Sample records for abnormally high expression

  1. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. Copyright © 2012 Wiley Periodicals, Inc.

  2. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  3. Comparative gene expression analysis of bovine nuclear-transferred embryos with different developmental potential by cDNA microarray and real-time PCR to determine genes that might reflect calf normality.

    PubMed

    Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio

    2007-01-01

    Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.

  4. Valence Scaling of Dynamic Facial Expressions Is Altered in High-Functioning Subjects with Autism Spectrum Disorders: An FMRI Study

    ERIC Educational Resources Information Center

    Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa

    2012-01-01

    FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…

  5. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans

    PubMed Central

    Hulver, Matthew W.; Berggren, Jason R.; Carper, Michael J.; Miyazaki, Makoto; Ntambi, James M.; Hoffman, Eric P.; Thyfault, John P.; Stevens, Robert; Dohm, G. Lynis; Houmard, Joseph A.; Muoio, Deborah M.

    2014-01-01

    Summary Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity. PMID:16213227

  6. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans.

    PubMed

    Hulver, Matthew W; Berggren, Jason R; Carper, Michael J; Miyazaki, Makoto; Ntambi, James M; Hoffman, Eric P; Thyfault, John P; Stevens, Robert; Dohm, G Lynis; Houmard, Joseph A; Muoio, Deborah M

    2005-10-01

    Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity.

  7. Blockage of hemichannels alters gene expression in osteocytes in a high magneto-gravitational environment

    PubMed Central

    Xu, Huiyun; Ning, Dandan; Zhao, Dezhi; Chen, Yunhe; Zhao, Dongdong; Gu, Sumin; Jiang, Jean X.; Shang, Peng

    2017-01-01

    Osteocytes, the most abundant cells in bone, are highly responsive to external environmental changes. We tested how Cx43 hemichannels which mediate the exchange of small molecules between cells and extracellular environment impact genome wide gene expression under conditions of abnormal gravity and magnetic field. To this end, we subjected osteocytic MLO-Y4 cells to a high magneto-gravitational environment and used microarray to examine global gene expression and a specific blocking antibody was used to assess the role of Cx43 hemichannels. While 3 hr exposure to abnormal gravity and magnetic field had relatively minor effects on global gene expression, blocking hemichannels significantly impacted the expression of a number of genes which are involved in cell viability, apoptosis, mineral absorption, protein absorption and digestion, and focal adhesion. Also, blocking of hemichannels enriched genes in multiple signaling pathways which are enaged by TGF-beta, Jak-STAT and VEGF. These results show the role of connexin hemichannels in bone cells in high magneto-gravitational environments. PMID:27814646

  8. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    PubMed

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  9. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose

    PubMed Central

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476

  10. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  11. The role of fructose‑1,6‑bisphosphatase 1 in abnormal development of ovarian follicles caused by high testosterone concentration.

    PubMed

    Liu, Tao; Zhao, Han; Wang, Jianfeng; Shu, Xin; Gao, Yuan; Mu, Xiaoli; Gao, Fei; Liu, Hongbin

    2017-11-01

    The present study aimed to identify the molecular mechanisms underlying the effects of the fructose‑1,6‑bisphosphatase 1 (FBP1) signaling pathway within normal follicle development and in hyperandrogenism‑induced abnormal follicle growth. To achieve this, murine primary follicles, granulosa cells (GCs) and theca‑interstitial cells (TICs) were isolated, cultured in vitro and treated with a high concentration of androgens. A concentration of 1x10‑5 mol/l testosterone was considerable to induce hyperandrogenism by MTT assay. All cells were divided into four groups, as follows: Control group, testosterone group, androgen receptor antagonist‑flutamide group and flutamide + testosterone group. Flutamide was used in the present study as it blocks the effects of the androgen receptor. The mRNA expression levels of FBP1 were detected using reverse transcription‑quantitative polymerase chain reaction. The expression levels and localization of FBP1 were analyzed by western blot analysis and immunofluorescence staining. The experimental results demonstrated that androgen presence stimulated follicle development, whereas excessive testosterone inhibited development. FBP1 was identified as being mainly expressed in follicles; FBP1 protein was significantly expressed in GCs of the 14‑day‑cultured follicle, as well as in the cytoplasm and nuclei of GCs and TICs in vitro. Testosterone increased FBP1 expression during a specific range of testosterone concentrations. Testosterone increased the expression of FBP1 within GCs. Furthermore, FBP1 and phosphoenolpyruvate carboxykinase 1 (PCK1) mRNA expression was increased in GCs treated with testosterone, whereas forkhead box protein O1 (FOXO1) and peroxisome proliferator‑activated receptor γ coactivator‑1α mRNA expression was significantly decreased in the testosterone group. In TICs, testosterone and flutamide inhibited the mRNA expression levels of FOXO1 and glucose‑6‑phosphatase enzyme, and promoted the expression of PCK1. These results suggested that the FBP1 signaling pathway may serve an important role in normal follicle growth and hyperandrogenism‑induced abnormal development, which may be associated with abnormal glucose metabolism induced by high concentrations of testosterone.

  12. Differential expression of lymphocyte function-associated antigen (LFA-1) on peripheral blood leucocytes from individuals with Down's syndrome.

    PubMed Central

    Barrena, M J; Echaniz, P; Garcia-Serrano, C; Zubillaga, P; Cuadrado, E

    1992-01-01

    We analysed the expression of lymphocyte function-associated antigen LFA-1 on the cell surface of peripheral blood lymphocytes, monocytes and granulocytes from 20 children with Down's syndrome. No differences in LFA-1 expression was found within monocytes or granulocytes from either normal or Down's syndrome children; however, a clear-cut difference was observed on lymphoid cells. Both normal and Down's syndrome lymphocytes displayed a bimodal pattern of LFA-1 staining by flow cytometry, with a predominance of cells with low expression in normal population, and an increased proportion of lymphocytes with high level of LFA-1 expression in Down's syndrome children. This difference correlates well with the abnormal proportion of T cell subsets and inversion of CD4/CD8 observed in a majority of our cases, and therefore, it could merely reflect the increase of certain T cell subsets normally expressing higher number of LFA-1 molecules. Taken together, our results do not support an abnormally increased expression of leucocytes integrins in trisomy 21 cells, and raise some doubt about the suggested role of the abnormal cellular expression of LFA-1 in the pathogensis of secondary immunodeficiency associated to Down's syndrome. PMID:1348667

  13. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  14. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  15. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  16. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  17. B-cell acute lymphoblastic leukemia with mature phenotype and MLL rearrangement: report of five new cases and review of the literature.

    PubMed

    Sajaroff, Elisa Olga; Mansini, Adrian; Rubio, Patricia; Alonso, Cristina Noemí; Gallego, Marta S; Coccé, Mariela C; Eandi-Eberle, Silvia; Bernasconi, Andrea Raquel; Ampatzidou, Maria; Paterakis, George; Papadhimitriou, Stefanos I; Petrikkos, Loizos; Papadakis, Vassilios; Polychronopoulou, Sophia; Rossi, Jorge G; Felice, Maria Sara

    2016-10-01

    The association between mature-B phenotype and MLL abnormalities in acute lymphoblastic leukemia (ALL) is a very unusual finding; only 14 pediatric cases have been reported so far. We describe the clinical and biological characteristics and outcome of five pediatric cases of newly diagnosed B lineage ALL with MLL abnormalities and mature immunophenotype based on light chain restriction and surface Ig expression. Blasts showed variable expression of CD10/CD34/TdT. MLL abnormalities with no MYC involvement were detected in all patients by G-banding, FISH, and/or RT-PCR. Three patients were treated according to Interfant protocol, one to ALLIC-09, and one received B-NHL-BFM-2004. All patients achieved complete remission and three of them relapsed. Despite the small cohort size, it could be postulated that B lineage ALL with MLL abnormalities and mature phenotype is a distinct entity that differs both from the typical Pro B ALL observed in infants and mature B-ALL with high MYC expression.

  18. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children's oncology group.

    PubMed

    Ho, Phoenix A; Alonzo, Todd A; Gerbing, Robert B; Pollard, Jessica A; Hirsch, Betsy; Raimondi, Susana C; Cooper, Todd; Gamis, Alan S; Meshinchi, Soheil

    2013-09-01

    Ectopic viral integration site-1 (EVI1) is highly expressed in certain cytogenetic subsets of adult acute myeloid leukaemia (AML), and has been associated with inferior survival. We sought to examine the clinical and biological associations of EVI1(high) , defined as expression in excess of normal controls, in paediatric AML. EVI1 mRNA expression was measured via quantitative real-time polymerase chain reaction in diagnostic specimens obtained from 206 patients. Expression levels were correlated with clinical features and outcome. EVI1(high) was present in 58/206 (28%) patients. MLL rearrangements occurred in 40% of EVI1(high) patients as opposed to 12% of the EVI1(low/absent) patients (P < 0·001). No abnormalities of 3q26 were found in EVI1(high) patients by conventional cytogenetic analysis, nor were cryptic 3q26 abnormalities detected in a subset of patients screened by next-generation sequencing. French-American-British class M7 was enriched in the EVI1(high) group, accounting for 24% of these patients. EVI1(high) patients had significantly lower 5-year overall survival from study entry (51% vs. 68%, P = 0·015). However, in multivariate analysis including other established prognostic markers, EVI1 expression did not retain independent prognostic significance. EVI1 expression is currently being studied in a larger cohort of patients enrolled on subsequent Children's Oncology Group trials, to determine if EVI1(high) has prognostic value in MLL-rearranged or intermediate-risk subsets. © 2013 John Wiley & Sons Ltd.

  19. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L.

    PubMed Central

    Lin, Hui-Jun; Viswanath, Kotapati Kasi; Lin, Chih-Peng; Chang, Bill Chia-Han; Chiu, Pei-Hsun; Chiu, Chan-Tai; Wang, Ren-Huang; Chin, Shih-Wen; Chen, Fure-Chyi

    2018-01-01

    Carica papaya L. is an important economic crop worldwide and is used as a model plant for sex-determination research. To study the different flower sex types, we screened sex-related genes using alternative splicing sequences (AS-seqs) from a transcriptome database of the three flower sex types, i.e., males, females, and hermaphrodites, established at 28 days before flowering using 15 bacterial artificial chromosomes (BACs) of C. papaya L. After screening, the cDNA regions of the three sex-related loci, including short vegetative phase-like (CpSVPL), the chromatin assembly factor 1 subunit A-like (CpCAF1AL), and the somatic embryogenesis receptor kinase (CpSERK), which contained eight sex-related single-nucleotide polymorphisms (SNPs) from the different sex types of C. papaya L., were genotyped using high-resolution melting (HRM). The three loci were examined regarding the profiles of the third whorl, as described below. CpSVPL, which had one SNP associated with the three sex genotypes, was highly expressed in the male and female sterile flowers (abnormal hermaphrodite flowers) that lacked the fourth whorl structure. CpCAF1AL, which had three SNPs associated with the male genotype, was highly expressed in male and normal hermaphrodite flowers, and had no AS-seqs, whereas it exhibited low expression and an AS-seqs in intron 11 in abnormal hermaphrodite flowers. Conversely, carpellate flowers (abnormal hermaphrodite flowers) showed low expression of CpSVPL and AS-seqs in introns 5, 6, and 7 of CpSERK, which contained four SNPs associated with the female genotype. Specifically, the CpSERK and CpCAF1AL loci exhibited no AS-seq expression in the third whorl of the male and normal hermaphrodite flowers, respectively, and variance in the AS-seq expression of all other types of flowers. Functional mapping of the third whorl of normal hermaphrodites indicated no AS-seq expression in CpSERK, low CpSVPL expression, and, for CpCAF1AL, high expression and no AS-seq expression on XYh-type chromosomes. PMID:29566053

  20. Ursolic acid improves podocyte injury caused by high glucose.

    PubMed

    Xu, Li; Fan, Qiuling; Wang, Xu; Li, Lin; Lu, Xinxing; Yue, Yuan; Cao, Xu; Liu, Jia; Zhao, Xue; Wang, Lining

    2017-08-01

    Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    PubMed

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P < 0.05), but had no relation with the size, the extent of differentiation, the activity of proliferation, or infiltration of the pancreatic cancer (both P > 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P < 0.05), but not with the size, infiltration, metastasis, or one-year survival rate of the pancreatic cancer (both P > 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the unchecked proliferation and differentiation, which may play an important role in the genesis of the pancreatic cancer. The abnormal expression of beta-cat is one of the mechanisms for the spread of pancreatic cancer and an index in the molecular biology to determine the metastasis and prognosis of pancreatic cancer.

  2. Association between Amygdala Response to Emotional Faces and Social Anxiety in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Weaver, Kurt; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2010-01-01

    Difficulty interpreting facial expressions has been reported in autism spectrum disorders (ASD) and is thought to be associated with amygdala abnormalities. To further explore the neural basis of abnormal emotional face processing in ASD, we conducted an fMRI study of emotional face matching in high-functioning adults with ASD and age, IQ, and…

  3. Abnormal Positioning of Diencephalic Cell Types in Neocortical Tissue in the Dorsal Telencephalon of Mice Lacking Functional Gli3

    PubMed Central

    Fotaki, Vassiliki; Yu, Tian; Zaki, Paulette A.; Mason, John O.; Price, David J.

    2008-01-01

    The transcription factor Gli3 (glioma-associated oncogene homolog) is essential for normal development of the mammalian forebrain. One extreme requirement for Gli3 is at the dorsomedial telencephalon, which does not form in Gli3Xt/Xt mutant mice lacking functional Gli3. In this study, we analyzed expression of Gli3 in the wild-type telencephalon and observed a highdorsal-to-lowventral gradient of Gli3 expression and predominance of the cleaved form of the Gli3 protein dorsally. This graded expression correlates with the severedorsal-to-mildventral telencephalic phenotype observed in Gli3Xt/Xt mice. We characterized the abnormal joining of the telencephalon to the diencephalon and defined the medial limit of the dorsal telencephalon in Gli3Xt/Xt mice early in corticogenesis. Based on this analysis, we concluded that some of the abnormal expression of ventral telencephalic markers previously described as being in the dorsal telencephalon is, in fact, expression in adjacent diencephalic tissue, which expresses many of the same genes that mark the ventral telencephalon. We observed occasional cells with diencephalic character in the Foxg1 (forkhead box)-expressing Gli3Xt/Xt telencephalon at embryonic day 10.5, a day after the anatomical subdivision of the forebrain vesicle. Large clusters of such cells appear in the Gli3Xt/Xt neocortical region at later ages, when the neocortex becomes highly disorganized, forming rosettes comprising mainly neural progenitors. We propose that Gli3 is indispensable for formation of an intact telencephalic-diencephalic boundary and for preventing the abnormal positioning of diencephalic cells in the dorsal telencephalon. PMID:16957084

  4. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, G.E.; Chang-Liu, Chin-Mei; Chung, Jen

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic andmore » thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.« less

  5. Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia.

    PubMed

    Stock, W; Tsai, T; Golden, C; Rankin, C; Sher, D; Slovak, M L; Pallavicini, M G; Radich, J P; Boldt, D H

    2000-04-01

    To test the hypothesis that cell cycle regulatory gene abnormalities are determinants of clinical outcome in adult acute lymphoblastic leukemia (ALL), we screened lymphoblasts from patients on a Southwest Oncology Group protocol for abnormalities of the genes, retinoblastoma (Rb), p53, p15(INK4B), and p16(INK4A). Aberrant expression occurred in 33 (85%) patients in the following frequencies: Rb, 51%; p16(INK4A), 41%; p53, 26%. Thirteen patients (33%) had abnormalities in 2 or more genes. Outcomes were compared in patients with 0 to 1 abnormality versus patients with multiple abnormalities. The 2 groups did not differ in a large number of clinical and laboratory characteristics. The CR rates for patients with 0 to 1 and multiple abnormalities were similar (69% and 54%, respectively). Patients with 0 to 1 abnormality had a median survival time of 25 months (n = 26; 95% CI, 13-46 months) versus 8 months (n = 13; 95% CI, 4-12 months) for those with multiple abnormalities (P <.01). Stem cells (CD34+lin-) were isolated from adult ALL bone marrows and tested for p16(INK4A) expression by immunocytochemistry. In 3 of 5 patients lymphoblasts and sorted stem cells lacked p16(INK4A) expression. In 2 other patients only 50% of sorted stem cells expressed p16(INK4A). By contrast, p16 expression was present in the CD34+ lin- compartment in 95% (median) of 9 patients whose lymphoblasts expressed p16(INK4A). Therefore, cell cycle regulatory gene abnormalities are frequently present in adult ALL lymphoblasts, and they may be important determinants of disease outcome. The presence of these abnormalities in the stem compartment suggests that they contribute to leukemogenesis. Eradication of the stem cell subset harboring these abnormalities may be important to achieve cure.

  6. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    PubMed

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  7. [Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].

    PubMed

    Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan

    2006-08-01

    The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.

  8. Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction

    ERIC Educational Resources Information Center

    Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy; Sidtis, John J.

    2015-01-01

    Purpose: The production of formulaic expressions (conversational speech formulas, pause fillers, idioms, and other fixed expressions) is excessive in the left hemisphere and deficient in the right hemisphere and in subcortical stroke. Speakers with Alzheimer's disease (AD), having functional basal ganglia, reveal abnormally high proportions of…

  9. Diethylstilbestrol affects the expression of GPER in the gubernaculum testis.

    PubMed

    Zhang, Xuan; Ke, Song; Chen, Kai-Hong; Li, Jian-Hong; Ma, Lian; Jiang, Xue-Wu

    2015-01-01

    Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system. EEs are known to cause the abnormalities of testes development and testicular descent. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernacular cells, and its nongenomic effects on gubernaculum testis cells may be mediated by G protein-coupled estrogen receptor (GPER). In this study, we detected the expression of GPER in mouse gubernacular testis and investigated the effects of DES on the expression of GPER in gubernaculum testis cells. RT-PCR analysis revealed that GPER mRNA was expressed in the gubernaculum. GPER protein was detected in the parenchymal cells of the gubernaculum early in development. Furthermore, we demonstrate that GPER inhibitor G15 relieved DES-induced inhibition of GPER expression in gubernaculum testis cell, but ER inhibitor ICI 182780 had the converse effects on DES-induced inhibition of GPER expression in these cells. These data suggest that the effects of DES on mouse gubernaculum testis cells are mediated at least partially by the regulation of GPER expression.

  10. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation.

    PubMed

    Liu, Xirui; Liang, Yingjian; Song, Ruipeng; Yang, Guangchao; Han, Jihua; Lan, Yaliang; Pan, Shangha; Zhu, Mingxi; Liu, Yao; Wang, Yan; Meng, Fanzheng; Cui, Yifeng; Wang, Jiabei; Zhang, Bo; Song, Xuan; Lu, Zhaoyang; Zheng, Tongsen; Liu, Lianxin

    2018-05-15

    Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.

  11. High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma.

    PubMed

    Gu, Yajun; Pan, Yi; Meng, Bin; Guan, Bingxin; Fu, Kai; Sun, Baocun; Zheng, Fang

    2013-06-01

    We aimed to investigate bcl-2, bcl-6, and c-myc rearrangements in patients with lymphoblastic lymphoma (LBL), especially focus on the correlation of protein expression with genetic abnormalities. Moreover, their prognostic significance was further analyzed in LBL. Protein expression and genetic abnormalities of bcl-2, bcl-6, and c-myc were investigated in microarrayed tumors from 33 cases of T cell LBL and eight cases of B cell lineage. Immunohistochemical (IHC) staining was performed to evaluate protein expression, including bcl-2, bcl-6, c-myc, TdT, CD1α, CD34, Ki-67, PAX-5, CD2, CD3, CD4, CD8, and CD20. Genetic abnormalities of bcl-2, bcl-6, and c-myc were detected by dual color fluorescence in situ hybridization (FISH). Bcl-2 protein was positive in 51.2 % (21/41) of the patients, bcl-6 protein in 7.3 % (three out of 41), and c-myc protein in 78.0 % (32/41). Bcl-2 breakpoint was found in two cases by FISH analysis. There was no evidence of bcl-6 or c-myc rearrangement in patients with LBL. However, both gene gain and loss events occurred in bcl-2, bcl-6, and c-myc. A univariate analysis showed that stage III or IV, elevated lactate dehydrogenase (LDH), and positivity for bcl-2 protein were associated with shorter survival (p<0.05). Enhanced protein expression and detectable genetic abnormalities of bcl-2, bcl-6, and c-myc were observed in patients with LBL. No statistical correlation was found between IHC results and cytogenetic findings. Stage III or IV, elevated LDH, and positivity for bcl-2 protein were identified as adverse prognostic factors. The patients with more adverse factors would have increasingly worse prognosis.

  12. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base. PMID:25014884

  13. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Karyometry detects subvisual differences in chromatin organization state between cribriform and flat high-grade prostatic intraepithelial neoplasia.

    PubMed

    Montironi, Rodolfo; Thompson, Deborah; Scarpelli, Marina; Mazzucchelli, Roberta; Peketi, Prasanthi; Hamilton, Peter W; Bostwick, David G; Bartels, Peter H

    2004-08-01

    This digital texture analysis-based study evaluates the chromatin organization state in flat and cribriform high-grade prostatic intraepithelial neoplasia (PIN), in the adjacent normal looking secretory epithelium and in the co-occurring adenocarcinoma. Digital texture analysis (karyometry) was carried out on hematoxylin and eosin-stained sections from 24 radical prostatectomy specimens with high-grade PIN (12 with flat and 12 with cribriform architectural pattern, respectively) and cancer. Quantification was also conducted on the normal looking secretory epithelium. Discriminant analysis and the nonsupervised learning algorithm P-index were used to identify suitable subsets of features useful for the discrimination and classification of pathological groups and to explore multivariate data structure in the pathological subgroups. The average nuclear abnormality increases monotonically from the histologically normal appearing secretory epithelium to high-grade PIN and to adenocarcinoma. The nuclei from the so-called perimeter compartment of the flat high-grade PIN lesions show a higher nuclear abnormality compared to the nuclei of the cribriform high-grade PINs. Discriminant analysis shows that flat and cribriform high-grade PINs fall into two populations. Processing by the nonsupervised learning algorithm P-index revealed the existence of three well-defined, distinct subpopulations of nuclei of different chromatin phenotype. In the flat high-grade PIN lesions the proportions of nuclei in the three subpopulations are 16.5% (low abnormality), 25.0% (mid abnormality) and 58.5% (high abnormality), respectively. In the cribriform high-grade PIN lesions, 100% of the nuclei are in the mid-abnormality subpopulation. These differences are also discernible in the co-occurring adenocarcinoma and the histologically normal appearing secretory epithelium. To conclude, karyometry and statistical analysis detect the existence of distinct cell subpopulations of different chromatin packaging and phenotype, with the nuclei from the flat high-grade PIN lesions, adjacent normal looking epithelium and co-occurring adenocarcinoma expressing a greater nuclear abnormality than in the specimens with cribriform high-grade PIN.

  15. Endothelial ERK signaling controls lymphatic fate specification

    PubMed Central

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  16. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.

    PubMed

    Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M

    2015-11-01

    Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.

  17. Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin.

    PubMed

    Albillos, Agustín; Hera Ad, Antonio de la; Reyes, Eduardo; Monserrat, Jorge; Muñoz, Leticia; Nieto, Mónica; Prieto, Alfredo; Sanz, Eva; Alvarez-Mon, Melchor

    2004-04-01

    To investigate the distribution and activation state of circulating monocytes and T-cell subsets, their contribution to tumour necrosis factor-alpha (TNFalpha) production, and their potential relationship with bacterial products of enteric origin in alcoholic cirrhosis. Peripheral blood monocytes and T-lymphocytes from 60 cirrhotic patients and 24 controls were characterized by four-color flow-cytometry after labelling of differentiation antigens and cytokines, before and after a 4-week course of norfloxacin or placebo. Monocytes from ascitic patients showed increased number, enhanced CD80 and HLA-DR surface levels, and spontaneous intracytoplasmic TNFalpha expression, when compared to non-ascitic patients and controls. Blood TNFalpha levels directly correlated with the amount of TNFalpha expressed by monocytes. In ascitic patients, there was a collapse of virgin CD4(+) and CD8(+) T-cell subsets; and, an expansion of activated CD4(+) T-cells. The above abnormalities were mainly restricted to ascitic patients with high serum levels of lypolysaccharide-binding-protein. Norfloxacin normalized the number of monocytes, reduced their activated phenotype and ability to produce TNFalpha and improved the abnormal T-cell homeostasis. In ascitic cirrhosis with high lipolysaccharide-binding-protein, monocytes are spontaneously activated to produce TNFalpha and are major contributors to the elevated serum TNFalpha. The T-cell compartment is profoundly depleted. Enteric bacterial products play a relevant role in these immune cellular abnormalities.

  18. Gallium 67 citrate scanning and serum angiotensin converting enzyme levels in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.G.; Bekerman, C.; Sicilian, L.

    1982-09-01

    Gallium 67 citrate scans and serum angiotension converting enzyme (ACE) levels were obtained in 54 patients with sarcoidosis and analyzed in relation to clinical manifestation. /sup 67/Ga scans were abnormal in 97% of patients with clinically active disease (n = 30) and in 71% of patients with inactive disease (n = 24). Serum ACE levels were abnormally high (2 standard deviations above the control mean) in 73% of patients with clinically active disease and in 54% of patients with inactive disease. Serum ACE levels correlated significantly with /sup 67/Ga uptake score (r = .436; p < .005). The frequency ofmore » abnormal /sup 67/Ga scans and elevated serum ACE levels suggests that inflammatory activity with little or no clinical expression is common in sarcoidosis. Abnormal /sup 67/Ga scans were highly sensitive (97%) but had poor specificity (29%) to clinical disease activity. The accuracy of negative prediction of clinical activity by normal scans (87%) was better than the accuracy of positive prediction of clinical activity by abnormal scans (63%). /sup 67/Ga scans can be used to support the clinical identification of inactive sarcoidosis.« less

  19. Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet.

    PubMed

    Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C

    2015-08-01

    An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  1. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  2. Heterozygous Hb Hope [beta136(H14)Gly --> Asp] in association with heterozygous beta0-thalassemia with apparent homozygous expression, in a Spanish patient.

    PubMed

    Beneitez, David; Carrera, Alícia; Duran-Suárez, Joan Ramón; Paz, Victoria; León, Antonio; García Talavera, Juan

    2006-01-01

    Hb Hope [beta136(H14)Gly --> Asp (GGT --> GAT)] has been found alone or in combination with other globin gene mutations in several African-American families, as well as in Japanese, Thai, Laotian, Cuban and Mauritanian families. We report the hematological and molecular characteristics of a heterozygous association of Hb Hope with beta0-thalassemia (thal) in a Spanish patient, in whom the level of expression of abnormal hemoglobin (Hb) by cation exchange high performance liquid chromatography (HPLC) and electrophoresis suggested initially a homozygous expression of the abnormal Hb, although sequencing of the polymerase chain reaction (PCR)-amplified beta-globin gene demonstrated a heterozygous genotype for Hb Hope. To the best of our knowledge, this is the first description of a case of Hb Hope in a Spanish family.

  3. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens

    PubMed Central

    Brunberg, Emma I.; Rodenburg, T. Bas; Rydhmer, Lotta; Kjaer, Joergen B.; Jensen, Per; Keeling, Linda J.

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain–gut–microbiota axis. PMID:27500137

  4. Intact anger recognition in depression despite aberrant visual facial information usage.

    PubMed

    Clark, Cameron M; Chiu, Carina G; Diaz, Ruth L; Goghari, Vina M

    2014-08-01

    Previous literature has indicated abnormalities in facial emotion recognition abilities, as well as deficits in basic visual processes in major depression. However, the literature is unclear on a number of important factors including whether or not these abnormalities represent deficient or enhanced emotion recognition abilities compared to control populations, and the degree to which basic visual deficits might impact this process. The present study investigated emotion recognition abilities for angry versus neutral facial expressions in a sample of undergraduate students with Beck Depression Inventory-II (BDI-II) scores indicative of moderate depression (i.e., ≥20), compared to matched low-BDI-II score (i.e., ≤2) controls via the Bubbles Facial Emotion Perception Task. Results indicated unimpaired behavioural performance in discriminating angry from neutral expressions in the high depressive symptoms group relative to the minimal depressive symptoms group, despite evidence of an abnormal pattern of visual facial information usage. The generalizability of the current findings is limited by the highly structured nature of the facial emotion recognition task used, as well as the use of an analog sample undergraduates scoring high in self-rated symptoms of depression rather than a clinical sample. Our findings suggest that basic visual processes are involved in emotion recognition abnormalities in depression, demonstrating consistency with the emotion recognition literature in other psychopathologies (e.g., schizophrenia, autism, social anxiety). Future research should seek to replicate these findings in clinical populations with major depression, and assess the association between aberrant face gaze behaviours and symptom severity and social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Looking you in the mouth: abnormal gaze in autism resulting from impaired top-down modulation of visual attention.

    PubMed

    Neumann, Dirk; Spezio, Michael L; Piven, Joseph; Adolphs, Ralph

    2006-12-01

    People with autism are impaired in their social behavior, including their eye contact with others, but the processes that underlie this impairment remain elusive. We combined high-resolution eye tracking with computational modeling in a group of 10 high-functioning individuals with autism to address this issue. The group fixated the location of the mouth in facial expressions more than did matched controls, even when the mouth was not shown, even in faces that were inverted and most noticeably at latencies of 200-400 ms. Comparisons with a computational model of visual saliency argue that the abnormal bias for fixating the mouth in autism is not driven by an exaggerated sensitivity to the bottom-up saliency of the features, but rather by an abnormal top-down strategy for allocating visual attention.

  6. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko

    2016-01-01

    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.

  7. Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats.

    PubMed

    Pakdeechote, Poungrat; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Prachaney, Parichat; Khrisanapant, Wilaiwan; Kukongviriyapan, Veerapol

    2014-01-16

    Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS) induced by a high-carbohydrate, high-fat (HCHF) diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day) or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α) levels (p<0.05). Plasma nitrate and nitrite (NOx) were markedly high with upregulation of inducible nitric oxide synthase (iNOS) expression, but dowregulation of endothelial nitric oxide synthase (eNOS) expression (p<0.05). Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p<0.05). In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  8. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  9. Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity.

    PubMed

    Carraro, Rodrigo S; Souza, Gabriela F; Solon, Carina; Razolli, Daniela S; Chausse, Bruno; Barbizan, Roberta; Victorio, Sheila C; Velloso, Licio A

    2018-01-15

    Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine.

    PubMed

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer

    2011-04-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. BCOR Overexpression Is a Highly Sensitive Marker in Round Cell Sarcomas With BCOR Genetic Abnormalities.

    PubMed

    Kao, Yu-Chien; Sung, Yun-Shao; Zhang, Lei; Jungbluth, Achim A; Huang, Shih-Chiang; Argani, Pedram; Agaram, Narasimhan P; Zin, Angelica; Alaggio, Rita; Antonescu, Cristina R

    2016-12-01

    With the advent of next-generation sequencing, an increasing number of novel gene fusions and other abnormalities have emerged recently in the spectrum of EWSR1-negative small blue round cell tumors (SBRCTs). In this regard, a subset of SBRCTs harboring either BCOR gene fusions (BCOR-CCNB3, BCOR-MAML3), BCOR internal tandem duplications (ITD), or YWHAE-NUTM2B share a transcriptional signature including high BCOR mRNA expression, as well as similar histologic features. Furthermore, other tumors such as clear cell sarcoma of kidney (CCSK) and primitive myxoid mesenchymal tumor of infancy also demonstrate BCOR ITDs and high BCOR gene expression. The molecular diagnosis of these various BCOR genetic alterations requires an elaborate methodology including custom BAC fluorescence in situ hybridization (FISH) probes and reverse transcription polymerase chain reaction assays. As these tumors show high level of BCOR overexpression regardless of the genetic mechanism involved, either conventional gene fusion or ITD, we sought to investigate the performance of an anti-BCOR monoclonal antibody clone C-10 (sc-514576) as an immunohistochemical marker for sarcomas with BCOR gene abnormalities. Thus we assessed the BCOR expression in a pathologically and genetically well-characterized cohort of 25 SBRCTs, spanning various BCOR-related fusions and ITDs and YWHAE-NUTM2B fusion. In addition, we included related pathologic entities such as 8 CCSKs and other sarcomas with BCOR gene fusions. As a control group we included 20 SBRCTs with various (non-BCOR) genetic abnormalities, 10 fusion-negative SBRCTs, 74 synovial sarcomas, 29 rhabdomyosarcomas, and other sarcoma types. In addition, we evaluated the same study group for SATB2 immunoreactivity, as these tumors also showed SATB2 mRNA upregulation. All SBRCTs with BCOR-MAML3 and BCOR-CCNB3 fusions, as well as most with BCOR ITD (93%), and all CCSKs showed strong and diffuse nuclear BCOR immunoreactivity. Furthermore, all SBRCTs with YWHAE-NUTM2B also were positive. SATB2 stain was also positive in tumors with YWHAE-NUTM2B, BCOR-MAML3, BCOR ITD (75%), BCOR-CCNB3 (71%), and a subset of CCSKs (33%). In conclusion, BCOR immunohistochemical stain is a highly sensitive marker for SBRCTs and CCSKs with BCOR abnormalities and YWHAE-rearrangements and can be used as a useful diagnostic marker in these various molecular subsets. SATB2 immunoreactivity is also present in the majority of this group of tumors.

