectivity in the SC, and reveal a central visual deficit as a consequence of altered feature selectivity in the retina. PMID:28192394

  9. Persistent neurotoxicity from a battery fire: is cadmium the culprit?

    PubMed

    Kilburn, K H; McKinley, K L

    1996-07-01

    Two train conductors had chest tightness, painful breathing, muscle cramps, and nausea after fighting a fire in a battery box under a passenger coach. Shortly thereafter, they became anosmic and had excessive fatigue, persistent headaches, sleep disturbances, irritability, unstable moods, and hypertension. Urinary cadmium and nickel levels were elevated. Neurobehavioral testing showed, in comparison to referents, prolonged reaction times, abnormal balance, prolonged blink reflex latency, severely constricted visual fields, and decreased vibration sense. Test scores showed that immediate verbal and visual recall were normal but delayed recall was reduced. Scores on overlearned information were normal. Tests measuring dexterity, coordination, decision making, and peripheral sensation and discrimination revealed abnormalities. Repeat testing 6 and 12 months after exposure showed persistent abnormalities. Cadmium and vinyl chloride are the most plausible causes of the neurotoxicity, but fumes from the fire may have contained other neurotoxic chemicals.

  10. Impaired integration of object knowledge and visual input in a case of ventral simultanagnosia with bilateral damage to area V4.

    PubMed

    Leek, E Charles; d'Avossa, Giovanni; Tainturier, Marie-Josèphe; Roberts, Daniel J; Yuen, Sung Lai; Hu, Mo; Rafal, Robert

    2012-01-01

    This study examines how brain damage can affect the cognitive processes that support the integration of sensory input and prior knowledge during shape perception. It is based on the first detailed study of acquired ventral simultanagnosia, which was found in a patient (M.T.) with posterior occipitotemporal lesions encompassing V4 bilaterally. Despite showing normal object recognition for single items in both accuracy and response times (RTs), and intact low-level vision assessed across an extensive battery of tests, M.T. was impaired in object identification with overlapping figures displays. Task performance was modulated by familiarity: Unlike controls, M.T. was faster with overlapping displays of abstract shapes than with overlapping displays of common objects. His performance with overlapping common object displays was also influenced by both the semantic relatedness and visual similarity of the display items. These findings challenge claims that visual perception is driven solely by feedforward mechanisms and show how brain damage can selectively impair high-level perceptual processes supporting the integration of stored knowledge and visual sensory input.

  11. Preserving information in neural transmission.

    PubMed

    Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O

    2009-05-13

    Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.

  12. Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate.

    PubMed

    Du, Jiayan; Zhao, Mengxin; Huang, Wei; Deng, Yuequan; He, Yi

    2018-05-09

    We report a molybdenum oxide (MoO 3 ) nanomaterial-based three-input logic gate that uses Sn 2+ , NO 2 - , and H + ions as inputs. Under acidic conditions, Sn 2+ is able to reduce MoO 3 nanosheets, generating oxygen-vacancy-rich MoO 3-x nanomaterials along with strong localized surface plasmon resonance (LSPR) and an intense blue solution as the output signal. When NO 2 - is introduced, the redox reaction between the MoO 3 nanosheets and Sn 2+ is strongly inhibited because the NO 2 - consumes both H + and Sn 2+ . The three-input logic gate was employed for the visual colorimetric detection of Sn 2+ and NO 2 - under different input states. The colorimetric assay's limit of detection for Sn 2+ and the lowest concentration of NO 2 - detectable by the assay were found to be 27.5 nM and 0.1 μM, respectively. The assay permits the visual detection of Sn 2+ and NO 2 - down to concentrations as low as 2 μM and 25 μM, respectively. The applicability of the logic-gate-based colorimetric assay was demonstrated by using it to detect Sn 2+ and NO 2 - in several water sources.

  13. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.

    PubMed

    Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.

  14. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice

    PubMed Central

    Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964

  15. Visual Processing: Hungry Like the Mouse.

    PubMed

    Piscopo, Denise M; Niell, Cristopher M

    2016-09-07

    In this issue of Neuron, Burgess et al. (2016) explore how motivational state interacts with visual processing, by examining hunger modulation of food-associated visual responses in postrhinal cortical neurons and their inputs from amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  17. 77 FR 20005 - Solicitation of Input From Stakeholders Regarding the Proposed Crop Protection Competitive Grants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From... Food and Agriculture, USDA. ACTION: Notice of public meeting and request for stakeholder input. SUMMARY... held by conference call (audio) and internet (visual only). Connection details for those meetings will...

  18. Clinical use of multifocal visual-evoked potentials in a glaucoma practice: a prospective study

    PubMed Central

    Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.

    2012-01-01

    Purpose To test a framework that describes how the multifocal visual-evoked potential (mfVEP) technique is used in a particular glaucoma practice. Methods In this prospective, descriptive study, glaucoma suspects, ocular hypertensives and glaucoma patients were referred for mfVEP testing by a single glaucoma specialist over a 2-year period. All patients underwent standard automated perimetry (SAP) and mfVEP testing within 3 months. Two hundred and ten patients (420 eyes) were referred for mfVEP testing for the following reasons: (1) normal SAP tests suspected of early functional loss (ocular hypertensives, n = 43; and glaucoma suspects on the basis of suspicious optic disks, n = 52); (2) normal-tension glaucoma patients with suspected central SAP defects (n = 33); and (3) SAP abnormalities needing confirmation (n = 82). Results All the glaucoma suspects with normal SAP and mfVEP results remained untreated. Of those with abnormal mfVEP results, 68 % (15/22) were treated because the abnormal regions on the mfVEP were consistent with the abnormal regions seen during clinical examination of the optic disk. The mfVEP was abnormal in 86 % (69/80) of eyes with glaucomatous optic neuropathy and SAP damage, even though it did not result in an altered treatment regimen. In NTG patients, the mfVEP showed central defects in 44 % (12 of 27) of the eyes with apparently normal central fields and confirmed central scotomata in 92 % (36 of 39), leading to more rigorous surveillance of these patients. Conclusions In a clinical practice, the mfVEP was used when clinical examination and subjective visual fields provided insufficient or conflicting information. This information influenced clinical management. PMID:22476612

  19. Clinical use of multifocal visual-evoked potentials in a glaucoma practice: a prospective study.

    PubMed

    De Moraes, Carlos Gustavo; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2012-08-01

    To test a framework that describes how the multifocal visual-evoked potential (mfVEP) technique is used in a particular glaucoma practice. In this prospective, descriptive study, glaucoma suspects, ocular hypertensives and glaucoma patients were referred for mfVEP testing by a single glaucoma specialist over a 2-year period. All patients underwent standard automated perimetry (SAP) and mfVEP testing within 3 months. Two hundred and ten patients (420 eyes) were referred for mfVEP testing for the following reasons: (1) normal SAP tests suspected of early functional loss (ocular hypertensives, n = 43; and glaucoma suspects on the basis of suspicious optic disks, n = 52); (2) normal-tension glaucoma patients with suspected central SAP defects (n = 33); and (3) SAP abnormalities needing confirmation (n = 82). All the glaucoma suspects with normal SAP and mfVEP results remained untreated. Of those with abnormal mfVEP results, 68 % (15/22) were treated because the abnormal regions on the mfVEP were consistent with the abnormal regions seen during clinical examination of the optic disk. The mfVEP was abnormal in 86 % (69/80) of eyes with glaucomatous optic neuropathy and SAP damage, even though it did not result in an altered treatment regimen. In NTG patients, the mfVEP showed central defects in 44 % (12 of 27) of the eyes with apparently normal central fields and confirmed central scotomata in 92 % (36 of 39), leading to more rigorous surveillance of these patients. In a clinical practice, the mfVEP was used when clinical examination and subjective visual fields provided insufficient or conflicting information. This information influenced clinical management.

  20. New animal models to study the role of tyrosinase in normal retinal development.

    PubMed

    Lavado, Alfonso; Montoliu, Lluis

    2006-01-01

    Albino animals display a hypopigmented phenotype associated with several visual abnormalities, including rod photoreceptor cell deficits, abnormal patterns of connections between the eye and the brain and a general underdevelopment of central retina. Oculocutaneous albinism type I, a common form of albinism, is caused by mutations in the tyrosinase gene. In mice, the albino phenotype can be corrected by functional tyrosinase transgenes. Tyrosinase transgenic animals not only show normal pigmentation but the correction of all visual abnormalities associated with albinism, confirming a role of tyrosinase, a key enzyme in melanin biosynthesis, in normal retinal development. Here, we will discuss recent work carried out with new tyrosinase transgenic mouse models, to further analyse the role of tyrosinase in retinal development. We will first report a transgenic model with inducible tyrosinase expression that has been used to address the regulated activation of this gene and its associated effects on the development of the visual system. Second, we will comment on an interesting yeast artificial chromosome (YAC)-tyrosinase transgene, lacking important regulatory elements, that has highlighted the significance of local interactions between the retinal pigment epithelium (RPE) and developing neural retina.

  1. The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.

    PubMed

    Hamodi, Ali S; Pratt, Kara G

    2015-01-01

    The Xenopus tadpole optic tectum is a multisensory processing center that receives direct visual input as well as nonvisual mechanosensory input. The tectal neurons that comprise the optic tectum are organized into layers. These neurons project their dendrites laterally into the neuropil where visual inputs target the distal region of the dendrite and nonvisual inputs target the proximal region of the same dendrite. The Xenopus tadpole tectum is a popular model to study the development of sensory circuits. However, whole cell patch-clamp electrophysiological studies of the tadpole tectum (using the whole brain or in vivo preparations) have focused solely on the deep-layer tectal neurons because only neurons of the deep layer are visible and accessible for whole cell electrophysiological recordings. As a result, whereas the development and plasticity of these deep-layer neurons has been well-studied, essentially nothing has been reported about the electrophysiology of neurons residing beyond this layer. Hence, there exists a large gap in our understanding about the functional development of the amphibian tectum as a whole. To remedy this, we developed a novel isolated brain preparation that allows visualizing and recording from all layers of the tectum. We refer to this preparation as the "horizontal brain slice preparation." Here, we describe the preparation method and illustrate how it can be used to characterize the electrophysiology of neurons across all of the layers of the tectum as well as the spatial pattern of synaptic input from the different sensory modalities. Copyright © 2015 the American Physiological Society.

  2. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder.

    PubMed

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, "eagle-like" visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection.

  3. Vitreoretinal interface abnormalities in middle-aged adults with visual impairment in the UK Biobank study: prevalence, impact on visual acuity and associations.

    PubMed

    McKibbin, Martin; Farragher, Tracey; Shickle, Darren

    2017-01-01

    The aim of this study was to determine the prevalence of vitreoretinal interface abnormalities (VRIA), the degree of visual impairment and associations with VRIA among adults, aged 40-69 years, in the UK Biobank study. Colour fundus photographs and spectral domain optical coherence tomography images were graded for 25% of the 8359 UK Biobank participants with mild visual impairment or worse (LogMAR >0.3 or Snellen <6/12) in at least one eye. The prevalence and contribution of VRIA to visual impairment was determined and multinomial logistic regression models were used to investigate association with known risk factors and other predetermined socioeconomic, biometric, lifestyle and medical variables for cases and matched controls. The minimum prevalence of any VRIA was 17.6% and 8.1% in the eyes with and without visual impairment, respectively. VRIA were identified as the primary cause of visual impairment in 3.6% of eyes. Although epiretinal membrane and vitreomacular traction were the most common VRIA, the degree of visual impairment was typically milder with these than with other VRIA. Visual impairment with a VRIA was positively associated with increasing age (relative risk ratio (RRR) 1.22 (95% CI 1.07 to 1.40)), female gender (RRR 1.28; 1.08 to 1.52) and Asian or Asian British ethnicity (RRR 1.60; 1.10 to 2.32). VRIA are common in middle-aged adults in the UK Biobank study, especially in eyes with visual impairment. VRIA were considered to be the primary cause of visual impairment in 3.6% of all eyes with visual impairment, although there was variation in the degree of visual impairment for each type of VRIA.

  4. Vitreoretinal interface abnormalities in middle-aged adults with visual impairment in the UK Biobank study: prevalence, impact on visual acuity and associations

    PubMed Central

    Farragher, Tracey; Shickle, Darren

    2017-01-01

    Objective The aim of this study was to determine the prevalence of vitreoretinal interface abnormalities (VRIA), the degree of visual impairment and associations with VRIA among adults, aged 40–69 years, in the UK Biobank study. Methods and analysis Colour fundus photographs and spectral domain optical coherence tomography images were graded for 25% of the 8359 UK Biobank participants with mild visual impairment or worse (LogMAR >0.3 or Snellen <6/12) in at least one eye. The prevalence and contribution of VRIA to visual impairment was determined and multinomial logistic regression models were used to investigate association with known risk factors and other predetermined socioeconomic, biometric, lifestyle and medical variables for cases and matched controls. Results The minimum prevalence of any VRIA was 17.6% and 8.1% in the eyes with and without visual impairment, respectively. VRIA were identified as the primary cause of visual impairment in 3.6% of eyes. Although epiretinal membrane and vitreomacular traction were the most common VRIA, the degree of visual impairment was typically milder with these than with other VRIA. Visual impairment with a VRIA was positively associated with increasing age (relative risk ratio (RRR) 1.22 (95% CI 1.07 to 1.40)), female gender (RRR 1.28; 1.08 to 1.52) and Asian or Asian British ethnicity (RRR 1.60; 1.10 to 2.32). Conclusions VRIA are common in middle-aged adults in the UK Biobank study, especially in eyes with visual impairment. VRIA were considered to be the primary cause of visual impairment in 3.6% of all eyes with visual impairment, although there was variation in the degree of visual impairment for each type of VRIA. PMID:29354705

  5. Diagnosing cerebral visual impairment in children with good visual acuity.

    PubMed

    van Genderen, Maria; Dekker, Marjoke; Pilon, Florine; Bals, Irmgard

    2012-06-01

    To identify elements that could facilitate the diagnosis of cerebral visual impairment (CVI) in children with good visual acuity in the general ophthalmic clinic. We retrospectively investigated the clinical characteristics of 30 children with good visual acuity and CVI and compared them with those of 23 children who were referred with a suspicion of CVI, but proved to have a different diagnosis. Clinical characteristics included medical history, MRI findings, visual acuity, crowding ratio (CR), visual field assessment, and the results of ophthalmologic and orthoptic examination. We also evaluated the additional value of a short CVI questionnaire. Eighty-three percent of the children with an abnormal medical history (mainly prematurity and perinatal hypoxia) had CVI, in contrast with none of the children with a normal medical history. Cerebral palsy, visual field defects, and partial optic atrophy only occurred in the CVI group. 41% of the children with CVI had a CR ≥2.0, which may be related to dorsal stream dysfunction. All children with CVI, but also 91% of the children without CVI gave ≥3 affirmative answers on the CVI questionnaire. An abnormal pre- or perinatal medical history is the most important risk factor for CVI in children, and therefore in deciding which children should be referred for further multidisciplinary assessment. Additional symptoms of cerebral damage, i.e., cerebral palsy, visual field defects, partial optic atrophy, and a CR ≥2 may support the diagnosis. CVI questionnaires should not be used for screening purposes as they yield too many false positives.

  6. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  7. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict.

    PubMed

    Donohue, Sarah E; Todisco, Alexandra E; Woldorff, Marty G

    2013-04-01

    Neuroimaging work on multisensory conflict suggests that the relevant modality receives enhanced processing in the face of incongruency. However, the degree of stimulus processing in the irrelevant modality and the temporal cascade of the attentional modulations in either the relevant or irrelevant modalities are unknown. Here, we employed an audiovisual conflict paradigm with a sensory probe in the task-irrelevant modality (vision) to gauge the attentional allocation to that modality. ERPs were recorded as participants attended to and discriminated spoken auditory letters while ignoring simultaneous bilateral visual letter stimuli that were either fully congruent, fully incongruent, or partially incongruent (one side incongruent, one congruent) with the auditory stimulation. Half of the audiovisual letter stimuli were followed 500-700 msec later by a bilateral visual probe stimulus. As expected, ERPs to the audiovisual stimuli showed an incongruency ERP effect (fully incongruent versus fully congruent) of an enhanced, centrally distributed, negative-polarity wave starting ∼250 msec. More critically here, the sensory ERP components to the visual probes were larger when they followed fully incongruent versus fully congruent multisensory stimuli, with these enhancements greatest on fully incongruent trials with the slowest RTs. In addition, on the slowest-response partially incongruent trials, the P2 sensory component to the visual probes was larger contralateral to the preceding incongruent visual stimulus. These data suggest that, in response to conflicting multisensory stimulus input, the initial cognitive effect is a capture of attention by the incongruent irrelevant-modality input, pulling neural processing resources toward that modality, resulting in rapid enhancement, rather than rapid suppression, of that input.

  8. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study.

    PubMed

    Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.

  9. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study

    PubMed Central

    Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037

  10. Simulation of talking faces in the human brain improves auditory speech recognition

    PubMed Central

    von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.