  12. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  13. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  14. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.

    PubMed

    Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich

    2009-07-29

    Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.

  15. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer

    PubMed Central

    Danforth, David N.

    2016-01-01

    Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women. PMID:27559297

  16. Top-Down and Bottom-Up Visual Information Processing of Non-Social Stimuli in High-Functioning Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Maekawa, Toshihiko; Tobimatsu, Shozo; Inada, Naoko; Oribe, Naoya; Onitsuka, Toshiaki; Kanba, Shigenobu; Kamio, Yoko

    2011-01-01

    Individuals with high-functioning autism spectrum disorder (HF-ASD) often show superior performance in simple visual tasks, despite difficulties in the perception of socially important information such as facial expression. The neural basis of visual perception abnormalities associated with HF-ASD is currently unclear. We sought to elucidate the…

  17. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  18. Cranial and dental abnormalities of the endangered red wolf Canis rufus

    USGS Publications Warehouse

    Federoff, Nicholas E.; Nowak, Ronald M.

    1998-01-01

    Three skulls of captive-raised female endangered red wolves (Canis rufus) exhibited severe malocclusion of the jaws. Cranial and dental abnormalities (including crowding of upper toothrows, and an extra tooth behind the lower left M3 in one of the three mandibles) were also evident. Ratios of alveolar length of maxillary toothrow to maximum width across the outer sides of crowns of P4 were significantly different (p=0.008) compared to unaffected skulls. Significant differences were also evident when ratios of maximum width across inner edges of alveoli of P1 to alveolar length of maxillary toothrow and maximum width across outer sides of crowns of P4 were compared between the two groups. Although the three skulls all exhibited malocclusion, the abnormality expressed itself differently in relation to the effects to each skull. Captive inbreeding may increase the probability and frequency of expressing these anomalies, although inbreeding coefficients calculated for the wolves expressing malocclusion were not considered high (0.0313-0.0508). A wild female red wolf specimen captured in 1921 in Arkansas also exhibited the malocclusion, although not as severely as in the captive females. This demonstrates that this trait was present in wild populations prior to, and not a result of, the captive breeding program.

  19. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis.

    PubMed

    Brenu, Ekua W; van Driel, Mieke L; Staines, Don R; Ashton, Kevin J; Ramos, Sandra B; Keane, James; Klimas, Nancy G; Marshall-Gradisnik, Sonya M

    2011-05-28

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is characterised by severe prolonged fatigue, and decreases in cognition and other physiological functions, resulting in severe loss of quality of life, difficult clinical management and high costs to the health care system. To date there is no proven pathomechanism to satisfactorily explain this disorder. Studies have identified abnormalities in immune function but these data are inconsistent. We investigated the profile of markers of immune function (including novel markers) in CFS/ME patients. We included 95 CFS/ME patients and 50 healthy controls. All participants were assessed on natural killer (NK) and CD8(+) T cell cytotoxic activities, Th1 and Th2 cytokine profile of CD4(+) T cells, expression of vasoactive intestinal peptide receptor 2 (VPACR2), levels of NK phenotypes (CD56(bright) and CD56(dim)) and regulatory T cells expressing FoxP3 transcription factor. Compared to healthy individuals, CFS/ME patients displayed significant increases in IL-10, IFN-γ, TNF-α, CD4(+)CD25(+) T cells, FoxP3 and VPACR2 expression. Cytotoxic activity of NK and CD8(+) T cells and NK phenotypes, in particular the CD56(bright) NK cells were significantly decreased in CFS/ME patients. Additionally granzyme A and granzyme K expression were reduced while expression levels of perforin were significantly increased in the CFS/ME population relative to the control population. These data suggest significant dysregulation of the immune system in CFS/ME patients. Our study found immunological abnormalities which may serve as biomarkers in CFS/ME patients with potential for an application as a diagnostic tool.

  20. Genetic and teratological considerations in the analysis of concordant and discordant abnormalities in twins.

    PubMed

    Gericke, G S

    1986-01-18

    Results from monozygotic (MZ) and dizygotic (DZ) twin research are often used in an attempt to gain a clearer understanding of the 'nature v. nurture' dilemma. Discordance between MZ twins has been considered to be environmental, and greater concordance in MZ compared with DZ pairs to be genetic. Current genetic and teratological theories considerably complicate the interpretation of concordance and discordance of abnormalities. The high rate of discordant intra-uterine death recently demonstrated in twins may profoundly influence the value of epidemiological studies usually performed in later life. Furthermore, indirect zygosity estimations based on sex ratios in DZ twins may be flawed because it is now recognized that increasing numbers of conditions are genetically heterogeneous. Emphasis is laid on problems of interpretation of discordance and concordance for developmental abnormalities in twins, and some possible mechanisms for their induction are discussed. Basic genetic concepts relevant to the expression of abnormalities in twins are outlined.

  1. Identification of novel mouse genes conferring posthypoxic pauses

    PubMed Central

    Gillombardo, C. Barton; Yamauchi, Motoo; Adams, Mark D.; Dostal, Jesse; Chai, Sam; Moore, Michael W.; Donovan, Lucas M.; Han, Fang

    2012-01-01

    Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1A/J/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1A/J/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis. PMID:22539170

  2. Genetic and expression analyses reveal elevated expression of syntaxin 1A ( STX1A) in high functioning autism.

    PubMed

    Nakamura, Kazuhiko; Anitha, Ayyappan; Yamada, Kazuo; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Suda, Shiro; Takei, Noriyoshi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji J; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2008-12-01

    Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from 249 AGRE trios with autistic probands. Only male probands were selected, since autism is more prevalent among males. The probands of 102 trios had IQ>70, and were considered as high functioning autism (HFA). In transmission disequilibrium test (TDT) analysis, rs2293485 (p=0.034) and rs4717806 (p=0.033) showed nominal associations with HFA; modest haplotype association was also observed. The SNPs that showed associations were related to early developmental abnormalities (ADI-R_D). We further compared STX1A mRNA expression in the lymphocytes of drug-naive HFA patients (n=12) and age- and sex-matched controls (n=13). STX1A expression in the HFA group was significantly higher (p=0.001) than that of controls. Thus, we suggest a possible role of STX1A in the pathogenesis of HFA. During early childhood, there is a period of high brain serotonin synthesis that is disrupted in autistic children; STX1A might influence the serotonergic system during this stage of neurodevelopment, as implied by the association with ADI-R_D.

  3. GPER and ERα expression in abnormal endometrial proliferations.

    PubMed

    Tica, Andrei Adrian; Tica, Oana Sorina; Georgescu, Claudia Valentina; Pirici, Daniel; Bogdan, Maria; Ciurea, Tudorel; Mogoantă, Stelian ŞtefăniŢă; Georgescu, Corneliu Cristian; Comănescu, Alexandru Cristian; Bălşeanu, Tudor Adrian; Ciurea, Raluca Niculina; Osiac, Eugen; Buga, Ana Maria; Ciurea, Marius Eugen

    2016-01-01

    G-protein coupled estrogen receptor 1 (GPER), a particular extranuclear estrogen receptor (ER), seems not to be significantly involved in normal female phenotype development but especially associated with severe genital malignancies. This study investigated the GPER expression in different types of normal and abnormal proliferative endometrium, and the correlation with the presence of ERα. GPER was much highly expressed in cytoplasm (than onto cell membrane), contrary to ERα, which was almost exclusively located in the nucleus. Both ERs' densities were higher in columnar epithelial then in stromal cells, according with higher estrogen-sensitivity of epithelial cells. GPER and ERα density decreased as follows: complex endometrial hyperplasia (CEH) > simple endometrial hyperplasia (SHE) > normal proliferative endometrium (NPE) > atypical endometrial hyperplasia (AEH), ERα' density being constantly higher. In endometrial adenocarcinomas, both ERs were significant lower expressed, and widely varied, but GPER÷ERα ratio was significantly increased in high-grade lesions. The nuclear ERα is responsible for the genomic (the most important) mechanism of action of estrogens, involved in cell growth and multiplication. In normal and benign proliferations, ERα expression is increased as an evidence of its effects on cells with conserved architecture, in atypical and especially in malignant cells ERα's (and GPER's) density being much lower. Cytoplasmic GPER probably interfere with different tyrosine÷protein kinases signaling pathways, also involved in cell growth and proliferation. In benign endometrial lesions, GPER's presence is, at least partially, the result of an inductor effect of ERα on GPER gene transcription. In high-grade lesions, GPER÷ERα ratio was increased, demonstrating that GPER is involved per se in malignant endometrial proliferations.

  4. Differences in MYB expression and gene abnormalities further confirm that salivary cribriform basal cell tumors and adenoid cystic carcinoma are two distinct tumor entities.

    PubMed

    Tian, Zhen; Li, Lei; Zhang, Chun-Ye; Gu, Ting; Li, Jiang

    2016-10-01

    In practices, some cases of salivary basal cell tumors that consist mainly of cribriform growth pattern are difficult to differentiate from adenoid cystic carcinoma (AdCC). Identification of reliable molecular biomarkers for the differential diagnosis between them is required. Twenty-two cases of cribriform salivary basal cell tumors (at least 10% cribriform pattern present in each tumor) comprising 18 cases of basal cell adenoma (BCA) and four cases of basal cell adenocarcinoma (BcAC) were collected between 1985 and 2008. Twenty cases of cribriform AdCC were retrieved from our archives. MYB protein expression and gene abnormalities were detected in all cases by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) analyses, respectively. Neither MYB protein nor split genes were detected in any of the cases of cribriform basal cell tumors, while 55% (11/20) of cases of cribriform AdCC had MYB protein expression. High MYB expression was detected in 81.8% (9/11) cases, while low expression was found in the remaining cases. FISH analysis indicated that nine AdCC tumors with high MYB protein expression were split gene-positive, while MYB gene splitting was not detected in the 11 cases with low or absent MYB protein expression. The molecular changes in AdCC differ from those associated with cribriform basal cell tumors, which further confirms that cribriform basal cell tumors and AdCC are two distinct tumor entities. Simultaneous detection of MYB protein expression and the associated molecular changes could be beneficial in differentiating salivary cribriform basal cell tumors from AdCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  6. Correlation between CD34 expression and chromosomal abnormalities but not clinical outcome in acute myeloid leukemia.

    PubMed

    Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H

    1996-11-01

    The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P < 0.01). Monosomy 7/7q- or monosomy 5/5q- occurred in 10 patients and 8 of them expressed the CD34 antigen (P < 0.05). All patients with t(8;21) which is considered as a favorable factor in AML had levels of CD34 >/= 20% (P < 0.05). We did not find any association between CD34 expression and attainment of complete remission, overall survival, or disease-free survival. In conclusion, the variations of CD34 expression in AML are correlated with cytogenetic abnormalities associated both with poor and favorable outcome. The evaluation of the correlations between CD34 antigen and clinical outcome in AML should take into account the results of pretreatment karyotype.

  7. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-06

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  8. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  9. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats.

    PubMed

    Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2016-08-01

    Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.

  10. Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation.

    PubMed

    Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic

    2018-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.

  11. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.

    PubMed

    Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael

    2014-01-18

    Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.

  12. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  13. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma

    PubMed Central

    Furge, Kyle A; Dykema, Karl; Petillo, David; Westphal, Michael; Zhang, Zhongfa; Kort, Eric J; Teh, Bin Tean

    2007-01-01

    Using high-throughput gene-expression profiling technology, we can now gain a better understanding of the complex biology that is taking place in cancer cells. This complexity is largely dictated by the abnormal genetic makeup of the cancer cells. This abnormal genetic makeup can have profound effects on cellular activities such as cell growth, cell survival and other regulatory processes. Based on the pattern of gene expression, or molecular signatures of the tumours, we can distinguish or subclassify different types of cancers according to their cell of origin, behaviour, and the way they respond to therapeutic agents and radiation. These approaches will lead to better molecular subclassification of tumours, the basis of personalized medicine. We have, to date, done whole-genome microarray gene-expression profiling on several hundreds of kidney tumours. We adopt a combined bioinformatic approach, based on an integrative analysis of the gene-expression data. These data are used to identify both cytogenetic abnormalities and molecular pathways that are deregulated in renal cell carcinoma (RCC). For example, we have identified the deregulation of the VHL-hypoxia pathway in clear-cell RCC, as previously known, and the c-Myc pathway in aggressive papillary RCC. Besides the more common clear-cell, papillary and chromophobe RCCs, we are currently characterizing the molecular signatures of rarer forms of renal neoplasia such as carcinoma of the collecting ducts, mixed epithelial and stromal tumours, chromosome Xp11 translocations associated with papillary RCC, renal medullary carcinoma, mucinous tubular and spindle-cell carcinoma, and a group of unclassified tumours. Continued development and improvement in the field of molecular profiling will better characterize cancer and provide more accurate diagnosis, prognosis and prediction of drug response. PMID:18542781

  14. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    PubMed Central

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638

  15. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    PubMed

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.

  16. E-cadherin expression in sporadic gastric cancer from Mexico: exon 8 and 9 deletions are infrequent events associated with poor survival.

    PubMed

    Gamboa-Dominguez, Armando; Dominguez-Fonseca, Claudia; Chavarri-Guerra, Yanin; Vargas, Roberto; Reyes-Gutierrez, Edgardo; Green, Dan; Quintanilla-Martinez, Leticia; Luber, Birgit; Busch, Raymonde; Becker, Karl-Friedrich; Becker, Ingrid; Höfler, Heinz; Fend, Falko

    2005-01-01

    Aberrant expression and mutation of E-cadherin is frequent in gastric carcinoma (GC) especially of the diffuse type. The frequency of CDH1 (gene encoding E-cadherin) mutation in populations with high incidence of diffuse GC and its prognostic significance is unknown. One hundred seventy-seven gastrectomies from Mexican mestizo patients with intestinal (53), mixed (55), or diffuse (69) GC were included. In addition, 101 endoscopic biopsies from patients with GC not subjected to surgery were analyzed. Immunohistochemistry against wild-type E-cadherin (clone 36) and against 2 mutation-specific antibodies (MSA) recognizing mutant CDH1 lacking exon-8 (del 8) or exon-9 (del 9) were performed. Staining was correlated with histotype, tumor node metastasis stage, and follow-up. Abnormal or absent E-cadherin expression (clone 36) was identified in 84% GC, predominantly in diffuse or mixed tumors (P = 0.004) in advanced stages (P = 0.003). No survival differences at 1 and 2 years were observed among patients showing normal, abnormal, or absent wild type E-cadherin expression. Overall reactivity with the MSA was observed in 10 (5.6%) patients who were treated with surgery. In 140 patients, dead from the disease or alive with the disease, the survival at 1 and 2 years was 37% versus 17% and 14% versus 0 for patients without and with del 8/9 positivity, respectively (log rank P = 0.01). Biopsies from patients with inoperable-GC (101) rendered 5 (4.95%) with del 8 or 9 immunoreactivity. Abnormal E-cadherin expression is frequent in GC. However, exon 8 or 9 deletions were observed in only 5.3% tumors in this series from Mexico, at a lower rate than previously published, but associated with a worse prognosis.

  17. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    2011-01-01

    Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is characterised by severe prolonged fatigue, and decreases in cognition and other physiological functions, resulting in severe loss of quality of life, difficult clinical management and high costs to the health care system. To date there is no proven pathomechanism to satisfactorily explain this disorder. Studies have identified abnormalities in immune function but these data are inconsistent. We investigated the profile of markers of immune function (including novel markers) in CFS/ME patients. Methods We included 95 CFS/ME patients and 50 healthy controls. All participants were assessed on natural killer (NK) and CD8+T cell cytotoxic activities, Th1 and Th2 cytokine profile of CD4+T cells, expression of vasoactive intestinal peptide receptor 2 (VPACR2), levels of NK phenotypes (CD56bright and CD56dim) and regulatory T cells expressing FoxP3 transcription factor. Results Compared to healthy individuals, CFS/ME patients displayed significant increases in IL-10, IFN-γ, TNF-α, CD4+CD25+ T cells, FoxP3 and VPACR2 expression. Cytotoxic activity of NK and CD8+T cells and NK phenotypes, in particular the CD56bright NK cells were significantly decreased in CFS/ME patients. Additionally granzyme A and granzyme K expression were reduced while expression levels of perforin were significantly increased in the CFS/ME population relative to the control population. These data suggest significant dysregulation of the immune system in CFS/ME patients. Conclusions Our study found immunological abnormalities which may serve as biomarkers in CFS/ME patients with potential for an application as a diagnostic tool. PMID:21619669

  18. Immunophenotypic analysis of mast cells in mastocytosis: When and how to do it. Proposals of the Spanish Network on Mastocytosis (REMA).

    PubMed

    Escribano, Luis; Diaz-Agustin, Beatriz; López, Antonio; Núñez López, Rosa; García-Montero, Andrés; Almeida, Julia; Prados, Aranzazu; Angulo, Miguel; Herrero, Sonia; Orfao, Alberto

    2004-03-01

    Mastocytosis is a term used for a heterogeneous group of disorders characterized by an abnormal proliferation and accumulation of mast cells (MCs) in one or multiple tissues including skin, bone marrow, liver, spleen, and lymph nodes, among others. In recent years, multiparameter flow cytometric studies have shown that pathologic MCs from patients with mastocytosis display unique aberrant immunophenotypic characteristics as compared with normal MCs. Among other features, pathologic MCs show aberrant expression of CD25 and CD2 antigens and abnormally high levels of the CD11c and CD35 complement receptors, the CD59 complement regulatory molecule, the CD63 lysosomal membrane antigen, and the CD69 early-activation antigen. In addition, MCs from mastocytosis express abnormally low levels of CD117 and unexpectedly high light scatter and autofluorescence characteristics. These aberrant immunophenotypic features are of great relevance for the assessment of tissue involvement in mastocytosis with consequences in the diagnosis, classification, and follow-up of the disease and in its differential diagnosis with other entities. In this paper we provide the reader with information for the objective and reproducible identification of pathologic MCs by using quantitative multiparametric flow cytometry, information for their phenotypic characterization, and the criteria currently used for a correct interpretation of the immunophenotypic results obtained. Copyright 2004 Wiley-Liss, Inc.

  19. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia.

    PubMed

    Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin

    2009-06-01

    Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.

  20. /sup 67/Ga citrate scanning and serum angiotensin converting enzyme levels in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.G.; Bekerman, C.; Sicilian, L.

    1982-09-01

    /sup 67/Ga citrate scans and serum angiotensin converting enzyme (ACE) levels were obtained in 54 patients with sarcoidosis and analyzed in relation to clinical manifestations. /sup 67/Ga scans were abnormal in 97% of patients with clinically active disease (n . 30) and in 71% of patients with inactive disease (n . 24). Serum ACE levels were abnormally high (2 standard deviations above the control mean) in 73% of patients with clinically active disease and in 54% of patients with inactive disease. Serum ACE levels correlated significantly with /sup 67/Ga uptake score (r..436; p less than .005). The frequency of abnormalmore » /sup 67/Ga scans and elevated serum ACE levels suggests that inflammatory activity with little or no clinical expression is common in sarcoidosis. Abnormal /sup 67/Ga scans were highly sensitive (97%) but had poor specificity (29%) to clinical disease activity. The accuracy of negative prediction of clinical activity by normal scans (87%) was better than the accuracy of positive prediction of clinical activity by abnormal scans (63%). /sup 67/Ga scans can be used to support the clinical indentification of inactive sacoidosis.« less

  1. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  2. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906

  3. Abnormalities in early markers of muscle involvement support a delay in myogenesis in spinal muscular atrophy.

    PubMed

    Martínez-Hernández, Rebeca; Bernal, Sara; Alias, Laura; Tizzano, Eduardo F

    2014-06-01

    Spinal muscular atrophy (SMA) is characterized by loss of motor neurons in the spinal cord that results in muscle denervation and profound weakness in affected patients. We sought evidence for primary muscle involvement in the disease during human development by analyzing the expression of several muscle cytoskeletal components (i.e. slow, fast, and developmental myosin, desmin, and vimentin) in fetal or postnatal skeletal muscle samples from 5 SMA cases and 6 controls. At 14 weeks' gestation, SMA samples had higher percentages of myotubes expressing fast myosin and lower percentages of myotubes expressing slow myosin versus control samples. Desmin and vimentin were highly expressed at prenatal stages without notable differences between control and SMA samples, although both proteins showed persistent immunostaining in atrophic fibers in postnatal SMA samples. We also studied the expression of Pax7-positive nuclei as a marker of satellite cells and found no differences between control and SMA prenatal samples. There was, however, a significant increase in satellite cells in postnatal atrophic SMA fibers, suggesting an abnormal myogenic process. Together, these results support the hypothesis of a delay in muscle maturation as one of the primary pathologic components of SMA. Furthermore, myosins and Pax7 may be useful research markers of muscle involvement in this disease.

  4. Coagulation Abnormalities of Sickle Cell Disease: Relationship with Clinical Outcomes and the Effect of Disease Modifying Therapies

    PubMed Central

    Noubouossie, Denis; Key, Nigel S.; Ataga, Kenneth I.

    2015-01-01

    Sickle cell disease (SCD) is a hypercoagulable state. Patients exhibit increased platelet activation, high plasma levels of markers of thrombin generation, depletion of natural anticoagulant proteins, abnormal activation of the fibrinolytic system, and increased tissue factor expression, even in the non-crisis “steady state.” Furthermore, SCD is characterized by an increased risk of thrombotic complications. The pathogenesis of coagulation activation in SCD appears to be multi-factorial, with contributions from ischemia-reperfusion injury and inflammation, hemolysis and nitric oxide deficiency, and increased sickle RBC phosphatidylserine expression. Recent studies in animal models suggest that activation of coagulation may contribute to the pathogenesis of SCD, but the data on the contribution of coagulation and platelet activation to SCD-related complications in humans are limited. Clinical trials of new generations of anticoagulants and antiplatelet agents, using a variety of clinical endpoints are warranted. PMID:26776344

  5. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  6. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  7. Long-term high-soybean oil feeding alters regulation of body temperature in rats.

    PubMed

    Tsushima, Hiromi; Yamada, Kazuyo; Miyazawa, Daisuke; Mori, Mayumi; Hashimoto, Yoko; Ohkubo, Takeshi; Hibino, Hidehiko; Okuyama, Harumi

    2014-01-01

    We investigated whether body temperature (BT) regulatory mechanisms are influenced by dietary fatty acids (FA). Male Wistar rats were fed a high-fat diet containing fish oil (HFD), soybean oil (HSD) or lard (HLD). At the 20-week intervention, the BT of the HSD and HLD groups were lower than that of the normal diet (ND) group in the light and dark periods. The intracerebroventricular injections of interleukin-1β and bombesin in the HSD group induced greater hyperthermia and weaker hypothermia, respectively, than in the ND group. The HSD differentially affected BT under both physiological and pharmacological conditions. In the hypothalamus, the ratio of n-6/n-3 FAs was higher in the HSD group compared with the ND group. DNA microarrays revealed increased expression of thyroid-stimulating hormone β-subunit, and decreased expression of several genes in the hypothalamus of the HSD group compared with the ND group. The HSD feeding increased several adipokine concentrations in the plasma. However, there were no adipokines or gene expressions that changed in only the HSD and HLD groups showing significant hypothermia under the physiological condition. These findings suggested that long-term HSD intake produces abnormal BT regulation. It is less likely that adipokines or proteins/peptides are involved in abnormal BT regulation under the physiological conditions after HSD feeding.

  8. Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation.

    PubMed

    Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2013-04-26

    The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Decreased expression of thymus-specific proteasome subunit β5t in Down syndrome patients.

    PubMed

    Tomaru, Utano; Tsuji, Takahiro; Kiuchi, Shizuka; Ishizu, Akihiro; Suzuki, Akira; Otsuka, Noriyuki; Ito, Tomoki; Ikeda, Hitoshi; Fukasawa, Yuichiro; Kasahara, Masanori

    2015-08-01

    The majority of patients with Down syndrome (DS), trisomy 21, have morphologically abnormal thymuses and present with intrinsic immunological abnormalities affecting mainly the cellular immune response. The aim of this study was to examine whether the expression of functionally important molecules is altered in thymic stromal cells in patients with DS. We analysed thymic tissues from patients with trisomy 13 (n = 4), trisomy 18 (n = 14) and trisomy 21 (n = 13) for histological alterations, and for the expression of functionally important molecules such as β5t, a thymoproteasome subunit, and cathepsins L and S. In patients with trisomy 13 and trisomy 18, the thymus was morphologically normal or showed only mild depletion of cortical thymocytes. In contrast, the thymus showed variable histological changes in patients with trisomy 21; six of 13 cases showed severe depletion of thymocytes accompanied by the disappearance of thymic lobular architecture. In such thymuses, spindle-shaped keratin-positive cells were densely distributed, and expression of β5t, but not of cathepsin L, was markedly decreased. The present study suggests that abnormal thymic architecture and decreased expression of functionally important molecules in thymic stromal cells may be involved in immunological abnormalities in DS patients. © 2015 John Wiley & Sons Ltd.

  10. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.

  11. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping - Wooden Breast myopathies.

    PubMed

    Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta

    2016-12-01

    White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies. © 2016 Poultry Science Association Inc.

  12. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).

    PubMed

    Torlakovic, Emina Emilia; Gomez, Jose D; Driman, David K; Parfitt, Jeremy R; Wang, Chang; Benerjee, Tama; Snover, Dale C

    2008-01-01

    The morphologic distinction between various serrated polyps of the colorectum may be challenging. The distinction between sessile serrated adenoma (SSA) and traditional serrated adenoma (TSA) may be difficult using currently available criteria mostly based on cytologic characteristics. We have evaluated 66 serrated polyps including 29 SSA, 18 TSA, and 19 hyperplastic polyps for overall shape of the polyps, architectural features of individual crypts, the presence of eosinophilic cytoplasm, size and distribution of the proliferation and maturation zones, as well as Ki-67 and CK20 expression. The extent of the expression of CK20 and Ki-67 could not distinguish between the 3 types of serrated polyps, but the distribution of their expression was very helpful and differences were statistically significant. The distribution of Ki-67+ cells was the single most helpful distinguishing feature of the serrated polyp type (P<0.0001, chi test). Hyperplastic polyps had regular, symmetric, and increased Ki-67 expression. SSA had irregular, asymmetric, and highly variable expression of Ki-67. TSA had low Ki-67 expression, which was limited to "ectopic crypts" and admixed tubular adenomalike areas. In serrated polyps, ectopic crypt formation (ECF) defined by the presence of ectopic crypts with their bases not seated adjacent to the muscularis mucosae was nearly exclusive to TSA and was found in all cases, while the presence of cytologic atypia and eosinophilia of the cytoplasm were characteristic, but not limited to TSA. No evidence of ECF, but nevertheless abnormal distribution of proliferation zone was characteristic of SSA, whereas HP had neither. The presence of the ECF defines TSA in a more rigorous fashion than previous diagnostic criteria and also explains the biologic basis of exuberant protuberant growth associated with TSA and the lack of such growth in SSA. Recognition of this phenomenon may also help in exploring the genetic and molecular basis for differences between SSA and TSA, because these architectural abnormalities may well be a reflection of abnormalities in genetically programmed mucosal development.

  13. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  14. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  15. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  16. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons

    PubMed Central

    Canetta, Sarah; Bolkan, Scott; Padilla-Coreano, Nancy; Song, LouJin; Sahn, Ryan; Harrison, Neil; Gordon, Joshua A.; Brown, Alan; Kellendonk, Christoph

    2015-01-01

    Summary Abnormalities in prefrontal GABAergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to maternal immune activation, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  17. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons.

    PubMed

    Canetta, S; Bolkan, S; Padilla-Coreano, N; Song, L J; Sahn, R; Harrison, N L; Gordon, J A; Brown, A; Kellendonk, C

    2016-07-01

    Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders.

  18. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrPc for the cytoskeleton

    USDA-ARS?s Scientific Manuscript database

    The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...

  19. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  20. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. COLLAPSED ABNORMAL POLLEN1 Gene Encoding the Arabinokinase-Like Protein Is Involved in Pollen Development in Rice1[C][W][OA

    PubMed Central

    Ueda, Kenji; Yoshimura, Fumiaki; Miyao, Akio; Hirochika, Hirohiko; Nonomura, Ken-Ichi; Wabiko, Hiroetsu

    2013-01-01

    We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants. PMID:23629836

  2. Effects of third trimester-equivalent ethanol exposure on Cl(-) co-transporter expression, network activity, and GABAergic transmission in the CA3 hippocampal region of neonatal rats.

    PubMed

    Everett, Julie C; Licón-Muñoz, Yamhilette; Valenzuela, C Fernando

    2012-09-01

    Fetal alcohol spectrum disorders are often associated with structural and functional hippocampal abnormalities, leading to long-lasting learning and memory deficits. The mechanisms underlying these abnormalities are not fully understood. Here, we investigated whether ethanol exposure during the 3rd trimester-equivalent period alters spontaneous network activity that is involved in neuronal circuit development in the CA3 hippocampal region. This activity is driven by GABA(A) receptors, which can have excitatory actions in developing neurons as a consequence of greater expression of the Cl(-) importer, NKCC1, with respect to expression of the Cl(-) exporter, KCC2, resulting in high [Cl(-)](i). Rat pups were exposed to ethanol vapor from postnatal day (P) 2-16 (4 h/day). Weight gain was significantly reduced in pups exposed to ethanol compared to control at P15 and 16. Brain slices were prepared immediately after the end of the 4-h exposure on P4-16 and experiments were also performed under ethanol-free conditions at the end of the exposure paradigm (P17-22). Ethanol exposure did not significantly affect expression of KCC2 or NKCC1, nor did it affect network activity in the CA3 hippocampal region. Ethanol exposure significantly decreased the frequency (at P9-11) and increased the amplitude (at P5-8 and P17-21) of GABA(A) receptor-mediated miniature postsynaptic currents. These data suggest that repeated in vivo exposure to ethanol during the 3rd trimester-equivalent period alters GABAergic transmission in the CA3 hippocampal region, an effect that could lead to abnormal circuit maturation and perhaps contribute to the pathophysiology of fetal alcohol spectrum disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An amelogenin mutation leads to disruption of the odontogenic apparatus and aberrant expression of Notch I

    PubMed Central

    Chen, Xu; Li, Yong; Alawi, Faizan; Bouchard, Jessica R.; Kulkarni, Ashok B.; Gibson, Carolyn W.

    2012-01-01

    BACKGROUND Amelogenins are highly conserved proteins secreted by ameloblasts in the dental organ of developing teeth. These proteins regulate dental enamel thickness and structure in humans and mice. Mice that express an amelogenin transgene with a P70T mutation (TgP70T) develop abnormal epithelial proliferation in an amelogenin null (KO) background. Some of these cellular masses have the appearance of proliferating stratum intermedium, which is the layer adjacent to the ameloblasts in unerupted teeth. As Notch proteins are thought to constitute the developmental switch that separates ameloblasts from stratum intermedium, these signaling proteins were evaluated in normal and proliferating tissues. METHODS Mandibles were dissected for histology and immunohistochemistry using Notch I antibodies. Molar teeth were dissected for western blotting and RT-PCR for evaluation of Notch levels through imaging and statistical analyses. RESULTS Notch I was immunolocalized to ameloblasts of TgP70TKO mice, KO ameloblasts stained, but less strongly, and wild-type teeth had minimal staining. Cells within the proliferating epithelial cell masses were positive for Notch I and had an appearance reminiscent of calcifying epithelial odontogenic tumor with amyloid-like deposits. Notch I protein and mRNA were elevated in molar teeth from TgP70TKO mice. CONCLUSION Expression of TgP70T leads to abnormal structures in mandibles and maxillae of mice with the KO genetic background and these mice have elevated levels of Notch I in developing molars. As cells within the masses also express transgenic amelogenins, development of the abnormal proliferations suggests communication between amelogenin producing cells and the proliferating cells, dependent on the presence of the mutated amelogenin protein. PMID:20923441

  4. Vinclozolin Exposure in Utero Induces Postpubertal Prostatitis and Reduces Sperm Production via a Reversible Hormone-Regulated Mechanism

    PubMed Central

    Cowin, Prue A.; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K.; Foster, Paul M. D.; Scott, Hamish S.; Risbridger, Gail P.

    2010-01-01

    Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-κB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, −3A, −3B, and −3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-κB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression. PMID:20056826

  5. Vinclozolin exposure in utero induces postpubertal prostatitis and reduces sperm production via a reversible hormone-regulated mechanism.

    PubMed

    Cowin, Prue A; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K; Foster, Paul M D; Scott, Hamish S; Risbridger, Gail P

    2010-02-01

    Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-kappaB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, -3A, -3B, and -3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-kappaB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression.

  6. Expression of Mutant Human DISC1 in Mice Supports Abnormalities in Differentiation of Oligodendrocytes

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Abazyan, Bagrat; Davis, Kenneth L; Ross, Christopher; Pletnikov, Mikhail V; Haroutunian, Vahram

    2011-01-01

    Abnormalities in oligodendrocyte (OLG) differentiation and OLG gene expression deficit have been described in schizophrenia (SZ). Recent studies revealed a critical requirement for Disrupted-in-Schizophrenia 1 (DISC1) in neural development. Transgenic mice with forebrain restricted expression of mutant human DISC1 (ΔhDISC1) are characterized by neuroanatomical and behavioral abnormalities reminiscent of some features of SZ. We sought to determine whether the expression of ΔhDISC1 may influence the development of OLGs in this mouse model. OLG- and cell cycle-associated gene and protein expression were characterized in the forebrain of ΔhDISC1 mice during different stages of neurodevelopment (E15 and P1 days) and in adulthood. The results suggest that the expression of ΔhDISC1 exerts a significant influence on oligodendrocyte differentiation and function, evidenced by premature OLG differentiation and increased proliferation of their progenitors. Additional findings showed that neuregulin 1 and its receptors may be contributing factors to the observed upregulation of OLG genes. Thus, OLG function may be perturbed by mutant hDISC1 in a model system that provides new avenues for studying aspects of the pathogenesis of SZ. PMID:21605958

  7. Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development

    PubMed Central

    Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.

    2009-01-01

    Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074

  8. [Cytogenomic studies of hydatiform moles and gestational choriocarcinoma].

    PubMed

    Poaty, Henriette; Coullin, Philippe; Leguern, Eric; Dessen, Philippe; Valent, Alexandre; Afoutou, José-Marie; Peko, Jean-Félix; Candelier, Jean-Jacques; Gombé-Mbalawa, Charles; Picard, Jean-Yves; Bernheim, Alain

    2012-09-01

    The complete hydatidiform mole (CHM), a gestational trophoblastic disease, is usually caused by the development of an androgenic egg whose genome is exclusively paternal. Due to parental imprinting, only trophoblasts develop in the absence of a fetus. CHM are diploid and no abnormal karyotype is observed. It is 46,XX in most cases and less frequently 46,XY. The major complication of this disease is gestational choriocarcinoma, a metastasizing tumor and a true allografted malignancy. This complication is infrequent in developed countries, but is more common in the developing countries and is then worsened by delayed care. The malignancies are often accompanied by acquired, possibly etiological genomic abnormalities. We investigated the presence of recurrent cytogenetic abnormalities in CHM and post-molar choriocarcinoma using metaphasic CGH (mCGH) and high-resolution 244K aCGH techniques. The 10 CHM studied by mCGH showed no chromosomal gains or losses. For post-molar choriocarcinoma, 11 tumors, whose diagnosis was verified by histopathology, were investigated by aCGH. Their androgenic nature and the absence of tumor DNA contamination by maternal DNA were verified by the analysis of microsatellite markers. Three choriocarcinoma cell lines (BeWo, JAR and JEG) were also analyzed by aCGH. The results allowed us to observe some chromosomal rearrangements in primary tumors, and more in the cell lines. Chromosomal abnormalities were confirmed by FISH and functional effect by immunohistochemical analysis of gene expression. Forty minimum critical regions (MCR) were defined on chromosomes. Candidate genes implicated in choriocarcinoma oncogenesis were selected. The presence in the MCR of many miRNA clusters whose expression is modulated by parental imprinting has been observed, for example in 14q32 or in 19q13.4. This suggests that, in gestational choriocarcinoma, the consequences of gene abnormalities directly linked to acquired chromosomal abnormalities are superimposed upon those of imprinted genes altered at fertilization.

  9. Modelling dynamics with context-free grammars

    NASA Astrophysics Data System (ADS)

    García-Huerta, Juan-M.; Jiménez-Hernández, Hugo; Herrera-Navarro, Ana-M.; Hernández-Díaz, Teresa; Terol-Villalobos, Ivan

    2014-03-01

    This article presents a strategy to model the dynamics performed by vehicles in a freeway. The proposal consists on encode the movement as a set of finite states. A watershed-based segmentation is used to localize regions with high-probability of motion. Each state represents a proportion of a camera projection in a two-dimensional space, where each state is associated to a symbol, such that any combination of symbols is expressed as a language. Starting from a sequence of symbols through a linear algorithm a free-context grammar is inferred. This grammar represents a hierarchical view of common sequences observed into the scene. Most probable grammar rules express common rules associated to normal movement behavior. Less probable rules express themselves a way to quantify non-common behaviors and they might need more attention. Finally, all sequences of symbols that does not match with the grammar rules, may express itself uncommon behaviors (abnormal). The grammar inference is built with several sequences of images taken from a freeway. Testing process uses the sequence of symbols emitted by the scenario, matching the grammar rules with common freeway behaviors. The process of detect abnormal/normal behaviors is managed as the task of verify if any word generated by the scenario is recognized by the grammar.

  10. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less

  11. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.

    PubMed

    Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi

    2006-04-17

    Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.

  12. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas.

    PubMed

    Manku, G; Hueso, A; Brimo, F; Chan, P; Gonzalez-Peramato, P; Jabado, N; Gayden, T; Bourgey, M; Riazalhosseini, Y; Culty, M

    2016-01-01

    Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer. © 2015 American Society of Andrology and European Academy of Andrology.

  13. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    PubMed

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats

    PubMed Central

    Mohamad Zaid, Siti Sarah; Kassim, Normadiah M.; Othman, Shatrah

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties. PMID:26788107

  15. Abnormal histopathology, fat percent and hepatic apolipoprotein A I and apolipoprotein B100 mRNA expression in fatty liver hemorrhagic syndrome and their improvement by soybean lecithin.

    PubMed

    Song, Yalu; Ruan, Jiming; Luo, Junrong; Wang, Tiancheng; Yang, Fei; Cao, Huabin; Huang, Jianzhen; Hu, Guoliang

    2017-10-01

    To investigate the etiopathogenesis of fatty liver hemorrhagic syndrome (FLHS) and the protective effects of soybean lecithin against FLHS in laying hens, 135 healthy 300-day-old Hyline laying hens were randomly divided into groups: control (group 1), diseased (group 2), and protected (group 3). Each group contained 45 layers with 3 replicates. The birds in these 3 groups were fed a control diet, a high-energy/low-protein (HELP) diet or the HELP diet supplemented with 3% soybean lecithin instead of maize. The fat percent in the liver was calculated. Histopathological changes in the liver were determined by staining, and the mRNA expression levels of apolipoproteinA I (apoA I) and apolipoprotein B100 (apoB100) in the liver were determined by RT-PCR. The results showed that the fat percent in the liver of group 2 was much higher (P < 0.01) than that of group 1 and group 2 on d 30 and 60. The histology of the liver in group 2 on d 30 and 60 displayed various degrees of liver lesions, while the hepatocytes showed a normal structure in group 3 with mild microvesicular steatosis in the liver cell on d 30 and 60. The mRNA expression levels of apoA I and apoB100 in the livers were variable throughout the experiment. The expression level of apoA I in group 2 significantly decreased on d 60 (P < 0.05); the expression level of apoB100 slightly increased on d 30 in group 2, while it sharply decreased on d 60. Compared to group 1, the expression level of apoB100 showed no significant difference in group 3 (P < 0.05). This study indicated that FLHS induced pathological changes and abnormal expression of apoA I and apoB100 in the livers of laying hens and that soybean lecithin alleviated these abnormal changes. © 2017 Poultry Science Association Inc.

  16. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.

  18. Studying a Complex Tumor—Potential and Pitfalls

    PubMed Central

    Zheng, Siyuan; Chheda, Milan G.; Verhaak, Roel G.W.

    2012-01-01

    Glioblastoma multiforme (GBM) is a histopathologically heterogeneous disease with few treatment options. Therapy based on genomic alterations is rapidly gaining popularity because of the high response rate and high specificity. DNA copy number and exon sequencing studies of GBM samples have revealed recurrent genomic alterations in genes such as TP53, EGFR and IDH1 but to date this has not resulted in novel GBM therapies. Identification of expression subtypes have resulted in new insights such as the association between genomic abnormalities and expression signatures. This review describes the types of genomic studies that have been performed and that are underway, the most prominent results and the implications of genomic research for development of clinical treatment modalities. PMID:22290264

  19. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    PubMed

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  20. Glioblastoma and acute myeloid leukemia: malignancies with striking similarities.

    PubMed

    Goethe, Eric; Carter, Bing Z; Rao, Ganesh; Pemmaraju, Naveen

    2018-01-01

    Acute myeloid leukemia (AML) and glioblastoma (GB) are two malignancies associated with high incidence of treatment refractoriness and generally, uniformly poor survival outcomes. While the former is a hematologic (i.e. a "liquid") malignancy and the latter a solid tumor, the two diseases share both clinical and biochemical characteristics. Both diseases exist predominantly in primary (de novo) forms, with only a small subset of each progressing from precursor disease states like the myelodysplastic syndromes or diffuse glioma. More importantly, the primary and secondary forms of each disease are characterized by common sets of mutations and gene expression abnormalities. The primary versions of AML and GB are characterized by aberrant RAS pathway, matrix metalloproteinase 9, and Bcl-2 expression, and their secondary counterparts share abnormalities in TP53, isocitrate dehydrogenase, ATRX, inhibitor of apoptosis proteins, and survivin that both influence the course of the diseases themselves and their progression from precursor disease. An understanding of these shared features is important, as it can be used to guide both the research about and treatment of each.

  1. Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK.

    PubMed

    Oowatari, Yasuo; Ogawa, Tetsuro; Katsube, Takuya; Iinuma, Kiyohisa; Yoshitomi, Hisae; Gao, Ming

    2016-08-01

    Hypertrophy of adipocytes in obese adipose tissues causes metabolic abnormality by adipocytokine dysregulation, which promotes type 2 diabetes mellitus, hypertension, and dyslipidemia. We investigated the effects of wasabi (Wasabia japonica Matsum) leaf extracts on metabolic abnormalities in SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a model of metabolic syndrome. Male SHRSP/ZF rats aged 7 weeks were divided into two groups: control and wasabi leaf extract (WLE) groups, which received water or oral treatment with 4 g/kg/day WLE for 6 weeks. WLE improved the body weight gain and high blood pressure in SHRSP/ZF rats, and the plasma triglyceride levels were significantly lower in the WLE group. Adipocyte hypertrophy was markedly prevented in adipose tissue. The expression of PPARγ and subsequent downstream genes was suppressed in the WLE group adipose tissues. Our data suggest that WLE inhibits adipose hypertrophy by suppressing PPARγ expression in adipose tissue and stimulating the AMPK activity by increased adiponectin.

  2. "Gadd45b" Knockout Mice Exhibit Selective Deficits in Hippocampus-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.

    2012-01-01

    Growth arrest and DNA damage-inducible [beta] ("Gadd45b") has been shown to be involved in DNA demethylation and may be important for cognitive processes. "Gadd45b" is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified "Gadd45b"…

  3. Homozygosity Mapping and Candidate Prioritization Identify Mutations, Missed by Whole-Exome Sequencing, in SMOC2, Causing Major Dental Developmental Defects

    PubMed Central

    Bloch-Zupan, Agnès; Jamet, Xavier; Etard, Christelle; Laugel, Virginie; Muller, Jean; Geoffroy, Véronique; Strauss, Jean-Pierre; Pelletier, Valérie; Marion, Vincent; Poch, Olivier; Strahle, Uwe; Stoetzel, Corinne; Dollfus, Hélène

    2011-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2. PMID:22152679

  4. Floating-Harbor syndrome associated with middle ear abnormalities.

    PubMed

    Hendrickx, Jan-Jaap; Keymolen, Kathelijn; Desprechins, Brigitte; Casselman, Jan; Gordts, Frans

    2010-01-01

    Floating-Harbor syndrome is a rare syndrome of unknown etiology, which was first described in 1973. A triad of main features characterizes Floating-Harbor syndrome: short stature, characteristic face, and an expressive speech delay. We present a patient in whom the hearing thresholds improved insufficiently after placement of grommets. High-resolution CT scan of the temporal bone showed a prominent soft-tissue thickening suspected of causing fixation of the malleus, and fusion of the malleus head with the body of the incus. To our knowledge this is the first reported abnormal middle ear anatomy in a patient with Floating-Harbor syndrome. A conservative treatment with hearing aids was preferred as an initial treatment in favor of a surgical exploration.

  5. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  6. Ectopic expression of hoxb2 after retinoic acid treatment or mRNA injection: disruption of hindbrain and craniofacial morphogenesis in zebrafish embryos.

    PubMed

    Yan, Y L; Jowett, T; Postlethwait, J H

    1998-12-01

    To investigate pattern formation in the vertebrate hindbrain, we isolated a full length hoxb2 cDNA clone from zebrafish. In a gene phylogeny, zebrafish hoxb2 clusters with human HOXB2, and it maps on linkage group 3 along with several other loci whose orthologues are syntenic with human HOXB2. In the hindbrain, hoxb2 is expressed at high levels in rhombomere 3 (r3), lower levels in r4, still lower in r5, and at undetectable levels in r6. In r7, r8, and the rostral spinal cord, hoxb2 is expressed at a lower level than in r5. Lateral cells appearing to emanate from r4 express both hoxb2 and dlx2, suggesting that they are neural crest. Overexpression of hoxb2 by mRNA injections into early cleavage stage embryos resulted in abnormal morphogenesis of the midbrain and rostral hindbrain, abnormal patterning in r4, fusion of cartilage elements arising from pharyngeal arches 1 and 2, and ectopic expression of krx20 and valentino (but not pax2, rtk1, or hoxb1) in the rostral hindbrain, midbrain, and, surprisingly, the eye. Treatments with retinoic acid produced a phenotype similar to that of ectopic hoxb2 expression, including ectopic krx20 (but not valentino) expression in the eye, and fusion of cartilages from pharyngeal arches 1 and 2. The results suggest that hoxb2 plays an important role in the patterning of hindbrain and pharyngeal arches in the zebrafish.

  7. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus.

    PubMed

    Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming

    2018-03-01

    Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.

  8. Newborn Mouse Lens Proteome and Its Alteration by Lysine 6 Mutant Ubiquitin

    PubMed Central

    2015-01-01

    Ubiquitin is a tag that often initiates degradation of proteins by the proteasome in the ubiquitin proteasome system. Targeted expression of K6W mutant ubiquitin (K6W-Ub) in the lens results in defects in lens development and cataract formation, suggesting critical functions for ubiquitin in lens. To study the developmental processes that require intact ubiquitin, we executed the most extensive characterization of the lens proteome to date. We quantified lens protein expression changes in multiple replicate pools of P1 wild-type and K6W-Ub-expressing mouse lenses. Lens proteins were digested with trypsin, peptides were separated using strong cation exchange and reversed-phase liquid chromatography, and tandem mass (MS/MS) spectra were collected with a linear ion trap. Transgenic mice that expressed low levels of K6W-Ub (low expressers) had normal, clear lenses at birth, whereas the lenses that expressed high levels of K6W-Ub (higher expressers) had abnormal lenses and cataracts at birth. A total of 2052 proteins were identified, of which 996 were reliably quantified and compared between wild-type and K6W-Ub transgenic mice. Consistent with a delayed developmental program, fiber-cell-specific proteins, such as γ-crystallins (γA, γB, γC, and γE), were down-regulated in K6W-Ub higher expressers. Up-regulated proteins were involved in energy metabolism, signal transduction, and proteolysis. The K6W-Ub low expressers exhibited delayed onset and milder cataract consistent with smaller changes in protein expression. Because lens protein expression changes occurred prior to lens morphological abnormalities and cataract formation in K6W-Ub low expressers, it appears that expression of K6W-Ub sets in motion a process of altered protein expression that results in developmental defects and cataract. PMID:24450463

  9. Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma.

    PubMed

    Wang, Xiaoxiao; Cao, Xin; Sun, Ruifang; Tang, Charlene; Tzankov, Alexandar; Zhang, Jun; Manyam, Ganiraju C; Xiao, Min; Miao, Yi; Jabbar, Kausar; Tan, Xiaohong; Pang, Yuyang; Visco, Carlo; Xie, Yan; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J M; Møller, Michael B; Parsons, Ben M; Winter, Jane N; Piris, Miguel A; Li, Shaoying; Miranda, Roberto N; Medeiros, L Jeffrey; Li, Yong; Xu-Monette, Zijun Y; Young, Ken H

    2018-05-03

    PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-cell-like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression, and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the poor survival of DLBCL patients with AKT hyperactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy.

    PubMed

    Blackmon, Karen

    2015-06-01

    Etiological factors that contribute to a high comorbidity between autism spectrum disorder (ASD) and epilepsy are the subject of much debate. Does epilepsy cause ASD or are there common underlying brain abnormalities that increase the risk of developing both disorders? This review summarizes evidence from quantitative MRI studies to suggest that abnormalities of brain structure are not necessarily the consequence of ASD and epilepsy but are antecedent to disease expression. Abnormal gray and white matter volumes are present prior to onset of ASD and evident at the time of onset in pediatric epilepsy. Aberrant brain growth trajectories are also common in both disorders, as evidenced by blunted gray matter maturation and white matter maturation. Although the etiological factors that explain these abnormalities are unclear, high heritability estimates for gray matter volume and white matter microstructure demonstrate that genetic factors assert a strong influence on brain structure. In addition, histopathological studies of ASD and epilepsy brain tissue reveal elevated rates of malformations of cortical development (MCDs), such as focal cortical dysplasia and heterotopias, which supports disruption of neuronal migration as a contributing factor. Although MCDs are not always visible on MRI with conventional radiological analysis, quantitative MRI detection methods show high sensitivity to subtle malformations in epilepsy and can be potentially applied to MCD detection in ASD. Such an approach is critical for establishing quantitative neuroanatomic endophenotypes that can be used in genetic research. In the context of emerging drug treatments for seizures and autism symptoms, such as rapamycin and rapalogs, in vivo neuroimaging markers of subtle structural brain abnormalities could improve sample stratification in human clinical trials and potentially extend the range of patients that might benefit from treatment. This article is part of a Special Issue entitled "Autism and Epilepsy". Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii

    PubMed Central

    Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975

  12. The neurovascular relation in oxygen-induced retinopathy.

    PubMed

    Akula, James D; Mocko, Julie A; Benador, Ilan Y; Hansen, Ronald M; Favazza, Tara L; Vyhovsky, Tanya C; Fulton, Anne B

    2008-01-01

    Longitudinal studies in rat models of retinopathy of prematurity (ROP) have demonstrated that abnormalities of retinal vasculature and function change hand-in-hand. In the developing retina, vascular and neural structures are under cooperative molecular control. In this study of rats with oxygen-induced retinopathy (OIR) models of ROP, mRNA expression of vascular endothelial growth factor (VEGF), semaphorin (Sema), and their neuropilin receptor (NRP) were examined during the course of retinopathy to evaluate their roles in the observed neurovascular congruency. Oxygen exposures designed to induce retinopathy were delivered to Sprague-Dawley rat pups (n=36) from postnatal day (P) 0 to P14 or from P7 to P14. Room-air-reared controls (n=18) were also studied. Sensitivities of the rod photoreceptors (S(rod)) and the postreceptor cells (Sm) were derived from electroretinographic (ERG) records. Arteriolar tortuosity, T(A), was derived from digital fundus images using Retinal Image multi-Scale Analysis (RISA) image analysis software. mRNA expression of VEGF(164), semaphorin IIIA (Sema3A), and neuropilin-1 (NRP-1) was evaluated by RT-PCR of retinal extracts. Tests were performed at P15-P16, P18-P19, and P25-P26. Relations among ERG, RISA, and PCR parameters were evaluated using linear regression on log transformed data. Sm was low and T(A) was high at young ages, then both resolved by P25-P26. VEGF(164) and Sema3A mRNA expression were also elevated early and decreased with age. Low Sm was significantly associated with high VEGF(164) and Sema3A expression. Low S(rod) was also significantly associated with high VEGF(164). S(rod) and Sm were both correlated with T(A). NRP-1 expression was little affected by OIR. The postreceptor retina appears to mediate the vascular abnormalities that characterize OIR. Because of the relationships revealed by these data, early treatment that targets the neural retina may mitigate the effects of ROP.

  13. The neurovascular relation in oxygen-induced retinopathy

    PubMed Central

    Akula, James D.; Mocko, Julie A.; Benador, Ilan Y.; Hansen, Ronald M.; Favazza, Tara L.; Vyhovsky, Tanya C.

    2008-01-01

    Purpose Longitudinal studies in rat models of retinopathy of prematurity (ROP) have demonstrated that abnormalities of retinal vasculature and function change hand-in-hand. In the developing retina, vascular and neural structures are under cooperative molecular control. In this study of rats with oxygen-induced retinopathy (OIR) models of ROP, mRNA expression of vascular endothelial growth factor (VEGF), semaphorin (Sema), and their neuropilin receptor (NRP) were examined during the course of retinopathy to evaluate their roles in the observed neurovascular congruency. Methods Oxygen exposures designed to induce retinopathy were delivered to Sprague-Dawley rat pups (n=36) from postnatal day (P) 0 to P14 or from P7 to P14. Room-air-reared controls (n=18) were also studied. Sensitivities of the rod photoreceptors (Srod) and the postreceptor cells (Sm) were derived from electroretinographic (ERG) records. Arteriolar tortuosity, TA, was derived from digital fundus images using Retinal Image multi-Scale Analysis (RISA) image analysis software. mRNA expression of VEGF164, semaphorin IIIA (Sema3A), and neuropilin-1 (NRP-1) was evaluated by RT–PCR of retinal extracts. Tests were performed at P15–P16, P18–P19, and P25–P26. Relations among ERG, RISA, and PCR parameters were evaluated using linear regression on log transformed data. Results Sm was low and TA was high at young ages, then both resolved by P25–P26. VEGF164 and Sema3A mRNA expression were also elevated early and decreased with age. Low Sm was significantly associated with high VEGF164 and Sema3A expression. Low Srod was also significantly associated with high VEGF164. Srod and Sm were both correlated with TA. NRP-1 expression was little affected by OIR. Conclusions The postreceptor retina appears to mediate the vascular abnormalities that characterize OIR. Because of the relationships revealed by these data, early treatment that targets the neural retina may mitigate the effects of ROP. PMID:19112532

  14. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    PubMed

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  15. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    PubMed Central

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  16. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    PubMed

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  17. Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach.

    PubMed

    Ali, Sazan; Steinmetz, Gérard; Montillet, Guillaume; Perrard, Marie-Hélène; Loundou, Anderson; Durand, Philippe; Guichaoua, Marie-Roberte; Prat, Odette

    2014-01-01

    Bisphenol A (BPA) is one of the most widespread chemicals in the world and is suspected of being responsible for male reproductive impairments. Nevertheless, its molecular mode of action on spermatogenesis is unclear. This work combines physiology and toxicogenomics to identify mechanisms by which BPA affects the timing of meiosis and induces germ-cell abnormalities. We used a rat seminiferous tubule culture model mimicking the in vivo adult rat situation. BPA (1 nM and 10 nM) was added to the culture medium. Transcriptomic and meiotic studies were performed on the same cultures at the same exposure times (days 8, 14, and 21). Transcriptomics was performed using pangenomic rat microarrays. Immunocytochemistry was conducted with an anti-SCP3 antibody. The gene expression analysis showed that the total number of differentially expressed transcripts was time but not dose dependent. We focused on 120 genes directly involved in the first meiotic prophase, sustaining immunocytochemistry. Sixty-two genes were directly involved in pairing and recombination, some of them with high fold changes. Immunocytochemistry indicated alteration of meiotic progression in the presence of BPA, with increased leptotene and decreased diplotene spermatocyte percentages and partial meiotic arrest at the pachytene checkpoint. Morphological abnormalities were observed at all stages of the meiotic prophase. The prevalent abnormalities were total asynapsis and apoptosis. Transcriptomic analysis sustained immunocytological observations. We showed that low doses of BPA alter numerous genes expression, especially those involved in the reproductive system, and severely impair crucial events of the meiotic prophase leading to partial arrest of meiosis in rat seminiferous tubule cultures.

  18. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    PubMed Central

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  19. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning

    PubMed Central

    Fakhro, Khalid A.; Choi, Murim; Ware, Stephanie M.; Belmont, John W.; Towbin, Jeffrey A.; Lifton, Richard P.; Khokha, Mustafa K.; Brueckner, Martina

    2011-01-01

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10−4). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10−6). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning. PMID:21282601

  20. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning.

    PubMed

    Fakhro, Khalid A; Choi, Murim; Ware, Stephanie M; Belmont, John W; Towbin, Jeffrey A; Lifton, Richard P; Khokha, Mustafa K; Brueckner, Martina

    2011-02-15

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10(-4)). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10(-6)). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning.

  1. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a varietymore » of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.« less

  2. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way.

    PubMed

    Xu, Yin; Zhang, Jin; Tian, Chan; Ren, Ke; Yan, Yu-E; Wang, Ke; Wang, Hui; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2014-04-01

    The protein of p62/sequestosome 1 (SQSTM1), a key cargo adaptor protein involved in autophagy-lysosome degradation, exhibits inclusion bodies structure in cytoplasm and plays a protective role in some models of neurodegenerative diseases. Some PrP mutants, such as PrP-CYTO and PrP-PG14, also form cytosolic inclusion bodies and trigger neuronal apoptosis either in cultured cells or in transgenic mice. Here, we demonstrated that the cellular p62/SQSTM1 incorporated into the inclusion bodies formed by expressing the abnormal PrP mutants, PrP-CYTO and PrP-PG14, in human embryonic kidney 293 cells. Overexpression of p62/SQSTM1 efficiently relieved the cytosolic aggregations and cell apoptosis induced by the abnormal PrPs. Autophagy-lysosome inhibitors instead of proteasome inhibitor sufficiently blocked the p62/SQSTM1-mediated degradations of abnormal PrPs. Overexpression of p62/SQSTM1 did not alter the levels of light chain 3 (LC3) in the cells expressing various PrPs. However, more complexes of p62/SQSTM1 with LC3 were detected in the cells expressing the misfolded PrPs. These data imply that p62/SQSTM1 plays an important role in the homeostasis of abnormal PrPs via autophagy-lysosome-dependent way.

  3. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.

  4. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study.

    PubMed

    Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing

    2017-08-02

    As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  5. Updated strategies for the management, pathogenesis and molecular genetics of different forms of ichthyosis syndromes with prominent hair abnormalities.

    PubMed

    Rasheed, Madiha; Shahzad, Shaheen; Zaeem, Afifa; Afzal, Imran; Gul, Asma; Khalid, Sumbal

    2017-12-01

    Syndromic ichthyosis is rare inherited disorders of cornification with varied disease complications. This disorder appears in seventeen subtypes associated with severe systematic manifestations along with medical, cosmetic and social problems. Syndromic ichthyosis with prominent hair abnormalities covers five major subtypes: Netherton syndrome, trichothiodystrophy, ichthyosis hypotrichosis syndrome, ichthyosis hypotrichosis sclerosing cholangitis and ichthyosis follicularis atrichia photophobia syndrome. These syndromes mostly prevail in high consanguinity states, with distinctive clinical features. The known pathogenic molecules involved in ichthyosis syndromes with prominent hair abnormalities include SPINK5, ERCC2, ERCC3, GTF2H5, MPLKIP, ST14, CLDN1 and MBTPS2. Despite underlying genetic origin, most of the health professionals solely rely on phenotypic expression of these disorders that leads to improper management of patients, hence making these patients living an orphanage life. After dermal features, association of other systems such as nervous system, skeletal system, hair abnormalities or liver problems may sometimes give clues for diagnosis but still leaving place for molecular screening for efficient diagnosis. In this paper, we have presented a review of ichthyosis syndrome with prominent hair abnormalities, with special emphasis on their updated genetic consequences and disease management. Additionally, we aim to update health professionals about the practice of molecular screening in ichthyosis syndromes for appropriate diagnosis and treatment.

  6. RADIATION-INDUCED GENETIC DAMAGE IN THE MEXICAN TOAD (BUFO VALLICEPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, W.F.

    1960-10-01

    Lines of Mexican toads (Bufo valliceps) bearing x-ray induced genetic damage were established by mating normal females with males that had received gonadal x-ray doses ranging from 300 to 3000 r. Survival in the first generation was inversely proportional to dose,-as was expected. Toads of the 300-r and l000- r lines were inbred, and toads of these lines and of the 700-r line were outcrossed to normal ones. Two crosses were made between toads of the 500-r and 1000-r lines. Developmental abnormalities of various kinds appeared at life history stages rangthg from early embryonic development to post-metamorphic life in bothmore » inbred and outcross generations. These included abnormal gastrulation and neurulation, larval and post-metamorphic edema, abnormally positioned or missing limbs, optical deficiencies, prognathous jaw due to excessive elongation of the lower jaw, and melanin deficiency. The prognathous jaw, in its extreme expression, would probably be lethal in natural populations because of difficulty of feeding. The melanin deficiency, in its extreme expression, is lethal as metamorphosis fails to occur, and in lesser expression, it appears to be lethal or detrimental. The various abnormalities do not appear to be inherited in any simple way, but instead they vary in expression both within and between generations, possibly in relation to genotype and environment. (auth)« less

  7. Comparative Assessment of Vitamin-B12, Folic Acid and Homocysteine Levels in Relation to p53 Expression in Megaloblastic Anemia.

    PubMed

    Yadav, Manish K; Manoli, Nandini M; Madhunapantula, SubbaRao V

    2016-01-01

    Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no-or very low-expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB12 and VB9 deficiency induced MBA compared to control subjects not suffering from MBA. Tumor protein p53 is the key protein expressed heavily in the bone marrow biopsies of patients suffering from VB12 and VB9 deficiency induced MBA but not in control subjects. Hence, p53 expression could be used as a surrogate marker for confirming the VB9 and VB12 induced MBA.

  8. Comparative Assessment of Vitamin-B12, Folic Acid and Homocysteine Levels in Relation to p53 Expression in Megaloblastic Anemia

    PubMed Central

    Yadav, Manish K.; Manoli, Nandini M.