    2008-01-01

    Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648

  11. The Effect of Visual Variability on the Learning of Academic Concepts.

    PubMed

    Bourgoyne, Ashley; Alt, Mary

    2017-06-10

    The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Students with NL (n = 11) and LLD (n = 11) participated in a computer-based training for introductory biology course concepts. Participants were trained on half the concepts under a low-variability condition and half under a high-variability condition. Participants completed a posttest in which they were asked to identify and rate the accuracy of novel and trained visual representations of the concepts. We performed separate repeated measures analyses of variance to examine the accuracy of identification and ratings. Participants were equally accurate on trained and novel items in the high-variability condition, but were less accurate on novel items only in the low-variability condition. The LLD group showed the same pattern as the NL group; they were just less accurate. Results indicated that high-variability visual input may facilitate the acquisition of academic concepts in college students with NL and LLD. High-variability visual input may be especially beneficial for generalization to novel representations of concepts. Implicit learning methods may be harnessed by college courses to provide students with basic conceptual knowledge when they are entering courses or beginning new units.

  12. Mechanisms of inhibition in cat visual cortex.

    PubMed Central

    Berman, N J; Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Neurones from layers 2-6 of the cat primary visual cortex were studied using extracellular and intracellular recordings made in vivo. The aim was to identify inhibitory events and determine whether they were associated with small or large (shunting) changes in the input conductance of the neurones. 2. Visual stimulation of subfields of simple receptive fields produced depolarizing or hyperpolarizing potentials that were associated with increased or decreased firing rates respectively. Hyperpolarizing potentials were small, 5 mV or less. In the same neurones, brief electrical stimulation of cortical afferents produced a characteristic sequence of a brief depolarization followed by a long-lasting (200-400 ms) hyperpolarization. 3. During the response to a stationary flashed bar, the synaptic activation increased the input conductance of the neurone by about 5-20%. Conductance changes of similar magnitude were obtained by electrically stimulating the neurone. Neurones stimulated with non-optimal orientations or directions of motion showed little change in input conductance. 4. These data indicate that while visually or electrically induced inhibition can be readily demonstrated in visual cortex, the inhibition is not associated with large sustained conductance changes. Thus a shunting or multiplicative inhibitory mechanism is not the principal mechanism of inhibition. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1804983

  13. Altered Face Scanning and Impaired Recognition of Biological Motion in a 15-Month-Old Infant with Autism

    ERIC Educational Resources Information Center

    Klin, Ami; Jones, Warren

    2008-01-01

    Mounting clinical evidence suggests that abnormalities of social engagement in children with autism are present even during infancy. However, direct experimental documentation of these abnormalities is still limited. In this case report of a 15-month-old infant with autism, we measured visual fixation patterns to both naturalistic and ambiguous…

  14. Clustering of Synoptic Pattern over the Korean Peninsula from Meteorological Models

    NASA Astrophysics Data System (ADS)

    Kim, Jinah; Heo, Kiyoung; Choi, Jungwoon; Jung, Sanghoon

    2017-04-01

    Numerical modeling data on meteorological and ocean science is one of example of big geographic data sources. The properties of the data including the volume, variety, and dynamic aspects pose new challenges for geographic visualization, and visual geoanalytics using big data analysis using machine learning method. A combination of algorithmic and visual approaches that make sense of large volumes of various types of spatiotemporal data are required to gain knowledge about complex phenomena. In the East coast of Korea, it is suffering from property damages and human causalities due to abnormal high waves (swell-like high-height waves). It is known to be caused by local meteorological conditions on the East Sea of Korean Peninsula in previous research and they proposed three kinds of pressure patterns that generate abnormal high waves. However, they cannot describe all kinds of pressure patterns that generate abnormal high waves. In our study, we propose unsupervised machine learning method for pattern clustering and applied it to classify a pattern which has occurred abnormal high waves using numerical meteorological model's reanalysis data from 2000 to 2015 and past historical records of accidents by abnormal high waves. About 25,000 patterns of total spatial distribution of sea surface pressure are clustered into 30 patterns and they are classified into seasonal sea level pressure patterns based on meteorological characteristics of Korean peninsula. Moreover, in order to determine the representative patterns which occurs abnormal high waves, we classified it again using historical accidents cases among the winter season pressure patterns. In this work, we clustered synoptic pattern over the Korean Peninsula in meteorological modeling reanalysis data and we could understand a seasonal variation through identifying the occurrence of clustered synoptic pattern. For the future work, we have to identify the relationship of wave modeling data for better understanding of abnormal high waves and we will develop pattern decision system to predict abnormal high waves in advances. This research was a part of the project titled "Development of Korea Operational Oceanographic System (KOOS), Phase 2" and "Investigation of Large Swell Waves and Rip currents and Development of The Disaster Response System," funded by the Ministry of Oceans & Fisheries Korea (Grant PM59691 and PM59240).

  15. Influence of moving visual environment on sit-to-stand kinematics in children and adults.

    PubMed

    Slaboda, Jill C; Barton, Joseph E; Keshner, Emily A

    2009-08-01

    The effect of visual field motion on the sit-to-stand kinematics of adults and children was investigated. Children (8 to12 years of age) and adults (21 to 49 years of age) were seated in a virtual environment that rotated in the pitch and roll directions. Participants stood up either (1) concurrent with onset of visual motion or (2) after an immersion period in the moving visual environment, and (3) without visual input. Angular velocities of the head with respect to the trunk, and trunk with respect to the environment, w ere calculated as was head andtrunk center of mass. Both adults and children reduced head and trunk angular velocity after immersion in the moving visual environment. Unlike adults, children demonstrated significant differences in displacement of the head center of mass during the immersion and concurrent trials when compared to trials without visual input. Results suggest a time-dependent effect of vision on sit-to-stand kinematics in adults, whereas children are influenced by the immediate presence or absence of vision.

  16. The intralaminar thalamus—an expressway linking visual stimuli to circuits determining agency and action selection

    PubMed Central

    Fisher, Simon D.; Reynolds, John N. J.

    2014-01-01

    Anatomical investigations have revealed connections between the intralaminar thalamic nuclei and areas such as the superior colliculus (SC) that receive short latency input from visual and auditory primary sensory areas. The intralaminar nuclei in turn project to the major input nucleus of the basal ganglia, the striatum, providing this nucleus with a source of subcortical excitatory input. Together with a converging input from the cerebral cortex, and a neuromodulatory dopaminergic input from the midbrain, the components previously found necessary for reinforcement learning in the basal ganglia are present. With this intralaminar sensory input, the basal ganglia are thought to play a primary role in determining what aspect of an organism’s own behavior has caused salient environmental changes. Additionally, subcortical loops through thalamic and basal ganglia nuclei are proposed to play a critical role in action selection. In this mini review we will consider the anatomical and physiological evidence underlying the existence of these circuits. We will propose how the circuits interact to modulate basal ganglia output and solve common behavioral learning problems of agency determination and action selection. PMID:24765070

  17. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.

    PubMed

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M; Weinreb, Robert N; Rosen, Peter N; Liebmann, Jeffrey M; Girkin, Christopher A; Medeiros, Felipe A

    2013-04-01

    It is reasonable to hypothesize that for 2 patients with similar degrees of integrated binocular visual field (BVF) loss, the patient with a history of faster disease progression will report worse vision-related quality of life (VRQOL) than the patient with slowly progressing damage. However, to our knowledge, this hypothesis has not been investigated in the literature. To evaluate the association between binocular rates of visual field change and VRQOL in patients with glaucoma. DESIGN Observational cohort study. Patients were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. The study included 796 eyes of 398 patients with diagnosed or suspected glaucoma followed up from October 1, 1998, until January 31, 2012, for a mean (SD) of 7.3 (2.0) years. The VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. The NEI VFQ-25 was completed for all patients during the period extending from December 1, 2009, through January 31, 2012. Integrated BVFs were calculated from the monocular fields of each patient. Linear regression of mean deviation values was used to evaluate rates of BVF change during the follow-up period. Logistic regression models were used to investigate the association between abnormal VRQOL and rates of BVF change, while adjusting for potentially confounding socioeconomic and demographic variables. Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25. Patients with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (-0.18 vs -0.06 dB/y; P < .001). Rates of BVF change were significantly associated with abnormality in VRQOL (odds ratio = 1.31 per 0.1 dB/y faster; P = .04), after adjustment for confounding variables. Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma.

  18. Brain MRI findings in two cases with eclampsia.

    PubMed

    Unal, M; Senakayli, O C; Serçe, K

    1996-08-01

    Neurological complications in patients with eclampsia are varied and include headache, visual disturbances, focal neurological deficits, altered mental status and coma. Occasionally, a focal neurological deficit includes a variety of visual disturbances. The pathophysiology of CNS abnormalities in patients with eclampsia is uncertain. Our cases, combined with a review of the literature, demonstrate that there is no correlation among severity of hypertension, parity, and location of lesions at initial magnetic resonance (MR) imaging findings or between the severity of hypertension and neurological symptoms. Two typical patterns are seen on MR images of patients with eclampsia. Lesions in the region of the posterior cerebral circulation are most common and are frequently associated with visual disturbances. Although there are lesions in the deep white matter or basal ganglia, a focal neurological deficit or alterations in mental status may not develop. This demonstrates the sensitivity of MR imaging in the detection of abnormalities in patients with eclampsia, even those without neurological deficits.

  19. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.

    PubMed

    Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea

    2017-05-01

    Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.

  20. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study.

    PubMed

    Stahl, Robert; Luke, Anthony; Ma, C Benjamin; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M

    2008-07-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences.

  1. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working memory, it remains unclear how these representations persist through subsequent input. Here, we used quantitative model-based fMRI analyses to reconstruct the contents of working memory and examine the effects of distracting input. Although representations in the early visual areas were systematically biased by distractors, those in the intraparietal sulcus appeared distractor-resistant. In contrast, early visual representations were most reliable in the absence of distraction. These results demonstrate the dynamic, adaptive nature of visual working memory processes, and provide quantitative insight into the ways in which representations can be affected by interference. Further, they suggest that current models of working memory should be revised to incorporate this flexibility. Copyright © 2018 the authors 0270-6474/18/385267-10$15.00/0.

  2. A connectionist model of category learning by individuals with high-functioning autism spectrum disorder.

    PubMed

    Dovgopoly, Alexander; Mercado, Eduardo

    2013-06-01

    Individuals with autism spectrum disorder (ASD) show atypical patterns of learning and generalization. We explored the possible impacts of autism-related neural abnormalities on perceptual category learning using a neural network model of visual cortical processing. When applied to experiments in which children or adults were trained to classify complex two-dimensional images, the model can account for atypical patterns of perceptual generalization. This is only possible, however, when individual differences in learning are taken into account. In particular, analyses performed with a self-organizing map suggested that individuals with high-functioning ASD show two distinct generalization patterns: one that is comparable to typical patterns, and a second in which there is almost no generalization. The model leads to novel predictions about how individuals will generalize when trained with simplified input sets and can explain why some researchers have failed to detect learning or generalization deficits in prior studies of category learning by individuals with autism. On the basis of these simulations, we propose that deficits in basic neural plasticity mechanisms may be sufficient to account for the atypical patterns of perceptual category learning and generalization associated with autism, but they do not account for why only a subset of individuals with autism would show such deficits. If variations in performance across subgroups reflect heterogeneous neural abnormalities, then future behavioral and neuroimaging studies of individuals with ASD will need to account for such disparities.

  3. Genetics Home Reference: Bardet-Biedl syndrome

    MedlinePlus

    ... signaling pathways. Cilia are also necessary for the perception of sensory input (such as sight, hearing, and ... during development and lead to abnormalities of sensory perception. Researchers believe that defective cilia are responsible for ...

  4. Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data

    PubMed Central

    Bergeron, Bryan P.; Greenes, Robert A.

    1987-01-01

    Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.

  5. Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.

    PubMed

    Briggs, F; Callaway, E M

    2001-05-15

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.

  6. Sleep Disturbances among Persons Who Are Visually Impaired: Survey of Dog Guide Users.

    ERIC Educational Resources Information Center

    Fouladi, Massoud K.; Moseley, Merrick J.; Jones, Helen S.; Tobin, Michael J.

    1998-01-01

    A survey completed by 1237 adults with severe visual impairments found that 20% described the quality of their sleep as poor or very poor. Exercise was associated with better sleep and depression with poorer sleep. However, visual acuity did not predict sleep quality, casting doubt on the idea that restricted visual input (light) causes sleep…

  7. The McCollough effect and facial emotion discrimination in patients with schizophrenia and their unaffected relatives.

    PubMed

    Surguladze, Simon A; Chkonia, Eka D; Kezeli, Archil R; Roinishvili, Maya O; Stahl, Daniel; David, Anthony S

    2012-05-01

    Abnormalities in visual processing have been found consistently in schizophrenia patients, including deficits in early visual processing, perceptual organization, and facial emotion recognition. There is however no consensus as to whether these abnormalities represent heritable illness traits and what their contribution is to psychopathology. Fifty patients with schizophrenia, 61 of their first-degree healthy relatives, and 50 psychiatrically healthy volunteers were tested with regard to facial affect (FA) discrimination and susceptibility to develop the color-contingent illusion [the McCollough Effect (ME)]. Both patients and relatives demonstrated significantly lower accuracy in FA discrimination compared with controls. There was also a significant effect of familiality: Participants from the same families had more similar accuracy scores than those who belonged to different families. Experiments with the ME showed that schizophrenia patients required longer time to develop the illusion than relatives and controls, which indicated poor visual adaptation in schizophrenia. Relatives were marginally slower than controls. There was no significant association between the measures of FA discrimination accuracy and ME in any of the participant groups. Facial emotion discrimination was associated with the degree of interpersonal problems, as measured by the Schizotypal Personality Questionnaire in relatives and healthy volunteers, whereas the ME was associated with the perceptual-cognitive symptoms of schizotypy and positive symptoms of schizophrenia. Our results support the heritability of FA discrimination deficits as a trait and indicate visual adaptation abnormalities in schizophrenia, which are symptom related.

  8. Abnormal Fixational Eye Movements in Amblyopia.

    PubMed

    Shaikh, Aasef G; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F

    2016-01-01

    Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.

  9. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    PubMed

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  10. Abnormal Fixational Eye Movements in Amblyopia

    PubMed Central

    Shaikh, Aasef G.; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F.

    2016-01-01

    Purpose Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Methods Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. Results We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. Discussion This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity. PMID:26930079

  11. Human postural responses to motion of real and virtual visual environments under different support base conditions.

    PubMed

    Mergner, T; Schweigart, G; Maurer, C; Blümle, A

    2005-12-01

    The role of visual orientation cues for human control of upright stance is still not well understood. We, therefore, investigated stance control during motion of a visual scene as stimulus, varying the stimulus parameters and the contribution from other senses (vestibular and leg proprioceptive cues present or absent). Eight normal subjects and three patients with chronic bilateral loss of vestibular function participated. They stood on a motion platform inside a cabin with an optokinetic pattern on its interior walls. The cabin was sinusoidally rotated in anterior-posterior (a-p) direction with the horizontal rotation axis through the ankle joints (f=0.05-0.4 Hz; A (max)=0.25 degrees -4 degrees ; v (max)=0.08-10 degrees /s). The subjects' centre of mass (COM) angular position was calculated from opto-electronically measured body sway parameters. The platform was either kept stationary or moved by coupling its position 1:1 to a-p hip position ('body sway referenced', BSR, platform condition), by which proprioceptive feedback of ankle joint angle became inactivated. The visual stimulus evoked in-phase COM excursions (visual responses) in all subjects. (1) In normal subjects on a stationary platform, the visual responses showed saturation with both increasing velocity and displacement of the visual stimulus. The saturation showed up abruptly when visually evoked COM velocity and displacement reached approximately 0.1 degrees /s and 0.1 degrees , respectively. (2) In normal subjects on a BSR platform (proprioceptive feedback disabled), the visual responses showed similar saturation characteristics, but at clearly higher COM velocity and displacement values ( approximately 1 degrees /s and 1 degrees , respectively). (3) In patients on a stationary platform (no vestibular cues), the visual responses were basically similar to those of the normal subjects, apart from somewhat higher gain values and less-pronounced saturation effects. (4) In patients on a BSR platform (no vestibular and proprioceptive cues, presumably only somatosensory graviceptive and visual cues), the visual responses showed an abnormal increase in gain with increasing stimulus frequency in addition to a displacement saturation. On the normal subjects we performed additional experiments in which we varied the gain of the visual response by using a 'virtual reality' visual stimulus or by applying small lateral platform tilts. This did not affect the saturation characteristics of the visual response to a considerable degree. We compared the present results to previous psychophysical findings on motion perception, noting similarities of the saturation characteristics in (1) with leg proprioceptive detection thresholds of approximately 0.1 degrees /s and 0.1 degrees and those in (2) with vestibular detection thresholds of 1 degrees /s and 1 degrees , respectively. From the psychophysical data one might hypothesise that a proprioceptive postural mechanism limits the visually evoked body excursions if these excursions exceed 0.1 degrees /s and 0.1 degrees in condition (1) and that a vestibular mechanism is doing so at 1 degrees /s and 1 degrees in (2). To better understand this, we performed computer simulations using a posture control model with multiple sensory feedbacks. We had recently designed the model to describe postural responses to body pull and platform tilt stimuli. Here, we added a visual input and adjusted its gain to fit the simulated data to the experimental data. The saturation characteristics of the visual responses of the normals were well mimicked by the simulations. They were caused by central thresholds of proprioceptive, vestibular and somatosensory signals in the model, which, however, differed from the psychophysical thresholds. Yet, we demonstrate in a theoretical approach that for condition (1) the model can be made monomodal proprioceptive with the psychophysical 0.1 degrees /s and 0.1 degrees thresholds, and for (2) monomodal vestibular with the psychophysical 1 degrees /s and 1 degrees thresholds, and still shows the corresponding saturation characteristics (whereas our original model covers both conditions without adjustments). The model simulations also predicted the almost normal visual responses of patients on a stationary platform and their clearly abnormal responses on a BSR platform.