    2016-01-01

    Background Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Methods Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Results Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no—or very low—expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB12 and VB9 deficiency induced MBA compared to control subjects not suffering from MBA. Conclusion Tumor protein p53 is the key protein expressed heavily in the bone marrow biopsies of patients suffering from VB12 and VB9 deficiency induced MBA but not in control subjects. Hence, p53 expression could be used as a surrogate marker for confirming the VB9 and VB12 induced MBA. PMID:27780269

  9. Genotype-Correlated Expression of Lysyl Oxidase-Like 1 in Ocular Tissues of Patients with Pseudoexfoliation Syndrome/Glaucoma and Normal Patients

    PubMed Central

    Schlötzer-Schrehardt, Ursula; Pasutto, Francesca; Sommer, Pascal; Hornstra, Ian; Kruse, Friedrich E.; Naumann, Gottfried O.H.; Reis, André; Zenkel, Matthias

    2008-01-01

    Pseudoexfoliation (PEX) syndrome is a generalized disease of the extracellular matrix and the most common identifiable cause of open-angle glaucoma. Two single nucleotide polymorphisms in the lysyl oxidase-like 1 (LOXL1) gene (rs1048661 and rs3825942) have been recently identified as strong genetic risk factors for both PEX syndrome and PEX glaucoma. Here we investigated the expression and localization of LOXL1, LOXL2, and lysyl oxidase (LOX) in tissues of PEX syndrome/glaucoma patients and controls in correlation with their individual single nucleotide polymorphism genotypes and stages of disease. LOXL1 ocular expression was reduced by ∼20% per risk allele of rs1048661, whereas risk alleles of rs3825942, which were highly overrepresented in PEX cases, did not affect LOXL1 expression levels. Irrespective of the individual genotype, LOXL1 expression was significantly increased in early PEX stages but was decreased in advanced stages both with and without glaucoma compared with controls, whereas LOX and LOXL2 showed no differences between groups. LOXL1 was also found to be a major component of fibrillar PEX aggregates in both intra- and extraocular locations and to co-localize with various elastic fiber components. These findings provide evidence for LOXL1 involvement in the initial stages of abnormal fibrogenesis in PEX tissues. Alterations of LOXL1 activation, processing, and/or substrate specificity may contribute to the abnormal aggregation of elastic fiber components into characteristic PEX fibrils. PMID:18974306

  10. DiGeorge Syndrome: a not so rare disease.

    PubMed

    Fomin, Angela B F; Pastorino, Antonio Carlos; Kim, Chong Ae; Pereira, C A; Carneiro-Sampaio, Magda; Abe-Jacob, Cristina Miuki

    2010-01-01

    The DiGeorge Syndrome was first described in 1968 as a primary immunodeficiency resulting from the abnormal development of the third and fourth pharyngeal pouches during embryonic life. It is characterized by hypocalcemia due to hypoparathyroidism, heart defects, and thymic hypoplasia or aplasia. Its incidence is 1:3000 live births and, despite its high frequency, little is known about its natural history and progression. ←This is probably due to diagnostic difficulties and the great variety of names used to describe it, such as velocardiofacial, Shprintzen, DiGeorge, and CATCH 22 Syndromes, as well as conotruncal facial anomaly. All represent the same genetic condition, chromosome 22q11.2 deletion, which might have several clinical expressions. To describe clinical and laboratorial data and phenotypic characteristics of patients with DiGeorge Syndrome. Patients underwent standard clinical and epidemiological protocol and tests to detect heart diseases, facial abnormalities, dimorphisms, neurological or behavioral disorders, recurrent infections and other comorbidities. Of 14 patients (8m - 18y11m), only one did not have 22q11.2 deletion detected. The main findings were: conotruncal malformation (n = 12), facial abnormalities (n = 11), hypocalcemia (n = 5) and low lymphocyte count (n=2). The authors pointed out the necessity of DGS suspicion in all patient presenting with heart defects, facial abnormalities (associated or not with hypocalcemia), and immunological disorders because although frequency of DGS is high, few patients with a confirmed diagnosis are followed up.

  11. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    PubMed

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  12. Gene expression abnormalities in histologically normal breast epithelium from patients with luminal type of breast cancer.

    PubMed

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kajo, Karol; Kapustova, Ivana; Mendelova, Andrea; Racay, Peter; Danko, Jan

    2015-05-01

    The gene expression profile of breast cancer has been described as a great breakthrough on the way to comprehend differences in cancer origin, behavior and therapy. However, gene expression profile in histologically normal epithelium (HNEpi) which could harbor genetic abnormalities predisposing breast tissue to develop malignancy was minor scope for scientists in the past. Thus, we aimed to analyze gene expressions in HNEpi and breast cancer tissue (BCTis) in order to establish its value as potential diagnostic marker for cancer development. We evaluated a panel of disease-specific genes in luminal type (A/B) of breast cancer and tumor surrounding HNEpi by qRT-PCR Array in 32 microdissected samples. There was 20.2 and 2.4% deregulation rate in genes with at least 2-fold or 5-fold over-expression between luminal (A/B) type breast carcinomas and tumor surrounding HNEpi, respectively. The high-grade luminal carcinomas showed higher number of deregulated genes compared to low-grade cases (50.6 vs. 23.8% with at least 2-fold deregulation rate). The main overexpressed genes in HNEpi were KLK5, SCGB1D2, GSN, EGFR and NGFR. The significant differences in gene expression between BCTis and HNEpi samples were revealed for BAG1, C3, CCNA2, CD44, FGF1, FOSL1, ID2, IL6R, NGFB, NGFR, PAPPA, PLAU, SERPINB5, THBS1 and TP53 gene (p < 0.05) and BCL2L2, CTSB, ITGB4, JUN, KIT, KLF5, SCGB1D2, SCGB2A1, SERPINE1 (p < 0.01), and EGFR, GABRP, GSN, MAP2K7 and THBS2 (p < 0.001), and GSN, KLK5 (p < 0.0001). The ontological gene analyses revealed high deregulations in gene group directly associated with breast cancer prognosis and origin.

  13. FAF1, a Gene that Is Disrupted in Cleft Palate and Has Conserved Function in Zebrafish

    PubMed Central

    Ghassibe-Sabbagh, Michella; Desmyter, Laurence; Langenberg, Tobias; Claes, Filip; Boute, Odile; Bayet, Bénédicte; Pellerin, Philippe; Hermans, Karlien; Backx, Liesbeth; Mansilla, Maria Adela; Imoehl, Sandra; Nowak, Stefanie; Ludwig, Kerstin U.; Baluardo, Carlotta; Ferrian, Melissa; Mossey, Peter A.; Noethen, Markus; Dewerchin, Mieke; François, Geneviève; Revencu, Nicole; Vanwijck, Romain; Hecht, Jacqueline; Mangold, Elisabeth; Murray, Jeffrey; Rubini, Michele; Vermeesch, Joris R.; Poirel, Hélène A.; Carmeliet, Peter; Vikkula, Miikka

    2011-01-01

    Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish. PMID:21295280

  14. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2015-11-09

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases.

    PubMed

    Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E

    2012-04-05

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.

  16. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases

    PubMed Central

    Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.

    2012-01-01

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319

  17. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    PubMed

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  18. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    PubMed

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High frequency stimulation of the entopeduncular nucleus sets the cortico-basal ganglia network to a new functional state in the dystonic hamster.

    PubMed

    Reese, René; Charron, Giselle; Nadjar, Agnès; Aubert, Incarnation; Thiolat, Marie-Laure; Hamann, Melanie; Richter, Angelika; Bezard, Erwan; Meissner, Wassilios G

    2009-09-01

    High frequency stimulation (HFS) of the internal pallidum is effective for the treatment of dystonia. Only few studies have investigated the effects of stimulation on the activity of the cortex-basal ganglia network. We here assess within this network the effect of entopeduncular nucleus (EP) HFS on the expression of c-Fos and cytochrome oxidase subunit I (COI) in the dt(sz)-hamster, a well-characterized model of paroxysmal dystonia. In dt(sz)-hamsters, we identified abnormal activity in motor cortex, basal ganglia and thalamus. These structures have already been linked to the pathophysiology of human dystonia. EP-HFS (i) increased striatal c-Fos expression in controls and dystonic hamsters and (ii) reduced thalamic c-Fos expression in dt(sz)-hamsters. EP-HFS had no effect on COI expression. The present results suggest that EP-HFS induces a new network activity state which may improve information processing and finally reduces the severity of dystonic attacks in dt(sz)-hamsters.

  20. Non-invasive brain stimulation approaches to fibromyalgia pain

    PubMed Central

    Short, Baron; Borckardt, Jeffrey J; George, Mark; Beam, Will; Reeves, Scott T

    2010-01-01

    Fibromyalgia is a poorly understood disorder that likely involves central nervous system sensory hypersensitivity. There are a host of genetic, neuroendocrine and environmental abnormalities associated with the disease, and recent research findings suggest enhanced sensory processing, and abnormalities in central monoamines and cytokines expression in patients with fibromyalgia. The morbidity and financial costs associated with fibromyalgia are quite high despite conventional treatments with antidepressants, anticonvulsants, low-impact aerobic exercise and psychotherapy. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation, transcranial magnetic stimulation, and electroconvulsive therapy are beginning to be studied as possible treatments for fibromyalgia pain. Early studies appear promising but more work is needed. Future directions in clinical care may include innovative combinations of noninvasive brain stimulation, pharmacological augmentation, and behavior therapies. PMID:21841959

  1. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis

    PubMed Central

    Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    Objective To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Methods Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Results Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Conclusions Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis. PMID:28817677

  2. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis.

    PubMed

    Chen, Ning; Du, Baoying; Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis.

  3. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice.

    PubMed

    Sasaki, Keita; Omotuyi, Olaposi Idowu; Ueda, Mutsumi; Shinohara, Kazuyuki; Ueda, Hiroshi

    2015-12-04

    Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.

  4. Identification of an osteoclast transcription factor that binds to the human T cell leukemia virus type I-long terminal repeat enhancer element.

    PubMed

    Inoue, D; Santiago, P; Horne, W C; Baron, R

    1997-10-03

    Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.

  5. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression

    PubMed Central

    2011-01-01

    Background Infection with high-risk human papillomaviruses (HPVs) such as HPV-16 is intimately associated with squamous cell carcinomas (SCCs) of the anogenital tract and a subset of oropharyngeal carcinomas. Such lesions, including pre-invasive precursors, frequently show multipolar mitoses and aneuploidy. The high-risk HPV-16-encoded E7 oncoprotein has been shown to rapidly induce centrosome abnormalities thereby causing the formation of supernumerary mitotic spindle poles and increasing the risk for chromosome missegregation. HPV-16 E7 has been found to rapidly induce centriole overduplication, in part, through the simultaneous formation of more than one daughter centriole at single maternal centrioles (centriole multiplication). The precise molecular mechanism that underlies HPV-16 E7-induced centriole multiplication, however, remains poorly understood. Findings Here, we show that human keratinocytes engineered to stably express the HPV-16 E7 oncoprotein exhibit aberrant Polo-like kinase 4 (PLK4) protein expression at maternal centrioles. Real-time quantitative reverse transcriptase (qRT-PCR) analysis of these cells revealed an increase of PLK4 mRNA levels compared to control cells. Importantly, the ability of the HPV-16 E7 oncoprotein to induce centriole multiplication was found to correlate with its ability to activate the PLK4 promoter and to up-regulate PLK4 mRNA. Conclusions These results highlight the critical role of PLK4 transcriptional deregulation in centriole multiplication in HPV-16 E7-expressing cells. Our findings encourage further experiments to test transcriptional inhibitors or small molecules targeting PLK4 to prevent centriole abnormalities, mitotic infidelity and malignant progression in HPV-associated neoplasms and other tumors in which PLK4 regulation is disrupted. PMID:21609466

  6. ATP synthase β-subunit abnormality in pancreas islets of rats with polycystic ovary syndrome and type 2 diabetes mellitus.

    PubMed

    Li, Wei; Li, Sai-Jiao; Yin, Tai-Lang; Yang, Jing; Cheng, Yan

    2017-04-01

    This study investigated the abnormal expression of ATP synthase β-subunit (ATPsyn-β) in pancreas islets of rat model of polycystic ovary syndrome (PCOS) with type 2 diabetes mellitus (T2DM), and the secretion function changes after up-regulation of ATP5b. Sixty female SD rats were divided into three groups randomly and equally. The rat model of PCOS with T2DM was established by free access to the high-carbohydrate/high-fat diet, subcutaneous injections of DHEA, and a single injection of streptozotocin. The pancreas was removed for the detection of the ATPsyn-β expression by immunohistochemical staining, Western blotting and reverse transcription-PCR (RT-PCR). The pancreas islets of the rats were cultured, isolated with collagenase V and purified by gradient centrifugation, and the insulin secretion after treatment with different glucose concentrations was tested. Lentivirus ATP5b was successfully constructed with the vector of GV208 and transfected into the pancreas islets for the over-expression of ATPsyn-β. The insulin secretion and intracellular ATP content were determined after transfection of the PCOS-T2DM pancreas islets with Lenti-ATP5b. The results showed that the expression of ATPsyn-β protein and mRNA was significantly decreased in the pancreas of PCOS-T2DM rats. The ATP content in the pancreas islets was greatly increased and the insulin secretion was improved after the up-regulation of ATPsyn-β in the pancreas islets transfected with lenti-ATP5b. These results indicated that for PCOS, the ATPsyn-β might be one of the key factors for the attack of T2DM.

  7. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  8. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  9. Mammary Tumor Development: Stromal-Epithelial Interactions in Oncogenesis.

    DTIC Science & Technology

    1996-09-01

    differentiation, prolif- erative preneoplastic lesions, or invasive adenocarcinomas , depending on the promoter con- struct used and the animal’s age when...Zn). Virgin RSV-SGF transgenic mice showed marked preneoplastic MG ductal proliferation by 6 mo. By 8 mo., 1/3 had developed adenocarcinoma . Virgin...fat pRSGF Constitutively expressed Highly abnormal. None Normal Observed at 8 1/3 of mice show months of age invasive secretory adenocarcinoma SGF

  10. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  11. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  12. Fatty Acid Oxidation Changes and the Correlation with Oxidative Stress in Different Preeclampsia-Like Mouse Models

    PubMed Central

    Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan

    2014-01-01

    Background Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) expression is decreased in placenta of some cases of preeclampsia (PE) which may result in free fatty acid (FFA) increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. Methods PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA) or lipopolysaccharide (LPS) and the antiphospholipid syndrome (APS) mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups). The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre) and mid-pregnancy (Mid) subgroups by injection time. Results All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05). LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05) but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. Conclusions Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway. PMID:25302499

  13. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  14. Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping

    2014-05-01

    Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.

  15. Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos.

    PubMed

    Yamada, Shigehiro; Hotta, Kohji; Yamamoto, Takamasa S; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki

    2009-04-01

    The midline organ the notochord and its overlying dorsal neural tube are the most prominent features of the chordate body plan. Although the molecular mechanisms involved in the formation of the central nervous system (CNS) have been studied extensively in vertebrate embryos, none of the genes that are expressed exclusively in notochord cells has been shown to function in this process. Here, we report a gene in the urochordate Ciona intestinalis encoding a fibrinogen-like protein that plays a pivotal role in the notochord-dependent positioning of neuronal cells. While this gene (Ci-fibrn) is expressed exclusively in notochord cells, its protein product is not confined to these cells but is distributed underneath the CNS as fibril-like protrusions. We demonstrated that Ci-fibrn interacts physically and functionally with Ci-Notch that is expressed in the central nervous system, and that the correct distribution of Ci-fibrn protein is dependent on Notch signaling. Disturbance of the Ci-fibrn distribution caused an abnormal positioning of neuronal cells and an abnormal track of axon extension. Therefore, it is highly likely that the interaction between the notochord-based fibrinogen-like protein and the neural tube-based Notch signaling plays an essential role in the proper patterning of CNS.

  16. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  17. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  18. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

    PubMed

    Sones, Jennifer L; Merriam, Audrey A; Seffens, Angelina; Brown-Grant, Dex-Ann; Butler, Scott D; Zhao, Anna M; Xu, Xinjing; Shawber, Carrie J; Grenier, Jennifer K; Douglas, Nataki C

    2018-05-01

    Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF 164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

  19. Profound bioenergetic abnormalities in peri-infarct myocardial regions.

    PubMed

    Hu, Qingsong; Wang, Xiaohong; Lee, Joseph; Mansoor, Abdul; Liu, Jingbo; Zeng, Lepeng; Swingen, Cory; Zhang, Ge; Feygin, Julia; Ochiai, Koichi; Bransford, Toni L; From, Arthur H L; Bache, Robert J; Zhang, Jianyi

    2006-08-01

    Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.

  20. The changes in the reproductive barrier between hexaploid wheat (Triticum aestivum L.) and rye (Secale cereale L.): different states lead to different fates.

    PubMed

    Tikhenko, Natalia; Rutten, Twan; Senula, Angelika; Rubtsova, Myroslava; Keller, E R Joachim; Börner, Andreas

    2017-09-01

    The changes in the reproductive barrier between hexaploid wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) can be induced using in situ embryo rescue of abnormal embryos, yielding stable fertile amphidiploid plants. In intergeneric crosses between hexaploid wheat (Triticum aestivum L.) and rye (Secale cereale L.), postzygotic barriers may occur at different stages of hybrid development. One such mechanism is embryo lethality, which is genetically determined by the interaction and expression of two incompatible genes in wheat (Eml-A1) and rye (Eml-R1). Using in vitro culture methods as stressors, we overcame this hybrid lethality. Normal and abnormal embryos were observed to build embryogenic calli and produce regenerated plantlets in a similar manner. The high regenerative capacity of the abnormal embryos led us to conclude that the reproductive barrier in these intergeneric hybrids may have an epigenetic origin that can be easily overcome by culturing immature embryos via callus induction. After colchicine treatment during callus culture, amphidiploid plants were obtained. However, most of these plants did not produce seeds, due mainly to sterility of the pollen but also of the embryo sacs. These findings demonstrate that hybrid sterility affects both male and female gametophytes in plants obtained from abnormal embryos. The key roles of double fertilization and stress factors in the implementation of the apical meristem formation program in embryos from incompatible intergeneric crosses between hexaploid wheat and rye during in vitro culture are discussed. We also propose a hypothetical model for a wheat-rye lethality system involving differential expression of incompatible wheat Eml-A1 and rye Eml-R1b alleles in an identical genetic background.

  1. TSPO Expression and Brain Structure in the Psychosis Spectrum.

    PubMed

    Hafizi, Sina; Guma, Elisa; Koppel, Alex; Da Silva, Tania; Kiang, Michael; Houle, Sylvain; Wilson, Alan A; Rusjan, Pablo M; Chakravarty, M Mallar; Mizrahi, Romina

    2018-06-12

    Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [ 18 F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [ 18 F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [ 18 F]FEPPA V T (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [ 18 F]FEPPA V T and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis. Copyright © 2018. Published by Elsevier Inc.

  2. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of distal airway and blood biomarkers that predict FEV1 decline

    PubMed Central

    Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna

    2016-01-01

    Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1

  3. Blunted vocal affect and expression is not associated with schizophrenia: A computerized acoustic analysis of speech under ambiguous conditions.

    PubMed

    Meaux, Lauren T; Mitchell, Kyle R; Cohen, Alex S

    2018-05-01

    Patients with schizophrenia are consistently rated by clinicians as having high levels of blunted vocal affect and alogia. However, objective technologies have often failed to substantiate these abnormalities. It could be the case that negative symptoms are context-dependent. The present study examined speech elicited under conditions demonstrated to exacerbate thought disorder. The Rorschach Test was administered to 36 outpatients with schizophrenia and 25 nonpatient controls. Replies to separate "perceptual" and "memory" phases were analyzed using validated acoustic analytic methods. Compared to nonpatient controls, schizophrenia patients did not display abnormal speech expression on objective measure of blunted vocal affect or alogia. Moreover, clinical ratings of negative symptoms were not significantly correlated with objective measures. These findings suggest that in patients with schizophrenia, vocal affect/alogia is generally unremarkable under ambiguous conditions. Clarifying the nature of blunted vocal affect and alogia, and how objective measures correspond to what clinicians attend to when making clinical ratings are important directions for future research. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders.

    PubMed

    Kleinhans, Natalia M; Richards, Todd; Weaver, Kurt; Johnson, L Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2010-10-01

    Difficulty interpreting facial expressions has been reported in autism spectrum disorders (ASD) and is thought to be associated with amygdala abnormalities. To further explore the neural basis of abnormal emotional face processing in ASD, we conducted an fMRI study of emotional face matching in high-functioning adults with ASD and age, IQ, and gender matched controls. In addition, we investigated whether there was a relationship between self-reported social anxiety and fMRI activation. During fMRI scanning, study participants were instructed to match facial expressions depicting fear or anger. The control condition was a comparable shape-matching task. The control group evidenced significantly increased left prefrontal activation and decreased activation in the occipital lobes compared to the ASD group during emotional face matching. Further, within the ASD group, greater social anxiety was associated with increased activation in right amygdala and left middle temporal gyrus, and decreased activation in the fusiform face area. These results indicate that level of social anxiety mediates the neural response to emotional face perception in ASD. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  6. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovariesmore » in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.« less

  7. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura.

    PubMed

    Granovsky, Yelena; Shor, Merav; Shifrin, Alla; Sprecher, Elliot; Yarnitsky, David; Bar-Shalita, Tami

    2018-03-27

    Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing.

    PubMed

    Zhang, Fengjiao; Dong, Wen; Huang, Lulu; Song, Aiping; Wang, Haibin; Fang, Weimin; Chen, Fadi; Teng, Nianjun

    2015-01-01

    MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3'-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.

  9. Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; De Cristofaro, Raimondo; Morosetti, Roberta; Gliubizzi, Carla; Ricci, Enzo; Tonali, Pietro A; Mirabella, Massimiliano

    2008-05-01

    Autosomal recessive hereditary inclusion-body myopathy (h-IBM) is caused by mutations of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene, a rate-limiting enzyme in the sialic acid metabolic pathway. Previous studies have demonstrated an abnormal sialylation of glycoproteins in h-IBM. h-IBM muscle shows the abnormal accumulation of proteins including amyloid-beta (Abeta). Neprilysin (NEP), a metallopeptidase that cleaves Abeta, is characterized by the presence of several N-glycosylation sites, and changes in these sugar moieties affect its stability and enzymatic activity. In the present study, we found that NEP is hyposialylated and its expression and enzymatic activity reduced in all h-IBM muscles analyzed. In vitro, the experimental removal of sialic acid by Vibrio Cholerae neuraminidase in cultured myotubes resulted in reduced expression of NEP. This was most likely because of a post-translational modification consisting in an abnormal sialylation of the protein that leads to its reduced stability. Moreover, treatment with Vibrio Cholerae neuraminidase was associated with an increased immunoreactivity for Abeta mainly in the form of distinct cytoplasmic foci within myotubes. We hypothesize that, in h-IBM muscle, hyposialylated NEP has a role in hampering the cellular Abeta clearing system, thus contributing to its abnormal accumulation within vulnerable fibers and possibly promoting muscle degeneration.

  10. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  11. Granulocyte, monocyte and blast immunophenotype abnormalities in acute myeloid leukemia with myelodysplasia-related changes.

    PubMed

    Ayar, Sonali P; Ravula, Sreelakshmi; Polski, Jacek M

    2014-01-01

    Little literature exists regarding granulocyte and monocyte immunophenotype abnormalities in Acute Myeloid Leukemia (AML). We hypothesized that granulocyte and monocyte immunophenotype abnormalities are common in AML, and especially in AML with myelodysplasia-related changes (AMLMRC). Bone marrow or peripheral blood specimens from 48 cases of AML and 22 cases of control specimens were analyzed by flow cytometric immunophenotyping. Granulocyte, monocyte, and blast immunophenotype abnormalities were compared between cases of AML versus controls and AMLMRC versus AML without myelodysplasia. The results revealed that granulocyte, monocyte, and blast abnormalities were more common in AMLMRC than in AML without myelodysplasia or control cases. The difference reached statistical significance for abnormalities of granulocytes and abnormalities in all cells of interest. From the numerous individual abnormalities, only CD25 expression in blasts was significantly more prevalent in AMLMRC in this study. We conclude that detection of granulocyte, monocyte, and blast immunophenotype abnormalities can contribute to the diagnosis of AMLMRC.

  12. Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus.

    PubMed

    Moyes, Lisa H; McEwan, Hamish; Radulescu, Sorina; Pawlikowski, Jeff; Lamm, Catherine G; Nixon, Colin; Sansom, Owen J; Going, James J; Fullarton, Grant M; Adams, Peter D

    2012-09-01

    Barrett's oesophagus is a precursor of oesophageal adenocarcinoma, via intestinal metaplasia and dysplasia. Risk of cancer increases substantially with dysplasia, particularly high-grade dysplasia. Thus, there is a clinical need to identify and treat patients with early-stage disease (metaplasia and low-grade dysplasia) that are at high risk of cancer. Activated Wnt signalling is critical for normal intestinal development and homeostasis, but less so for oesophageal development. Therefore, we asked whether abnormally increased Wnt signalling contributes to the development of Barrett's oesophagus (intestinal metaplasia) and/or dysplasia. Forty patients with Barrett's metaplasia, dysplasia or adenocarcinoma underwent endoscopy and biopsy. Mice with tamoxifen- and β-naphthoflavone-induced expression of activated β-catenin were used to up-regulate Wnt signalling in mouse oesophagus. Immunohistochemistry of β-catenin, Ki67, a panel of Wnt target genes, and markers of intestinal metaplasia was performed on human and mouse tissues. In human tissues, expression of nuclear activated β-catenin was found in dysplasia, particularly high grade. Barrett's metaplasia did not show high levels of activated β-catenin. Up-regulation of Ki67 and Wnt target genes was also mostly associated with high-grade dysplasia. Aberrant activation of Wnt signalling in mouse oesophagus caused marked tissue disorganization with features of dysplasia, but only selected molecular indicators of metaplasia. Based on these results in human tissues and a mouse model, we conclude that abnormal activation of Wnt signalling likely plays only a minor role in initiation of Barrett's metaplasia but a more critical role in progression to dysplasia. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    PubMed Central

    Bukovsky, Antonin; Copas, Pleas; Caudle, Michael R; Cekanova, Maria; Dassanayake, Tamara; Asbury, Bridgett; Van Meter, Stuart E; Elder, Robert F; Brown, Jeffrey B; Cross, Stephanie B

    2001-01-01

    Background Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. Methods Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. Results All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). Conclusions This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression. PMID:11696252

  14. Clinicopathological Implications of Human Papilloma Virus (HPV) L1 Capsid Protein Immunoreactivity in HPV16-Positive Cervical Cytology

    PubMed Central

    Lee, Sung-Jong; Lee, Ah-Won; Kang, Chang-Suk; Park, Jong-Sup; Park, Dong-Choon; Ki, Eun-Young; Lee, Keun-Ho; Yoon, Joo-Hee; Hur, Soo-Young; Kim, Tae-Jung

    2014-01-01

    Background: The objective of this study was to investigate the expression of human papilloma virus (HPV) L1 capsid protein in abnormal cervical cytology with HPV16 infection and analyze its association with cervical histopathology in Korean women. Material and Methods: We performed immunocytochemistry for HPV L1 in 475 abnormal cervical cytology samples from patients with HPV16 infections using the Cytoactiv® HPV L1 screening set. We investigated the expression of HPV L1 in cervical cytology samples and compared it with the results of histopathological examination of surgical specimens. Results: Of a total of 475 cases, 188 (39.6%) were immunocytochemically positive and 287 (60.4%) negative for HPV L1. The immunocytochemical expression rates of HPV L1 in atypical squamous cells of unknown significance (ASCUS), low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), and cancer were 21.8%, 59.7%, 19.1%, and 0.0%, respectively. LSIL exhibited the highest rate of HPV L1 positivity. Of a total of 475 cases, the multiple-type HPV infection rate, including HPV16, in HPV L1-negative cytology samples was 27.5%, which was significantly higher than that in HPV L1-positive cytology samples (p = 0.037). The absence of HPV L1 expression in ASCUS and LSIL was significantly associated with high-grade (≥cervical intraepithelial neoplasia [CIN] 2) than low-grade (≤CIN1) histopathology diagnoses (p < 0.05), but was not significantly different between HPV16 single and multiple-type HPV infections (p > 0.05). On the other hand, among 188 HPV L1-positive cases, 30.6% of multiple-type HPV infections showed high-grade histopathology diagnoses (≥CIN3), significantly higher than the percentage of HPV16 single infections (8.6%) (p = 0.0004) Conclusions: Our study demonstrates that the expression of HPV L1 is low in advanced dysplasia. Furthermore, the absence of HPV L1 in HPV16-positive low-grade cytology (i.e., ASCUS and LSIL) is strongly associated with high-grade histopathology diagnoses. The multiplicity of HPV infections may have an important role in high-grade histopathology diagnoses (≥CIN3) in HPV L1-positive cases. PMID:24396289

  15. Mucosal Transcriptomics Implicates Under Expression of BRINP3 in the Pathogenesis of Ulcerative Colitis

    PubMed Central

    Smith, Philip J.; Levine, Adam P.; Dunne, Jenny; Guilhamon, Paul; Turmaine, Mark; Sewell, Gavin W.; O'Shea, Nuala R.; Vega, Roser; Paterson, Jennifer C.; Oukrif, Dahmane; Beck, Stephan; Bloom, Stuart L.; Novelli, Marco; Rodriguez-Justo, Manuel; Smith, Andrew M.

    2014-01-01

    Background: Mucosal abnormalities are potentially important in the primary pathogenesis of ulcerative colitis (UC). We investigated the mucosal transcriptomic expression profiles of biopsies from patients with UC and healthy controls, taken from macroscopically noninflamed tissue from the terminal ileum and 3 colonic locations with the objective of identifying abnormal molecules that might be involved in disease development. Methods: Whole-genome transcriptional analysis was performed on intestinal biopsies taken from 24 patients with UC, 26 healthy controls, and 14 patients with Crohn's disease. Differential gene expression analysis was performed at each tissue location separately, and results were then meta-analyzed. Significantly, differentially expressed genes were validated using quantitative polymerase chain reaction. The location of gene expression within the colon was determined using immunohistochemistry, subcellular fractionation, electron and confocal microscopy. DNA methylation was quantified by pyrosequencing. Results: Only 4 probes were abnormally expressed throughout the colon in patients with UC with Bone morphogenetic protein/Retinoic acid Inducible Neural-specific 3 (BRINP3) being the most significantly underexpressed. Attenuated expression of BRINP3 in UC was independent of current inflammation, unrelated to phenotype or treatment, and remained low at rebiopsy an average of 22 months later. BRINP3 is localized to the brush border of the colonic epithelium and expression is influenced by DNA methylation within its promoter. Conclusions: Genome-wide expression analysis of noninflamed mucosal biopsies from patients with UC identified BRINP3 as significantly underexpressed throughout the colon in a large subset of patients with UC. Low levels of this gene could predispose or contribute to the maintenance of the characteristic mucosal inflammation seen in this condition. PMID:25171508

  16. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  17. Hepatitis C virus core protein triggers abnormal porphyrin metabolism in human hepatocellular carcinoma cells.

    PubMed

    Nakano, Takafumi; Moriya, Kyoji; Koike, Kazuhiko; Horie, Toshiharu

    2018-01-01

    Porphyria cutanea tarda (PCT), the most common of the human porphyrias, arises from a deficiency of uroporphyrinogen decarboxylase. Studies have shown a high prevalence of hepatitis C virus (HCV) infection in patients with PCT. While these observations implicate HCV infection as a risk factor for PCT pathogenesis, the mechanism of interaction between the virus and porphyrin metabolism is unknown. This study aimed to assess the effect of HCV core protein on intracellular porphyrin metabolism to elucidate the link between HCV infection and PCT. The accumulation and excretion of porphyrins after treatment with 5-aminolevulinic acid, a porphyrin precursor, were compared between cells stably expressing HCV core protein and controls. Cells expressing HCV core protein had lower amounts of intracellular protoporphyrin IX and heme and had higher amounts of excreted coproporphyrin III, the oxidized form of coproporphyrinogen III, compared with controls. These observations suggest that HCV core protein affects porphyrin metabolism and facilitates the export of excess coproporphyrinogen III and/or coproporphyrin III, possibly via porphyrin transporters. Real-time PCR analysis revealed that the presence of HCV core protein increased the mRNA expression of porphyrin exporters ABCG2 and FLVCR1. Western blot analysis showed a higher expression level of FLVCR1, but not ABCG2, as well as a higher expression level of mature ALAS1, which is the rate-limiting enzyme in the heme synthesis pathway, in HCV core protein-expressing cells compared with controls. The data indicate that HCV core protein induced abnormal intracellular porphyrin metabolism, with an over-excretion of coproporphyrin III. These findings may partially account for the susceptibility of HCV-infected individuals to PCT development.

  18. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia.

    PubMed

    Tucholski, Janusz; Simmons, Micah S; Pinner, Anita L; McMillan, Laurence D; Haroutunian, Vahram; Meador-Woodruff, James H

    2013-08-21

    Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.

  19. Matrix Metalloproteinase-20 Over-Expression Is Detrimental to Enamel Development: A Mus musculus Model

    PubMed Central

    Shin, Masashi; Hu, Yuanyuan; Tye, Coralee E.; Guan, Xiaomu; Deagle, Craig C.; Antone, Jerry V.; Smith, Charles E.; Simmer, James P.; Bartlett, John D.

    2014-01-01

    Background Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on the genetic background (Mmp20−/− or Mmp20+/+) in which the transgenes were expressed. Methodology/Principal Findings Amelx-promoter-Mmp20 transgenic founder mouse lines were assessed for transgene expression and those expressing low, medium or high levels of Mmp20 were selected for breeding into the Mmp20 null background. Regardless of expression level, each transgene brought the null enamel back to full thickness. However, the high and medium expressing Mmp20 transgenes in the Mmp20 null background had significantly harder more mineralized enamel than did the low transgene expresser. Strikingly, when the high and medium expressing Mmp20 transgenes were present in the wild-type background, the enamel was significantly less well mineralized than normal. Protein gel analysis of enamel matrix proteins from the high and medium expressing transgenes present in the wild-type background demonstrated that greater than normal amounts of cleavage products and smaller quantities of higher molecular weight proteins were present within their enamel matrices. Conclusions/Significance Mmp20 expression levels must be within a specific range for normal enamel development to occur. Creation of a normally thick enamel layer may occur over a wider range of Mmp20 expression levels, but acquisition of normal enamel hardness has a narrower range. Since over-expression of Mmp20 results in decreased enamel hardness, this suggests that a balance exists between cleaved and full-length enamel matrix proteins that are essential for formation of a properly hardened enamel layer. It also suggests that few feedback controls are present in the enamel matrix to prevent excessive MMP20 activity. PMID:24466234

  20. DiGeorge Syndrome: a not so rare disease

    PubMed Central

    Fomin, Angela BF; Pastorino, Antonio Carlos; Kim, Chong Ae; Pereira, Alexandre C; Carneiro‐Sampaio, Magda; Abe Jacob, Cristina Miuki

    2010-01-01

    INTRODUCTION: The DiGeorge Syndrome was first described in 1968 as a primary immunodeficiency resulting from the abnormal development of the third and fourth pharyngeal pouches during embryonic life. It is characterized by hypocalcemia due to hypoparathyroidism, heart defects, and thymic hypoplasia or aplasia. Its incidence is 1:3000 live births and, despite its high frequency, little is known about its natural history and progression. ←This is probably due to diagnostic difficulties and the great variety of names used to describe it, such as velocardiofacial, Shprintzen, DiGeorge, and CATCH 22 Syndromes, as well as conotruncal facial anomaly. All represent the same genetic condition, chromosome 22q11.2 deletion, which might have several clinical expressions. OBJECTIVES: To describe clinical and laboratorial data and phenotypic characteristics of patients with DiGeorge Syndrome. METHODS: Patients underwent standard clinical and epidemiological protocol and tests to detect heart diseases, facial abnormalities, dimorphisms, neurological or behavioral disorders, recurrent infections and other comorbidities. RESULTS: Of 14 patients (8m – 18y11m), only one did not have 22q11.2 deletion detected. The main findings were: conotruncal malformation (n  =  12), facial abnormalities (n  =  11), hypocalcemia (n  =  5) and low lymphocyte count (n = 2). CONCLUSION: The authors pointed out the necessity of DGS suspicion in all patient presenting with heart defects, facial abnormalities (associated or not with hypocalcemia), and immunological disorders because although frequency of DGS is high, few patients with a confirmed diagnosis are followed up. PMID:21049214

  1. Osteoblast role in osteoarthritis pathogenesis.

    PubMed

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  2. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma

    PubMed Central

    Hassan, Hesham M.; Varney, Michelle L.; Jain, Smrati; Weisenburger, Dennis D.; Singh, Rakesh K.; Dave, Bhavana J.

    2015-01-01

    The TP73 gene is located at the chromosome 1p36 locus that is commonly disrupted or deleted in follicular lymphoma (FL) with poor prognosis. Therefore, we analyzed the expression of the pro-apoptotic TAp73 and anti-apoptotic ΔNp73 isoforms in FL cases with normal or abnormal 1p36. We observed a significant increase in ΔNp73 expression and ΔNp73:TAp73 ratio, lower expression of cleaved caspase-3 and a higher frequency of Ki-67 and PCNA positive cells in FL cases with abnormal 1p36. A negative correlation between the ΔNp73:TAp73 ratio and cleaved caspase-3 expression, and a positive correlation between ΔNp73 expression and Ki-67 or PCNA were observed. The expression of TAp73 and its pro-apoptotic transcriptional targets Bim, Puma, and Noxa were significantly lower in FL compared to reactive follicular hyperplasia. Together, our data demonstrates that 1p36 disruption is associated with increased ΔNp73 expression, decreased apoptosis and increased proliferation in FL. PMID:24660851

  3. Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.

  4. Abnormal aortic arch morphology in Turner syndrome patients is a risk factor for hypertension.

    PubMed

    De Groote, Katya; Devos, Daniël; Van Herck, Koen; Demulier, Laurent; Buysse, Wesley; De Schepper, Jean; De Wolf, Daniël

    2015-09-01

    Hypertension in Turner syndrome (TS) is a multifactorial, highly prevalent and significant problem that warrants timely diagnosis and rigorous treatment. The objective of this study was to investigate the association between abnormal aortic arch morphology and hypertension in adult TS patients. This was a single centre retrospective study in 74 adult TS patients (age 29.41 ± 8.91 years) who underwent a routine cardiac MRI. Patients were assigned to the hypertensive group (N = 31) if blood pressure exceeded 140/90 mmHg and/or if they were treated with antihypertensive medication. Aortic arch morphology was evaluated on MRI images and initially assigned as normal (N = 54) or abnormal (N = 20), based on the curve of the transverse arch and the distance between the left common carotid-left subclavian artery. We additionally used a new more objective method to describe aortic arch abnormality in TS by determination of the relative position of the highest point of the transverse arch (AoHP). Logistic regression analysis showed that hypertension is significantly and independently associated with age, BMI and abnormal arch morphology, with a larger effect size for the new AoHP method than for the classical method. TS patients with hypertension and abnormal arch morphology more often had dilatation of the ascending aorta. There is a significant association between abnormal arch morphology and hypertension in TS patients, independent of age and BMI, and not related to other structural heart disease. We suggest that aortic arch morphology should be included in the risk stratification for hypertension in TS and propose a new quantitative method to express aortic arch morphology.

  5. Agrin in Alzheimer's Disease: Altered Solubility and Abnormal Distribution within Microvasculature and Brain Parenchyma

    NASA Astrophysics Data System (ADS)

    Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.

    1999-05-01

    Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.

  6. Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Kapoor, Sudhir; Plovie, Eva; Arndt, Anne Karin; Adams, Edward; Liu, ZhenZhen; James, Cynthia A.; Judge, Daniel P.; Calkins, Hugh; Churko, Jared; Wu, Joseph C.; MacRae, Calum A.; Kléber, André G.; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (ACM) is characterized by frequent cardiac arrhythmias. To elucidate the underlying mechanisms and discover potential chemical modifiers, we created a zebrafish model of ACM with cardiac myocyte–specific expression of the human 2057del2 mutation in the gene encoding plakoglobin. A high-throughput screen identified SB216763 as a suppressor of the disease phenotype. Early SB216763 therapy prevented heart failure and reduced mortality in the fish model. Zebrafish ventricular myocytes that expressed 2057del2 plakoglobin exhibited 70 to 80% reductions in INa and IK1 current densities, which were normalized by SB216763. Neonatal rat ventricular myocytes that expressed 2057del2 plakoglobin recapitulated pathobiological features seen in patients with ACM, all of which were reversed or prevented by SB216763. The reverse remodeling observed with SB216763 involved marked subcellular redistribution of plakoglobin, connexin 43, and Nav1.5, but without changes in their total cellular content, implicating a defect in protein trafficking to intercalated discs. In further support of this mechanism, we observed SB216763-reversible, abnormal subcellular distribution of SAP97 (a protein known to mediate forward trafficking of Nav1.5 and Kir2.1) in rat cardiac myocytes expressing 2057del2 plakoglobin and in cardiac myocytes derived from induced pluripotent stem cells from two ACM probands with plakophilin-2 mutations. These observations pinpoint aberrant trafficking of intercalated disc proteins as a central mechanism in ACM myocyte injury and electrical abnormalities. PMID:24920660

  7. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  8. High acceptability for cell phone text messages to improve communication of laboratory results with HIV-infected patients in rural Uganda: a cross-sectional survey study.

    PubMed

    Siedner, Mark J; Haberer, Jessica E; Bwana, Mwebesa Bosco; Ware, Norma C; Bangsberg, David R

    2012-06-21

    Patient-provider communication is a major challenge in resource-limited settings with large catchment areas. Though mobile phone usership increased 20-fold in Africa over the past decade, little is known about acceptability of, perceptions about disclosure and confidentiality, and preferences for cell phone communication of health information in the region. We performed structured interviews of fifty patients at the Immune Suppression Syndrome clinic in Mbarara, Uganda to assess four domains of health-related communication: a) cell phone use practices and literacy, b) preferences for laboratory results communication, c) privacy and confidentiality, and d) acceptability of and preferences for text messaging to notify patients of abnormal test results. Participants had a median of 38 years, were 56% female, and were residents of a large catchment area throughout southwestern Uganda. All participants expressed interest in a service to receive information about laboratory results by cell phone text message, stating benefits of increased awareness of their health and decreased transportation costs. Ninety percent reported that they would not be concerned for unintended disclosure. A minority additionally expressed concerns about difficulty interpreting messages, discouragement upon learning bad news, and technical issues. Though all respondents expressed interest in password protection of messages, there was also a strong desire for direct messages to limit misinterpretation of information. Cell phone text messaging for communication of abnormal laboratory results is highly acceptable in this cohort of HIV-infected patients in rural Uganda. The feasibility of text messaging, including an optimal balance between privacy and comprehension, should be further studied.

  9. [Abnormality of TOP2A expression and its gene copy number variations in neuroblastic tumors].

    PubMed

    Chen, J M; Zhou, C J; Ma, X L; Guan, D D; Yang, L Y; Yue, P; Gong, L P

    2016-11-08

    Objective: To detect TOP2A protein expression and gene copy number alterations, and to analyze related clinical and pathological implications in pediatric neuroblastic tumors (NT). Methods: Immunohistochemistry was used to detect TOP2A protein expression. Fluorescence in situ hybridization (FISH) was used to detect numerical aberrations of TOP2A. Results: TOP2A protein was expressed in 59.1%(52/88) of cases, which was associated with differentiation ( P =0.006), Ki-67 index ( P <0.01) and MKI ( P =0.001). Twenty-eight cases (35.0%, 28/88) showed TOP2A gene amplification, which was correlated with the age ( P <0.01), clinical stage ( P =0.028), high risk group ( P =0.001), Ki-67 index ( P =0.040) and differentiation ( P =0.014). Survival analysis showed that TOP2A expression was related to survival rate. Multivariate analyses showed that TOP2A expression was an independent predictor for poor prognosis ( P =0.010). Conclusions: More than half of the cases show TOP2A expression, which is more likely associated with NB, high Ki-67 index and high MKI. Cases with TOP2A expression have shorter survivals and poorer prognosis. TOP2A amplification is seen in 35% and likely occurs in patients older than 18 months and at advanced INSS stages (Ⅲ and Ⅳ). As a target of the anthracycline-based adjuvant drugs, TOP2A test can be used to select patient with NT for the therapy.

  10. Metallothionein expression in human breast cancer.

    PubMed Central

    Goulding, H.; Jasani, B.; Pereira, H.; Reid, A.; Galea, M.; Bell, J. A.; Elston, C. W.; Robertson, J. F.; Blamey, R. W.; Nicholson, R. A.

    1995-01-01

    Metallothioneins are ubiquitous low molecular weight proteins characterised by high cysteine content and affinity for binding heavy metals. Abnormal metallothionein function and expression have been implicated in various disease states, including neoplasia. The aim of this study was to investigate metallothionein expression in human breast carcinoma. Sections of routinely fixed and processed blocks of tumour from 100 consecutive cases of primary operable breast carcinoma were stained for metallothionein using a recently developed monoclonal antibody and a standard immunohistochemical technique. Expression was scored on the basis of microscopical assessment of percentage of tumour cells staining. One patient was lost to follow-up and excluded from the study. A significant association (P < 0.0001) was observed between metallothionein expression and tumour type, with low levels being observed in tumours of good prognostic type. There was also a significant association with local recurrence (P < 0.02) and a significant difference (P < 0.02) in both survival and disease-free interval between tumours showing low and high levels of expression, the latter indicating a poor prognosis. No relationship was observed with patient age, tumour size, lymph node stage, histological grade, vascular invasion, menopausal status or oestrogen receptor status. The assessment of metallothionein expression in human breast cancer appears to provide prognostic information and may have important implications for understanding its development. Images Figure 1 Figure 2 PMID:7547250

  11. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.

  12. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    PubMed

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  13. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.« less

  14. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles

    PubMed Central

    Lin, Sijie; Zhao, Yan; Xia, Tian; Meng, Huan; Zhaoxia, Ji; Liu, Rong; George, Saji; Xiong, Sijing; Wang, Xiang; Zhang, Haiyuan; Pokhrel, Suman; Mädler, Lutz; Damoiseaux, Robert; Lin, Shuo; Nel, Andre E.

    2014-01-01

    Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO and Co3O4) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependant hatching interference in the embryos, with the exception of Co3O4 which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn2+. This hypothesis is based on the presence of metal–sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA sensitive. In conclusion, we demonstrate that high content imaging of embryo development, morphological abnormalities and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo. PMID:21851096

  15. Hybrid incompatibilities in interspecific crosses between tetraploid wheat and its wild diploid relative Aegilops umbellulata.

    PubMed

    Okada, Moeko; Yoshida, Kentaro; Takumi, Shigeo

    2017-12-01

    Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F 1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.

  16. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation.

    PubMed

    Collino, Massimo; Benetti, Elisa; Rogazzo, Mara; Mastrocola, Raffaella; Yaqoob, Muhammed M; Aragno, Manuela; Thiemermann, Christoph; Fantozzi, Roberto

    2013-01-15

    Although high-fructose corn syrup (HFCS-55) is the major sweetener in foods and soft-drinks, its potential role in the pathophysiology of diabetes and obesity ("diabesity") remains unclear. Peroxisome-proliferator activated receptor (PPAR)-δ agonists have never been tested in models of sugar-induced metabolic abnormalities. This study was designed to evaluate (i) the metabolic and renal consequences of HFCS-55 administration (15% wt/vol in drinking water) for 30 weeks on male C57Bl6/J mice and (ii) the effects of the selective PPAR-δ agonist GW0742 (1 mg/kg/day for 16 weeks) in this condition. HFCS-55 caused (i) hyperlipidemia, (ii) insulin resistance, and (iii) renal injury/inflammation. In the liver, HFCS-55 enhanced the expression of fructokinase resulting in hyperuricemia and caused abnormalities in known insulin-driven signaling events. In the kidney, HFCS-55 enhanced the expression of the NLRP3 (nucleotide-binding domain and leucine-rich-repeat-protein 3) inflammasome complex, resulting in caspase-1 activation and interleukin-1β production. All of the above effects of HFCS-55 were attenuated by the specific PPAR-δ agonist GW0742. Thus, we demonstrate for the first time that the specific PPAR-δ agonist GW0742 attenuates the metabolic abnormalities and the renal dysfunction/inflammation caused by chronic HFCS-55 exposure by preventing upregulation of fructokinase (liver) and activation of the NLRP3 inflammasome (kidney). Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    PubMed

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Brain region-dependent differential expression of alpha-synuclein.

    PubMed

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  19. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior

    PubMed Central

    Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio

    2017-01-01

    Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410

  20. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    PubMed Central

    Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.

    2008-01-01

    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095

  1. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert

    2016-01-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…

  2. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  3. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    NASA Astrophysics Data System (ADS)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  4. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  5. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  6. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    PubMed

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  7. [Expression and clinical significance of Pokemon in non-small cell lung cancer].

    PubMed

    Zhao, Zhihong; Wang, Shengfa; Zhang, Tiewa

    2007-12-20

    Proto-oncogene Pokemon is the special transcription inhibitor of ARF,which can regulate cell growth and differentiation by ARF-P53 path.It may be the important monitoring target of tumor because of being upstream region of many tumor suppressor genes and proto-oncogenes.The aim of this study is to explore the clinical significance of Pokemon gene in non-small cell lung cancer(NSCLC). Immunohistochemistry was applied to detect the expression of Pokemon protein in 92 cases of NSCLC and 20 cases of paracancerous lung tissues.Correlation between abnormal expression of Pokemon with pathologic characteristics and prognosis of NSCLC was analyzed. Pokemon was not expressed in paracancerous lung tissues and was found in 66 of 92(71.7%) cases of lung cancer tissues.Expression of Pokemon was closely related to TNM stages(P=0.011).Survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.0015).Pokemon expression was demonstrated as independent prognostic factor of NSCLC. Pokemon is expressed in NSCLC and it may be identified as a new diagnostic marker.High expression of Pokemon may indicate poor prognosis of patients with NSCLC.

  8. Phenotypic expression of the HLA-linked iron-loading gene in the Afrikaner population of the western Cape.

    PubMed

    Meyer, T E; Baynes, R D; Bothwell, T H; Jenkins, T; Ballot, D; Jooste, P L; Green, A; Du Toit, E; Jacobs, P

    1988-03-05

    A previous study conducted on a group of Afrikaans-speaking subjects in the south-western Cape indicated a high frequency (0.115) of the HLA-linked iron-loading gene which causes idiopathic haemochromatosis. The results of phenotypic and genotypic studies on the first degree relatives of identified homozygotes and heterozygotes are now reported. There was considerable heterogeneity of phenotypic expression in the group of heterozygotes, with overlap between the homozygous and heterozygous subjects. The heterozygous relatives of heterozygous index cases, who had been identified on the basis of a serum ferritin concentration greater than 400 micrograms/l, appeared to have more frequent and more marked abnormalities of iron measurements than the heterozygote relatives of homozygous index cases (serum ferritin value greater than 400 micrograms/l, percentage transferrin saturation greater than 60). This suggests that the screening test was identifying a group of more significantly affected heterozygotes, with biochemical abnormalities that overlapped with the identified homozygotes. The index cases were followed up over a period of 5 years and during this time the 7 subjects diagnosed as heterozygotes showed a progressive increase in serum ferritin concentrations, which suggests some iron accumulation. Individual pedigrees included instances of gene recombination within the major histocompatibility complex, and of probable false-positive genotype assignment. The overall results confirm a high frequency of the gene in this particular community.

  9. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  10. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  11. Misexpression of cyclin B3 leads to aberrant spermatogenesis.

    PubMed

    Refik-Rogers, Jale; Manova, Katia; Koff, Andrew

    2006-09-01

    Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.

  12. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  13. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them

    PubMed Central

    Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2015-01-01

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554

  14. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them.

    PubMed

    Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2015-01-01

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.

  15. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    PubMed

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  16. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction

    PubMed Central

    Chakraborty, Mouli; Selma-Soriano, Estela; Magny, Emile; Couso, Juan Pablo; Pérez-Alonso, Manuel; Charlet-Berguerand, Nicolas; Artero, Ruben; Llamusi, Beatriz

    2015-01-01

    ABSTRACT Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats. PMID:26515653

  17. [Diagnostic value of immunohistochemistry and FISH for chromosome 12p in type Ⅱ testicular germ cell tumors].

    PubMed

    Shen, Qin; Rao, Qiu; Yu, Bo; Xia, Qiu-Yuan; Bao, Wei; Lu, Zhen-Feng; Shi, Qun-Li; Zhou, Xiao-Jun

    2016-08-01

    To study the pathological morphology, immunohistochemical characteristics, and molecular changes of type Ⅱ testicular germ cell tumors (TGCT) and investigate the possible value of immunohistochemistry and fluorescence in situ hybridization (FISH) in the diagnosis of TGCT. We collected for this study 97 cases of TGCT, including 75 cases of seminoma, 17 cases of embryonal carcinoma, 11 cases of yolk sac tumor, 16 cases of mature teratoma, 3 cases of immature teratoma, and 1 case of epidermoid cyst, in which normal testicular tissue was found in 20 and non-TGCT in 6. We detected the expressions of different antibodies in various subtypes of TGCT by immunohistochemistry and determined the rate of chromosome 12p abnormality using FISH. The immunophenotypes varied with different subtypes of TGCT. SALL4 and PLAP exhibited high sensitivity in all histological subtypes. CD117 and OCT4 showed strongly positive expressions in invasive seminoma and germ cell neoplasia in situ (GCNIS) but not in normal seminiferous tubules. GPC3 was significantly expressed in the yolk sac tumor, superior to GATA3 and AFP in both range and intensity. CKpan, OCT4, and CD30 were extensively expressed in embryonal carcinoma, while HCG expressed in choriocarcinoma. The positivity rate of isochromosome 12p and 12p amplification in TGCT was 96.7% (29/30). The majority of TGCT can be diagnosed by histological observation, but immunohistochemical staining is crucial for more accurate subtypes and valuable for selection of individualized treatment options and evaluation of prognosis. Chromosome 12p abnormality is a specific molecular alteration in type Ⅱ TGCT, which is useful for ruling out other lesions.

  18. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens.

    PubMed

    Zou, Ping; Wu, Shu-Yu; Koteiche, Hanane A; Mishra, Sanjay; Levic, Daniel S; Knapik, Ela; Chen, Wenbiao; Mchaourab, Hassane S

    2015-09-01

    αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    PubMed

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Impaired detection and differentiation of briefly presented facial emotions in adults with high-functioning autism and asperger syndrome.

    PubMed

    Frank, R; Schulze, L; Hellweg, R; Koehne, S; Roepke, S

    2018-05-01

    Although deficits in the recognition of emotional facial expressions are considered a hallmark of autism spectrum disorder (ASD), characterization of abnormalities in the differentiation of emotional expressions (e.g., sad vs. angry) has been rather inconsistent, especially in adults without intellectual impairments who may compensate for their deficits. In addition, previous research neglected the ability to detect emotional expressions (e.g., angry vs. neutral). The present study used a backward masking paradigm to investigate, a) the detection of emotional expressions, and b) the differentiation of emotional expressions in adults diagnosed with high functioning autism or Asperger syndrome (n = 23) compared to neurotypical controls (n = 25). Compensatory strategies were prevented by shortening the stimulus presentation time (33, 67, and 100 ms). In general, participants with ASD were significantly less accurate in detecting and differentiating emotional expressions compared to the control group. In the emotion differentiation task, individuals with ASD profited significantly less from an increase in presentation time. These results reinforce theoretical models that individuals with ASD have deficits in emotion recognition under time constraints. Furthermore, first evidence was provided that emotion detection and emotion differentiation are impaired in ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Oligonucleotide therapeutics in neurodegenerative diseases.

    PubMed

    Scoles, Daniel R; Pulst, Stefan M

    2018-03-21

    Therapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias. We have used an ASO approach toward developing a treatment for spinocerebellar ataxia type 2 (SCA2), for targeting the causative gene ATXN2. We demonstrated that reduction of ATXN2 expression in SCA2 mice treated by intracerebroventicular injection (ICV) of ATXN2 ASO delayed motor phenotype onset, improved the expression of several genes demonstrated abnormally reduced by transcriptomic profiling of SCA2 mice, and restored abnormal Purkinje cell firing frequency in acute cerebellar sections. Here we discuss RNA abnormalities in disease and the prospects of targeting neurodegenerative diseases at the level of RNA control using ASOs and other RNA-targeted therapeutics.

  2. Serum interleukin-17 in Egyptian children with systemic lupus erythematosus: is it related to pulmonary affection?

    PubMed

    Hammad, A; Osman, E; Mosaad, Y; Wahba, M

    2017-04-01

    Objective Pulmonary involvement in paediatric systemic lupus erythematosus (pSLE) is not an uncommon finding; however, subclinical affection occurs more frequently. Many studies have reported that cytokine dysregulation as interleukin-17 (IL-17) over-expression plays a key role in the pathogenesis of systemic lupus erythematosus (SLE). We aim to assess serum levels of IL-17 A and their association with pulmonary involvement in children with SLE. Methods Serum IL-17A levels - determined by solid phase sandwich ELISA - were assessed in forty-two pSLE patients and compared to 45 age-matched healthy controls. All patients were subjected to pulmonary function tests to detect subclinical pulmonary affection. High-resolution CT (HRCT) chest scan was carried out in patients with abnormal pulmonary function tests (PFTs) and those with chronic respiratory symptoms. Results Abnormal PFTs were found in 73% of patients; of them, only 25% had abnormal findings in HRCT chest. Serum levels of IL-17 A were significantly elevated in pSLE patients as compared to healthy controls ( p < 0.001). The serum levels of IL-17 A had a highly significant positive correlation with SLEDAI ( r = 0.811 and p < 0.001) Strong negative correlation was found between serum levels of IL-17A with both FEV1 and FVC ( p < 0.05). Conclusions Serum IL-17A is elevated in pSLE patients, which correlates with disease activity. IL-17 seems to have a possible role in the pathogenesis of subclinical lung affection. Abnormal PFTS may be found in pSLE patients even with normal radiology.

  3. [Screening of virulence gene in golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2-benzanthracene].

    PubMed

    Zhang, Guo-dong; Yang, Kai; Mei, Jie

    2010-05-01

    To examine and analyze the global gene expression at the different stages of golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2 benzanthracene (DMBA). The model of golden hamster cheek pouch squamous cell carcinoma was induced by DMBA. The RNA of normal mucosa, precancerous lesions and squamous cell carcinoma of fresh tissue of golden hamsters was extracted and purified and the cRNA labeled by fluorescent Cy3 synthesized, which respectively hybridized with the agilent rat cDNA microarray containing 41 000 genes-expressed sequence tags, scanning with Agilent G2565AA fluorescence scanner. The Ratio>or=2 and Ratio

  4. Decreased triadin and increased calstabin2 expression in Great Danes with dilated cardiomyopathy.

    PubMed

    Oyama, M A; Chittur, S V; Reynolds, C A

    2009-01-01

    Dilated cardiomyopathy (DCM) is a common cardiac disease of Great Dane dogs, yet very little is known about the underlying molecular abnormalities that contribute to disease. Discover a set of genes that are differentially expressed in Great Dane dogs with DCM as a way to identify candidate genes for further study as well as to better understand the molecular abnormalities that underlie the disease. Three Great Dane dogs with end-stage DCM and 3 large breed control dogs. Prospective study. Transcriptional activity of 42,869 canine DNA sequences was determined with a canine-specific oligonucleotide microarray. Genome expression patterns of left ventricular tissue samples from affected Great Dane dogs were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with expression from large breed dogs with noncardiac disease. Three hundred and twenty-three transcripts were differentially expressed (> or = 2-fold change). The transcript with the greatest degree of upregulation (+61.3-fold) was calstabin2 (FKBP12.6), whereas the transcript with the greatest degree of downregulation (-9.07-fold) was triadin. Calstabin2 and triadin are both regulatory components of the cardiac ryanodine receptor (RyR2) and are critical to normal intracellular Ca2+ release and excitation-contraction coupling. Great Dane dogs with DCM demonstrate abnormal calstabin2 and triadin expression. These changes likely affect Ca2+ flux within cardiac cells and may contribute to the pathophysiology of disease. Microarray-based analysis identifies calstabin2, triadin, and RyR2 function as targets of future study.

  5. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Solís-Vivanco, Rodolfo; Favila, Rafael; Graff-Guerrero, Ariel; Shungu, Dikoma C.

    2016-01-01

    Background: Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. Methods: Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. Results: Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. Conclusions: This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response. PMID:26364273

  6. Progressive Changes in a Distributed Neural Circuit Underlie Breathing Abnormalities in Mice Lacking MeCP2.

    PubMed

    Huang, Teng-Wei; Kochukov, Mikhail Y; Ward, Christopher S; Merritt, Jonathan; Thomas, Kaitlin; Nguyen, Tiffani; Arenkiel, Benjamin R; Neul, Jeffrey L

    2016-05-18

    Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Severe breathing abnormalities are common in RTT and are reproduced in mouse models of RTT. Previously, we found that removing MeCP2 from the brainstem and spinal cord in mice caused early lethality and abnormal breathing. To determine whether loss of MeCP2 in functional components of the respiratory network causes specific breathing disorders, we used the Cre/LoxP system to differentially manipulate MeCP2 expression throughout the brainstem respiratory network, specifically within HoxA4-derived tissues, which include breathing control circuitry within the nucleus tractus solitarius and the caudal part of ventral respiratory column but do not include more rostral parts of the breathing control circuitry. To determine whether respiratory phenotypes manifested in animals with MeCP2 removed from specific pons medullary respiratory circuits, we performed whole-body plethysmography and electrophysiological recordings from in vitro brainstem slices from mice lacking MeCP2 in different circuits. Our results indicate that MeCP2 expression in the medullary respiratory network is sufficient for normal respiratory rhythm and preventing apnea. However, MeCP2 expression within components of the breathing circuitry rostral to the HoxA4 domain are neither sufficient to prevent the hyperventilation nor abnormal hypoxic ventilatory response. Surprisingly, we found that MeCP2 expression in the HoxA4 domain alone is critical for survival. Our study reveals that MeCP2 is differentially required in select respiratory components for different aspects of respiratory functions, and collectively for the integrity of this network functions to maintain proper respiration. Breathing abnormalities are a significant clinical feature in Rett syndrome and are robustly reproduced in the mouse models of this disease. Previous work has established that alterations in the function of MeCP2, the protein encoded by the gene mutated in Rett syndrome, within the hindbrain are critical for control of normal breathing. Here we show that MeCP2 function plays distinct roles in specific brainstem regions in the genesis of various aspects of abnormal breathing. This provides insight into the pathogenesis of these breathing abnormalities in Rett syndrome, which could be used to target treatments to improve these symptoms. Furthermore, it provides further knowledge about the fundamental neural circuits that control breathing. Copyright © 2016 the authors 0270-6474/16/365572-15$15.00/0.

  7. Identifying pathological biomarkers: histochemistry still ranks high in the omics era

    PubMed Central

    Pellicciari, C.; Malatesta, M.

    2011-01-01

    In recent years, omic analyses have been proposed as possible approaches to diagnosis, in particular for tumours, as they should be able to provide quantitative tools to detect and measure abnormalities in gene and protein expression, through the evaluation of transcription and translation products in the abnormal vs normal tissues. Unfortunately, this approach proved to be much less powerful than expected, due to both intrinsic technical limits and the nature itself of the pathological tissues to be investigated, the heterogeneity deriving from polyclonality and tissue phenotype variability between patients being a major limiting factor in the search for unique omic biomarkers. Especially in the last few years, the application of refined techniques for investigating gene expression in situ has greatly increased the diagnostic/prognostic potential of histochemistry, while the progress in light microscopy technology and in the methods for imaging molecules in vivo have provided valuable tools for elucidating the molecular events and the basic mechanisms leading to a pathological condition. Histochemical techniques thus remain irreplaceable in pathologist's armamentarium, and it may be expected that even in the future histochemistry will keep a leading position among the methodological approaches for clinical pathology. PMID:22297448

  8. EBV and systemic lupus erythematosus: a new perspective.

    PubMed

    Gross, Andrew J; Hochberg, Donna; Rand, William M; Thorley-Lawson, David A

    2005-06-01

    We have proposed that EBV uses mature B cell biology to access memory B cells as a site of persistent infection. A central feature of this model is that EBV adapts its gene expression profile to the state of the B cell it resides in and that the level of infection is stable over time. This led us to question whether changes in the behavior or regulation of mature B cells would alter the state of EBV persistence. To investigate this, we studied the impact of systemic lupus erythematosus (SLE), a disease characterized by immune dysfunction, on EBV infection. We show that patients with SLE have abnormally high frequencies of EBV-infected cells in their blood, and this is associated with the occurrence of SLE disease flares. Although patients with SLE have frequencies of infected cells comparable to those seen in immunosuppressed patients, in SLE the effect was independent of immunosuppressive therapy. Aberrant expression of viral lytic (BZLF1) and latency (latency membrane proteins 1 and 2a) genes was also detected in the blood of SLE patients. We conclude that the abnormal regulation of EBV infection in SLE patients reflects the sensitivity of the virus to perturbation of the immune system.

  9. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling.

    PubMed

    Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min

    2016-09-02

    Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.

  10. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    PubMed

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  11. Axial level-specific regulation of neuronal development: lessons from PITX2.

    PubMed

    Waite, Mindy R; Martin, Donna M

    2015-02-01

    Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions. © 2014 Wiley Periodicals, Inc.

  12. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  13. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  14. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    PubMed

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  15. Reintegration Difficulty of Military Couples Following Deployment

    DTIC Science & Technology

    2017-07-01

    1989). Predictors of relapse in unipolar depressives: Expressed emotion, marital distress, and perceived criti- cism. Journal of Abnormal Psychology , 98...involvement in interparental conflict: Do they contribute independently to child adjustment? Journal of Abnormal Child Psychology , 43, 1041–1054. http...announcements to military family life professionals, state family program directors, family readiness officers, directors of psychological health, family

  16. Altered AIB1 or AIB1Δ3 Expression Impacts ERα Effects on Mammary Gland Stromal and Epithelial Content

    PubMed Central

    Nakles, Rebecca E.; Shiffert, Maddalena Tilli; Díaz-Cruz, Edgar S.; Cabrera, M. Carla; Alotaiby, Maram; Miermont, Anne M.; Riegel, Anna T.