  12. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait.

    PubMed

    Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas

    2016-05-01

    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present.

  13. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    NASA Technical Reports Server (NTRS)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  14. Diagnostic performance of an automated analysis software for the diagnosis of Alzheimer’s dementia with 18F FDG PET

    PubMed Central

    Partovi, Sasan; Yuh, Roger; Pirozzi, Sara; Lu, Ziang; Couturier, Spencer; Grosse, Ulrich; Schluchter, Mark D; Nelson, Aaron; Jones, Robert; O’Donnell, James K; Faulhaber, Peter

    2017-01-01

    The objective of this study was to assess the ability of a quantitative software-aided approach to improve the diagnostic accuracy of 18F FDG PET for Alzheimer’s dementia over visual analysis alone. Twenty normal subjects (M:F-12:8; mean age 80.6 years) and twenty mild AD subjects (M:F-12:8; mean age 70.6 years) with 18F FDG PET scans were obtained from the ADNI database. Three blinded readers interpreted these PET images first using a visual qualitative approach and then using a quantitative software-aided approach. Images were classified on two five-point scales based on normal/abnormal (1-definitely normal; 5-definitely abnormal) and presence of AD (1-definitely not AD; 5-definitely AD). Diagnostic sensitivity, specificity, and accuracy for both approaches were compared based on the aforementioned scales. The sensitivity, specificity, and accuracy for the normal vs. abnormal readings of all readers combined were higher when comparing the software-aided vs. visual approach (sensitivity 0.93 vs. 0.83 P = 0.0466; specificity 0.85 vs. 0.60 P = 0.0005; accuracy 0.89 vs. 0.72 P<0.0001). The specificity and accuracy for absence vs. presence of AD of all readers combined were higher when comparing the software-aided vs. visual approach (specificity 0.90 vs. 0.70 P = 0.0008; accuracy 0.81 vs. 0.72 P = 0.0356). Sensitivities of the software-aided and visual approaches did not differ significantly (0.72 vs. 0.73 P = 0.74). The quantitative software-aided approach appears to improve the performance of 18F FDG PET for the diagnosis of mild AD. It may be helpful for experienced 18F FDG PET readers analyzing challenging cases. PMID:28123864

  15. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.

    PubMed

    Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2007-05-01

    During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.

  16. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    PubMed Central

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  17. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.

    PubMed

    Heap, Lucy A; Vanwalleghem, Gilles C; Thompson, Andrew W; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K

    2017-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  18. The strength of attentional biases reduces as visual short-term memory load increases

    PubMed Central

    Shimi, A.

    2013-01-01

    Despite our visual system receiving irrelevant input that competes with task-relevant signals, we are able to pursue our perceptual goals. Attention enhances our visual processing by biasing the processing of the input that is relevant to the task at hand. The top-down signals enabling these biases are therefore important for regulating lower level sensory mechanisms. In three experiments, we examined whether we apply similar biases to successfully maintain information in visual short-term memory (VSTM). We presented participants with targets alongside distracters and we graded their perceptual similarity to vary the extent to which they competed. Experiments 1 and 2 showed that the more items held in VSTM before the onset of the distracters, the more perceptually distinct the distracters needed to be for participants to retain the target accurately. Experiment 3 extended these behavioral findings by demonstrating that the perceptual similarity between target and distracters exerted a significantly greater effect on occipital alpha amplitudes, depending on the number of items already held in VSTM. The trade-off between VSTM load and target-distracter competition suggests that VSTM and perceptual competition share a partially overlapping mechanism, namely top-down inputs into sensory areas. PMID:23576694

  19. Glucose Metabolic Profile by Visual Assessment Combined with Statistical Parametric Mapping Analysis in Pediatric Patients with Epilepsy.

    PubMed

    Zhu, Yuankai; Feng, Jianhua; Wu, Shuang; Hou, Haifeng; Ji, Jianfeng; Zhang, Kai; Chen, Qing; Chen, Lin; Cheng, Haiying; Gao, Liuyan; Chen, Zexin; Zhang, Hong; Tian, Mei

    2017-08-01

    PET with 18 F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using 18 F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent 18 F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. 18 F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of 18 F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency ( P < 0.01) but negatively correlated with the time since last seizure ( P < 0.01) in patients with abnormal glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism ( P = 0.001) and with hypermetabolism ( P = 0.005). For patients with either hypometabolism ( P < 0.01) or hypermetabolism ( P = 0.209), higher |AI| values were found in those with drug resistance than with seizure remission. In the post-1-y follow-up PET studies, a significant change of |AI| (%) was found in patients with clinical improvement compared with those with persistence or progression ( P < 0.01). Conclusion: 18 F-FDG PET imaging with visual assessment combined with SPM analysis could provide cerebral glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic abnormalities on PET. The clinical value of PET might be enhanced by timing the scan closer to clinical seizures. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. [Acute visual loss in pregnancy caused by craniopharyngioma].

    PubMed

    Grillo-Mallo, E; Jiménez-Benito, J; Diéz-Feijóo, E; Alonso Alonso, I; Ferrero Collado, A; Muñoz Quiñones, S

    2014-04-01

    A 38-year-old female, at 20-weeks gestation, experienced a sudden visual loss and visual-field abnormalities. The neuroimaging tests showed a craniopharyngioma. Surgical removal was performed with a successful outcome as regards the pregnancy and visual function. It is known that pituitary adenomas may grow during pregnancy; however this is unusual in craniopharyngiomas. They usually present with visual problems due to their suprasellar topography. Surgery is the treatment of choice, the outcome essentially depending on its complete resection. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  1. Color vision abnormality as an initial presentation of the complete type of congenital stationary night blindness.

    PubMed

    Tan, Xue; Aoki, Aya; Yanagi, Yasuo

    2013-01-01

    Patients with the complete form of congenital stationary night blindness (CSNB) often have reduced visual acuity, myopia, impaired night vision, and sometimes nystagmus and strabismus, however, they seldom complain of color vision abnormality. A 17-year-old male who was at technical school showed abnormalities in the color perception test for employment, and was referred to our hospital for a detailed examination. He had no family history of color vision deficiency and no other symptoms. During the initial examination, his best-corrected visual acuity was 1.2 in both eyes. His fundus showed no abnormalities except for somewhat yellowish reflex in the fovea of both eyes. Electroretinogram (ERG) showed a good response in cone ERG and 30 Hz flicker ERG, however, the bright flash, mixed rod and cone ERG showed a negative type with a reduced b-wave (positive deflection). There was no response in the rod ERG, either. From the findings of the typical ERG, the patient was diagnosed with complete congenital stationary night blindness. This case underscores the importance of ERG in order to diagnose the cause of a color vision anomaly.

  2. Learning receptive fields using predictive feedback.

    PubMed

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  3. The utility of modeling word identification from visual input within models of eye movements in reading

    PubMed Central

    Bicknell, Klinton; Levy, Roger

    2012-01-01

    Decades of empirical work have shown that a range of eye movement phenomena in reading are sensitive to the details of the process of word identification. Despite this, major models of eye movement control in reading do not explicitly model word identification from visual input. This paper presents a argument for developing models of eye movements that do include detailed models of word identification. Specifically, we argue that insights into eye movement behavior can be gained by understanding which phenomena naturally arise from an account in which the eyes move for efficient word identification, and that one important use of such models is to test which eye movement phenomena can be understood this way. As an extended case study, we present evidence from an extension of a previous model of eye movement control in reading that does explicitly model word identification from visual input, Mr. Chips (Legge, Klitz, & Tjan, 1997), to test two proposals for the effect of using linguistic context on reading efficiency. PMID:23074362

  4. [Neuro-ophthalmology: the eye as a window to the brain].

    PubMed

    Kesler, Anat

    2013-02-01

    Neuro-ophthalmology focuses on the diagnosis and treatment of visual disorders related to the neurological system rather than the globe itself. Being a subspecialty of both neurology and ophthalmology, it requires specialized training and expertise in diseases of the eye, brain, nerves and muscles. Commonly encountered pathologies in neuro-ophthalmology include: optic neuropathies (such as optic neuritis and ischemic optic neuropathy), visual field loss (transient, constant, unexplained), transient visual loss, unspecified visual disturbances, diplopia, abnormal eye movements, thyroid eye disease, myasthenia gravis, anisocoria, and eyelid abnormalities. The current issue of "Harefuah" is dedicated to contemporary knowledge in neuro-opthalmology, and spans from studies of neuromyelitis optica (NMO), ischemic optic neuropathies, and optic neuropathies induced by phosphodiesterase inhibitors, to the management of sight-threatening carotid-cavernous fistulas, and more. These studies emphasize the importance of an interdisciplinary treatment team consisting of a neuro-ophthalmologist, a neuro-radiologist, and sometimes, even a neuro-surgeon. Such an approach may prove to be beneficial to the patient, by optimizing follow-up and treatment decisions. This issue emphasizes how a correct and timely diagnosis is of paramount significance in patients with neuro-ophthalmological disorders.

  5. Adrenoleukodystrophy

    MedlinePlus

    ... 10. The most common symptoms are usually behavioral changes such as abnormal withdrawal or aggression, poor memory, and poor school performance. Other symptoms include visual loss, learning disabilities, ...

  6. A novel computational model to probe visual search deficits during motor performance

    PubMed Central

    Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy

    2016-01-01

    Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596

  7. Jaw tremor as a physiological biomarker of bruxism.

    PubMed

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    PubMed

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

    PubMed Central

    Ahmadian, Yashar; Shlens, Jonathon; Pillow, Jonathan W.; Kulkarni, Jayant; Litke, Alan M.; Chichilnisky, E. J.; Simoncelli, Eero; Paninski, Liam

    2013-01-01

    Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations. PMID:22203465

  10. Forecasting hotspots using predictive visual analytics approach

    DOEpatents

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  11. ACR appropriateness criteria(®) on abnormal vaginal bleeding.

    PubMed

    Bennett, Genevieve L; Andreotti, Rochelle F; Lee, Susanna I; Dejesus Allison, Sandra O; Brown, Douglas L; Dubinsky, Theodore; Glanc, Phyllis; Mitchell, Donald G; Podrasky, Ann E; Shipp, Thomas D; Siegel, Cary Lynn; Wong-You-Cheong, Jade J; Zelop, Carolyn M

    2011-07-01

    In evaluating a woman with abnormal vaginal bleeding, imaging cannot replace definitive histologic diagnosis but often plays an important role in screening, characterization of structural abnormalities, and directing appropriate patient care. Transvaginal ultrasound (TVUS) is generally the initial imaging modality of choice, with endometrial thickness a well-established predictor of endometrial disease in postmenopausal women. Endometrial thickness measurements of ≤5 mm and ≤4 mm have been advocated as appropriate upper threshold values to reasonably exclude endometrial carcinoma in postmenopausal women with vaginal bleeding; however, the best upper threshold endometrial thickness in the asymptomatic postmenopausal patient remains a subject of debate. Endometrial thickness in a premenopausal patient is a less reliable indicator of endometrial pathology since this may vary widely depending on the phase of menstrual cycle, and an upper threshold value for normal has not been well-established. Transabdominal ultrasound is generally an adjunct to TVUS and is most helpful when TVUS is not feasible or there is poor visualization of the endometrium. Hysterosonography may also allow for better delineation of both the endometrium and focal abnormalities in the endometrial cavity, leading to hysteroscopically directed biopsy or resection. Color and pulsed Doppler may provide additional characterization of a focal endometrial abnormality by demonstrating vascularity. MRI may also serve as an important problem-solving tool if the endometrium cannot be visualized on TVUS and hysterosonography is not possible, as well as for pretreatment planning of patients with suspected endometrial carcinoma. CT is generally not warranted for the evaluation of patients with abnormal bleeding, and an abnormal endometrium incidentally detected on CT should be further evaluated with TVUS. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Telemedicine for a General Screening of Retinal Disease Using Nonmydriatic Fundus Cameras in Optometry Centers: Three-Year Results.

    PubMed

    Zapata, Miguel A; Arcos, Gabriel; Fonollosa, Alex; Abraldes, Maximino; Oleñik, Andrea; Gutierrez, Estanislao; Garcia-Arumi, Jose

    2017-01-01

    Describe the first 3 years of highly specialized retinal screening through a web platform using a retinologists' network for image reading. All patients who came to centers in the network and consented to fundus photography were included. Images were evaluated by ophthalmologists. We describe number of patients, age, visual acuity, retinal abnormalities, medical recommendations, and factors associated with abnormal retinographies. Fifty thousand three hundred eighty-four patients were included; mean age 52.3 years (range 3-99). Mean visual acuity 20/25. Of the total cohort, 75% had normal retinographies, 22% had abnormalities, 1% referred acute floaters, 1% referred acute symptoms with normal retinography, and 1% could not be assessed. Ophthalmological referral was recommended in 12,634 patients: 9% urgent visit, 11% preferential (2-3 weeks), and 80% an ordinary visit. Age-related maculopathy signs were the most common abnormalities (2,456 patients, 4.8%). Epiretinal membrane was the second (764 cases, 1.5%). Diabetic retinopathy was suspected in 543 patients (1%), and nevi in 358 patients (0.7%). Patients older than 50 years had significantly more retinal abnormalities (31.5%) than younger ones (11.1%) (p < 0.0001; odds ratio [OR] 2.47; confidence interval [CI] 2.37-2.57). Patients with almost one eye with a myopic defect greater than -5 spherical equivalent had a higher risk of presenting abnormalities (p < 0.001; OR 1.04; CI 1.03-1.05). A high rate of asymptomatic retinal abnormalities was detected in this general screening, justifying this practice. Many patients who visit optometrists in Spain are unaware that they would benefit from ophthalmological monitoring. The ophthalmic community should lead initiatives of the type presented to preserve and guarantee quality standards.

  13. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Paper for the IEEE Visualization Conference Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space.

  14. Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zabihian, Behrooz; Chen, Zhe; Rank, Elisabet; Sinz, Christoph; Bonesi, Marco; Sattmann, Harald; Ensher, Jason; Minneman, Michael P.; Hoover, Erich; Weingast, Jessika; Ginner, Laurin; Leitgeb, Rainer; Kittler, Harald; Zhang, Edward; Beard, Paul; Drexler, Wolfgang; Liu, Mengyang

    2016-09-01

    Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities.

  15. Abnormalities of Object Visual Processing in Body Dysmorphic Disorder

    PubMed Central

    Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.

    2013-01-01

    Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897

  16. Visual cortex activation in late-onset, Braille naive blind individuals: an fMRI study during semantic and phonological tasks with heard words.

    PubMed

    Burton, Harold; McLaren, Donald G

    2006-01-09

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.

  17. Visual cortex activation in late-onset, Braille naive blind individuals: An fMRI study during semantic and phonological tasks with heard words

    PubMed Central

    Burton, Harold; McLaren, Donald G.

    2013-01-01

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053

  18. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Link between orientation and retinotopic maps in primary visual cortex

    PubMed Central

    Paik, Se-Bum; Ringach, Dario L.

    2012-01-01

    Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015

  20. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  1. Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

    PubMed Central

    Makowiecki, Kalina; Harvey, Alan R.; Sherrard, Rachel M.

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5−/− (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5−/− mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5−/− mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5−/− mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS. PMID:25100609

  2. Automated graphic assessment of respiratory activity is superior to pulse oximetry and visual assessment for the detection of early respiratory depression during therapeutic upper endoscopy.

    PubMed

    Vargo, John J; Zuccaro, Gregory; Dumot, John A; Conwell, Darwin L; Morrow, J Brad; Shay, Steven S

    2002-06-01

    Recommendations from the American Society of Anesthesiologists suggest that monitoring for apnea using the detection of exhaled carbon dioxide (capnography) is a useful adjunct in the assessment of ventilatory status of patients undergoing sedation and analgesia. There are no data on the utility of capnography in GI endoscopy, nor is the frequency of abnormal ventilatory activity during endoscopy known. The aims of this study were to determine the following: (1) the frequency of abnormal ventilatory activity during therapeutic upper endoscopy, (2) the sensitivity of observation and pulse oximetry in the detection of apnea or disordered respiration, and (3) whether capnography provides an improvement over accepted monitoring techniques. Forty-nine patients undergoing therapeutic upper endoscopy were monitored with standard methods including pulse oximetry, automated blood pressure measurement, and visual assessment. In addition, graphic assessment of respiratory activity with sidestream capnography was performed in all patients. Endoscopy personnel were blinded to capnography data. Episodes of apnea or disordered respiration detected by capnography were documented and compared with the occurrence of hypoxemia, hypercapnea, hypotension, and the recognition of abnormal respiratory activity by endoscopy personnel. Comparison of simultaneous respiratory rate measurements obtained by capnography and by auscultation with a pretracheal stethoscope verified that capnography was an excellent indicator of respiratory rate when compared with the reference standard (auscultation) (r = 0.967, p < 0.001). Fifty-four episodes of apnea or disordered respiration occurred in 28 patients (mean duration 70.8 seconds). Only 50% of apnea or disordered respiration episodes were eventually detected by pulse oximetry. None were detected by visual assessment (p < 0.0010). Apnea/disordered respiration occurs commonly during therapeutic upper endoscopy and frequently precedes the development of hypoxemia. Potentially important abnormalities in respiratory activity are undetected with pulse oximetry and visual assessment.

  3. Anticipation in Real-world Scenes: The Role of Visual Context and Visual Memory

    ERIC Educational Resources Information Center

    Coco, Moreno I.; Keller, Frank; Malcolm, George L.

    2016-01-01

    The human sentence processor is able to make rapid predictions about upcoming linguistic input. For example, upon hearing the verb eat, anticipatory eye-movements are launched toward edible objects in a visual scene (Altmann & Kamide, 1999). However, the cognitive mechanisms that underlie anticipation remain to be elucidated in ecologically…

  4. Adding sound to theory of mind: Comparing children's development of mental-state understanding in the auditory and visual realms.

    PubMed

    Hasni, Anita A; Adamson, Lauren B; Williamson, Rebecca A; Robins, Diana L

    2017-12-01

    Theory of mind (ToM) gradually develops during the preschool years. Measures of ToM usually target visual experience, but auditory experiences also provide valuable social information. Given differences between the visual and auditory modalities (e.g., sights persist, sounds fade) and the important role environmental input plays in social-cognitive development, we asked whether modality might influence the progression of ToM development. The current study expands Wellman and Liu's ToM scale (2004) by testing 66 preschoolers using five standard visual ToM tasks and five newly crafted auditory ToM tasks. Age and gender effects were found, with 4- and 5-year-olds demonstrating greater ToM abilities than 3-year-olds and girls passing more tasks than boys; there was no significant effect of modality. Both visual and auditory tasks formed a scalable set. These results indicate that there is considerable consistency in when children are able to use visual and auditory inputs to reason about various aspects of others' mental states. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis

    PubMed Central

    Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.

    2016-01-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207

  6. Enhanced learning of natural visual sequences in newborn chicks.

    PubMed

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  7. Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys.

    PubMed

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M

    2014-10-08

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.

  8. Developmental visual perception deficits with no indications of prosopagnosia in a child with abnormal eye movements.

    PubMed

    Gilaie-Dotan, Sharon; Doron, Ravid

    2017-06-01

    Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Scientific Visualization and Computational Science: Natural Partners

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.

  10. Neuroplasticity and amblyopia: vision at the balance point.

    PubMed

    Tailor, Vijay K; Schwarzkopf, D Samuel; Dahlmann-Noor, Annegret H

    2017-02-01

    New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the 'critical period', structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period.Video abstracthttp://links.lww.com/CONR/A42.

  11. Color vision testing with a computer graphics system: preliminary results.

    PubMed

    Arden, G; Gündüz, K; Perry, S

    1988-06-01

    We report a method for computer enhancement of color vision tests. In our graphics system 256 colors are selected from a much larger range and displayed on a screen divided into 768 x 288 pixels. Eight-bit digital-to-analogue converters drive a high quality monitor with separate inputs to the red, green, and blue amplifiers and calibrated gun chromaticities. The graphics are controlled by a PASCAL program written for a personal computer, which calculates the values of the red, green, and blue signals and specifies them in Commité Internationale d'Eclairage X, Y, and Z fundamentals, so changes in chrominance occur without changes in luminance. The system for measuring color contrast thresholds with gratings is more than adequate in normal observers. In patients with mild retinal damage in whom other tests of visual function are normal, this method of testing color vision shows specific increases in contrast thresholds along tritan color-confusion lines. By the time the Hardy-Rand-Rittler and Farnsworth-Munsell 100-hue tests disclose abnormalities, gross defects in color contrast threshold can be seen with our system.

  12. Comparing Auditory-Only and Audiovisual Word Learning for Children with Hearing Loss.

    PubMed

    McDaniel, Jena; Camarata, Stephen; Yoder, Paul

    2018-05-15

    Although reducing visual input to emphasize auditory cues is a common practice in pediatric auditory (re)habilitation, the extant literature offers minimal empirical evidence for whether unisensory auditory-only (AO) or multisensory audiovisual (AV) input is more beneficial to children with hearing loss for developing spoken language skills. Using an adapted alternating treatments single case research design, we evaluated the effectiveness and efficiency of a receptive word learning intervention with and without access to visual speechreading cues. Four preschool children with prelingual hearing loss participated. Based on probes without visual cues, three participants demonstrated strong evidence for learning in the AO and AV conditions relative to a control (no-teaching) condition. No participants demonstrated a differential rate of learning between AO and AV conditions. Neither an inhibitory effect predicted by a unisensory theory nor a beneficial effect predicted by a multisensory theory for providing visual cues was identified. Clinical implications are discussed.

  13. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  14. A neural mechanism of dynamic gating of task-relevant information by top-down influence in primary visual cortex.

    PubMed

    Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki

    2016-12-01

    Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.

    PubMed

    Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G

    2016-11-01

    Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.

  16. The Cerebellar Dysplasia of Chiari II Malformation as Revealed by Eye Movements

    PubMed Central

    Salman, Michael S.; Dennis, Maureen; Sharpe, James A.

    2011-01-01

    Introduction Chiari type II malformation (CII) is a developmental deformity of the hindbrain. We have previously reported that many patients with CII have impaired smooth pursuit, while few make inaccurate saccades or have an abnormal vestibulo-ocular reflex. In contrast, saccadic adaptation and visual fixation are normal. In this report, we correlate results from several eye movement studies with neuroimaging in CII. We present a model for structural changes within the cerebellum in CII. Methods Saccades, smooth pursuit, the vestibulo-ocular reflex, and visual fixation were recorded in 21 patients with CII, aged 8–19 years and 39 age-matched controls, using an infrared eye tracker. Qualitative and quantitative MRI data were correlated with eye movements in 19 CII patients and 28 controls. Results Nine patients with CII had abnormal eye movements. Smooth pursuit gain was subnormal in eight, saccadic accuracy abnormal in four, and vestibulo-ocular reflex gain abnormal in three. None had fixation instability. Patients with CII had a significantly smaller cerebellar volume than controls, and those with normal eye motion had an expanded midsagittal vermis compared to controls. However, patients with abnormal eye movements had a smaller (non-expanded) midsagittal vermis area, posterior fossa area and medial cerebellar volumes than CII patients with normal eye movements. Conclusions The deformity of CII affects the structure and function of the cerebellum selectively and differently in those with abnormal eye movements. We propose that the vermis can expand when compressed within a small posterior fossa in some CII patients, thus sparing its ocular motor functions. PMID:19960749

  17. Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD).

    PubMed

    Sysoeva, Olga V; Galuta, Ilia A; Davletshina, Maria S; Orekhova, Elena V; Stroganova, Tatiana A

    2017-01-01

    Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD-a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6-15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD.

  18. A comparison of ordinary fuzzy and intuitionistic fuzzy approaches in visualizing the image of flat electroencephalography

    NASA Astrophysics Data System (ADS)

    Zenian, Suzelawati; Ahmad, Tahir; Idris, Amidora

    2017-09-01

    Medical imaging is a subfield in image processing that deals with medical images. It is very crucial in visualizing the body parts in non-invasive way by using appropriate image processing techniques. Generally, image processing is used to enhance visual appearance of images for further interpretation. However, the pixel values of an image may not be precise as uncertainty arises within the gray values of an image due to several factors. In this paper, the input and output images of Flat Electroencephalography (fEEG) of an epileptic patient at varied time are presented. Furthermore, ordinary fuzzy and intuitionistic fuzzy approaches are implemented to the input images and the results are compared between these two approaches.

  19. High visual resolution matters in audiovisual speech perception, but only for some.

    PubMed

    Alsius, Agnès; Wayne, Rachel V; Paré, Martin; Munhall, Kevin G

    2016-07-01

    The basis for individual differences in the degree to which visual speech input enhances comprehension of acoustically degraded speech is largely unknown. Previous research indicates that fine facial detail is not critical for visual enhancement when auditory information is available; however, these studies did not examine individual differences in ability to make use of fine facial detail in relation to audiovisual speech perception ability. Here, we compare participants based on their ability to benefit from visual speech information in the presence of an auditory signal degraded with noise, modulating the resolution of the visual signal through low-pass spatial frequency filtering and monitoring gaze behavior. Participants who benefited most from the addition of visual information (high visual gain) were more adversely affected by the removal of high spatial frequency information, compared to participants with low visual gain, for materials with both poor and rich contextual cues (i.e., words and sentences, respectively). Differences as a function of gaze behavior between participants with the highest and lowest visual gains were observed only for words, with participants with the highest visual gain fixating longer on the mouth region. Our results indicate that the individual variance in audiovisual speech in noise performance can be accounted for, in part, by better use of fine facial detail information extracted from the visual signal and increased fixation on mouth regions for short stimuli. Thus, for some, audiovisual speech perception may suffer when the visual input (in addition to the auditory signal) is less than perfect.

  20. Neocortical Rebound Depolarization Enhances Visual Perception

    PubMed Central

    Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji

    2015-01-01

    Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866

  1. Auditory and visual interactions between the superior and inferior colliculi in the ferret.

    PubMed

    Stitt, Iain; Galindo-Leon, Edgar; Pieper, Florian; Hollensteiner, Karl J; Engler, Gerhard; Engel, Andreas K

    2015-05-01

    The integration of visual and auditory spatial information is important for building an accurate perception of the external world, but the fundamental mechanisms governing such audiovisual interaction have only partially been resolved. The earliest interface between auditory and visual processing pathways is in the midbrain, where the superior (SC) and inferior colliculi (IC) are reciprocally connected in an audiovisual loop. Here, we investigate the mechanisms of audiovisual interaction in the midbrain by recording neural signals from the SC and IC simultaneously in anesthetized ferrets. Visual stimuli reliably produced band-limited phase locking of IC local field potentials (LFPs) in two distinct frequency bands: 6-10 and 15-30 Hz. These visual LFP responses co-localized with robust auditory responses that were characteristic of the IC. Imaginary coherence analysis confirmed that visual responses in the IC were not volume-conducted signals from the neighboring SC. Visual responses in the IC occurred later than retinally driven superficial SC layers and earlier than deep SC layers that receive indirect visual inputs, suggesting that retinal inputs do not drive visually evoked responses in the IC. In addition, SC and IC recording sites with overlapping visual spatial receptive fields displayed stronger functional connectivity than sites with separate receptive fields, indicating that visual spatial maps are aligned across both midbrain structures. Reciprocal coupling between the IC and SC therefore probably serves the dynamic integration of visual and auditory representations of space. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.

    PubMed

    Shen, Wanhua; McKeown, Caroline R; Demas, James A; Cline, Hollis T

    2011-11-01

    The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.

  3. Liraglutide as a potentially useful agent for regulating appetite in diabetic patients with hypothalamic hyperphagia and obesity.

    PubMed

    Ando, Takao; Haraguchi, Ai; Matsunaga, Tomoe; Natsuda, Shoko; Yamasaki, Hironori; Usa, Toshiro; Kawakami, Atsushi

    2014-01-01

    Hypothalamic hyperphagia and obesity are characterized by a lack of satiety and an abnormally high appetite that is difficult to control. We herein report the cases of two patients with hypothalamic hyperphagia and obesity with MRI-detectable hypothalamic lesions. These patients suffered from diabetes mellitus associated with an abnormal eating behavior and weight gain. Liraglutide was successfully used to treat their diabetes mellitus and suppress their abnormal appetites. Glucagon-like peptide-1 analogues, including liraglutide, are promising treatment options in patients with hypothalamic hyperphagia and obesity, as these agents enhance the hypothalamic input of the satiety signal, which is lacking in such patients.

  4. Visual Processing of Faces in Individuals with Fragile X Syndrome: An Eye Tracking Study

    ERIC Educational Resources Information Center

    Farzin, Faraz; Rivera, Susan M.; Hessl, David

    2009-01-01

    Gaze avoidance is a hallmark behavioral feature of fragile X syndrome (FXS), but little is known about whether abnormalities in the visual processing of faces, including disrupted autonomic reactivity, may underlie this behavior. Eye tracking was used to record fixations and pupil diameter while adolescents and young adults with FXS and sex- and…

  5. Optic nerve dysfunction during gravity inversion. Visual field abnormalities.

    PubMed

    Sanborn, G E; Friberg, T R; Allen, R

    1987-06-01

    Inversion in a head-down position (gravity inversion) results in an intraocular pressure of 35 to 40 mm Hg in normal subjects. We used computerized static perimetry to measure the visual fields of normal subjects during gravity inversion. There were no visual field changes in the central 6 degrees of the visual field compared with the baseline (preinversion) values. However, when the central 30 degrees of the visual field was tested, reversible visual field defects were found in 11 of 19 eyes. We believe that the substantial elevation of intraocular pressure during gravity inversion may pose potential risks to the eyes, and we recommend that inversion for extended periods of time be avoided.

  6. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  7. Audiovisual perception in amblyopia: A review and synthesis.

    PubMed

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-05-17

    Amblyopia is a common developmental sensory disorder that has been extensively and systematically investigated as a unisensory visual impairment. However, its effects are increasingly recognized to extend beyond vision to the multisensory domain. Indeed, amblyopia is associated with altered cross-modal interactions in audiovisual temporal perception, audiovisual spatial perception, and audiovisual speech perception. Furthermore, although the visual impairment in amblyopia is typically unilateral, the multisensory abnormalities tend to persist even when viewing with both eyes. Knowledge of the extent and mechanisms of the audiovisual impairments in amblyopia, however, remains in its infancy. This work aims to review our current understanding of audiovisual processing and integration deficits in amblyopia, and considers the possible mechanisms underlying these abnormalities. Copyright © 2018. Published by Elsevier Ltd.

  8. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage

    PubMed Central

    Restani, Laura; Caleo, Matteo

    2016-01-01

    Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway. PMID:27895559

  9. Vision drives accurate approach behavior during prey capture in laboratory mice

    PubMed Central

    Hoy, Jennifer L.; Yavorska, Iryna; Wehr, Michael; Niell, Cristopher M.