    2011-01-01

    Amplified in breast cancer 1 (AIB1) (also known as steroid receptor coactivator-3) is a nuclear receptor coactivator enhancing estrogen receptor (ER)α and progesterone receptor (PR)-dependent transcription in breast cancer. The splice variant AIB1Δ3 demonstrates increased ability to promote ERα and PR-dependent transcription. Both are implicated in breast cancer risk and antihormone resistance. Conditional transgenic mice tested the in vivo impact of AIB1Δ3 overexpression compared with AIB1 on histological features of increased breast cancer risk and growth response to estrogen and progesterone in the mammary gland. Combining expression of either AIB1 or AIB1Δ3 with ERα overexpression, we investigated in vivo cooperativity. AIB1 and AIB1Δ3 overexpression equivalently increased the prevalence of hyperplastic alveolar nodules but not ductal hyperplasia or collagen content. When AIB1 or AIB1Δ3 overexpression was combined with ERα, both stromal collagen content and ductal hyperplasia prevalence were significantly increased and adenocarcinomas appeared. Overexpression of AIB1Δ3, especially combined with overexpressed ERα, led to an abnormal response to estrogen and progesterone with significant increases in stromal collagen content and development of a multilayered mammary epithelium. AIB1Δ3 overexpression was associated with a significant increase in PR expression and PR downstream signaling genes. AIB1 overexpression produced less marked growth abnormalities and no significant change in PR expression. In summary, AIB1Δ3 overexpression was more potent than AIB1 overexpression in increasing stromal collagen content, inducing abnormal mammary epithelial growth, altering PR expression levels, and mediating the response to estrogen and progesterone. Combining ERα overexpression with either AIB1 or AIB1Δ3 overexpression augmented abnormal growth responses in both epithelial and stromal compartments. PMID:21292825

  17. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mouse neutrophils lacking lamin B receptor expression exhibit aberrant development and lack critical functional responses

    PubMed Central

    Gaines, Peter; Tien, Chiung W.; Olins, Ada L.; Olins, Donald E.; Shultz, Leonard D.; Carney, Lisa; Berliner, Nancy

    2008-01-01

    Objective The capacity of neutrophils to eradicate bacterial infections is dependent on normal development and the activation of functional responses, which include chemotaxis and the generation of oxygen radicals during the respiratory burst. A unique feature of the neutrophil is its highly lobulated nucleus, which is thought to facilitate chemotaxis but may also play a role in other critical neutrophil functions. Nuclear lobulation is dependent on the expression of the inner nuclear envelope protein, the lamin B receptor (LBR), mutations of which cause hypolobulated neutrophil nuclei in human Pelger-Huët anomaly (PHA) and the "ichthyosis" (ic) phenotype in mice. In this study we have investigated roles for LBR in mediating neutrophil development and the activation of multiple neutrophil functions, including chemotaxis and the respiratory burst. Materials and Methods A progenitor EML cell line was generated from an ic/ic mouse, and derived cells that lacked LBR expression were induced to mature neutrophils and then examined for abnormal morphology and functional responses. Results Neutrophils derived from EML-ic/ic cells exhibited nuclear hypolobulation identical to that observed in ichthyosis mice. The ic/ic neutrophils also displayed abnormal chemotaxis, supporting the notion that nuclear segmentation augments neutrophil extravasation. Furthermore, promyelocytic forms of ic/ic cells displayed decreased proliferative responses and produced a deficient respiratory burst upon terminal maturation. Conclusions Our studies of promyelocytes that lack LBR expression have identified roles for LBR in regulating not only the morphologic maturation of the neutrophil nucleus but also proliferative and functional responses that are critical to innate immunity. PMID:18550262

  19. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    PubMed

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  20. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice1[OPEN

    PubMed Central

    Wu, Jinwen; Chen, Lin; Chen, Zhixiong; Wang, Lan; Lu, Yonggen

    2015-01-01

    Intersubspecific autotetraploid rice (Oryza sativa ssp. indica × japonica) hybrids have greater biological and yield potentials than diploid rice. However, the low fertility of intersubspecific autotetraploid hybrids, which is largely caused by high pollen abortion rates, limits their commercial utility. To decipher the cytological and molecular mechanisms underlying allelic interactions in autotetraploid rice, we developed an autotetraploid rice hybrid that was heterozygous (SiSj) at F1 pollen sterility loci (Sa, Sb, and Sc) using near-isogenic lines. Cytological studies showed that the autotetraploid had higher percentages (>30%) of abnormal chromosome behavior and aberrant meiocytes (>50%) during meiosis than did the diploid rice hybrid control. Analysis of gene expression profiles revealed 1,888 genes that were differentially expressed between the autotetraploid and diploid hybrid lines at the meiotic stage, among which 889 and 999 were up- and down-regulated, respectively. Of the 999 down-regulated genes, 940 were associated with the combined effect of polyploidy and pollen sterility loci interactions (IPE). Gene Ontology enrichment analysis identified a prominent functional gene class consisting of seven genes related to photosystem I (Gene Ontology 0009522). Moreover, 55 meiosis-related or meiosis stage-specific genes were associated with IPE in autotetraploid rice, including Os02g0497500, which encodes a DNA repair-recombination protein, and Os02g0490000, which encodes a component of the ubiquitin-proteasome pathway. These results suggest that polyploidy enhances epistatic interactions between alleles of pollen sterility loci, thereby altering the expression profiles of important meiosis-related or meiosis stage-specific genes and resulting in high pollen sterility. PMID:26511913

  1. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

    PubMed

    Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos

    2018-08-01

    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.

  2. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice.

    PubMed

    Wu, Jinwen; Shahid, Muhammad Qasim; Chen, Lin; Chen, Zhixiong; Wang, Lan; Liu, Xiangdong; Lu, Yonggen

    2015-12-01

    Intersubspecific autotetraploid rice (Oryza sativa ssp. indica × japonica) hybrids have greater biological and yield potentials than diploid rice. However, the low fertility of intersubspecific autotetraploid hybrids, which is largely caused by high pollen abortion rates, limits their commercial utility. To decipher the cytological and molecular mechanisms underlying allelic interactions in autotetraploid rice, we developed an autotetraploid rice hybrid that was heterozygous (S(i)S(j)) at F1 pollen sterility loci (Sa, Sb, and Sc) using near-isogenic lines. Cytological studies showed that the autotetraploid had higher percentages (>30%) of abnormal chromosome behavior and aberrant meiocytes (>50%) during meiosis than did the diploid rice hybrid control. Analysis of gene expression profiles revealed 1,888 genes that were differentially expressed between the autotetraploid and diploid hybrid lines at the meiotic stage, among which 889 and 999 were up- and down-regulated, respectively. Of the 999 down-regulated genes, 940 were associated with the combined effect of polyploidy and pollen sterility loci interactions (IPE). Gene Ontology enrichment analysis identified a prominent functional gene class consisting of seven genes related to photosystem I (Gene Ontology 0009522). Moreover, 55 meiosis-related or meiosis stage-specific genes were associated with IPE in autotetraploid rice, including Os02g0497500, which encodes a DNA repair-recombination protein, and Os02g0490000, which encodes a component of the ubiquitin-proteasome pathway. These results suggest that polyploidy enhances epistatic interactions between alleles of pollen sterility loci, thereby altering the expression profiles of important meiosis-related or meiosis stage-specific genes and resulting in high pollen sterility. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. High acceptability for cell phone text messages to improve communication of laboratory results with HIV-infected patients in rural Uganda: a cross-sectional survey study

    PubMed Central

    2012-01-01

    Background Patient-provider communication is a major challenge in resource-limited settings with large catchment areas. Though mobile phone usership increased 20-fold in Africa over the past decade, little is known about acceptability of, perceptions about disclosure and confidentiality, and preferences for cell phone communication of health information in the region. Methods We performed structured interviews of fifty patients at the Immune Suppression Syndrome clinic in Mbarara, Uganda to assess four domains of health-related communication: a) cell phone use practices and literacy, b) preferences for laboratory results communication, c) privacy and confidentiality, and d) acceptability of and preferences for text messaging to notify patients of abnormal test results. Results Participants had a median of 38 years, were 56% female, and were residents of a large catchment area throughout southwestern Uganda. All participants expressed interest in a service to receive information about laboratory results by cell phone text message, stating benefits of increased awareness of their health and decreased transportation costs. Ninety percent reported that they would not be concerned for unintended disclosure. A minority additionally expressed concerns about difficulty interpreting messages, discouragement upon learning bad news, and technical issues. Though all respondents expressed interest in password protection of messages, there was also a strong desire for direct messages to limit misinterpretation of information. Conclusions Cell phone text messaging for communication of abnormal laboratory results is highly acceptable in this cohort of HIV-infected patients in rural Uganda. The feasibility of text messaging, including an optimal balance between privacy and comprehension, should be further studied. PMID:22720901

  4. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  6. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders.

    PubMed

    Dapretto, Mirella; Davies, Mari S; Pfeifer, Jennifer H; Scott, Ashley A; Sigman, Marian; Bookheimer, Susan Y; Iacoboni, Marco

    2006-01-01

    To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional 'mirror neuron system' may underlie the social deficits observed in autism.

  7. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    PubMed Central

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  8. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  9. Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology

    PubMed Central

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2014-01-01

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490

  10. Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing

    2017-01-01

    ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480

  11. A critical role of solute carrier 22a14 in sperm motility and male fertility in mice

    PubMed Central

    Maruyama, Shin-ya; Ito, Momoe; Ikami, Yuusuke; Okitsu, Yu; Ito, Chizuru; Toshimori, Kiyotaka; Fujii, Wataru; Yogo, Keiichiro

    2016-01-01

    We previously identified solute carrier 22a14 (Slc22a14) as a spermatogenesis-associated transmembrane protein in mice. Although Slc22a14 is a member of the organic anion/cation transporter family, its expression profile and physiological role have not been elucidated. Here, we show that Slc22a14 is crucial for sperm motility and male fertility in mice. Slc22a14 is expressed specifically in male germ cells, and mice lacking the Slc22a14 gene show severe male infertility. Although the overall differentiation of sperm was normal, Slc22a14−/− cauda epididymal spermatozoa showed reduced motility with abnormal flagellar bending. Further, the ability to migrate into the female reproductive tract and fertilise the oocyte were also impaired in Slc22a14−/− spermatozoa. The abnormal flagellar bending was thought to be partly caused by osmotic cell swelling since osmotic challenge or membrane permeabilisation treatment alleviated the tail abnormality. In addition, we found structural abnormalities in Slc22a14−/− sperm cells: the annulus, a ring-like structure at the mid-piece–principal piece junction, was disorganised, and expression and localisation of septin 4, an annulus component protein that is essential for the annulus formation, was also impaired. Taken together, our results demonstrated that Slc22a14 plays a pivotal role in normal flagellar structure, motility and fertility in mouse spermatozoa. PMID:27811987

  12. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy.

    PubMed

    Bernstein, Hans-Gert; Steiner, Johann; Guest, Paul C; Dobrowolny, Henrik; Bogerts, Bernhard

    2015-01-01

    The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    PubMed

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. High Expression of High-Mobility Group Box 1 in Menstrual Blood: Implications for Endometriosis.

    PubMed

    Shimizu, Keiko; Kamada, Yasuhiko; Sakamoto, Ai; Matsuda, Miwa; Nakatsuka, Mikiya; Hiramatsu, Yuji

    2017-11-01

    Endometriosis is a benign gynecologic disease characterized by the presence of ectopic endometrium and associated with inflammation and immune abnormalities. However, the molecular basis for endometriosis is not well understood. To address this issue, the present study examined the expression of high-mobility group box (HMGB) 1 in menstrual blood to investigate its role in the ectopic growth of human endometriotic stromal cells (ESCs). A total of 139 patients were enrolled in this study; 84 had endometriosis and 55 were nonendometriotic gynecological patients (control). The HMGB1 levels in various fluids were measured by enzyme-linked immunosorbent assay. Expression of receptor for advanced glycation end products (RAGE) in eutopic and ectopic endometrium was assessed by immunohistochemistry, and RAGE and vascular endothelial growth factor ( VEGF) messenger RNA expression in HMGB1- and lipopolysaccharide (LPS)-treated ESCs was evaluated by real-time polymerase chain reaction. The HMGB1 concentration was higher in menstrual blood than in serum or peritoneal fluid ( P < .001 for both). RAGE was expressed in both normal and ectopic endometrium. Administration of 1000 ng/mL HMGB1 or coadministration of 100 ng/mL HMGB1 and 100 ng/mL LPS induced VEGF production in ESCs relative to the control ( P < .05). These results suggest that menstrual fluid has naturally high levels of HMGB1 and may promote endometriosis following retrograde menstruation when complexed with other factors such as LPS by inducing inflammation and angiogenesis.

  15. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    PubMed

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  16. IMAGe syndrome: clinical and genetic implications based on investigations in three Japanese patients.

    PubMed

    Kato, Fumiko; Hamajima, Takashi; Hasegawa, Tomonobu; Amano, Naoko; Horikawa, Reiko; Nishimura, Gen; Nakashima, Shinichi; Fuke, Tomoko; Sano, Shinichirou; Fukami, Maki; Ogata, Tsutomu

    2014-05-01

    Arboleda et al. have recently shown that IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome is caused by gain-of-function mutations of maternally expressed gene CDKN1C on chromosome 11p15.5. However, there is no other report describing clinical findings in patients with molecularly studied IMAGe syndrome. Here, we report clinical and molecular findings in Japanese patients. We studied a 46,XX patient aged 8·5 years (case 1) and two 46,XY patients aged 16·5 and 15·0 years (cases 2 and 3). Clinical studies revealed not only IMAGe syndrome-compatible phenotypes in cases 1-3, but also hitherto undescribed findings including relative macrocephaly and apparently normal pituitary-gonadal endocrine function in cases 1-3, familial glucocorticoid deficiency (FGD)-like adrenal phenotype and the history of oligohydramnios in case 2, and arachnodactyly in case 3. Sequence analysis of CDKN1C, pyrosequencing-based methylation analysis of KvDMR1 and high-density oligonucleotide array comparative genome hybridization analysis for chromosome 11p15.5 were performed, showing an identical de novo and maternally inherited CDKN1C gain-of-function mutation (p.Asp274Asn) in cases 1 and 2, respectively, and no demonstrable abnormality in case 3. The results of cases 1 and 2 with CDKN1C mutation would argue the following: [1] relative macrocephaly is consistent with maternal expression of CDKN1C in most tissues and biparental expression of CDKN1C in the foetal brain; [2] FGD-like phenotype can result from CDKN1C mutation; and [3] genital abnormalities may primarily be ascribed to placental dysfunction. Furthermore, lack of CDKN1C mutation in case 3 implies genetic heterogeneity in IMAGe syndrome. © 2013 John Wiley & Sons Ltd.

  17. Expression of Anger in Depressed Adolescents: The Role of the Family Environment

    ERIC Educational Resources Information Center

    Jackson, Jennifer; Kuppens, Peter; Sheeber, Lisa B.; Allen, Nicholas B.

    2011-01-01

    The expression of anger is considered to be abnormal in depression, yet its role is only poorly understood. In the present study we sought to clarify this role by examining the moderating influence of the family environment on overall levels of anger expression and anger reactivity in depressed and non-depressed adolescents during conflictual…

  18. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    PubMed

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  19. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.

    PubMed

    Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M

    2015-03-01

    To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.

  20. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes.

    PubMed

    Simon, Luke; Castillo, Judit; Oliva, Rafael; Lewis, Sheena E M

    2011-12-01

    The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1+P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1+P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia.

    PubMed

    Matsumoto, Mitsuyuki; Straub, Richard E; Marenco, Stefano; Nicodemus, Kristin K; Matsumoto, Shun-Ichiro; Fujikawa, Akihiko; Miyoshi, Sosuke; Shobo, Miwako; Takahashi, Shinji; Yarimizu, Junko; Yuri, Masatoshi; Hiramoto, Masashi; Morita, Shuji; Yokota, Hiroyuki; Sasayama, Takeshi; Terai, Kazuhiro; Yoshino, Masayasu; Miyake, Akira; Callicott, Joseph H; Egan, Michael F; Meyer-Lindenberg, Andreas; Kempf, Lucas; Honea, Robyn; Vakkalanka, Radha Krishna; Takasaki, Jun; Kamohara, Masazumi; Soga, Takatoshi; Hiyama, Hideki; Ishii, Hiroyuki; Matsuo, Ayako; Nishimura, Shintaro; Matsuoka, Nobuya; Kobori, Masato; Matsushime, Hitoshi; Katoh, Masao; Furuichi, Kiyoshi; Weinberger, Daniel R

    2008-04-22

    The G protein-coupled receptor (GPCR) family is highly diversified and involved in many forms of information processing. SREB2 (GPR85) is the most conserved GPCR throughout vertebrate evolution and is expressed abundantly in brain structures exhibiting high levels of plasticity, e.g., the hippocampal dentate gyrus. Here, we show that SREB2 is involved in determining brain size, modulating diverse behaviors, and potentially in vulnerability to schizophrenia. Mild overexpression of SREB2 caused significant brain weight reduction and ventricular enlargement in transgenic (Tg) mice as well as behavioral abnormalities mirroring psychiatric disorders, e.g., decreased social interaction, abnormal sensorimotor gating, and impaired memory. SREB2 KO mice showed a reciprocal phenotype, a significant increase in brain weight accompanying a trend toward enhanced memory without apparent other behavioral abnormalities. In both Tg and KO mice, no gross malformation of brain structures was observed. Because of phenotypic overlap between SREB2 Tg mice and schizophrenia, we sought a possible link between the two. Minor alleles of two SREB2 SNPs, located in intron 2 and in the 3' UTR, were overtransmitted to schizophrenia patients in a family-based sample and showed an allele load association with reduced hippocampal gray matter volume in patients. Our data implicate SREB2 as a potential risk factor for psychiatric disorders and its pathway as a target for psychiatric therapy.

  2. Mice transgenic for HTLV-I LTR-tax exhibit tax expression in bone, skeletal alterations, and high bone turnover.

    PubMed

    Ruddle, N H; Li, C B; Horne, W C; Santiago, P; Troiano, N; Jay, G; Horowitz, M; Baron, R

    1993-11-01

    HTLV-I infection can result in adult T cell leukemia with accompanying hypercalcemia and increased bone resorption. A viral etiology has also been invoked for Paget's disease, a disease of high bone turnover. Delineation of pathogenetic mechanisms of viral-associated bone diseases has been impeded by the complexity of viral and host factors. In order to consider the relationship of HTLV-I infection to skeletal changes we have evaluated the role of a single viral gene in mice transgenic for HTLV-I tax under the control of the viral promoter. Tax mice exhibited severe skeletal abnormalities characterized by high bone turnover, increases in osteoblast and osteoclast numbers and activity, and myelofibrosis. These changes were apparent as early as two months of age. Tax mRNA and protein were highly expressed in bone but not in bone marrow nor in any other tissues except, as previously reported, salivary gland and neurofibromas when they did develop. Within bone, tax protein was detected in only two cell types, mature osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. These observations suggest that local expression of the tax gene, which encodes a viral regulatory protein known to influence host gene expression, can induce within the bone environment marked changes in bone cell activity, resulting in profound skeletal alterations.

  3. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice.

    PubMed

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Hasebe, Shigeru; Kawase, Haruki; Tanabe, Wataru; Tsukada, Shinji; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.

  4. Evaluation of ALK gene rearrangement in central nervous system metastases of non-small-cell lung cancer using two-step RT-PCR technique.

    PubMed

    Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J

    2017-12-01

    RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.

  5. Holoprosencephaly: from Homer to Hedgehog.

    PubMed

    Ming, J E; Muenke, M

    1998-03-01

    Holoprosencephaly (HPE), a common developmental defect affecting the forebrain and face, is etiologically heterogeneous and exhibits wide phenotypic variation. Graded degrees of severity of the brain malformation are also reflected in the highly variable craniofacial malformations associated with HPE. In addition, individuals with microforms of HPE, who usually have normal cognition and normal brain imaging, are at risk for having children with HPE. Some obligate carriers for HPE may not have any phenotypic abnormalities. Recurrent chromosomal rearrangements in individuals with HPE suggest loci containing genes important for brain development, and abnormalities in these genes may result in HPE. Recently, Sonic Hedgehog (SHH) was the first gene identified as causing HPE in humans. Proper function of SHH depends on cholesterol modification. Other candidate genes that may be involved in HPE include components of the SHH pathway, elements involved in cholesterol metabolism, and genes expressed in the developing forebrain.

  6. The activation of p38 MAPK limits the abnormal proliferation of vascular smooth muscle cells induced by high sodium concentrations

    PubMed Central

    WU, YAN; ZHOU, JUAN; WANG, HUAN; WU, YUE; GAO, QIYUE; WANG, LIJUN; ZHAO, QIANG; LIU, PEINING; GAO, SHANSHAN; WEN, WEN; ZHANG, WEIPING; LIU, YAN; YUAN, ZUYI

    2016-01-01

    The aim of the present study was to ascertain whether high sodium levels can directly promote the proliferation of vascular smooth muscle cells (VSMCs) and to elucidate the underlying mechanisms. Additional sodium chloride (NaCl) was added to the routine culture medium. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay. The mRNA expression level of proliferating cell nuclear antigen (PCNA) was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression levels of PCNA and phosphorylated c-Jun amino N-terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were measured by western blot analysis. Cell proliferation assay revealed that Na+ rather than Cl− or osmotic pressure promoted the proliferation of the VSMCs. The high sodium level upregulated the expression of PCNA and the phosphorylation levels of JNK, ERK1/2 and p38 MAPK. The inhibition of JNK and ERK1/2 decreased PCNA expression. Of note, the inhibition of p38 MAPK using the inhibitor, SB203580, increased PCNA expression. However, when p38 MAPK was activated by anisomycin, PCNA expression was decreased. On the whole, our findings demonstrate that a relatively high sodium level per se directly promotes the proliferation of VSMCs through the JNK/ERK1/2/PCNA pathway. At the same time, this induction of the proliferation of VSMCs due to high sodium levels can be maintained at a low level via the activation of p38 MAPK. PMID:26530729

  7. Tie2 Expressing Monocytes in the Spleen of Patients with Primary Myelofibrosis

    PubMed Central

    Campanelli, Rita; Fois, Gabriela; Catarsi, Paolo; Poletto, Valentina; Villani, Laura; Erba, Benedetta Gaia; Maddaluno, Luigi; Jemos, Basilio; Salmoiraghi, Silvia; Guglielmelli, Paola; Abbonante, Vittorio; Di Buduo, Christian Andrea; Balduini, Alessandra; Iurlo, Alessandra; Barosi, Giovanni; Rosti, Vittorio; Massa, Margherita

    2016-01-01

    Primary myelofibrosis (PMF) is a Philadelphia-negative (Ph−) myeloproliferative disorder, showing abnormal CD34+ progenitor cell trafficking, splenomegaly, marrow fibrosis leading to extensive extramedullary haematopoiesis, and abnormal neoangiogenesis in either the bone marrow or the spleen. Monocytes expressing the angiopoietin-2 receptor (Tie2) have been shown to support abnormal angiogenic processes in solid tumors through a paracrine action that takes place in proximity to the vessels. In this study we investigated the frequency of Tie2 expressing monocytes in the spleen tissue samples of patients with PMF, and healthy subjects (CTRLs), and evaluated their possible role in favouring spleen angiogenesis. We show by confocal microscopy that in the spleen tissue of patients with PMF, but not of CTRLs, the most of the CD14+ cells are Tie2+ and are close to vessels; by flow cytometry, we found that Tie2 expressing monocytes were Tie2+CD14lowCD16brightCDL62−CCR2− (TEMs) and their frequency was higher (p = 0.008) in spleen tissue-derived mononuclear cells (MNCs) of patients with PMF than in spleen tissue-derived MNCs from CTRLs undergoing splenectomy for abdominal trauma. By in vitro angiogenesis assay we evidenced that conditioned medium of immunomagnetically selected spleen tissue derived CD14+ cells of patients with PMF induced a denser tube like net than that of CTRLs; in addition, CD14+Tie2+ cells sorted from spleen tissue derived single cell suspension of patients with PMF show a higher expression of genes involved in angiogenesis than that found in CTRLs. Our results document the enrichment of Tie2+ monocytes expressing angiogenic genes in the spleen of patients with PMF, suggesting a role for these cells in starting/maintaining the pathological angiogenesis in this organ. PMID:27281335

  8. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis.

    PubMed

    Chilosi, Marco; Caliò, Anna; Rossi, Andrea; Gilioli, Eliana; Pedica, Federica; Montagna, Licia; Pedron, Serena; Confalonieri, Marco; Doglioni, Claudio; Ziesche, Rolf; Grubinger, Markus; Mikulits, Wolfgang; Poletti, Venerino

    2017-01-01

    Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tubβ3, and β-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tubβ3, ZEB1, and β-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.

  9. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  10. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  11. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus.

    PubMed

    Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan

    2017-10-01

    Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  12. Automatic processing of facial affects in patients with borderline personality disorder: associations with symptomatology and comorbid disorders.

    PubMed

    Donges, Uta-Susan; Dukalski, Bibiana; Kersting, Anette; Suslow, Thomas

    2015-01-01

    Instability of affects and interpersonal relations are important features of borderline personality disorder (BPD). Interpersonal problems of individuals suffering from BPD might develop based on abnormalities in the processing of facial affects and high sensitivity to negative affective expressions. The aims of the present study were to examine automatic evaluative shifts and latencies as a function of masked facial affects in patients with BPD compared to healthy individuals. As BPD comorbidity rates for mental and personality disorders are high, we investigated also the relationships of affective processing characteristics with specific borderline symptoms and comorbidity. Twenty-nine women with BPD and 38 healthy women participated in the study. The majority of patients suffered from additional Axis I disorders and/or additional personality disorders. In the priming experiment, angry, happy, neutral, or no facial expression was briefly presented (for 33 ms) and masked by neutral faces that had to be evaluated. Evaluative decisions and response latencies were registered. Borderline-typical symptomatology was assessed with the Borderline Symptom List. In the total sample, valence-congruent evaluative shifts and delays of evaluative decision due to facial affect were observed. No between-group differences were obtained for evaluative decisions and latencies. The presence of comorbid anxiety disorders was found to be positively correlated with evaluative shifting owing to masked happy primes, regardless of baseline-neutral or no facial expression condition. The presence of comorbid depressive disorder, paranoid personality disorder, and symptoms of social isolation and self-aggression were significantly correlated with response delay due to masked angry faces, regardless of baseline. In the present affective priming study, no abnormalities in the automatic recognition and processing of facial affects were observed in BPD patients compared to healthy individuals. The presence of comorbid anxiety disorders could make patients more susceptible to the influence of a happy expression on judgment processes at an automatic processing level. Comorbid depressive disorder, paranoid personality disorder, and symptoms of social isolation and self-aggression may enhance automatic attention allocation to threatening facial expressions in BPD. Increased automatic vigilance for social threat stimuli might contribute to affective instability and interpersonal problems in specific patients with BPD.

  13. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43

    PubMed Central

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-01-01

    Aim: Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Methods: Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg−1·d−1, po) or testosterone replacement (0.5 mg·kg−1·d−1, sc) for 5 days, and STZ-injected rats were treated with argirein (40–120 mg·kg−1·d−1, po) or aminoguanidine (100 mg·kg−1·d−1, po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). Results: ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3–3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in vitro. Conclusion: Two types of hypogonadism of male rats exhibit increased expression of ETA and depressed expression of Cx43 in testes, despite different patterns of serum FSH and LH. Argirein alleviates the two types of male hypogonadism via normalizing ETA and Cx43 in testes. PMID:26775665

  14. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43.

    PubMed

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-02-01

    Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg(-1)·d(-1), po) or testosterone replacement (0.5 mg·kg(-1)·d(-1), sc) for 5 days, and STZ-injected rats were treated with argirein (40-120 mg·kg(-1)·d(-1), po) or aminoguanidine (100 mg·kg(-1)·d(-1), po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3-3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in vitro. Two types of hypogonadism of male rats exhibit increased expression of ETA and depressed expression of Cx43 in testes, despite different patterns of serum FSH and LH. Argirein alleviates the two types of male hypogonadism via normalizing ETA and Cx43 in testes.

  15. Oleamide derivatives are prototypical anti-metastasis drugs that act by inhibiting Connexin 26.

    PubMed

    Nojima, Hiroshi; Ohba, Yusuke; Kita, Yasuyuki

    2007-09-01

    Despite considerable research, metastasis remains a major challenge in the clinical management of cancer. Recent reports show that abnormally augmented expression of Cx26 is responsible for the enhanced spontaneous metastasis of mouse BL6 melanoma cells. The function of Cx26 appears to be responsible for this phenotype since exogenous expression of a dominant-negative form of Cx26 and oleamide derivatives called MI-18 and MI-22 that specifically inhibit Cx26-mediated gap junction-mediated intercellular communications (GJIC) prevent the spontaneous metastasis of BL6 cells. As expected from their structural similarity to oleic acid (the major component of olive oil), both MI-18 and MI-22 are safe drugs; nonetheless, they are potent inhibitors of the spontaneous metastasis of BL6 mouse melanoma cells. Thus, they are a novel prototype of an anti-metastasis drug that has minimal side effects. While the primary tumors do not necessarily show strong Cx26-immunostaining signals, pronounced Cx26 expression is detected in the highly invasive tumor regions; it is also more frequently observed in metastasized tumors. Thus, Cx26 expression may be useful as a prognostic tool that can predict the existence of highly metastatic cancer cells in clinical samples.

  16. Cysteine-Rich Intestinal Protein 1 Silencing Inhibits Migration and Invasion in Human Colorectal Cancer.

    PubMed

    He, Guoyang; Zou, Liyuan; Zhou, Lin; Gao, Peiqiong; Qian, Xinlai; Cui, Jing

    2017-01-01

    Cysteine-rich intestinal protein 1 (CRIP1), a member of the LIM/double zinc finger protein family, is abnormally expressed in several tumour types. However, few data are available on the role of CRIP1 in cancer. In the present study, we aimed to investigate the expression profile and functions of CRIP1 in colorectal cancer. To examine the protein expression level of CRIP1, immunohistochemistry (IHC) was performed on 56 pairs of colon cancer tissue samples. Western blotting was performed to investigate CRIP1 protein expression in four colon cancer cell lines. The endogenous expression of CRIP1 was suppressed using short interfering RNAs (siRNAs). Cell proliferation assays were used to determine whether CRIP1 silencing affected cell proliferation. Flow cytometry analysis was used to detect cell apoptosis. The effects of silencing CRIP1 on cell migration and invasion was detected using the transwell and wound-healing assays. IHC analysis showed that protein level of CRIP1 was significantly higher in tumour tissue samples than in paired non-tumour tissue samples and that the CRIP1 level was higher in metastatic tissue samples than in non-metastatic tissue samples. In addition, protein levels of CRIP1 were higher in highly metastatic colon cancer cell lines than in colon cancer cell lines with low metastasis. Further, CRIP1 silencing had no effect on cell proliferation or apoptosis in SW620 and HT29 cells. CRIP1 silencing suppressed cell migration and invasion obviously in SW620 and HT29 cells. The present study provides new evidence that abnormal expression of CRIP1 might be related to the degree of metastasis in colorectal cancer and that CRIP1 silencing could effectively inhibit migration and invasion during colorectal cancer development. These findings might aid the development of a biomarker for colon cancer prognosis and metastasis, and thus help to treat this common type of cancer. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  18. Disruption of long-distance highly conserved noncoding elements in neurocristopathies.

    PubMed

    Amiel, Jeanne; Benko, Sabina; Gordon, Christopher T; Lyonnet, Stanislas

    2010-12-01

    One of the key discoveries of vertebrate genome sequencing projects has been the identification of highly conserved noncoding elements (CNEs). Some characteristics of CNEs include their high frequency in mammalian genomes, their potential regulatory role in gene expression, and their enrichment in gene deserts nearby master developmental genes. The abnormal development of neural crest cells (NCCs) leads to a broad spectrum of congenital malformation(s), termed neurocristopathies, and/or tumor predisposition. Here we review recent findings that disruptions of CNEs, within or at long distance from the coding sequences of key genes involved in NCC development, result in neurocristopathies via the alteration of tissue- or stage-specific long-distance regulation of gene expression. While most studies on human genetic disorders have focused on protein-coding sequences, these examples suggest that investigation of genomic alterations of CNEs will provide a broader understanding of the molecular etiology of both rare and common human congenital malformations. © 2010 New York Academy of Sciences.