    2016-01-01

    Summary The ability to genetically identify and manipulate neural circuits in the mouse is rapidly advancing our understanding of visual processing in the mammalian brain [1,2]. However, studies investigating the circuitry that underlies complex ethologically-relevant visual behaviors in the mouse have been primarily restricted to fear responses [3–5]. Here, we show that a laboratory strain of mouse (Mus musculus, C57BL/6J) robustly pursues, captures and consumes live insect prey, and that vision is necessary for mice to perform the accurate orienting and approach behaviors leading to capture. Specifically, we differentially perturbed visual or auditory input in mice and determined that visual input is required for accurate approach, allowing maintenance of bearing to within 11 degrees of the target on average during pursuit. While mice were able to capture prey without vision, the accuracy of their approaches and capture rate dramatically declined. To better explore the contribution of vision to this behavior, we developed a simple assay that isolated visual cues and simplified analysis of the visually guided approach. Together, our results demonstrate that laboratory mice are capable of exhibiting dynamic and accurate visually-guided approach behaviors, and provide a means to estimate the visual features that drive behavior within an ethological context. PMID:27773567

  10. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  11. Neuroimaging of amblyopia and binocular vision: a review

    PubMed Central

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511

  12. Neuroimaging of amblyopia and binocular vision: a review.

    PubMed

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  13. Visual function among commercial vehicle drivers in the central region of Ghana

    PubMed Central

    Boadi-Kusi, Samuel Bert; Kyei, Samuel; Asare, Frederick Afum; Owusu-Ansah, Andrew; Awuah, Agnes; Darko-Takyi, Charles

    2015-01-01

    Aim To determine the relationship between some visual functions: colour vision defects, abnormal stereopsis, visual acuity and the occurrence of road traffic accident (RTAs) among commercial vehicle drivers in the central region of Ghana, and to assess their knowledge of these anomalies. Method A descriptive cross-sectional study employing a multi-stage random sampling approach was conducted in the major commercial towns within the central region of Ghana. Participants were taken through a comprehensive eye examination after the administration of a structured questionnaire. Results 520 male commercial vehicle drivers were enrolled for this study with a mean age of 39.23 years ±10.96 years and mean visual acuity of 0.02 ± 0.08 logMAR. Protans were more likely to be involved in RTAs (χ2 = 6.194, p = 0.034). However, there was no statistically significant association between abnormal stereopsis (OR = 0.89 95% CI: 0.44–1.80, p = 0.56), poor vision due to refractive error (χ2 = 3.090, p = 0.388) and the occurrence of RTAs. While 86.9% were aware of abnormal stereopsis, only 45% were aware of colour vision defects. There was a statistically significant association between stereopsis anomaly and colour vision defect (r = 0.371, p < 0.005). Conclusion The study found an association between protanopia and RTAs but none between stereopsis anomalies, refractive errors and the occurrence of RTAs. Drivers were less knowledgeable on colour vision defects as compared to stereopsis anomalies. PMID:26364760

  14. Visual function among commercial vehicle drivers in the central region of Ghana.

    PubMed

    Boadi-Kusi, Samuel Bert; Kyei, Samuel; Asare, Frederick Afum; Owusu-Ansah, Andrew; Awuah, Agnes; Darko-Takyi, Charles

    2016-01-01

    To determine the relationship between some visual functions: colour vision defects, abnormal stereopsis, visual acuity and the occurrence of road traffic accident (RTAs) among commercial vehicle drivers in the central region of Ghana, and to assess their knowledge of these anomalies. A descriptive cross-sectional study employing a multi-stage random sampling approach was conducted in the major commercial towns within the central region of Ghana. Participants were taken through a comprehensive eye examination after the administration of a structured questionnaire. 520 male commercial vehicle drivers were enrolled for this study with a mean age of 39.23 years ±10.96 years and mean visual acuity of 0.02±0.08 logMAR. Protans were more likely to be involved in RTAs (χ(2)=6.194, p=0.034). However, there was no statistically significant association between abnormal stereopsis (OR=0.89 95% CI: 0.44-1.80, p=0.56), poor vision due to refractive error (χ(2)=3.090, p=0.388) and the occurrence of RTAs. While 86.9% were aware of abnormal stereopsis, only 45% were aware of colour vision defects. There was a statistically significant association between stereopsis anomaly and colour vision defect (r=0.371, p<0.005). The study found an association between protanopia and RTAs but none between stereopsis anomalies, refractive errors and the occurrence of RTAs. Drivers were less knowledgeable on colour vision defects as compared to stereopsis anomalies. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  15. Audiovisual Perception of Noise Vocoded Speech in Dyslexic and Non-Dyslexic Adults: The Role of Low-Frequency Visual Modulations

    ERIC Educational Resources Information Center

    Megnin-Viggars, Odette; Goswami, Usha

    2013-01-01

    Visual speech inputs can enhance auditory speech information, particularly in noisy or degraded conditions. The natural statistics of audiovisual speech highlight the temporal correspondence between visual and auditory prosody, with lip, jaw, cheek and head movements conveying information about the speech envelope. Low-frequency spatial and…

  16. Last but not least.

    PubMed

    Shapiro, Arthur G; Hamburger, Kai

    2007-01-01

    A central tenet of Gestalt psychology is that the visual scene can be separated into figure and ground. The two illusions we present demonstrate that Gestalt processes can group spatial contrast information that cuts across the figure/ground separation. This finding suggests that visual processes that organise the visual scene do not necessarily require structural segmentation as their primary input.

  17. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  18. Right-Brained Kids in Left-Brained Schools

    ERIC Educational Resources Information Center

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  19. Clinical impact of migraine for the management of glaucoma patients.

    PubMed

    Nguyen, Bao N; Lek, Jia Jia; Vingrys, Algis J; McKendrick, Allison M

    2016-03-01

    Migraine is a common and debilitating primary headache disorder that affects 10-15% of the general population, particularly people of working age. Migraine is relevant to providers of clinical eye-care because migraine attacks are associated with a range of visual sensory symptoms, and because of growing evidence that the results of standard tests of visual function necessary for the diagnosis and monitoring of glaucoma (visual fields, electrophysiology, ocular imaging) can be abnormal due to migraine. These abnormalities are measureable in-between migraine events (the interictal period), despite patients being asymptomatic and otherwise healthy. This picture is further complicated by epidemiological data that suggests an increased prevalence of migraine in patients with glaucoma, particularly in patients with normal tension glaucoma. We discuss how migraine, as a co-morbidity, can confound the results and interpretation of clinical tests that form part of contemporary glaucoma evaluation, and provide practical evidence-based recommendations for the clinical testing and management of patients with migraine who attend eye-care settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Greek mythology: the eye, ophthalmology, eye disease, and blindness.

    PubMed

    Trompoukis, Constantinos; Kourkoutas, Dimitrios

    2007-06-01

    In distant eras, mythology was a form of expression used by many peoples. A study of the Greek myths reveals concealed medical knowledge, in many cases relating to the eye. An analysis was made of the ancient Greek texts for mythological references relating to an understanding of vision, visual abilities, the eye, its congenital and acquired abnormalities, blindness, and eye injuries and their treatment. The Homeric epics contain anatomical descriptions of the eyes and the orbits, and an elementary knowledge of physiology is also apparent. The concept of the visual field can be seen in the myth of Argos Panoptes. Many myths describe external eye disease ("knyzosis"), visual disorders (amaurosis), and cases of blinding that, depending on the story, are ascribed to various causes. In addition, ocular motility abnormalities, congenital anomalies (cyclopia), injuries, and special treatments, such as the "licking" method, are mentioned. The study of mythological references to the eye reveals reliable medical observations of the ancient Greeks, which are concealed within the myths.

  1. Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.

    PubMed

    Orekhova, Elena V; Sysoeva, Olga V; Schneiderman, Justin F; Lundström, Sebastian; Galuta, Ilia A; Goiaeva, Dzerasa E; Prokofyev, Andrey O; Riaz, Bushra; Keeler, Courtney; Hadjikhani, Nouchine; Gillberg, Christopher; Stroganova, Tatiana A

    2018-05-31

    Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.

  2. Lenticular abnormalities in children.

    PubMed

    Khokhar, Sudarshan; Agarwal, Tushar; Kumar, Gaurav; Kushmesh, Rakhi; Tejwani, Lalit Kumar

    2012-01-01

    To study the lenticular problems in children presenting at an apex institute. Retrospective analysis of records (< 14 years) of new lens clinic cases was done. Of 1,047 children, 687 were males. Mean age at presentation was 6.35 ± 4.13 years. Developmental cataract was seen in 45.6% and posttraumatic cataract in 29.7% of patients. Other abnormalities were cataract with retinal detachment, persistent hyperplastic primary vitreous, subluxated lens, micro/spherophakia, cataract secondary to uveitis, intraocular lens complications, cataract with choroidal coloboma, and visual axis opacification. Developmental and posttraumatic cataracts were the most common abnormalities. Delayed presentation is of concern. Copyright 2012, SLACK Incorporated.

  3. From attentional gating in macaque primary visual cortex to dyslexia in humans.

    PubMed

    Vidyasagar, T R

    2001-01-01

    Selective attention is an important aspect of brain function that we need in coping with the immense and constant barrage of sensory information. One model of attention (Feature Integration Theory) that suggests an early selection of spatial locations of objects via an attentional spotlight would also solve the 'binding problem' (that is how do different attributes of each object get correctly bound together?). Our experiments have demonstrated modulation of specific locations of interest at the level of the primary visual cortex both in visual discrimination and memory tasks, where the actual locations of the targets was also important in being able to perform the task. It is suggested that the feedback mediating the modulation arises from the posterior parietal cortex, which would also be consistent with its known role in attentional control. In primates, the magnocellular (M) and parvocellular (P) pathways are the two major streams of inputs from the retina, carrying distinctly different types of information and they remain fairly segregated in their projections to the primary visual cortex and further into the extra-striate regions. The P inputs go mainly into the ventral (temporal) stream, while the dorsal (parietal) stream is dominated by M inputs. A theory of attentional gating is proposed here where the M dominated dorsal stream gates the P inputs into the ventral stream. This framework is used to provide a neural explanation of the processes involved in reading and in learning to read. This scheme also explains how a magnocellular deficit could cause the common reading impairment, dyslexia.

  4. The role of visuohaptic experience in visually perceived depth.

    PubMed

    Ho, Yun-Xian; Serwe, Sascha; Trommershäuser, Julia; Maloney, Laurence T; Landy, Michael S

    2009-06-01

    Berkeley suggested that "touch educates vision," that is, haptic input may be used to calibrate visual cues to improve visual estimation of properties of the world. Here, we test whether haptic input may be used to "miseducate" vision, causing observers to rely more heavily on misleading visual cues. Human subjects compared the depth of two cylindrical bumps illuminated by light sources located at different positions relative to the surface. As in previous work using judgments of surface roughness, we find that observers judge bumps to have greater depth when the light source is located eccentric to the surface normal (i.e., when shadows are more salient). Following several sessions of visual judgments of depth, subjects then underwent visuohaptic training in which haptic feedback was artificially correlated with the "pseudocue" of shadow size and artificially decorrelated with disparity and texture. Although there were large individual differences, almost all observers demonstrated integration of haptic cues during visuohaptic training. For some observers, subsequent visual judgments of bump depth were unaffected by the training. However, for 5 of 12 observers, training significantly increased the weight given to pseudocues, causing subsequent visual estimates of shape to be less veridical. We conclude that haptic information can be used to reweight visual cues, putting more weight on misleading pseudocues, even when more trustworthy visual cues are available in the scene.

  5. Retinal image quality and visual stimuli processing by simulation of partial eye cataract

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Danilenko, Olga; Zavjalova, Varvara

    2016-10-01

    Visual stimuli were demonstrated on a 4.3'' mobile phone screen inside a "Virtual Reality" adapter that allowed separation of the left and right eye visual fields. Contrast of the retina image thus can be controlled by the image on the phone screen and parallel to that at appropriate geometry by the AC voltage applied to scattering PDLC cell inside the adapter. Such optical pathway separation allows to demonstrate to both eyes spatially variant images, that after visual binocular fusion acquire their characteristic indications. As visual stimuli we used grey and different color (two opponent components to vision - red-green in L*a*b* color space) spatially periodical stimuli for left and right eyes; and with spatial content that by addition or subtraction resulted as clockwise or counter clockwise slanted Gabor gratings. We performed computer modeling with numerical addition or subtraction of signals similar to processing in brain via stimuli input decomposition in luminance and color opponency components. It revealed the dependence of the perception psychophysical equilibrium point between clockwise or counter clockwise perception of summation on one eye image contrast and color saturation, and on the strength of the retinal aftereffects. Existence of a psychophysical equilibrium point in perception of summation is only in the presence of a prior adaptation to a slanted periodical grating and at the appropriate slant orientation of adaptation grating and/or at appropriate spatial grating pattern phase according to grating nods. Actual observer perception experiments when one eye images were deteriorated by simulated cataract approved the shift of mentioned psychophysical equilibrium point on the degree of artificial cataract. We analyzed also the mobile devices stimuli emission spectra paying attention to areas sensitive to macula pigments absorption spectral maxima and blue areas where the intense irradiation can cause in abnormalities in periodic melatonin regeneration and deviations in regular circadian rhythms. Therefore participants in vision studies using "Virtual Reality" appliances with fixed vision fields and emitting a spike liked spectral bands (on basis of OLED and AMOLED diodes) different from spectra of ambient illuminators should be accordingly warned about potential health risks.

  6. Effect of rehabilitation worker input on visual function outcomes in individuals with low vision: study protocol for a randomised controlled trial.

    PubMed

    Acton, Jennifer H; Molik, Bablin; Binns, Alison; Court, Helen; Margrain, Tom H

    2016-02-24

    Visual Rehabilitation Officers help people with a visual impairment maintain their independence. This intervention adopts a flexible, goal-centred approach, which may include training in mobility, use of optical and non-optical aids, and performance of activities of daily living. Although Visual Rehabilitation Officers are an integral part of the low vision service in the United Kingdom, evidence that they are effective is lacking. The purpose of this exploratory trial is to estimate the impact of a Visual Rehabilitation Officer on self-reported visual function, psychosocial and quality-of-life outcomes in individuals with low vision. In this exploratory, assessor-masked, parallel group, randomised controlled trial, participants will be allocated either to receive home visits from a Visual Rehabilitation Officer (n = 30) or to a waiting list control group (n = 30) in a 1:1 ratio. Adult volunteers with a visual impairment, who have been identified as needing rehabilitation officer input by a social worker, will take part. Those with an urgent need for a Visual Rehabilitation Officer or who have a cognitive impairment will be excluded. The primary outcome measure will be self-reported visual function (48-item Veterans Affairs Low Vision Visual Functioning Questionnaire). Secondary outcome measures will include psychological and quality-of-life metrics: the Patient Health Questionnaire (PHQ-9), the Warwick-Edinburgh Mental Well-being Scale (WEMWBS), the Adjustment to Age-related Visual Loss Scale (AVL-12), the Standardised Health-related Quality of Life Questionnaire (EQ-5D) and the UCLA Loneliness Scale. The interviewer collecting the outcomes will be masked to the group allocations. The analysis will be undertaken on a complete case and intention-to-treat basis. Analysis of covariance (ANCOVA) will be applied to follow-up questionnaire scores, with the baseline score as a covariate. This trial is expected to provide robust effect size estimates of the intervention effect. The data will be used to design a large-scale randomised controlled trial to evaluate fully the Visual Rehabilitation Officer intervention. A rigorous evaluation of Rehabilitation Officer input is vital to direct a future low vision rehabilitation strategy and to help direct government resources. The trial was registered with ( ISRCTN44807874 ) on 9 March 2015.

  7. [Visual field defect in a patient given sodium valporate then carbamazepine: possible effect of aminotransferase inhibition].

    PubMed

    Jung, Ph; Doussard-Lefaucheux, S

    2002-04-01

    We report the case of a 25-years old woman with anti-epileptic drugs who presents a visual field defect similar to those described with vigabatrin even though she was successfully treated with valproic acid then carbamazepine without vigabatrin. The association with trichorrhexis nodosa, a hair disease sometimes associated with inherited perturbation of metabolism of urea cycle in which visual loss can occur, could suggest an aspecific inhibition of several aminotransferases which could explain different adverse effects of some anti-epileptic drugs (visual abnormalities, alopecia) perhaps in genetic predisposed patients.

  8. Examining the accuracy of visual diagnosis of tinea pedis and tinea unguium in aged care facilities.

    PubMed

    Goto, T; Nakagami, G; Takehara, K; Nakamura, T; Kawashima, M; Tsunemi, Y; Sanada, H

    2017-04-02

    The aim of this study was to examine the accuracy of visual diagnosis of tinea pedis (Athlete's foot) and tinea unguium (fungal nail infection), as well as to provide information on skin abnormalities that could help identify these diseases in aged care facilities (long-term care facilities (LTCFs) and nursing homes). A multicentre, cross-sectional observational study was conducted in a LTCF and two nursing homes. A dermatologist observed the skin abnormalities in the participants' interdigital and plantar areas, to screen for tinea pedis, and in the participants' toenails, to screen for tinea unguium. If abnormalities were noted, samples such as scales or toenails were collected and examined using direct microscopy. The accuracy of the macroscopic observation for each skin abnormality was examined. A total of 173 residents were recruited. The accuracy of clinical diagnosis using macroscopic observation was relatively low. The sensitivities and specificities for clinical diagnosis were 0.37 and 0.95 for tinea pedis in the interdigital areas, 0.47 and 0.94 for tinea pedis in the plantar areas, and 0.80 and 0.61 for tinea unguium in toenails, respectively. Scales in the plantar areas and discoloration of the toenails were more frequently observed in residents with tinea pedis and tinea unguium than in those without them. Several skin abnormalities were observed in the residents recruited in this study, but there was insufficient correlation with tinea pedis and tinea unguium to be used for screening.

  9. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies.

    PubMed

    Oishi, Maho; Oishi, Akio; Ogino, Ken; Makiyama, Yukiko; Gotoh, Norimoto; Kurimoto, Masafumi; Yoshimura, Nagahisa

    2014-05-20

    To evaluate the clinical utility of wide-field fundus autofluorescence (FAF) in patients with cone dystrophy and cone-rod dystrophy. Sixteen patients with cone dystrophy (CD) and 41 patients with cone-rod dystrophy (CRD) were recruited at one institution. The right eye of each patient was included for analysis. We obtained wide-field FAF images using a ultra-widefield retinal imaging device and measured the area of abnormal FAF. The association between the area of abnormal FAF and the results of visual acuity measurements, kinetic perimetry, and electroretinography (ERG) were investigated. The mean age of the participants was 51.4 ± 17.4 years, and the mean logarithm of the minimum angle of resolution was 1.00 ± 0.57. The area of abnormal FAF correlated with the scotoma measured by the Goldman perimetry I/4e isopter (ρ = 0.79, P < 0.001). The area also correlated with amplitudes of the rod ERG (ρ = -0.63, P < 0.001), combined ERG a-wave (ρ = -0.72, P < 0.001), combined ERG b-wave (ρ = -0.66, P < 0.001), cone ERG (ρ = -0.44, P = 0.001), and flicker ERG (ρ = -0.47, P < 0.001). The extent of abnormal FAF reflects the severity of functional impairment in patients with cone-dominant retinal dystrophies. Fundus autofluorescence measurements are useful for predicting retinal function in these patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. A Biophysical Neural Model To Describe Spatial Visual Attention

    NASA Astrophysics Data System (ADS)

    Hugues, Etienne; José, Jorge V.

    2008-02-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.

  11. A Biophysical Neural Model To Describe Spatial Visual Attention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugues, Etienne; Jose, Jorge V.

    2008-02-14

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We firstmore » constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.« less

  12. Exploring the potential of analysing visual search behaviour data using FROC (free-response receiver operating characteristic) method: an initial study

    NASA Astrophysics Data System (ADS)

    Dong, Leng; Chen, Yan; Dias, Sarah; Stone, William; Dias, Joseph; Rout, John; Gale, Alastair G.

    2017-03-01

    Visual search techniques and FROC analysis have been widely used in radiology to understand medical image perceptual behaviour and diagnostic performance. The potential of exploiting the advantages of both methodologies is of great interest to medical researchers. In this study, eye tracking data of eight dental practitioners was investigated. The visual search measures and their analyses are considered here. Each participant interpreted 20 dental radiographs which were chosen by an expert dental radiologist. Various eye movement measurements were obtained based on image area of interest (AOI) information. FROC analysis was then carried out by using these eye movement measurements as a direct input source. The performance of FROC methods using different input parameters was tested. The results showed that there were significant differences in FROC measures, based on eye movement data, between groups with different experience levels. Namely, the area under the curve (AUC) score evidenced higher values for experienced group for the measurements of fixation and dwell time. Also, positive correlations were found for AUC scores between the eye movement data conducted FROC and rating based FROC. FROC analysis using eye movement measurements as input variables can act as a potential performance indicator to deliver assessment in medical imaging interpretation and assess training procedures. Visual search data analyses lead to new ways of combining eye movement data and FROC methods to provide an alternative dimension to assess performance and visual search behaviour in the area of medical imaging perceptual tasks.

  13. Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

    PubMed Central

    Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz

    2014-01-01

    The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948

  14. Proceedings of the Lake Wilderness Attention Conference Held at Seattle Washington, 22-24 September 1980.

    DTIC Science & Technology

    1981-07-10

    Pohlmann, L. D. Some models of observer behavior in two-channel auditory signal detection. Perception and Psychophy- sics, 1973, 14, 101-109. Spelke...spatial), and processing modalities ( auditory versus visual input, vocal versus manual response). If validated, this configuration has both theoretical...conclusion that auditory and visual processes will compete, as will spatial and verbal (albeit to a lesser extent than auditory - auditory , visual-visual

  15. The effect of linguistic and visual salience in visual world studies.

    PubMed

    Cavicchio, Federica; Melcher, David; Poesio, Massimo

    2014-01-01

    Research using the visual world paradigm has demonstrated that visual input has a rapid effect on language interpretation tasks such as reference resolution and, conversely, that linguistic material-including verbs, prepositions and adjectives-can influence fixations to potential referents. More recent research has started to explore how this effect of linguistic input on fixations is mediated by properties of the visual stimulus, in particular by visual salience. In the present study we further explored the role of salience in the visual world paradigm manipulating language-driven salience and visual salience. Specifically, we tested how linguistic salience (i.e., the greater accessibility of linguistically introduced entities) and visual salience (bottom-up attention grabbing visual aspects) interact. We recorded participants' eye-movements during a MapTask, asking them to look from landmark to landmark displayed upon a map while hearing direction-giving instructions. The landmarks were of comparable size and color, except in the Visual Salience condition, in which one landmark had been made more visually salient. In the Linguistic Salience conditions, the instructions included references to an object not on the map. Response times and fixations were recorded. Visual Salience influenced the time course of fixations at both the beginning and the end of the trial but did not show a significant effect on response times. Linguistic Salience reduced response times and increased fixations to landmarks when they were associated to a Linguistic Salient entity not present itself on the map. When the target landmark was both visually and linguistically salient, it was fixated longer, but fixations were quicker when the target item was linguistically salient only. Our results suggest that the two types of salience work in parallel and that linguistic salience affects fixations even when the entity is not visually present.

  16. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique.

    PubMed

    Thienprasiddhi, Phamornsak; Greenstein, Vivienne C; Chu, David H; Xu, Li; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2006-08-01

    To determine whether the multifocal visual evoked potential (mfVEP) technique can detect early functional damage in ocular hypertensive (OHT) and glaucoma suspect (GS) patients with normal standard achromatic automated perimetry (SAP) results. Twenty-five GS patients (25 eyes), 25 patients with OHT (25 eyes), and 50 normal controls (50 eyes) were enrolled in this study. All GS, OHT and normal control eyes had normal SAP as defined by a pattern standard deviation and mean deviation within the 95% confidence interval and a glaucoma hemifield test within normal limits on the Humphrey visual field 24-2 program. Eyes with GS had optic disc changes consistent with glaucoma with or without raised intraocular pressure (IOP), and eyes with OHT showed no evidence of glaucomatous optic neuropathy and IOPs >or=22 mm Hg. Monocular mfVEPs were obtained from both eyes of each subject using a pattern-reversal dartboard array with 60 sectors. The entire display had a radius of 22.3 degrees. The mfVEPs, for each eye, were defined as abnormal when either the monocular or interocular probability plot had a cluster of 3 or more contiguous points with P<0.05 and at least 2 of these points with P<0.01. The mfVEP results were abnormal in 4% of the eyes from normal subjects. Abnormal mfVEPs were detected in 20% of the eyes of GS patients and 16% of the eyes of OHT patients. Significantly more mfVEP abnormalities were detected in GS patients than in normal controls. However, there was no significant difference in mfVEP results between OHT patients and normal controls. The mfVEP technique can detect visual field deficits in a minority of eyes with glaucomatous optic disks and normal SAP results.

  17. Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT

    PubMed Central

    Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245

  18. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.

  19. Impaired Visual Expertise for Print in French Adults with Dyslexia as Shown by N170 Tuning

    ERIC Educational Resources Information Center

    Mahe, Gwendoline; Bonnefond, Anne; Gavens, Nathalie; Dufour, Andre; Doignon-Camus, Nadege

    2012-01-01

    Efficient reading relies on expertise in the visual word form area, with abnormalities in the functional specialization of this area observed in individuals with developmental dyslexia. We have investigated event related potentials in print tuning in adults with dyslexia, based on their N170 response at 135-255 ms. Control and dyslexic adults…

  20. Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2.

    PubMed

    Fakin, Ana; Jarc-Vidmar, Martina; Glavač, Damjan; Bonnet, Crystel; Petit, Christine; Hawlina, Marko

    2012-12-15

    Purpose of this study was to characterize retinal disease in Usher syndrome using fundus autofluorescence and optical coherence tomography. Study included 54 patients (26 male, 28 female) aged 7-70 years. There were 18 (33%) USH1 and 36 (67%) USH2 patients. 49/52 (94%) patients were found to carry at least one mutation in Usher genes. Ophthalmological examination included assessment of Snellen visual acuity, color vision with Ishihara tables, Goldmann visual fields (targets II/1-4 and V/4), microperimetry, fundus autofluorescence imaging and optical coherence tomography. Average age at disease onset (nyctalopia) was significantly lower in USH1 than USH2 patients (average 9 vs. 17 years, respectively; p<0.01); however no significant differences were found regarding type of autofluorescence patterns, frequency of foveal lesions and CME, rate of disease progression and age at legal blindness. All representative eyes had abnormal fundus autofluorescence of either hyperautofluorescent ring (55%), hyperautofluorescent foveal patch (35%) or foveal atrophy (10%). Disease duration of more than 30 years was associated with a high incidence of abnormal central fundus autofluorescence (patch or atrophy) and visual acuity loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reflex epilepsy and reflex seizures of the visual system: a clinical review.

    PubMed

    Zifkin, B G; Kasteleijn-Nolst Trenité, D

    2000-09-01

    Reflex epilepsy of the visual system is charecterised by seizures precipitated by visual stimuli. EEG responses to intermittent photic stimulation depend on the age and sex of the subject and on how stimulation is performed: abnormalities are commonest in children and adolescents, especially girls. Only generalised paroxysmal epileptiform discharges are clearly linked to epilepsy. Abnormal responses may occur in asymptomatic subjects, especially children. Photosensitivity has an important genetic component. Some patients are sensitive to patterns, suggesting an occipital trigger for these events. Myoclonus and generalised convulsive and nonconvulsive seizures may be triggered by visual stimuli. Partial seizures occur less often and can be confused with migraine. Although usually idiopathic, photosensitive epilepsy may occur in degenerative diseases and some patients with photosensitive partial seizures have brain lesions. Sunlight and video screens, including television, video games, and computer displays, are the commonest environmental triggers of photosensitive seizures. Outbreaks of triggered seizures have occurred when certain flashing or patterned images have been broadcast. There are regulations to prevent this in some countries only. Pure photosensitive epilepsy has a good prognosis. There is a role for treatment with and without antiepileptic drugs, but photosensitivity usually does not disappear spontaneously, and then typically in the third decade.

  2. Preferred retinal locus in macular disease: characteristics and clinical implications.

    PubMed

    Greenstein, Vivienne C; Santos, Rodrigo A V; Tsang, Stephen H; Smith, R Theodore; Barile, Gaetano R; Seiple, William

    2008-10-01

    To investigate the location and fixation stability of preferred retinal locations (PRLs) in patients with macular disease, and the relationship among areas of abnormal fundus autofluorescence, the PRL and visual sensitivity. Fifteen patients (15 eyes) were studied. Seven had Stargardt disease, 1 bull's eye maculopathy, 5 age-related macular degeneration, 1 Best disease, and 1 pattern dystrophy. All tested eyes had areas of abnormal fundus autofluorescence. The PRL was evaluated with fundus photography and the Nidek microperimeter. Visual field sensitivity was measured with the Nidek microperimeter. Of the 15 eyes, 4 had foveal and 11 had eccentric fixation. Eccentric PRLs were above the atrophic lesion and their stability did not depend on the degree of eccentricity from the fovea. Visual sensitivity was markedly decreased in locations corresponding to hypofluorescent areas. Sensitivity was not decreased in hyperfluorescent areas corresponding to flecks but was decreased if hyperfluorescence was in the form of dense annuli. Eccentric PRLs were in the superior retina in regions of normal fundus autofluorescence. Fixation stability was not correlated with the degree of eccentricity from the fovea. To assess the outcomes of treatment trials it is important to use methods that relate retinal morphology to visual function.

  3. Ultrahigh-Resolution Optical Coherence Tomography of Surgically Closed Macular Holes

    PubMed Central

    Ko, Tony H.; Witkin, Andre J.; Fujimoto, James G.; Chan, Annie; Rogers, Adam H.; Baumal, Caroline R.; Schuman, Joel S.; Drexler, Wolfgang; Reichel, Elias; Duker, Jay S.

    2007-01-01

    Objective To evaluate retinal anatomy using ultrahigh-resolution optical coherence tomography (OCT) in eyes after successful surgical repair of full-thickness macular hole. Methods Twenty-two eyes of 22 patients were diagnosed as having macular hole, underwent pars plana vitrectomy, and had flat/closed macular anatomy after surgery, as confirmed with biomicroscopic and OCT examination findings. An ultrahigh-resolution–OCT system developed for retinal imaging, with the capability to achieve approximately 3-μm axial resolution, was used to evaluate retinal anatomy after hole repair. Results Despite successful closure of the macular hole, all 22 eyes had macular abnormalities on ultrahigh-resolution–OCT images after surgery. These abnormalities were separated into the following 5 categories: (1) outer foveal defects in 14 eyes (64%), (2) persistent foveal detachment in 4 (18%), (3) moderately reflective foveal lesions in 12 (55%), (4) epiretinal membranes in 14 (64%), and (5) nerve fiber layer defects in 3 (14%). Conclusions With improved visualization of fine retinal architectural features, ultrahigh-resolution OCT can visualize persistent retinal abnormalities despite anatomically successful macular hole surgery. Outer foveal hyporeflective disruptions of the junction between the inner and outer segments of the photoreceptors likely represent areas of foveal photoreceptor degeneration. Moderately reflective lesions likely represent glial cell proliferation at the site of hole reapproximation. Thin epiretinal membranes do not seem to decrease visual acuity and may play a role in reestablishing foveal anatomy after surgery. PMID:16769836

  4. Representation and disconnection in imaginal neglect.

    PubMed

    Rode, G; Cotton, F; Revol, P; Jacquin-Courtois, S; Rossetti, Y; Bartolomeo, P

    2010-08-01

    Patients with neglect failure to detect, orient, or respond to stimuli from a spatially confined region, usually on their left side. Often, the presence of perceptual input increases left omissions, while sensory deprivation decreases them, possibly by removing attention-catching right-sided stimuli (Bartolomeo, 2007). However, such an influence of visual deprivation on representational neglect was not observed in patients while they were imagining a map of France (Rode et al., 2007). Therefore, these patients with imaginal neglect either failed to generate the left side of mental images (Bisiach & Luzzatti, 1978), or suffered from a co-occurrence of deficits in automatic (bottom-up) and voluntary (top-down) orienting of attention. However, in Rode et al.'s experiment visual input was not directly relevant to the task; moreover, distraction from visual input might primarily manifest itself when representation guides somatomotor actions, beyond those involved in the generation and mental exploration of an internal map (Thomas, 1999). To explore these possibilities, we asked a patient with right hemisphere damage, R.D., to explore visual and imagined versions of a map of France in three conditions: (1) 'imagine the map in your mind' (imaginal); (2) 'describe a real map' (visual); and (3) 'list the names of French towns' (propositional). For the imaginal and visual conditions, verbal and manual pointing responses were collected; the task was also given before and after mental rotation of the map by 180 degrees . R.D. mentioned more towns on the right side of the map in the imaginal and visual conditions, but showed no representational deficit in the propositional condition. The rightward inner exploration bias in the imaginal and visual conditions was similar in magnitude and was not influenced by mental rotation or response type (verbal responses or manual pointing to locations on a map), thus suggesting that the representational deficit was robust and independent of perceptual input in R.D. Structural and diffusion MRI demonstrated damage to several white matter tracts in the right hemisphere and to the splenium of corpus callosum. A second right-brain damaged patient (P.P.), who showed signs of visual but not imaginal neglect, had damage to the same intra-hemispheric tracts, but the callosal connections were spared. Imaginal neglect in R.D. may result from fronto-parietal dysfunction impairing orientation towards left-sided items and posterior callosal disconnection preventing the symmetrical processing of spatial information from long-term memory. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. An egalitarian network model for the emergence of simple and complex cells in visual cortex

    PubMed Central

    Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert

    2004-01-01

    We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891

  6. Effects of Length of Retention Interval on Proactive Interference in Short-Term Visual Memory

    ERIC Educational Resources Information Center

    Meudell, Peter R.

    1977-01-01

    These experiments show two things: (a) In visual memory, long-term interference on a current item from items previously stored only seems to occur when the current item's retention interval is relatively long, and (b) the visual code appears to decay rapidly, reaching asymptote within 3 seconds of input in the presence of an interpolated task.…

  7. Training-Induced Recovery of Low-Level Vision Followed by Mid-Level Perceptual Improvements in Developmental Object and Face Agnosia

    ERIC Educational Resources Information Center

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L.; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental…

  8. Visual-perceptual-kinesthetic inputs on influencing writing performances in children with handwriting difficulties.

    PubMed

    Tse, Linda F L; Thanapalan, Kannan C; Chan, Chetwyn C H

    2014-02-01

    This study investigated the role of visual-perceptual input in writing Chinese characters among senior school-aged children who had handwriting difficulties (CHD). The participants were 27 CHD (9-11 years old) and 61 normally developed control. There were three writing conditions: copying, and dictations with or without visual feedback. The motor-free subtests of the Developmental Test of Visual Perception (DTVP-2) were conducted. The CHD group showed significantly slower mean speeds of character production and less legibility of produced characters than the control group in all writing conditions (ps<0.001). There were significant deteriorations in legibility from copying to dictation without visual feedback. Nevertheless, the Group by Condition interaction effect was not statistically significant. Only position in space of DTVP-2 was significantly correlated with the legibility among CHD (r=-0.62, p=0.001). Poor legibility seems to be related to the less-intact spatial representation of the characters in working memory, which can be rectified by viewing the characters during writing. Visual feedback regarding one's own actions in writing can also improve legibility of characters among these children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles

    PubMed Central

    Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.