  19. IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1.

    PubMed

    Luo, Mengchuan; Liu, Xiaofang; Meng, Huanyu; Xu, Liqun; Li, Yi; Li, Zhibin; Liu, Chang; Luo, Yue-Bei; Hu, Bo; Xue, Yuanyuan; Liu, Yu; Luo, Zhaohui; Yang, Huan

    2017-10-01

    Abnormal CD4 + T cell activation is known to play roles in the pathogenesis of myasthenia gravis (MG). However, little is known about the mechanisms underlying the roles of lncRNAs in regulating CD4 + T cell. In this study, we discovered that the lncRNA IFNG-AS1 is abnormally expressed in MG patients associated with quantitative myasthenia gravis (QMG) and the positive anti-AchR Ab levels patients. IFNG-AS1 influenced Th1/Treg cell proliferation and regulated the expression levels of their transcription factors in an experimental autoimmune myasthenia gravis (EAMG)model. IFNG-AS1 could reduce the expression of HLA-DRB and HLA-DOB and they had a negative correlation in MG. Furthermore IFNG-AS1 influenced the expression levels of CD40L and CD4 + T cells activation in MG patient partly depend on effecting the HLA-DRB1 expression. It suggests that IFNG-AS1 may be involved in CD4 + T cell-mediated immune responses in MG. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice.

    PubMed

    Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young

    2016-12-01

    In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.

  1. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  2. PLK1 has tumor-suppressive potential in APC-truncated colon cancer cells.

    PubMed

    Raab, Monika; Sanhaji, Mourad; Matthess, Yves; Hörlin, Albrecht; Lorenz, Ioana; Dötsch, Christina; Habbe, Nils; Waidmann, Oliver; Kurunci-Csacsko, Elisabeth; Firestein, Ron; Becker, Sven; Strebhardt, Klaus

    2018-03-16

    The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent Apc Min/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.

  3. Genetics Home Reference: lattice corneal dystrophy type II

    MedlinePlus

    ... lattice corneal dystrophy type II can have a facial expression that appears sad. Related Information What does it ... links) Children's Craniofacial Association: A Guide to Understanding Facial ... pathogenic mechanisms in gelsolin-related amyloidosis: in vitro expression reveals an abnormal gelsolin fragment. Hum Mol Genet. ...

  4. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage.

    PubMed

    Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng

    2017-09-01

    Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour.

    PubMed

    Nakamura, E; Kadomatsu, K; Yuasa, S; Muramatsu, H; Mamiya, T; Nabeshima, T; Fan, Q W; Ishiguro, K; Igakura, T; Matsubara, S; Kaname, T; Horiba, M; Saito, H; Muramatsu, T

    1998-12-01

    Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified. Knockout mice lacking the MK gene (Mdk) showed no gross abnormalities. We closely analysed postnatal brain development in Mdk(-/-) mice using calcium binding proteins as markers to distinguish neuronal subpopulations. Intense and prolonged calretinin expression was found in the dentate gyrus granule cell layer of the hippocampus of infant Mdk(-/-) mice. In infant Mdk(+/+) mice, calretinin expression in the granule cell layer was weaker, and had disappeared by 4 weeks after birth, when calretinin expression still persisted in Mdk(-/-) mice. Furthermore, 4 weeks after birth, Mdk(-/-) mice showed a deficit in their working memory, as revealed by a Y-maze test, and had an increased anxiety, as demonstrated by the elevated plus-maze test. Midkine plays an important role in the regulation of postnatal development of the hippocampus.

  6. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroyanagi, Kayo; Kang, Min-Sook; Goto, Tsuyoshi

    Citrus fruit compounds have many health-enhancing effects. In this study, using a luciferase ligand assay system, we showed that citrus auraptene activates peroxisome proliferator-activated receptor (PPAR)-{alpha} and PPAR{gamma}. Auraptene induced up-regulation of adiponectin expression and increased the ratio of the amount of high-molecular-weight multimers of adiponectin to the total adiponectin. In contrast, auraptene suppressed monocyte chemoattractant protein (MCP)-1 expression in 3T3-L1 adipocytes. Experiments using PPAR{gamma} antagonist demonstrated that these effects on regulation of adiponectin and MCP-1 expression were caused by PPAR{gamma} activations. The results indicate that auraptene activates PPAR{gamma} in adipocytes to control adipocytekines such as adiponectin and MCP-1 andmore » suggest that the consumption of citrus fruits, which contain auraptene can lead to a partial prevention of lipid and glucose metabolism abnormalities.« less

  7. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  8. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    PubMed

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.

  9. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in Fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. PMID:25432637

  10. A genetic marker of the ACKR1 gene is present in patients with Type II congenital smell loss who have type I hyposmia and hypogeusia

    PubMed Central

    Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.

    2015-01-01

    PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956

  11. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    PubMed

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  12. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline.

    PubMed

    Dziembowska, Magdalena; Pretto, Dalyir I; Janusz, Aleksandra; Kaczmarek, Leszek; Leigh, Mary Jacena; Gabriel, Nielsen; Durbin-Johnson, Blythe; Hagerman, Randi J; Tassone, Flora

    2013-08-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by lack of the FMR1 protein, FMRP, a translational repressor. Its absence leads to up-regulation of locally translated proteins involved in synaptic transmission and plasticity, including the matrix metalloproteinase-9 (MMP-9). In the Fmr1 knock-out (KO), a mouse model of FXS, an abnormal elevated expression of MMP-9 in the brain was pharmacologically down-regulated after treatment with the tetracycline derivative minocycline. Moreover, the rescue of immature dendritic spine morphology and a significant improvement of abnormal behavior were associated with down-regulation of MMP-9. Here, we report on high plasma activity of MMP-9 in individuals with FXS. In addition, we investigate MMP-9 changes in patients with FXS who have gone through a minocycline controlled clinical trial and correlate MMP-9 activity to clinical observations. The results of this study suggest that, in humans, activity levels of MMP-9 are lowered by minocycline and that, in some cases, changes in MMP-9 activity are positively associated with improvement based on clinical measures. Copyright © 2013 Wiley Periodicals, Inc.

  13. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium.

    PubMed

    Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S

    2017-09-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.

  15. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.

    PubMed

    Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan

    2010-07-01

    This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.

  16. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    PubMed Central

    Boissinot, Marjorie; Vilaine, Mathias; Hermouet, Sylvie

    2014-01-01

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs). PMID:25119536

  17. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  18. [Chromosome study on chronic lymphocytic leukemia using CpG-oligodeoxynucleotide as immunostimulant agent].

    PubMed

    Wu, Yafang; Xue, Yongquan; Chen, Suning; Yao, Li; Jiang, Hui; Zhang, Jun; Shen, Juan; Pan, Jinlan; Wang, Yong; Bai, Shuxiao

    2010-02-01

    To investigate whether CpG-oligodeoxynucleotide (CpG-ODN) can improve the detection rate of the karyotypic abnormalities in chronic lymphocytic leukemia (CLL). The bone marrow (BM) or peripheral blood (PB) cells from 57 cases of CLL were collected and cultured with CpG-ODN DSP30+interleukin-2 (IL-2), phytohemagglutinin (PHA), pokeweed (PWM) or IL-2, respectively. Five days later cells were harvested for chromosome preparation. Karyotypic analysis was done using R banding technique. Panel fluorescence in situ hybridization (FISH) was carried out on 19 cases of CLL with normal karyotypes using the following probes: Cen12, D13S25, Rb1, ATM, p53, MYB and IgH. Genomic DNA from 21 cases of them was extracted from BM or PB leukocytes. The immunoglobulin variable heavy chain (IgVH) was amplified by polymerase chain reaction (PCR) and sequenced. CD38 and ZAP70 expressions in the leukemic cells were determined by flow cytometry (FCM). The detection rate of karyotypic abnormalities in the CpG-ODN+IL-2 group (43.85%) was obviously higher than that in the PHA (15.09%), PWM (17.31%) and IL-2 (3.13%) groups (P<0.01). Fifty-two types of karyotypic abnormalities were found. Among them, trisomy12 (+12) or +12 with other abnormalities were the most common, while translocations were the most frequent structural abnormalities including 3 unbalanced and 11 balanced translocations, among them 7 had rearrangements involving 14q32. Thirteen cases showed one or more abnormalities on FISH including trisomy 12 and p53 deletion each in one case, IgH rearrangement and partial deletion each in one case, 13q14.3 deletion in 11 cases of which 5 cases also had Rb1 deletion, 1 case had Rb1 partial deletion. No case with ATM or MYB deletions was found. PCR detected IgVH mutations in 10/21 cases. FCM showed 10/45 cases were CD38 positive, but 35 /45 were CD38 negative, 11/27 cases expressed ZAP70, but 16/27 did not. Among the 26 cases examined for CD38 and ZAP70 expressions simultaneously, 5 cases were CD38+ZAP70+, 13 were CD38-ZAP70-, 6 were CD38-ZAP70+, and 2 were CD38+ZAP70-, respectively. Statistic analysis showed a correlation between complex karyotype and IgVH without mutation, but no association between karyotype and CD38 or ZAP70 expression was observed. CpG-ODN immunostimulation can obviously raise the detection rate of abnormal karyotypes, especially translocations in CLL. FISH is an important complement to conventional karyotypic analysis. The combination of both methods can provide more comprehensive genetic information for CLL.

  19. Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities

    PubMed Central

    Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  20. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  1. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1

    PubMed Central

    Liu, Yi Bessie; Tewari, Ambika; Salameh, Johnny; Arystarkhova, Elena; Hampton, Thomas G; Brashear, Allison; Ozelius, Laurie J; Khodakhah, Kamran; Sweadner, Kathleen J

    2015-01-01

    A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures. DOI: http://dx.doi.org/10.7554/eLife.11102.001 PMID:26705335

  2. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  3. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  4. Congenitally learned helpless rats show abnormalities in intracellular signaling.

    PubMed

    Kohen, Ruth; Neumaier, John F; Hamblin, Mark W; Edwards, Emmeline

    2003-03-15

    Affective disorders and the drugs used to treat them lead to changes in intracellular signaling. We used a genetic animal model to investigate to what extent changes in intracellular signal transduction confer a vulnerability to mood or anxiety disorders. Levels of gene expression in a selectively bred strain of rats with a high vulnerability to develop congenitally learned helplessness (cLH), a strain highly resistant to the same behavior (cNLH) and outbred Sprague-Dawley (SD) control animals were compared using quantitative reverse transcription polymerase chain reaction. Congenitally learned helpless animals had a 24%-30% reduced expression of the cyclic adenosine monophosphate response element binding protein messenger ribonucleic acid (mRNA) in the hippocampus and a 40%-41% increased level of the antiapoptotic protein bcl-2 mRNA in the prefrontal cortex compared to cNLH and SD rats. Other significant changes included changes in the expression levels of the alpha catalytic subunit of protein kinase A, glycogen synthase kinase 3beta, and protein kinase C epsilon. Congenitally learned helpless animals show evidence of altered signal transduction and regulation of apoptosis compared to cNLH and SD control animals.

  5. Renoprotective effect of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway in glomerular mesangial cells of diabetic rats.

    PubMed

    Ni, Wei-Jian; Tang, Li-Qin; Zhou, Hong; Ding, Hai-Hua; Qiu, Yuan-Ye

    2016-08-01

    G-protein coupled receptor-mediated pathogenesis is of great importance in the development of diabetic complications, but the detailed mechanisms have not yet been clarified. Therefore, we aimed to explore the roles of the prostaglandin E2 receptor 1 (EP1)-mediated signalling pathway and develop a corresponding treatment for diabetic nephropathy (DN). To create the DN model, rats fed a high-fat and high-glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, rats were either treated or not with berberine (100 mg/kg per day, i.g., 8 weeks). Cells were isolated from the renal cortex and cultured in high-sugar medium with 20% foetal bovine serum. Prostaglandin E2 (PGE2 ) levels were determined by ELISA, and cells were identified by fluorescence immunoassay. We measured the biochemical characteristics and observed morphological changes by periodic-acid-Schiff staining. The expression of the EP1 receptor and the roles of GRK2 and β-arrestin2 were identified using western blotting and flow cytometry. Downstream proteins were detected by western blot, while molecular changes were assessed by ELISA and laser confocal scanning microscopy. Berberine not only improved the majority of biochemical and renal functional parameters but also improved the histopathological alterations. A significant increase in PGE2 level, EP1 membrane expression and Gαq expression, and concentration of Ca(2+) were observed, accompanied by increased GRK2 and β-arrestin2 levels soon afterwards. Berberine decreased the abnormal concentration of Ca(2+) , the increased levels of PGE2 , the high expression of EP1 and Gαq and suppressed the proliferation of mesangial cells. The EP1 receptor, a critical therapeutic target of the signalling pathway, contributed to mesangial cell abnormalities, which are linked to renal injury in DN. The observed renoprotective effects of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway indicating that berberine could be a promising anti-DN medicine in the future. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Improving flavour and quality of tomatoes by expression of synthetic gene encoding sweet protein monellin.

    PubMed

    Reddy, Chinreddy Subramanyam; Vijayalakshmi, Muvva; Kaul, Tanushri; Islam, Tahmina; Reddy, Malireddy K

    2015-05-01

    Monellin a sweet-tasting protein exists naturally as a heterodimer of two non-covalently linked subunits chain A and B, which loses its sweetness on denaturation. In this study, we validated the expression of a synthetic monellin gene encoding a single polypeptide chain covalently linking the two subunits under T7 and fruit-ripening-specific promoters in Escherichia coli and tomato fruits, respectively. Purified recombinant monellin protein retained its sweet flavour at 70 °C and pH 2. We developed 15 transgenic T0 tomato plants overexpressing monellin, which were devoid of any growth penalty or phenotypic abnormalities during greenhouse conditions. T-DNA integration and fruit-specific heterologous expression of monellin had occurred in these transgenic tomato lines. ELISA revealed that expression of monellin was 4.5% of the total soluble fruit protein. Functional analyses of transgenic tomatoes of T2-5 and T2-14 lines revealed distinctly strong sweetness compared with wild type. Monellin a potential non-carbohydrate sweetener, if expressed in high amounts in fruits and vegetables, would enhance their flavour and quality.

  7. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    PubMed Central

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  8. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression.

    PubMed

    Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo

    2007-04-01

    Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.

  9. Adult granulosa cell tumors of the ovary: a retrospective study of 30 cases with respect to the expression of steroid synthesis enzymes.

    PubMed

    Kitamura, Sachiko; Abiko, Kaoru; Matsumura, Noriomi; Nakai, Hidekatsu; Akimoto, Yumiko; Tanimoto, Hirotoshi; Konishi, Ikuo

    2017-07-01

    Some, but not all, granulosa cell tumors are characterized by estrogen production. This study was designed to determine whether there are clinical or pathological variations in granulosa cell tumors in relation to the expression of sex steroid synthesis enzymes. Clinical symptoms, serum hormonal values, and histology of 30 granulosa cell tumor patients who underwent surgery between 2002 and 2014 were retrospectively reviewed. Most patients presented with abnormal genital bleeding including abnormal menstrual cycles. Eight of 16 patients older than 50 years had endometrial hyperplasia and one had endometrial cancer. Serum 17β-estradiol (E₂) levels tended to be higher in patients over 50 years of age (p=0.081). Serum follicle-stimulating hormone (FSH) levels were low in all patients irrespective of serum E₂ levels. Magnetic resonance imaging revealed a thicker endometrium in older as compared to younger patients (p<0.05). Tumor cells in the majority of cases were positive for inhibin α and P450 aromatase, irrespective of age and serum E₂ levels. P450 17α-hydroxylase (P450c17) expression varied among cases. P450c17 was strongly positive in luteinized tumor cells and weakly positive in theca cells and fibroblasts. High E₂ levels were associated with P450c17-positive cells in the tumor (p<0.05). The expression of hormone-synthesizing enzymes divides granulosa cell tumors into 2 distinct types; tumors with P450c17-positive cells show elevated serum E₂ and related clinical symptoms, while tumors without these cells show symptoms related to FSH suppression by inhibin. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  10. Characterization of Treefoil Peptide Genes in Iron-Ion or X-Irradiated Human Cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Harrison, G. H.; Xu, J. F.; Zhou, X. F.

    1999-01-01

    The gastrointestinal (GI) tract is especially sensitive to ionizing radiation, probably because of its high rate of cell turn over. Most of the data in the literature concerns the histological/anatomical description of damage rather than functional studies. In fact, previous reports in humans have shown that, at doses of 2 Gy or more, functional abnormalities appear indicating that in radiation sensitive tissues the effects of radiation are not limited to cell death. GI functions are controlled in particular by GI peptides. One hypothesis is that ionizing radiation may modulate the synthesis and release of these peptides and consequently may contribute largely to abnormalities in GI function. However, no previous studies have been concerned with GI-specific gene expression in irradiated GI tissues. The family of human trefoil peptides comprises three members thus far, all of which are expressed in specific regions of the GI tract. In addition, two trefoil peptides, pS2 (TFFI) and HITF (TFF2) are expressed in breast tissue. Their exact function in GI and breast tissues is unclear but mucosal integrity, repair, mucin secretion and responsiveness to hormones have been shown. We recently isolated and characterized pS2 as a novel p53- and estrogen receptor-independent gene whose MRNA expression in several cells lines was found to be delayed 4 to 7 days after irradiation with X-rays, fission neutrons or 1 GeV/n Fe-ions. The aim of the present study was to determine whether pS2 and HITF have a similar induction kinetics in irradiated gastric and breast cell lines, and whether they have the phorbol ester (TPA) responsive element (TRE).

  11. Soluble FLT-1 rules placental destiny.

    PubMed

    Yamashita, Michiko; Kumasawa, Keiichi; Nakamura, Hitomi; Kimura, Tadashi

    2018-02-19

    Placenta previa is an abnormality in which the placenta covers the internal uterine os, and it can cause serious morbidity and mortality in both mother and fetus due to catastrophic hemorrhage. Some pregnant women recover from placenta previa due to a phenomenon called "migration." However, the mechanism of "migration" of the placenta has not been elucidated. Human placentas were collected from patients with placenta previa and those with no abnormal placentation (control). A microarray analysis was performed to detect the genes up- or down-regulated only in the caudal part in the previa group. Specific mRNA expression was evaluated using real-time quantitative reverse transcription PCR (qRT-PCR). Unilateral uterine artery ablation of 8.5 dpc mice was performed to reproduce the reduction of placental blood supply, and weights of the placentas and fetuses were evaluated in 18.5 dpc. Specific mRNA expression was also evaluated in mice placentas. According to the result of the microarray analysis, we focused on soluble fms-like tyrosine kinase-1 (sFLT-1) and hypoxia-inducible factor-1 (HIF-1) alpha. The sFLT-1 expression level is locally high in the caudal part of the human placenta in patients with placenta previa. In mice experiments, the weights of the placentas and fetuses were significantly smaller in the ablation side than those in the control side, and the sFlt-1 expression level was significantly higher in the ablation side than in the control side. Our study suggests that "migration" of the placenta is derived from placental degeneration at the caudal part of the placenta, and sFlt-1 plays a role in this placental degeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Brain growth across the life span in autism: age-specific changes in anatomical pathology.

    PubMed

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2011-03-22

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    PubMed

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  14. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities.

    PubMed

    Teotia, Pooja; Van Hook, Matthew J; Wichman, Christopher S; Allingham, R Rand; Hauser, Michael A; Ahmad, Iqbal

    2017-11-01

    Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252. © 2017 AlphaMed Press.

  15. Visual information processing of faces in body dysmorphic disorder.

    PubMed

    Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan

    2007-12-01

    Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.

  16. Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation.

    PubMed

    Arquitt, C K; Boyd, C; Wright, J T

    2002-07-01

    Cystic fibrosis (CF), a chloride ion transport disorder, is caused by mutations of the cftr gene and is the most common autosomal-recessive heritable disease in Caucasians. CFTR knockout mice have enamel with crystallite defects, retained protein, and hypomineralization, suggesting a role for CFTR in enamel formation and mineralization. This investigation examined CFTR expression and elemental composition in developing murine incisor teeth. RT-PCR showed cftr mRNA expression in the normal mouse apical incisor tissue but not in the CFTR knockout tissue. Elemental analysis by energy-dispersive x-ray spectroscopy showed relatively decreased chloride in secretory-stage CF enamel. Iron and potassium were significantly increased, and calcium was significantly decreased (p value = 0.05) in the CF mature enamel. Abnormal enamel mineralization, ion concentrations, and molecular evidence of cftr mRNA expression by odontogenic cells strongly suggest that CFTR plays an important role in enamel formation.

  17. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    PubMed Central

    Dong, Xian-hui; Bai, Jiang-tao; Kong, Wei-na; He, Xiao-ping; Yan, Peng; Shao, Tie-mei; Yu, Wen-guo; Chai, Xi-qing; Wu, Yan-hua; Liu, Cong

    2015-01-01

    Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease. PMID:26109953

  18. Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1.

    PubMed

    Algalarrondo, Vincent; Wahbi, Karim; Sebag, Frédéric; Gourdon, Geneviève; Beldjord, Chérif; Azibi, Kamel; Balse, Elise; Coulombe, Alain; Fischmeister, Rodolphe; Eymard, Bruno; Duboc, Denis; Hatem, Stéphane N

    2015-04-01

    Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction.

    PubMed

    Gandal, M J; Sisti, J; Klook, K; Ortinski, P I; Leitman, V; Liang, Y; Thieu, T; Anderson, R; Pierce, R C; Jonak, G; Gur, R E; Carlson, G; Siegel, S J

    2012-07-17

    Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30-80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory-inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1(neo-/-) mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABA(B)-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.

  20. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Overproduction and partial purification of the Norrie disease gene product, norrin, from a recombinant baculovirus.

    PubMed

    Shastry, Barkur S; Trese, Michael T

    2003-12-05

    Abnormal vascularization of the peripheral retina and retinal detachment are common clinical characteristics of Norrie disease (ND), familial exudative vitreoretinopathy, Coats' disease, and retinopathy of prematurity. Although little is known about the molecular basis of these diseases, studies have shown that all of these diseases are associated with mutations in the ND gene. In spite of this, little is known about norrin, its molecular mechanism of action, and its functional relationship with the development of abnormal retinal vasculature. To obtain a large quantity of norrin for structural and functional studies, we have overproduced it in insect cells. For this purpose, a cDNA fragment (869 bp) was isolated from a human retinal cDNA library by amplification and was cloned into an expression vector. The purified plasmid was co-transfected with wild-type linearized Bac-N-Blue DNA into S. frugiperda Sf21 insect cells. The recombinant virus plaques were purified and clones were selected based on the level of recombinant protein expressed in Sf21 cells infected with a purified recombinant virus. From these, a high-titer stock was generated and subsequently used to prepare a fused protein on a large scale. The protein was partially purified by the process of immobilized metal affinity chromatography and the use of ion exchange chromatography

  2. Analysis of the pattern of expression of the Fanconi anemia group C (Facc) gene during murine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoshtein, F.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist inmore » interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.« less

  3. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  4. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    PubMed Central

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  5. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hegui; He, Zheng; Zhu, Chunyan

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less

  6. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  7. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness.

    PubMed

    Calcagnoli, Federica; de Boer, Sietse F; Beiderbeck, Daniela I; Althaus, Monika; Koolhaas, Jaap M; Neumann, Inga D

    2014-03-15

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inverse relationship between aggressiveness and tonic endogenous OXT signaling properties. Aim of the present study was to verify the hypothesis that variations in OXT expression and/or OXT receptor (OXTR) binding in selected brain regions are associated with different levels or forms of aggression. To this end, male resident wild-type Groningen rats that repeatedly contested and dominated intruder conspecifics were categorized as being low aggressive, highly aggressive or excessively aggressive. Their brains were subsequently collected and quantified for OXT mRNA expression and OXTR binding levels. Our results showed that OXT mRNA expression in the hypothalamic paraventricular nucleus (PVN), but not in the supraoptic nucleus (SON), negatively correlates with the level of offensiveness. In particular, the excessively aggressive group showed a significantly lower OXT mRNA expression in the PVN as compared to both low and highly aggressive groups. Further, the excessively aggressive animals showed the highest OXTR binding in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). These findings demonstrate that male rats with excessively high levels and abnormal forms of aggressive behavior have diminished OXT transcription and enhanced OXTR binding capacities in specific nodes of the social behavioral brain circuitry. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.

    PubMed

    Núñez-Enríquez, Juan Carlos; Bárcenas-López, Diego Alberto; Hidalgo-Miranda, Alfredo; Jiménez-Hernández, Elva; Bekker-Méndez, Vilma Carolina; Flores-Lujano, Janet; Solis-Labastida, Karina Anastacia; Martínez-Morales, Gabriela Bibiana; Sánchez-Muñoz, Fausto; Espinoza-Hernández, Laura Eugenia; Velázquez-Aviña, Martha Margarita; Merino-Pasaye, Laura Elizabeth; García Velázquez, Alejandra Jimena; Pérez-Saldívar, María Luisa; Mojica-Espinoza, Raúl; Ramírez-Bello, Julián; Jiménez-Morales, Silvia; Mejía-Aranguré, Juan Manuel

    2016-11-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide. Mexican patients have high mortality rates, low frequency of good prognosis biomarkers (i.e., ETV6-RUNX1) and a high proportion is classified at the time of diagnosis with a high risk to relapse according to clinical features. In addition, very early relapses are more frequently observed than in other populations. The aim of the study was to identify new potential biomarkers associated with very early relapse in Mexican ALL children through transcriptome analysis. Microarray gene expression profiling on bone marrow samples of 54 pediatric ALL patients, collected at time of diagnosis and/or at relapse, was performed. Eleven patients presented relapse within the first 18 months after diagnosis. Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) was used to perform gene expression analysis. Annotation and functional enrichment analyses were carried out using Gene Ontology, KEGG pathway analysis and Ingenuity Pathway Analysis tools. BLVRB, ZCCHC7, PAX5, EBF1, TMOD1 and BLNK were differentially expressed (fold-change >2.0 and p value <0.01) between relapsed and non-relapsed patients. Functional analysis of abnormally expressed genes revealed their important role in cellular processes related to the development of hematological diseases, cancer, cell death and survival and in cell-to-cell signaling interaction. Our data support previous findings showing the relevance of PAX5, EBF1 and ZCCHC7 as potential biomarkers to identify a subgroup of ALL children in high risk to relapse. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of MECP2 Duplication Syndrome

    PubMed Central

    Jiang, Minghui; Ash, Ryan T.; Baker, Steven A.; Suter, Bernhard; Ferguson, Andrew; Park, Jiyoung; Rudy, Jessica; Torsky, Sergey P.; Chao, Hsiao-Tuan; Zoghbi, Huda Y.

    2013-01-01

    MECP2 duplication syndrome is a childhood neurological disorder characterized by intellectual disability, autism, motor abnormalities, and epilepsy. The disorder is caused by duplications spanning the gene encoding methyl-CpG-binding protein-2 (MeCP2), a protein involved in the modulation of chromatin and gene expression. MeCP2 is thought to play a role in maintaining the structural integrity of neuronal circuits. Loss of MeCP2 function causes Rett syndrome and results in abnormal dendritic spine morphology and decreased pyramidal dendritic arbor complexity and spine density. The consequences of MeCP2 overexpression on dendritic pathophysiology remain unclear. We used in vivo two-photon microscopy to characterize layer 5 pyramidal neuron spine turnover and dendritic arborization as a function of age in transgenic mice expressing the human MECP2 gene at twice the normal levels of MeCP2 (Tg1; Collins et al., 2004). We found that spine density in terminal dendritic branches is initially higher in young Tg1 mice but falls below control levels after postnatal week 12, approximately correlating with the onset of behavioral symptoms. Spontaneous spine turnover rates remain high in older Tg1 animals compared with controls, reflecting the persistence of an immature state. Both spine gain and loss rates are higher, with a net bias in favor of spine elimination. Apical dendritic arbors in both simple- and complex-tufted layer 5 Tg1 pyramidal neurons have more branches of higher order, indicating that MeCP2 overexpression induces dendritic overgrowth. P70S6K was hyperphosphorylated in Tg1 somatosensory cortex, suggesting that elevated mTOR signaling may underlie the observed increase in spine turnover and dendritic growth. PMID:24336718

  10. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation.

    PubMed

    Liu, Hong; Li, Wei; Zhang, Yong; Zhang, Zhengang; Shang, Xuejun; Zhang, Ling; Zhang, Shiyang; Li, Yanwei; Somoza, Andres V; Delpi, Brandon; Gerton, George L; Foster, James A; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-05-01

    Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. However, IFT25, a component of the IFT complex, is not required for the formation of cilia in somatic tissues. In mice, the gene is highly expressed in the testis, and its expression is upregulated during the final phase when sperm flagella are formed. To investigate the role of IFT25 in sperm flagella formation, the gene was specifically disrupted in male germ cells. All homozygous knockout mice survived to adulthood and did not show any gross abnormalities. However, all homozygous knockout males were completely infertile. Sperm numbers were reduced and these sperm were completely immotile. Multiple morphological abnormalities were observed in sperm, including round heads, short and bent tails, with some tails showing branched flagella and others with frequent abnormal thicknesses, as well as swollen tips of the tail. Transmission electron microscopy revealed that flagellar accessory structures, including the fibrous sheath and outer dense fibers, were disorganized, and most sperm had also lost the "9+2" microtubule structure. In the testis, IFT25 forms a complex with other IFT proteins. In Ift25 knockout testes, IFT27, an IFT25 binding partner, was missing, and IFT20 and IFT81 levels were also reduced. Our findings suggest that IFT25, although not necessary for the formation of cilia in somatic cells, is indispensable for sperm flagellum formation and male fertility in mice. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  11. Esophageal dysmotility in children with eosinophilic esophagitis: a study using prolonged esophageal manometry.

    PubMed

    Nurko, Samuel; Rosen, Rachel; Furuta, Glenn T

    2009-12-01

    The pathophysiology of dysphagia in patients with eosinophilic esophagitis (EoE) is unknown but may be related to abnormal esophageal motor function. Symptoms rarely occur during stationary esophageal manometry, so it has been difficult to establish an association between symptoms and motor events. Our aim was to evaluate esophageal motor function in children with EoE with the use of stationary manometry and ambulatory prolonged esophageal manometry and pH-metry (PEMP). PEMP was performed in children with EoE and compared with controls and children with gastroesophageal reflux disease (GERD). Peristalsis was considered effective when the esophageal contractions had a normal amplitude and propagation. Results are expressed as mean+/-s.e. Seventeen patients with EoE, 13 with GERD, and 11 controls were studied. Values are expressed as mean+/-s.e. Stationary manometry identified abnormal peristalsis in 41% of children with EoE. During PEMP, children with EoE had an increased number of isolated (16.7+/-3.8 vs. 9.5+/-1.6 vs. 6.5+/-1.1; P<0.03) and high-amplitude contractions (4.1+/-1.2 vs. 1.8+/-0.8 vs. 0.1+/-0.1; P<0.03), and higher percentage ineffective peristalsis both during fasting (70.5%+/-2.5 vs. 57.8%+/-3.0 vs. 53.8%+/-1.9; P<0.05) and during meals (68.4+/-3.4 vs. 55.3+/-2.8 vs. 48.1+/-2.8; P<0.05) when compared with children with GERD and controls. Thirteen patients with EoE experienced 21 episodes of dysphagia, and all correlated with simultaneous abnormal motor function. PEMP allowed the detection of ineffective peristalsis in children with EoE. Symptoms observed in children with EoE may be related to esophageal motor dysfunction.

  12. Pleiotropy in microdeletion syndromes: Neurologic and spermatogenic abnormalities in mice homozygous for the p{sup 6H} deletion are likely due to dysfunction of a single gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinchik, E.M.; Carpenter, D.A.; Handel, M.A.

    1995-07-03

    Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profoundmore » abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.« less

  13. Atypical face shape and genomic structural variants in epilepsy

    PubMed Central

    Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter

    2012-01-01

    Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390

  14. [Face recognition in patients with schizophrenia].

    PubMed

    Doi, Hirokazu; Shinohara, Kazuyuki

    2012-07-01

    It is well known that patients with schizophrenia show severe deficiencies in social communication skills. These deficiencies are believed to be partly derived from abnormalities in face recognition. However, the exact nature of these abnormalities exhibited by schizophrenic patients with respect to face recognition has yet to be clarified. In the present paper, we review the main findings on face recognition deficiencies in patients with schizophrenia, particularly focusing on abnormalities in the recognition of facial expression and gaze direction, which are the primary sources of information of others' mental states. The existing studies reveal that the abnormal recognition of facial expression and gaze direction in schizophrenic patients is attributable to impairments in both perceptual processing of visual stimuli, and cognitive-emotional responses to social information. Furthermore, schizophrenic patients show malfunctions in distributed neural regions, ranging from the fusiform gyrus recruited in the structural encoding of facial stimuli, to the amygdala which plays a primary role in the detection of the emotional significance of stimuli. These findings were obtained from research in patient groups with heterogeneous characteristics. Because previous studies have indicated that impairments in face recognition in schizophrenic patients might vary according to the types of symptoms, it is of primary importance to compare the nature of face recognition deficiencies and the impairments of underlying neural functions across sub-groups of patients.