    2014-01-01

    We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845

  10. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  11. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  12. Abnormal Microstructure of the Atrophic Thalamus in Preterm Survivors with Periventricular Leukomalacia

    PubMed Central

    Nagasunder, A.C.; Kinney, H.C.; Blüml, S.; Tavaré, C.J.; Rosser, T.; Gilles, F.H.; Nelson, M.D.; Panigrahy, A.

    2012-01-01

    BACKGROUND AND PURPOSE The neuroanatomic substrate of cognitive deficits in long-term survivors of prematurity with PVL is poorly understood. The thalamus is critically involved in cognition via extensive interconnections with the cerebral cortex. We hypothesized that the thalamus is atrophic (reduced in volume) in childhood survivors of prematurity with neuroimaging evidence of PVL and that the atrophy is associated with selective microstructural abnormalities within its subdivisions. MATERIALS AND METHODS We performed quantitative volumetric and DTI measurements of the thalamus in 17 children with neuroimaging evidence of PVL (mean postconceptional age, 5.6 ± 4.0 years) who were born prematurely and compared these with 74 term control children (5.7 ± 3.4 years). RESULTS The major findings were the following: 1) a significant reduction in the overall volume of the thalamus in patients with PVL compared with controls (P < .0001), which also correlated with the severity of PVL (P = .001); 2) significantly decreased FA (P = .003) and increased λ⊥ (P = .02) in the thalamus overall and increased axial, radial, and mean diffusivities in the pulvinar (P < .03), suggesting injury to afferent and efferent myelinated axons; and 3) a positive correlation of pulvinar abnormalities with those of the parieto-occipital white matter in periventricular leukomalacia, suggesting that the pulvinar abnormalities reflect secondary effects of damaged interconnections between the pulvinar and parieto-occipital cortices in the cognitive visual network. CONCLUSIONS There are volumetric and microstructural abnormalities of the thalamus in preterm children with PVL, very likely reflecting neuronal loss and myelinated axonal injury. The selective microstructural damage in the pulvinar very likely contributes to abnormal cognitive visual processing known to occur in such survivors. PMID:20930003

  13. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  14. Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.

    PubMed

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L

    2017-05-01

    Previous psychophysical research has examined how younger adults and non-human primates integrate visual and vestibular cues to perceive self-motion. However, there is much to be learned about how multisensory self-motion perception changes with age, and how these changes affect performance on everyday tasks involving self-motion. Evidence suggests that older adults display heightened multisensory integration compared with younger adults; however, few previous studies have examined this for visual-vestibular integration. To explore age differences in the way that visual and vestibular cues contribute to self-motion perception, we had younger and older participants complete a basic driving task containing visual and vestibular cues. We compared their performance against a previously established control group that experienced visual cues alone. Performance measures included speed, speed variability, and lateral position. Vestibular inputs resulted in more precise speed control among older adults, but not younger adults, when traversing curves. Older adults demonstrated more variability in lateral position when vestibular inputs were available versus when they were absent. These observations align with previous evidence of age-related differences in multisensory integration and demonstrate that they may extend to visual-vestibular integration. These findings may have implications for vehicle and simulator design when considering older users.

  15. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    PubMed

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    NASA Astrophysics Data System (ADS)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  17. ERGONOMICS ABSTRACTS 48983-49619.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    THE LITERATURE OF ERGONOMICS, OR BIOTECHNOLOGY, IS CLASSIFIED INTO 15 AREAS--METHODS, SYSTEMS OF MEN AND MACHINES, VISUAL AND AUDITORY AND OTHER INPUTS AND PROCESSES, INPUT CHANNELS, BODY MEASUREMENTS, DESIGN OF CONTROLS AND INTEGRATION WITH DISPLAYS, LAYOUT OF PANELS AND CONSOLES, DESIGN OF WORK SPACE, CLOTHING AND PERSONAL EQUIPMENT, SPECIAL…

  18. Role of orientation reference selection in motion sickness, supplement 2S

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1987-01-01

    Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.

  19. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Automated quantification of myocardial perfusion SPECT using simplified normal limits.

    PubMed

    Slomka, Piotr J; Nishina, Hidetaka; Berman, Daniel S; Akincioglu, Cigdem; Abidov, Aiden; Friedman, John D; Hayes, Sean W; Germano, Guido

    2005-01-01

    To simplify development of normal limits for myocardial perfusion SPECT (MPS), we implemented a quantification scheme in which normal limits are derived without visual scoring of abnormal scans or optimization of regional thresholds. Normal limits were derived from same-day TI-201 rest/Tc-99m-sestamibi stress scans of male (n = 40) and female (n = 40) low-likelihood patients. Defect extent, total perfusion deficit (TPD), and regional perfusion extents were derived by comparison to normal limits in polar-map coordinates. MPS scans from 256 consecutive patients without known coronary artery disease, who underwent coronary angiography, were analyzed. The new method of quantification (TPD) was compared with our previously developed quantification system and visual scoring. The receiver operator characteristic area under the curve for detection of 50% or greater stenoses by TPD (0.88 +/- 0.02) was higher than by visual scoring (0.83 +/- 0.03) ( P = .039) or standard quantification (0.82 +/- 0.03) ( P = .004). For detection of 70% or greater stenoses, it was higher for TPD (0.89 +/- 0.02) than for standard quantification (0.85 +/- 0.02) ( P = .014). Sensitivity and specificity were 93% and 79%, respectively, for TPD; 81% and 85%, respectively, for visual scoring; and 80% and 73%, respectively, for standard quantification. The use of stress mode-specific normal limits did not improve performance. Simplified quantification achieves performance better than or equivalent to visual scoring or quantification based on per-segment visual optimization of abnormality thresholds.

  1. Interactive Visual Analytics Approch for Exploration of Geochemical Model Simulations with Different Parameter Sets

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2015-04-01

    Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction is thermodynamically favorable under a broad range of conditions. This includes low temperatures and absence of microbial catalysators. Our approach has potential for use in other applications that involve exploration of relationships in geochemical simulation model data.

  2. Evaluation of central nervous system in patients with glycogen storage disease type 1a.

    PubMed

    Aydemir, Yusuf; Gürakan, Figen; Saltık Temizel, İnci Nur; Demir, Hülya; Oğuz, Kader Karlı; Yalnızoğlu, Dilek; Topçu, Meral; Özen, Hasan; Yüce, Aysel

    2016-01-01

    We aimed to evaluate structure and functions of central nervous system (CNS) in children with glycogen storage disease (GSD) type 1a. Neurological examination, psychometric tests, electroencephalography (EEG), magnetic resonance imaging (MRI), visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) were performed. The results were compared between patients with good and poor metabolic control and healthy children. Twenty-three patients with GSD type 1a were studied. Twelve patients were in poor metabolic control group and 11 patients in good metabolic control group. Five patients had intellectual disability, 10 had EEG abnormalities, seven had abnormal VEP and two had abnormal BAEP results. MRI was abnormal in five patients. There was significant correlation between the number of hypoglycemic attacks and MRI abnormalities. Central nervous system may be affected in GSD type 1a even in patients with normal neurologic examination. Accumulation of abnormal results in patients with poor metabolic control supports the importance of metabolic control in GSD type 1a.

  3. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    PubMed Central

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  4. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  5. Cervical Vertigo: Historical Reviews and Advances.

    PubMed

    Peng, Baogan

    2018-01-01

    Vertigo is one of the most common presentations in adult patients. Among the various causes of vertigo, so-called cervical vertigo is still a controversial entity. Cervical vertigo was first thought to be due to abnormal input from cervical sympathetic nerves based on the work of Barré and Liéou in 1928. Later studies found that cerebral blood flow is not influenced by sympathetic stimulation. Ryan and Cope in 1955 proposed that abnormal sensory information from the damaged joint receptors of upper cervical regions may be related to pathologies of vertigo of cervical origin. Further studies found that cervical vertigo seems to originate from diseased cervical intervertebral discs. Recent research found that the ingrowth of a large number of Ruffini corpuscles into diseased cervical discs may be related to vertigo of cervical origin. Abnormal neck proprioceptive input integrated from the signals of Ruffini corpuscles in diseased cervical discs and muscle spindles in tense neck muscles secondary to neck pain is transmitted to the central nervous system and leads to a sensory mismatch with vestibular and other sensory information, resulting in a subjective feeling of vertigo and unsteadiness. Further studies are needed to illustrate the complex pathophysiologic mechanisms of cervical vertigo and to better understand and manage this perplexing entity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Guide to Understanding Pfeiffer Syndrome

    MedlinePlus

    ... sockets (orbits). Approximately 50% of children with Pfeiffer syndrome have some form of hearing loss secondary to an abnormally small ear canal and middle ear. Dental problems are also common. Visual problems ...

  7. Altered intrinsic functional brain architecture in female patients with bulimia nervosa

    PubMed Central

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-01-01

    Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286

  8. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    PubMed

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.

  9. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa

    2013-05-01

    To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [Visual input affects the expression of the early genes c-Fos and ZENK in auditory telencephalic centers of pied flycatcher nestlings during the acoustically-guided freezing].

    PubMed

    Korneeva, E V; Tiunova, A A; Aleksandrov, L I; Golubeva, T B; Anokhin, K V

    2014-01-01

    The present study analyzed expression of transcriptional factors c-Fos and ZENK in 9-day-old pied flycatcher nestlings' (Ficedula hypoleuca) telencephalic auditory centers (field L, caudomedial nidopallium and caudomedial mesopallium) involved in the acoustically-guided defense behavior. Species-typical alarm call was presented to the young in three groups: 1--intact group (sighted control), 2--nestlings visually deprived just before the experiment for a short time (unsighted control) 3--nestlings visually deprived right after hatching (experimental deprivation). Induction of c-Fos as well as ZENK in nestlings from the experimental deprivation group was decreased in both hemispheres as compared with intact group. In the group of unsighted control, only the decrease of c-Fos induction was observed exclusively in the right hemisphere. These findings suggest that limitation of visual input changes the population of neurons involved into the acoustically-guided behavior, the effect being dependant from the duration of deprivation.

  11. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  12. Direct visuomotor mapping for fast visually-evoked arm movements.

    PubMed

    Reynolds, Raymond F; Day, Brian L

    2012-12-01

    In contrast to conventional reaction time (RT) tasks, saccadic RT's to visual targets are very fast and unaffected by the number of possible targets. This can be explained by the sub-cortical circuitry underlying eye movements, which involves direct mapping between retinal input and motor output in the superior colliculus. Here we asked if the choice-invariance established for the eyes also applies to a special class of fast visuomotor responses of the upper limb. Using a target-pointing paradigm we observed very fast reaction times (<150 ms) which were completely unaffected as the number of possible target choices was increased from 1 to 4. When we introduced a condition of altered stimulus-response mapping, RT went up and a cost of choice was observed. These results can be explained by direct mapping between visual input and motor output, compatible with a sub-cortical pathway for visual control of the upper limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Looking for ideas: Eye behavior during goal-directed internally focused cognition☆

    PubMed Central

    Walcher, Sonja; Körner, Christof; Benedek, Mathias

    2017-01-01

    Humans have a highly developed visual system, yet we spend a high proportion of our time awake ignoring the visual world and attending to our own thoughts. The present study examined eye movement characteristics of goal-directed internally focused cognition. Deliberate internally focused cognition was induced by an idea generation task. A letter-by-letter reading task served as external task. Idea generation (vs. reading) was associated with more and longer blinks and fewer microsaccades indicating an attenuation of visual input. Idea generation was further associated with more and shorter fixations, more saccades and saccades with higher amplitudes as well as heightened stimulus-independent variation of eye vergence. The latter results suggest a coupling of eye behavior to internally generated information and associated cognitive processes, i.e. searching for ideas. Our results support eye behavior patterns as indicators of goal-directed internally focused cognition through mechanisms of attenuation of visual input and coupling of eye behavior to internally generated information. PMID:28689088

  14. A Multifactor Approach to Research in Instructional Technology.

    ERIC Educational Resources Information Center

    Ragan, Tillman J.

    In a field such as instructional design, explanations of educational outcomes must necessarily consider multiple input variables. To adequately understand the contribution made by the independent variables, it is helpful to have a visual conception of how the input variables interrelate. Two variable models are adequately represented by a two…

  15. Response Modality Variations Affect Determinations of Children's Learning Styles.

    ERIC Educational Resources Information Center

    Janowitz, Jeffrey M.

    The Swassing-Barbe Modality Index (SBMI) uses visual, auditory, and tactile inputs, but only reconstructed output, to measure children's modality strengths. In this experiment, the SBMI's three input modalities were crossed with two output modalities (spoken and drawn) in addition to the reconstructed standard to result in nine treatment…

  16. Effectiveness of Myocardial Contrast Echocardiography Quantitative Analysis during Adenosine Stress versus Visual Analysis before Percutaneous Therapy in Acute Coronary Pain: A Coronary Artery TIMI Grading Comparing Study

    PubMed Central

    Yang, Lixia; Mu, Yuming; Quaglia, Luiz Augusto; Tang, Qi; Guan, Lina; Wang, Chunmei; Shih, Ming Chi

    2012-01-01

    The study aim was to compare two different stress echocardiography interpretation techniques based on the correlation with thrombosis in myocardial infarction (TIMI ) flow grading from acute coronary syndrome (ACS) patients. Forty-one patients with suspected ACS were studied before diagnostic coronary angiography with myocardial contrast echocardiography (MCE) at rest and at stress. The correlation of visual interpretation of MCE and TIMI flow grade was significant. The quantitative analysis (myocardial perfusion parameters: A, β, and A × β) and TIMI flow grade were significant. MCE visual interpretation and TIMI flow grade had a high degree of agreement, on diagnosing myocardial perfusion abnormality. If one considers TIMI flow grade <3 as abnormal, MCE visual interpretation at rest had 73.1% accuracy with 58.2% sensitivity and 84.2% specificity and at stress had 80.4% accuracy with 76.6% sensitivity and 83.3% specificity. The MCE quantitative analysis has better accuracy with 100% of agreement with different level of TIMI flow grading. MCE quantitative analysis at stress has showed a direct correlation with TIMI flow grade, more significant than the visual interpretation technique. Further studies could measure the clinical relevance of this more objective approach to managing acute coronary syndrome patient before percutaneous coronary intervention (PCI). PMID:22778555

  17. Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).

    PubMed

    Ciuffreda, Kenneth J; Yadav, Naveen K; Ludlam, Diana P

    2013-01-01

    The purpose of the experiment was to assess the effect of binasal occlusion (BNO) on the visually-evoked potential (VEP) in visually-normal (VN) individuals and in those with mild traumatic brain injury (mTBI) for whom BNO frequently reduces their primary symptoms related to abnormally-increased visual motion sensitivity (VMS). Subjects were comprised of asymptomatic VN adults (n = 10) and individuals with mTBI (n = 10) having the symptom of VMS. Conventional full-field VEP testing was employed under two conditions: without BNO and with opaque BNO which blocked regions on either side of the VEP test stimulus. Subjective impressions were also assessed. In VN, the mean VEP amplitude decreased significantly with BNO in all subjects. In contrast, in mTBI, the mean VEP amplitude increased significantly with BNO in all subjects. Latency was normal and unaffected in all cases. Repeat VEP testing in three subjects from each group revealed similar test-re-test findings. Visuomotor activities improved, with reduced symptoms, with BNO in the mTBI group. It is speculated that individuals with mTBI habitually attempt to suppress visual information in the near retinal periphery to reduce their abnormal VMS, with addition of the BNO negating the suppressive influence and thus producing a widespread disinhibition effect and resultant increase in VEP amplitude.

  18. Diffusion tensor imaging of the optic tracts in multiple sclerosis: association with retinal thinning and visual disability.

    PubMed

    Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S

    2011-04-01

    Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.

  19. Diffusion Tensor Imaging of the Optic Tracts in Multiple Sclerosis: Association with Retinal Thinning and Visual Disability

    PubMed Central

    Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.

    2009-01-01

    Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501

  20. Pleural Touch Preparations and Direct Visualization of the Pleura during Medical Thoracoscopy for the Diagnosis of Malignancy.

    PubMed

    Grosu, Horiana B; Vial-Rodriguez, Macarena; Vakil, Erik; Casal, Roberto F; Eapen, George A; Morice, Rodolfo; Stewart, John; Sarkiss, Mona G; Ost, David E

    2017-08-01

    During diagnostic thoracoscopy, talc pleurodesis after biopsy is appropriate if the probability of malignancy is sufficiently high. Findings on direct visual assessment of the pleura during thoracoscopy, rapid onsite evaluation (ROSE) of touch preparations (touch preps) of thoracoscopic biopsy specimens, and preoperative imaging may help predict the likelihood of malignancy; however, data on the performance of these methods are limited. To assess the performance of ROSE of touch preps, direct visual assessment of the pleura during thoracoscopy, and preoperative imaging in diagnosing malignancy. Patients who underwent ROSE of touch preps during thoracoscopy for suspected malignancy were retrospectively reviewed. Malignancy was diagnosed on the basis of final pathologic examination of pleural biopsy specimens. ROSE results were categorized as malignant, benign, or atypical cells. Visual assessment results were categorized as tumor studding present or absent. Positron emission tomography (PET) and computed tomography (CT) findings were categorized as abnormal or normal pleura. Likelihood ratios were calculated for each category of test result. The study included 44 patients, 26 (59%) with a final pathologic diagnosis of malignancy. Likelihood ratios were as follows: for ROSE of touch preps: malignant, 1.97 (95% confidence interval [CI], 0.90-4.34); atypical cells, 0.69 (95% CI, 0.21-2.27); benign, 0.11 (95% CI, 0.01-0.93); for direct visual assessment: tumor studding present, 3.63 (95% CI, 1.32-9.99); tumor studding absent, 0.24 (95% CI, 0.09-0.64); for PET: abnormal pleura, 9.39 (95% CI, 1.42-62); normal pleura, 0.24 (95% CI, 0.11-0.52); and for CT: abnormal pleura, 13.15 (95% CI, 1.93-89.63); normal pleura, 0.28 (95% CI, 0.15-0.54). A finding of no malignant cells on ROSE of touch preps during thoracoscopy lowers the likelihood of malignancy significantly, whereas finding of tumor studding on direct visual assessment during thoracoscopy only moderately increases the likelihood of malignancy. A positive finding on PET and/or CT increases the likelihood of malignancy significantly in a moderate-risk patient group and can be used as an adjunct to predict malignancy before pleurodesis.

  1. The Influence of Visual Feedback and Register Changes on Sign Language Production: A Kinematic Study with Deaf Signers

    ERIC Educational Resources Information Center

    Emmorey, Karen; Gertsberg, Nelly; Korpics, Franco; Wright, Charles E.

    2009-01-01

    Speakers monitor their speech output by listening to their own voice. However, signers do not look directly at their hands and cannot see their own face. We investigated the importance of a visual perceptual loop for sign language monitoring by examining whether changes in visual input alter sign production. Deaf signers produced American Sign…

  2. The role of pulvinar in the transmission of information in the visual hierarchy.

    PubMed

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning.

  3. The Role of Pulvinar in the Transmission of Information in the Visual Hierarchy

    PubMed Central

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly from cortical connections: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning. PMID:22654750

  4. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    PubMed

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  5. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.

    PubMed

    Kok, Peter; de Lange, Floris P

    2014-07-07

    An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  8. Visual just noticeable differences

    NASA Astrophysics Data System (ADS)

    Nankivil, Derek; Chen, Minghan; Wooley, C. Benjamin

    2018-02-01

    A visual just noticeable difference (VJND) is the amount of change in either an image (e.g. a photographic print) or in vision (e.g. due to a change in refractive power of a vision correction device or visually coupled optical system) that is just noticeable when compared with the prior state. Numerous theoretical and clinical studies have been performed to determine the amount of change in various visual inputs (power, spherical aberration, astigmatism, etc.) that result in a just noticeable visual change. Each of these approaches, in defining a VJND, relies on the comparison of two visual stimuli. The first stimulus is the nominal or baseline state and the second is the perturbed state that results in a VJND. Using this commonality, we converted each result to the change in the area of the modulation transfer function (AMTF) to provide a more fundamental understanding of what results in a VJND. We performed an analysis of the wavefront criteria from basic optics, the image quality metrics, and clinical studies testing various visual inputs, showing that fractional changes in AMTF resulting in one VJND range from 0.025 to 0.075. In addition, cycloplegia appears to desensitize the human visual system so that a much larger change in the retinal image is required to give a VJND. This finding may be of great import for clinical vision tests. Finally, we present applications of the VJND model for the determination of threshold ocular aberrations and manufacturing tolerances of visually coupled optical systems.

  9. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  10. Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception

    PubMed Central

    Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas

    2011-01-01

    How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432

  11. Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity

    PubMed Central

    Neri, Peter

    2010-01-01

    Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835

  12. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    PubMed

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia

    PubMed Central

    Li, Roger W.; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M.

    2011-01-01

    Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15–61 y; visual acuity: 20/25–20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40–80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. Trial Registration ClinicalTrials.gov NCT01223716 PMID:21912514

  14. Video-game play induces plasticity in the visual system of adults with amblyopia.

    PubMed

    Li, Roger W; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M

    2011-08-01

    Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15-61 y; visual acuity: 20/25-20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40-80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. ClinicalTrials.gov NCT01223716.

  15. The effect of visual context on manual localization of remembered targets

    NASA Technical Reports Server (NTRS)

    Barry, S. R.; Bloomberg, J. J.; Huebner, W. P.

    1997-01-01

    This paper examines the contribution of egocentric cues and visual context to manual localization of remembered targets. Subjects pointed in the dark to the remembered position of a target previously viewed without or within a structured visual scene. Without a remembered visual context, subjects pointed to within 2 degrees of the target. The presence of a visual context with cues of straight ahead enhanced pointing performance to the remembered location of central but not off-center targets. Thus, visual context provides strong visual cues of target position and the relationship of body position to target location. Without a visual context, egocentric cues provide sufficient input for accurate pointing to remembered targets.

  16. From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance.

    PubMed

    Zhaoping, Li

    2016-10-01

    Recent data have supported the hypothesis that, in primates, the primary visual cortex (V1) creates a saliency map from visual input. The exogenous guidance of attention is then realized by means of monosynaptic projections to the superior colliculus, which can select the most salient location as the target of a gaze shift. V1 is less prominent, or is even absent in lower vertebrates such as fish; whereas the superior colliculus, called optic tectum in lower vertebrates, also receives retinal input. I review the literature and propose that the saliency map has migrated from the tectum to V1 over evolution. In addition, attentional benefits manifested as cueing effects in humans should also be present in lower vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In Search of a Visual-cortical Describing Function: a Summary of Work in Progress

    NASA Technical Reports Server (NTRS)

    Junker, A. M.; Peio, K. J.

    1984-01-01

    The thrust of the present work is to explore the utility of using a sum of sinusoids (seven or more) to obtain an evoked response and, furthermore, to see if the response is sensitive to changes in cognitive processing. Within the field of automatic control system technology, a mathematical input/output relationship for a sinusoidally stimulated nonlinear system is defined as describing function. Applying this technology, sum of sines inputs to yield describing functions for the visual-cortical response have been designed. What follows is a description of the method used to obtain visual-cortical describing functions. A number of measurement system redesigns were necessary to achieve the desired frequency resolution. Results that guided and came out of the redesigns are presented. Preliminary results of stimulus parameter effects (average intensity and depth of modulation) are also shown.

  18. Amblyopia treatment strategies and new drug therapies.

    PubMed

    Pescosolido, Nicola; Stefanucci, Alessio; Buomprisco, Giuseppe; Fazio, Stefano

    2014-01-01

    Amblyopia is a unilateral or bilateral reduction of visual acuity secondary to abnormal visual experience during early childhood. It is one of the most common causes of vision loss and monocular blindness and is commonly associated with strabismus, anisometropia, and visual deprivation (in particular congenital cataract and ptosis). It is clinically defined as a two-line difference of best-corrected visual acuity between the eyes. The purpose of this study was to understand the neural mechanisms of amblyopia and summarize the current therapeutic strategies. In particular, the authors focused on the concept of brain plasticity and its implication for new treatment strategies for children and adults with amblyopia. Copyright 2014, SLACK Incorporated.

  19. Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD)

    PubMed Central

    Sysoeva, Olga V.; Galuta, Ilia A.; Davletshina, Maria S.; Orekhova, Elena V.; Stroganova, Tatiana A.

    2017-01-01

    Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD—a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6–15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD. PMID:28405183

  20. Molecular biology of myopia.

    PubMed

    Schaeffel, Frank; Simon, Perikles; Feldkaemper, Marita; Ohngemach, Sibylle; Williams, Robert W

    2003-09-01

    Experiments in animal models of myopia have emphasised the importance of visual input in emmetropisation but it is also evident that the development of human myopia is influenced to some degree by genetic factors. Molecular genetic approaches can help to identify both the genes involved in the control of ocular development and the potential targets for pharmacological intervention. This review covers a variety of techniques that are being used to study the molecular biology of myopia. In the first part, we describe techniques used to analyse visually induced changes in gene expression: Northern Blot, polymerase chain reaction (PCR) and real-time PCR to obtain semi-quantitative and quantitative measures of changes in transcription level of a known gene, differential display reverse transcription PCR (DD-RT-PCR) to search for new genes that are controlled by visual input, rapid amplification of 5' cDNA (5'-RACE) to extend the 5' end of sequences that are regulated by visual input, in situ hybridisation to localise the expression of a given gene in a tissue and oligonucleotide microarray assays to simultaneously test visually induced changes in thousands of transcripts in single experiments. In the second part, we describe techniques that are used to localise regions in the genome that contain genes that are involved in the control of eye growth and refractive errors in mice and humans. These include quantitative trait loci (QTL) mapping, exploiting experimental test crosses of mice and transmission disequilibrium tests (TDT) in humans to find chromosomal intervals that harbour genes involved in myopia development. We review several successful applications of this battery of techniques in myopia research.

  1. The Inversion of Sensory Processing by Feedback Pathways: A Model of Visual Cognitive Functions.

    ERIC Educational Resources Information Center

    Harth, E.; And Others

    1987-01-01

    Explains the hierarchic structure of the mammalian visual system. Proposes a model in which feedback pathways serve to modify sensory stimuli in ways that enhance and complete sensory input patterns. Investigates the functioning of the system through computer simulations. (ML)

  2. The Future of Access Technology for Blind and Visually Impaired People.

    ERIC Educational Resources Information Center

    Schreier, E. M.

    1990-01-01

    This article describes potential use of new technological products and services by blind/visually impaired people. Items discussed include computer input devices, public telephones, automatic teller machines, airline and rail arrival/departure displays, ticketing machines, information retrieval systems, order-entry terminals, optical character…

  3. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    ERIC Educational Resources Information Center

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  4. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  5. Color blindness among multiple sclerosis patients in Isfahan.

    PubMed

    Shaygannejad, Vahid; Golabchi, Khodayar; Dehghani, Alireza; Ashtari, Fereshteh; Haghighi, Sepehr; Mirzendehdel, Mahsa; Ghasemi, Majid

    2012-03-01

    Multiple sclerosis (MS) is a disease of young and middle aged individuals with a demyelinative axonal damage nature in central nervous system that causes various signs and symptoms. As color vision needs normal function of optic nerve and macula, it is proposed that MS can alter it via influencing optic nerve. In this survey, we evaluated color vision abnormalities and its relationship with history of optic neuritis and abnormal visual evoked potentials (VEPs) among MS patients. The case group was included of clinically definitive MS patients and the same number of normal population was enrolled as the control group. Color vision of all the participants was evaluated by Ishihara test and then visual evoked potential (VEPs) and history of optic neuritis (ON) was assessed among them. Then, frequency of color blindness was compared between the case and the control group. Finally, color blinded patients were compared to those with the history of ON and abnormal VEPs. 63 MS patients and the same number of normal populations were enrolled in this study. 12 patients had color blindness based on the Ishihara test; only 3 of them were among the control group, which showed a significant different between the two groups (P = 0.013). There was a significant relationship between the color blindness and abnormal VEP (R = 0.53, P = 0.023) but not for the color blindness and ON (P = 0.67). This study demonstrates a significant correlation between color blindness and multiple sclerosis including ones with abnormal prolonged VEP latencies. Therefore, in individuals with acquired color vision impairment, an evaluation for potentially serious underlying diseases like MS is essential.

  6. The handicap of abnormal colour vision.

    PubMed

    Cole, Barry L

    2004-07-01

    All people with abnormal colour vision, except for a few mildly affected deuteranomals, report that they experience problems with colour in everyday life and at work. Contemporary society presents them with increasing problems because colour is now so widely used in printed materials and in computer displays. Equal opportunity law gives them protection against unfair discrimination in employment, so a decision to exclude a person from employment on the grounds of abnormal colour vision must now be well supported by good evidence and sound argument. This paper reviews the investigations that have contributed to understanding the nature and consequences of the problems they have. All those with abnormal colour vision are at a disadvantage with comparative colour tasks that involve precise matching of colours or discrimination of fine colour differences either because of their loss of colour discrimination or anomalous perception of metamers. The majority have problems when colour is used to code information, in man-made colour codes and in naturally occurring colour codes that signal ripeness of fruit, freshness of meat or illness. They can be denied the benefit of colour to mark out objects and organise complex visual displays. They may be unreliable when a colour name is used as an identifier. They are slower and less successful in search when colour is an attribute of the target object or is used to organise the visual display. Because those with the more severe forms of abnormal colour vision perceive a very limited gamut of colours, they are at a disadvantage in the pursuit and appreciation of those forms of art that use colour.

  7. INFANT HEALTH PRODUCTION FUNCTIONS: WHAT A DIFFERENCE THE DATA MAKE

    PubMed Central

    Reichman, Nancy E.; Corman, Hope; Noonan, Kelly; Dave, Dhaval

    2008-01-01

    SUMMARY We examine the extent to which infant health production functions are sensitive to model specification and measurement error. We focus on the importance of typically unobserved but theoretically important variables (typically unobserved variables, TUVs), other non-standard covariates (NSCs), input reporting, and characterization of infant health. The TUVs represent wantedness, taste for risky behavior, and maternal health endowment. The NSCs include father characteristics. We estimate the effects of prenatal drug use, prenatal cigarette smoking, and First trimester prenatal care on birth weight, low birth weight, and a measure of abnormal infant health conditions. We compare estimates using self-reported inputs versus input measures that combine information from medical records and self-reports. We find that TUVs and NSCs are significantly associated with both inputs and outcomes, but that excluding them from infant health production functions does not appreciably affect the input estimates. However, using self-reported inputs leads to overestimated effects of inputs, particularly prenatal care, on outcomes, and using a direct measure of infant health does not always yield input estimates similar to those when using birth weight outcomes. The findings have implications for research, data collection, and public health policy. PMID:18792077

  8. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  9. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  10. Subacute sclerosing panencephalitis in immunized Thai children.

    PubMed

    Khusiwilai, Khanittha; Viravan, Sorawit

    2011-12-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive neurodegenerative disease with high mortality and poor prognosis. This is caused by persistent defective measles virus infection. Clinical presentations are variable including behavioral-cognitive change, myoclonic seizure, visual problem, spasticity or abnormal movement. The authors report a case of 10 year-old boy, previously healthy with complete immunization, presenting with frequent myoclonic jerks, abnormal movements, spasticity and altered mental status. Electroencephalographic (EEG), magnetic resonance imaging (MRI), and laboratory findings are typical for SSPE.

  11. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  12. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  13. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  14. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.

    PubMed Central

    Hillyard, S A; Vogel, E K; Luck, S J

    1998-01-01

    Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs). PMID:9770220

  15. Transformation priming helps to disambiguate sudden changes of sensory inputs.

    PubMed

    Pastukhov, Alexander; Vivian-Griffiths, Solveiga; Braun, Jochen

    2015-11-01

    Retinal input is riddled with abrupt transients due to self-motion, changes in illumination, object-motion, etc. Our visual system must correctly interpret each of these changes to keep visual perception consistent and sensitive. This poses an enormous challenge, as many transients are highly ambiguous in that they are consistent with many alternative physical transformations. Here we investigated inter-trial effects in three situations with sudden and ambiguous transients, each presenting two alternative appearances (rotation-reversing structure-from-motion, polarity-reversing shape-from-shading, and streaming-bouncing object collisions). In every situation, we observed priming of transformations as the outcome perceived in earlier trials tended to repeat in subsequent trials and this repetition was contingent on perceptual experience. The observed priming was specific to transformations and did not originate in priming of perceptual states preceding a transient. Moreover, transformation priming was independent of attention and specific to low level stimulus attributes. In summary, we show how "transformation priors" and experience-driven updating of such priors helps to disambiguate sudden changes of sensory inputs. We discuss how dynamic transformation priors can be instantiated as "transition energies" in an "energy landscape" model of the visual perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    NASA Astrophysics Data System (ADS)

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  17. Genetics Home Reference: renal coloboma syndrome

    MedlinePlus

    ... the back of the eye ( the retina ). The vision problems caused by these abnormalities can vary depending ... visual problems, while others may have severely impaired vision. Less common features of renal coloboma syndrome include ...

  18. The Hallermann-Streiff Syndrome

    ERIC Educational Resources Information Center

    Judge, C.; Chakanovskis, Johanna E.

    1971-01-01

    A mentally handicapped 12 year old boy with the features of Hallermann-Streiff syndrome (proportionate dwarfism, beaked nose, small mouth, dental abnormalities, severe visual handicap) is described. A review of the literature is also included. (CD)

  19. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  20. Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits

    PubMed Central

    Briggs, Farran; Mangun, George R.; Usrey, W. Martin

    2013-01-01

    Summary Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behavior are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by (1) increasing the efficacy of presynaptic input in driving postsynaptic responses, (2) increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and (3) decreasing redundant signals between postsynaptic neurons receiving common input. These results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory milieu. PMID:23803766

Top