  15. Gorlin-Goltz syndrome: a rare case report.

    PubMed

    Mohan, Ravi Prakash Sasankoti; Verma, Sankalp; Agarwal, Neha; Singh, Udita

    2013-06-27

    Gorlin-Goltz syndrome (GS), also known as nevoid basal cell carcinoma syndrome, is an infrequent multisystem disease inherited in a dominant autosomal way, which shows a high level of penetrance and variable expressiveness. It is characterised by keratocystic odontogenic tumours (KCOT) in the jaw, multiple basal cell nevi carcinomas and skeletal abnormalities. This syndrome may be diagnosed early by a dentist by routine radiographical examinations in the first decade of life, since the KCOTs are usually one of the first manifestations of the syndrome. This article describes an 11-year-old boy with GS.

  16. Gorlin-Goltz syndrome: a rare case report

    PubMed Central

    Mohan, Ravi Prakash Sasankoti; Verma, Sankalp; Agarwal, Neha; Singh, Udita

    2013-01-01

    Gorlin-Goltz syndrome (GS), also known as nevoid basal cell carcinoma syndrome, is an infrequent multisystem disease inherited in a dominant autosomal way, which shows a high level of penetrance and variable expressiveness. It is characterised by keratocystic odontogenic tumours (KCOT) in the jaw, multiple basal cell nevi carcinomas and skeletal abnormalities. This syndrome may be diagnosed early by a dentist by routine radiographical examinations in the first decade of life, since the KCOTs are usually one of the first manifestations of the syndrome. This article describes an 11-year-old boy with GS. PMID:23814215

  17. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair

    PubMed Central

    Sato, Emi; Zhang, Ling-juan; Dorschner, Robert A.; Adase, Christopher A.; Choudhury, Biswa P.; Gallo, Richard L.

    2018-01-01

    In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39−/− mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R−/− mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair. PMID:28454729

  18. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer.

    PubMed

    Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna

    2007-06-08

    LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.

  19. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.

    PubMed

    Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki

    2014-07-01

    Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  1. Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder.

    PubMed

    Chang, Kiki; Garrett, Amy; Kelley, Ryan; Howe, Meghan; Sanders, Erica Marie; Acquaye, Tenah; Bararpour, Layla; Li, Sherrie; Singh, Manpreet; Jo, Booil; Hallmayer, Joachim; Reiss, Allan

    2017-11-01

    Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD. Copyright © 2017. Published by Elsevier B.V.

  2. Anti-PD-1-induced high-grade hepatitis associated with corticosteroid-resistant T cells: a case report.

    PubMed

    McGuire, Helen M; Shklovskaya, Elena; Edwards, Jarem; Trevillian, Paul R; McCaughan, Geoffrey W; Bertolino, Patrick; McKenzie, Catriona; Gourlay, Ralph; Gallagher, Stuart J; Fazekas de St Groth, Barbara; Hersey, Peter

    2018-04-01

    Effective treatment or prevention of immune side effects associated with checkpoint inhibitor therapy of cancer is an important goal in this new era of immunotherapy. Hepatitis due to immunotherapy with antibodies against PD-1 is uncommon and generally of low severity. We present an unusually severe case arising in a melanoma patient after more than 6 months uncomplicated treatment with anti-PD-1 in an adjuvant setting. The hepatitis rapidly developed resistance to high-dose steroids, requiring anti-thymocyte globulin (ATG) to achieve control. Mass cytometry allowed comprehensive phenotyping of circulating lymphocytes and revealed that CD4 + T cells were profoundly depleted by ATG, while CD8 + T cells, B cells, NK cells and monocytes were relatively spared. Multiple abnormalities in CD4 + T cell phenotype were stably present in the patient before disease onset. These included a population of CCR4 - CCR6 - effector/memory CD4 + T cells expressing intermediate levels of the Th1-related chemokine receptor CXCR3 and abnormally high multi-drug resistance type 1 transporter (MDR1) activity as assessed by a rhodamine 123 excretion assay. Expression of MDR1 has been implicated in steroid resistance and may have contributed to the severity and lack of a sustained steroid response in this patient. The number of CD4 + rhodamine 123-excreting cells was reduced > 3.5-fold after steroid and ATG treatment. This case illustrates the need to consider this form of steroid resistance in patients failing treatment with corticosteroids. It also highlights the need for both better identification of patients at risk and the development of treatments that involve more specific immune suppression.

  3. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder

    PubMed Central

    Fillman, S G; Sinclair, D; Fung, S J; Webster, M J; Shannon Weickert, C

    2014-01-01

    Schizophrenia and bipolar disorder share a number of common features, both symptomatically and biologically. Abnormalities in the neuroimmune and the stress-signaling pathways have been previously identified in brains of individuals with both diseases. However, the possible relationship between abnormalities in stress and neuroimmune signaling within the cortex of people with psychotic illness has not been defined. To test the hypothesis that combined alterations in brain stress responsiveness and neuroimmune/inflammatory status are characteristic of some individuals suffering from major mental illness, we examined gene expression in the Stanley Array Cohort of 35 controls, 35 individuals with schizophrenia and 34 individuals with bipolar disorder. We used levels of 8 inflammatory-related transcripts, of which SERPINA3 was significantly elevated in individuals with schizophrenia (F(2,88)=4.137, P<0.05), and 12 glucocorticoid receptor signaling (stress) pathway transcripts previously examined, to identify two clusters of individuals: a high inflammation/stress group (n=32) and a low (n=68) inflammation/stress group. The high inflammation/stress group has a significantly greater number of individuals with schizophrenia (n=15), and a trend toward having more bipolar disorder individuals (n=11), when compared with controls (n=6). Using these subgroups, we tested which microarray-assessed transcriptional changes may be associated with high inflammatory/stress groups using ingenuity analysis and found that an extended network of gene expression changes involving immune, growth factors, inhibitory signaling and cell death factors also distinguished these groups. Our work demonstrates that some of the heterogeneity in schizophrenia and bipolar disorder may be partially explained by inflammation/stress interactions, and that this biological subtype cuts across Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined categories. PMID:24569695

  4. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes].

    PubMed

    Ma, Hui-rong; Cao, Xiao-hui; Ma, Xue-lian; Chen, Jin-jin; Chen, Jing-wei; Yang, Hui; Liu, Yun-xiao

    2015-08-01

    To observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis. Thirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry. Compared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P < 0.01) and bax expression (P < 0.01) but decreases in the GSH level (P < 0.01) and bcl-2 expression (P < 0.01) in the testis issue of the radiated rats. In comparison with the radiated rats, those of the Liuweidihuang group exhibited nearly normal testicular structure, significantly lower MDA level (P < 0.05), bax expression (P < 0.01), and bcl-2 expression (P < 0.01). Liuweidihuang Pills can improve cellphone electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.

  5. DMA and DMB are the only genes in the class II region of the human MHC needed for class II-associated antigen processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.

    1995-03-15

    Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encodedmore » HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.« less

  6. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D

    2015-09-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds or...

  9. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy.

    PubMed

    Rabbani, Naila; Xue, Mingzhan; Weickert, Martin O; Thornalley, Paul J

    2018-04-01

    Glyoxalase 1 (Glo1) is part of the glyoxalase system in the cytoplasm of all human cells. It catalyses the glutathione-dependent removal of the endogenous reactive dicarbonyl metabolite, methylglyoxal (MG). MG is formed mainly as a side product of anaerobic glycolysis. It modifies protein and DNA to form mainly hydroimidazolone MG-H1 and imidazopurinone MGdG adducts, respectively. Abnormal accumulation of MG, dicarbonyl stress, increases adduct levels which may induce apoptosis and replication catastrophe. In the non-malignant state, Glo1 is a tumour suppressor protein and small molecule inducers of Glo1 expression may find use in cancer prevention. Increased Glo1 expression is permissive for growth of tumours with high glycolytic activity and is thereby a biomarker of tumour growth. High Glo1 expression is a cause of multi-drug resistance. It is produced by over-activation of the Nrf2 pathway and GLO1 amplification. Glo1 inhibitors are antitumour agents, inducing apoptosis and necrosis, and anoikis. Tumour stem cells and tumours with high flux of MG formation and Glo1 expression are sensitive to Glo1 inhibitor therapy. It is likely that MG-induced cell death contributes to the mechanism of action of current antitumour agents. Common refractory tumours have high prevalence of Glo1 overexpression for which Glo1 inhibitors may improve therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  11. Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon

    PubMed Central

    Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.

    2016-01-01

    The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854

  12. Detrimental effect of expression of Bt endotoxin Cry1Ac on in vitro regeneration, in vivo growth and development of tobacco and cotton transgenics.

    PubMed

    Rawat, Preeti; Singh, Amarjeet Kumar; Ray, Krishna; Chaudhary, Bhupendra; Kumar, Sanjeev; Gautam, Taru; Kanoria, Shaveta; Kaur, Gurpreet; Kumar, Paritosh; Pental, Deepak; Burma, Pradeep Kumar

    2011-06-01

    High levels of expression of the cry1Ac gene from Bacillus thuringiensis cannot be routinely achieved in transgenic plants despite modifications made in the gene to improve its expression. This has been attributed to the instability of the transcript in a few reports. In the present study, based on the genetic transformation of cotton and tobacco, we show that the expression of the Cry1Ac endotoxin has detrimental effects on both the in vitro and in vivo growth and development of transgenic plants. A number of experiments on developing transgenics in cotton with different versions of cry1Ac gene showed that the majority of the plants did not express any Cry1Ac protein. Based on Southern blot analysis, it was also observed that a substantial number of lines did not contain the cry1Ac gene cassette although they contained the marker gene nptII. More significantly, all the lines that showed appreciable levels of expression were found to be phenotypically abnormal. Experiments on transformation of tobacco with different constructs expressing the cry1Ac gene showed that in vitro regeneration was inhibited by the encoded protein. Further, out of a total of 145 independent events generated with the different cry1Ac gene constructs in tobacco, only 21 showed expression of the Cry1Ac protein, confirming observations made in cotton that regenerants that express high levels of the Cry1Ac protein are selected against during regeneration of transformed events. This problem was circumvented by targeting the Cry1Ac protein to the chloroplast, which also significantly improved the expression of the protein.

  13. [Thrombopenia and radial aplasia: 2 cases with platelet function and ultrastructural studies of megakaryocytes and platelets (author's transl)].

    PubMed

    Juhan, I; Bayle, J; Mattei, J F; Thevenieau, D; Perrimond, H; Muratore, R

    1979-10-01

    The authors report on two cases of congenital thrombopenia with radial aplasia. Both children display several formative abnormalities and a mild thrombopenia; hemorragic manifestations occurred in the first case only. Megacryoblastic to platelets series, as studied with electronic microscopy, show small-sized, "microcytic" and hypogranular megacaryocytes, displaying a maturative disorder (dysmegacaryocytopoiesis). In functional studies, platelets of the first patient show an imperfect nucleotidic release and do not agregate normally with ristocetin. The second case exhibits mostly a PF3 reduction. The variety of expression of the megacaryocytic-platelets disorders appears likewise in the squelettal and visceral malformations. The whole disorder could be ascribed to a pleiotropic abnormal gene with a variable expressivity.

  14. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    PubMed

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study is conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method is performed. Immunohistochemistry (IHC) and western blot are performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. A total of 1372 proteins were quantified and 132 altering expressed proteins were screened, including 86 downregulated expression proteins and 46 upregulated expression proteins (p < 0.05). Bioinformatics analysis showed that differentially expressed proteins participated in numerous biological processes, including oxidation-reduction process, respiratory electron transport chain, and oxidative phosphorylation. Especially, mitochondria-related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM, and NDUFV1, are involved in energy-production process in the matrix and membrane of mitochondria. Results of the experiment show that abnormal electron transport, excessive oxidative stress, and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and is related to the pathogenesis of EOS-PE. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelali, Ala

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers diabetes-induced DNA damage in testis and spermatozoa • Resveratrol does not normalize diabetes-induced increase in total PARP • Resveratrol does not modulate diabetes-induced decrease in PARP1 • Resveratrol normalizes diabetes-induced decrease in SirT1 levels in testis.« less

  16. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  17. Short communication: expression and alternative splicing of POU1F1 pathway genes in preimplantation bovine embryos.

    PubMed

    Laporta, J; Driver, A; Khatib, H

    2011-08-01

    Early embryo loss is a major contributing factor to cow infertility and that 70 to 80% of this loss occurs between d 8 and 16 postfertilization. However, little is known about the molecular mechanisms and the nature of genes involved in normal and abnormal embryonic development. Moreover, information is limited on the contributions of the genomes of dams and of embryos to the development and survival of preimplantation embryos. We hypothesized that proper gene expression level in the developing embryo is essential for embryo survival and pregnancy success. As such, the characterization of expression profiles in early embryos could lead to a better understanding of the mechanisms involved in normal and abnormal embryo development. To test this hypothesis, 2 d-8 embryo populations (degenerate embryos and blastocysts) that differed in morphology and developmental status were investigated. Expression levels of POU1F1 pathway genes were estimated in 4 sets of biological replicate pools of degenerate embryos and blastocysts. The OPN and STAT5A genes were found to be upregulated in degenerate embryos compared with blastocysts, whereas STAT5B showed similar expression levels in both embryo groups. Analysis of splice variants of OPN and STAT5A revealed expression patterns different from the total expression values of these genes. As such, measuring expression of individual transcripts should be considered in gene expression studies. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. [Effects of 5-aza-2-deoxycytidine on methylation status of RECK gene and cancer cell invasion in tongue cancer SCC-4 cells].

    PubMed

    Jiang, Xv

    2014-10-01

    To investigate the effects of 5-aza-2-deoxycytidine on methylation status and invasion ability of RECK gene in tongue cancer SCC-4 cells. Tongue cancer cell line SCC-4 cells were treated with 5-aza-dC at different concentrations for 72 h. Methylation status of RECK gene of SCC-4 cells was detected by methylation specific PCR (MSP), the expression of RECK gene mRNA was detected by real-time quantitative PCR. The expression of RECK protein was detected by Western blot, and the invasion ability of SCC-4 cell was examined by Transwell assay. SPSS13.0 software package was used for statistical analysis. RECK gene of SCC-4 cells was in high methylation status in untreated group, abnormal methylation was effectively reversed by 5-aza-dC treatment. After treatment with different concentration of 5-aza-dC for 72 h, relative mRNA expression level increased gradually (P<0.05). The relative expression level of RECK protein in 5-aza-dC treated group was significantly higher than that in the control group,the invasion ability of SCC-4 cell was decreased gradually. 5-aza-dC treatment for tongue cancer SCC-4 cells can successfully reverse high methylation status of RECK gene and restore the expression of RECK gene mRNA and protein, and reduced the invasion ability.

  19. Acetylated sialic acid residues and blood group antigens localise within the epithelium in microvillous atrophy indicating internal accumulation of the glycocalyx

    PubMed Central

    Phillips, A D; Brown, A; Hicks, S; Schüller, S; Murch, S H; Walker-Smith, J A; Swallow, D M

    2004-01-01

    Background: Microvillous atrophy, a disorder of intractable diarrhoea in infancy, is characterised by the intestinal epithelial cell abnormalities of abnormal accumulation of periodic acid-Schiff (PAS) positive secretory granules within the apical cytoplasm and the presence of microvillous inclusions. The identity of the PAS positive material is not known, and the aim of this paper was to further investigate its composition. Methods: Formaldehyde fixed sections were stained with alcian blue/PAS to identify the acidic or neutral nature of the material, phenylhydrazine blocking was employed to stain specifically for sialic acid, and saponification determined the presence of sialic acid acetylation. The specificity of sialic acid staining was tested by digestion with mild sulphuric acid. Expression of blood group related antigens was tested immunochemically. Results: Alcian blue/PAS staining identified a closely apposed layer of acidic material on the otherwise neutral (PAS positive) brush border in controls. In microvillous atrophy, a triple layer was seen with an outer acidic layer, an unstained brush border region, and accumulation within the epithelium of a neutral glycosubstance that contained acetylated sialic acid. Blood group antigens were detected on the brush border, in mucus, and within goblet cells in controls. In microvillous atrophy they were additionally expressed within the apical cytoplasm of epithelial cells mirroring the PAS abnormality. Immuno electron microscopy localised expression to secretory granules. Conclusions: A neutral, blood group antigen positive, glycosubstance that contains acetylated sialic acid accumulates in the epithelium in microvillous atrophy. Previous studies have demonstrated that the direct and indirect constitutive pathways are intact in this disorder and it is speculated that the abnormal staining pattern reflects accumulation of glycocalyx related material. PMID:15542511

  20. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  1. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia.

    PubMed

    Li, Sheng; Wang, Chengzhong; Wang, Weikai; Liu, Weidong; Zhang, Guiqin

    2018-05-01

    This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn. Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein-protein interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated DEGs were predicted using the WebGestalt online tool.A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein-protein interaction network and module, and might be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential therapeutic targets for the treatment of relapsed ALL.

  2. Atorvastatin prevents angiotensin II-induced high permeability of human arterial endothelial cell monolayers via ROCK signaling pathway.

    PubMed

    Yi, Ren; Xiao-Ping, Gao; Hui, Liang

    2015-03-27

    Intracranial aneurysm, as a common cause of cerebral hemorrhage, is often discovered when the aneurysm ruptures, causing subarachnoid hemorrhage. Unfortunately, the formation of cerebral aneurysm, which is associated with endothelial damage and macrophage migration, still cannot be prevented now. Tight junctions (TJs) open due to the disappearance of TJ proteins occludin and zona occludens-1 (ZO-1) in damaged endothelia, thus allowing macrophage migration and forming cerebral aneurysm. Therefore, cerebral aneurysm formation can be prevented by increasing TJs of the artery endothelium. Interestingly, statin, which can reduce saccular aneurysm, may prevent aneurysm formation through acting on different steps, but the underlying mechanism remains unclear. In this study, angiotensin II (Ang II) significantly increased the permeability of human arterial endothelial cell (HAEC). Moreover, the distribution of ZO-1 in cell-cell junction area and the total expression in HAECs were significantly decreased by Ang II treatment. However, the abnormal distribution and decreased expression of ZO-1 and hyperpermeability of HAECs were significantly reversed by pretreatment with atorvastatin. Furthermore, Ang II-induced phosphorylations of MYPT1, LIMK and MLC2 were significantly inhibited with atorvastatin or Rho kinase (ROCK) inhibitor (H1152) pretreatment. Knockdown of ROCK-II probably abolished Ang II-induced abnormal ZO-1 distribution and expression deficiency and hyperpermeability of HAECs. In conclusion, atorvastatin prevented Ang II-induced rupture of HAEC monolayers by suppressing the ROCK signaling pathway. Our results may explain, at least in part, some beneficial effects of statins on cardiovascular diseases such as intracranial aneurysm. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Possible association of first and high birth order of pregnant women with the risk of isolated congenital abnormalities in Hungary - a population-based case-matched control study.

    PubMed

    Csermely, Gyula; Susánszky, Éva; Czeizel, Andrew E; Veszprémi, Béla

    2014-08-01

    In epidemiological studies at the estimation of risk factors in the origin of specified congenital abnormalities in general birth order (parity) is considered as confounder. The aim of this study was to analyze the possible association of first and high (four or more) birth order with the risk of congenital abnormalities in a population-based case-matched control data set. The large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities included 21,494 cases with different isolated congenital abnormality and their 34,311 matched controls. First the distribution of birth order was compared of 24 congenital abnormality groups and their matched controls. In the second step the possible association of first and high birth order with the risk of congenital abnormalities was estimated. Finally some subgroups of neural-tube defects, congenital heart defects and abdominal wall's defects were evaluated separately. A higher risk of spina bifida aperta/cystica, esophageal atresia/stenosis and clubfoot was observed in the offspring of primiparous mothers. Of 24 congenital abnormality groups, 14 had mothers with larger proportion of high birth order. Ear defects, congenital heart defects, cleft lip± palate and obstructive defects of urinary tract had a linear trend from a lower proportion of first born cases to the larger proportion of high birth order. Birth order showed U-shaped distribution of neural-tube defects and clubfoot, i.e. both first and high birth order had a larger proportion in cases than in their matched controls. Birth order is a contributing factor in the origin of some isolated congenital abnormalities. The higher risk of certain congenital abnormalities in pregnant women with first or high birth order is worth considering in the clinical practice, e.g. ultrasound scanning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Lamina propria macrophage phenotypes in relation to Escherichia coli in Crohn's disease.

    PubMed

    Elliott, Timothy R; Rayment, Neil B; Hudspith, Barry N; Hands, Rebecca E; Taylor, Kirstin; Parkes, Gareth C; Prescott, Natalie J; Petrovska, Liljana; Hermon-Taylor, John; Brostoff, Jonathan; Boussioutas, Alex; Mathew, Christopher G; Bustin, Stephen A; Sanderson, Jeremy D

    2015-07-03

    Abnormal handling of E. coli by lamina propria (LP) macrophages may contribute to Crohn's disease (CD) pathogenesis. We aimed to determine LP macrophage phenotypes in CD, ulcerative colitis (UC) and healthy controls (HC), and in CD, to compare macrophage phenotypes according to E. coli carriage. Mucosal biopsies were taken from 35 patients with CD, 9 with UC and 18 HCs. Laser capture microdissection was used to isolate E. coli-laden and unladen LP macrophages from ileal or colonic biopsies. From these macrophages, mRNA was extracted and cytokine and activation marker expression measured using RT-qPCR. E. coli-laden LP macrophages were identified commonly in mucosal biopsies from CD patients (25/35, 71 %), rarely in UC (1/9, 11 %) and not at all in healthy controls (0/18). LP macrophage cytokine mRNA expression was greater in CD and UC than healthy controls. In CD, E. coli-laden macrophages expressed high IL-10 & CD163 and lower TNFα, IL-23 & iNOS irrespective of macroscopic inflammation. In inflamed tissue, E. coli-unladen macrophages expressed high TNFα, IL-23 & iNOS and lower IL-10 & CD163. In uninflamed tissue, unladen macrophages had low cytokine mRNA expression, closer to that of healthy controls. In CD, intra-macrophage E. coli are commonly found and LP macrophages express characteristic cytokine mRNA profiles according to E. coli carriage. Persistence of E. coli within LP macrophages may provide a stimulus for chronic inflammation.

  5. A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet.

    PubMed

    Ogasawara, Mitsunari; Hirose, Akira; Ono, Masafumi; Aritake, Kosuke; Nozaki, Yasuko; Takahashi, Masaya; Okamoto, Nobuto; Sakamoto, Shuji; Iwasaki, Shinji; Asanuma, Taketoshi; Taniguchi, Taketoshi; Urade, Yoshihiro; Onishi, Saburo; Saibara, Toshiji; Oben, Jude A

    2011-04-01

    The search for effective treatments of non-alcoholic steatohepatitis (NASH), now the most common chronic liver disease in affluent countries, is hindered by a lack of animal models having the range of anthropometric and pathophysiological features as human NASH. To examine if mice treated with gold thioglucose (GTG) - known to induce lesions in the ventromedial hypothalamus, leading to hyperphagia and obesity - and then fed a high-fat diet (HF) had a comprehensive histological and dysmetabolic phenotype resembling human NASH. C57BL/6 mice were injected intraperitoneally with GTG and then fed HF for 12 weeks (GTG+HF). The extent of abdominal adiposity was assayed by CT scanning. A glucose tolerance test and an insulin tolerance test were performed to evaluate insulin resistance (IR). Histological, molecular and biochemical analyses were also performed. Gold thioglucose+HF induced dysmetabolism, with hyperphagia, obesity with increased abdominal adiposity, IR and consequent steatohepatitis, with hepatocyte ballooning, Mallory-Denk bodies, perivenular and pericellular fibrosis as seen in adult NASH, paralleled by an increased expression of the profibrogenic factors, transforming growth factor-β1 and TIMP-1. Plasma adiponectin and the expression of adiponectin receptor 1 and receptor 2 were decreased, while PPAR-γ and FAS were increased in the livers of GTG+HF mice. In addition, GTG+HF mice showed glucose intolerance and severe IR. Treatment with GTG and HF diet induce, in mice, a comprehensive model of human NASH, with the full range of dysmetabolic and histological abnormalities. © 2011 John Wiley & Sons A/S.

  6. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.

    PubMed

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio

    2013-05-01

    Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  7. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula.

    PubMed

    Bernstein, Hans-Gert; Hildebrandt, Jens; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Pahnke, Jens

    2016-11-01

    There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders.

    PubMed

    Sato, Wataru; Toichi, Motomi; Uono, Shota; Kochiyama, Takanori

    2012-08-13

    Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD.We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex-MTG-IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.

  9. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  10. Abnormal patterns of displacement activities: a review and reinterpretation.

    PubMed

    Anselme, Patrick

    2008-09-01

    A series of important theoretical contributions flourished in the years 1950-1970 about displacement activities -- those 'out-of-context' actions expressed by organisms in stressful situations. Nothing really new has appeared thereafter. Although the models address different issues, such as causal factors of displacement, it appears obvious that they do not provide a unified (coherent) approach; they often explain the same phenomena using very different means and turn out to be contradictory on several points. In addition, some problems currently remain unsolved, especially concerning the fact that displacement activities exhibit 'abnormalities' of expression in comparison with the same activities performed in usual context. Each model is here described and criticized in order to evaluate its explanatory power and allow the identification of specific limits. A new, integrative model -- the Anticipatory Dynamics Model (or ADM) -- then attempts to overcome the failures of previous models. The ADM suggests that abnormal patterns of displacement activities result from attentional interference caused by a thwarting experience or conflicting motivations. At least one theoretical prediction of the ADM can be differentiated from that of any other model.

  11. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors

    PubMed Central

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W.; Potter, S. Steven; McKnight, Steven L.

    2004-01-01

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  12. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A

    2017-03-14

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. © 2015 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  14. [Endometrial hyperplasia, diagnosis. Clinical, paraclinical exam and management].

    PubMed

    Pangal, Alexandra; Costăchescu, Gh; Aldea, Marie Jeanne

    2010-01-01

    Factors associated with unopposed estrogenic stimulation such as obesity, exogenous hormone use endometrial hyperplasia are related to the development of the most common form of endometrial carcinoma, that is, the endometroid subtype. We selected a group of patients diagnosed with endometrial hyperplasia by endometrial biopsy and histopathological examination. The main complaint in all cases was abnormal uterine bleeding. All patients had gynecological examination, vaginal ultrasound, hysteroscopy endometrial biopsy or D&C. 32 patients had also immunohistochemical staining for Ki67, EGF, ER, PGR. Cases with ages between 24-67 years were classified as: 100 simple hyperplasia, 10 complex hyperplasia, 43 atypical simple hyperplasia, 7 atypical complex hyperplasia. PR were 40-60% at all forms of hyperplasia, E2R were 30-40% in simple hyperplasia without atypia and 50-70% in complex hyperplasia without atypia. Correlation between immunohistochemical expression of E2R, PGR, Ki-67, EGF and body mass revealed an high immunohistochemical expression of E2R and Ki-67 in patients with hyperplasia without atypia and a low expression and high reactivity of EGF in cases with high body mass. Vaginal ultrasound and hysteroscopy are efficacious completion for histopathological diagnosis. We recommend an age/risk appropriate screening to detect risk factors and early disease in the asymptomatic patients.

  15. Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin

    PubMed Central

    Fox, Edward A.; Murphy, Michelle C.

    2008-01-01

    Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244

  16. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    PubMed

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  17. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency.

    PubMed

    Aoki, V W; Liu, L; Carrell, D T

    2006-01-01

    Sperm protamine deficiency has been associated with human male infertility. However, the aetiology of deregulated protamine expression remains elusive. The objective of this study was to evaluate the underlying aetiology of protamine deficiency in male infertility patients with deregulated protamine expression. Protamine-1 (P1) and protamine-2 (P2) protein concentrations were compared against P1 and P2 mRNA levels in the sperm of 166 male infertility patients and 27 men of known fertility. Protamine protein concentrations were quantified by nuclear protein extraction, gel electrophoresis and densitometry analysis. Semi-quantitative real-time RT-PCR was used to quantify P1 and P2 mRNA levels. P1 mRNA concentrations were significantly increased in patients underexpressing P1 protein versus those with normal and increased P1 levels. In patients with an abnormally low ratio of P1 to P2 (P1/P2 <0.8), there was a significant increase in P1 mRNA retention. Patients underexpressing P2 also had significantly increased mean P2 mRNA levels, although the majority of these P2-deficient patients showed an increased frequency of significantly reduced P2 mRNA levels. This is the first study to concomitantly evaluate P1 and P2 protein and mRNA levels in mature human sperm. Abnormally elevated protamine mRNA retention appears to be associated with aberrant protamine expression in infertile human males. These data suggest that defects in protamine translation regulation may contribute to protamine deficiency in infertile males.

  18. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  19. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen LA; Massingham, Lauren J; Wick, Heather C; Siegel, Ashley E; Tantravahi, Umadevi; Bianchi, Diana W

    2016-09-02

    Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.

  20. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression.

    PubMed

    Marco Antonio, David S; Hartfelder, Klaus

    2017-01-01

    Eye development in insects is best understood in Drosophila melanogaster, but little is known for other holometabolous insects. Combining a morphological with a gene expression analysis, we investigated eye development in the honeybee, putting emphasis on the sex-specific differences in eye size. Optic lobe development starts from an optic lobe anlage in the larval brain, which sequentially gives rise to the lobula, medulla, and lamina. The lamina differentiates in the last larval instar, when it receives optic nerve projections from the developing retina. The expression analysis focused on seven genes important for Drosophila eye development: eyes absent, sine oculis, embryonic lethal abnormal vision, minibrain, small optic lobes, epidermal growth factor receptor, and roughest. All except small optic lobes were more highly expressed in third-instar drone larvae, but then, in the fourth and fifth instar, their expression was sex-specifically modulated, showing shifts in temporal dynamics. The clearest differences were seen for small optic lobes, which is highly expressed in the developing eye of workers, and minibrain and roughest, which showed a strong expression peak coinciding with retina differentiation. A microarray analysis for optic lobe/retina complexes revealed the differential expression of several metabolism-related genes, as well as of two micro-RNAs. While we could not see major morphological differences in the developing eye structures before the pupal stage, the expression differences observed for the seven candidate genes and in the transcriptional microarray profiles indicate that molecular signatures underlying sex-specific optic lobe and retina development become established throughout the larval stages. © 2016 Wiley Periodicals, Inc.

  1. Expression of motility-related molecule Cdc42 in endometrial tissue in women with adenomyosis and ovarian endometriomata.

    PubMed

    Goteri, Gaia; Ciavattini, Andrea; Lucarini, Guendalina; Montik, Nina; Filosa, Alessandra; Stramazzotti, Daniela; Biagini, Graziella; Tranquilli, Andrea Luigi

    2006-09-01

    To evaluate Cdc42 expression in eutopic and ectopic endometrial tissue in patients with adenomyosis and ovarian endometriotic cysts compared with patients without endometriosis. Experimental retrospective study. University hospital. Twenty-four patients with adenomyosis, 19 with ovarian endometriomata, and 9 with fibroids or benign ovarian cysts. Hysterectomy and bilateral oophorectomy. Immunostaining for Cdc42 of eutopic and ectopic endometrial tissues. In eutopic endometrium of patients with adenomyosis and with fibroids or benign ovarian cysts, the intensity of Cdc42 immunostaining was weaker, especially in the specialized stromal cells, compared with cases with ovarian endometriosis (chi(2) test, P=.003). Expression of Cdc42 in eutopic endometrium showed a trend to be higher in the secretory than in the proliferative phase and in patients with ovarian endometriotic cysts compared with patients with adenomyosis (unpaired t test, P=.005), especially in the proliferative phase. An abnormally high expression of Cdc42 in eutopic endometrium in the secretory phase may contribute to the development of ovarian endometriosis, but it does not seem to be involved in the pathogenesis of adenomyosis.

  2. Progestins Upregulate FKBP51 Expression in Human Endometrial Stromal Cells to Induce Functional Progesterone and Glucocorticoid Withdrawal: Implications for Contraceptive- Associated Abnormal Uterine Bleeding.

    PubMed

    Guzeloglu Kayisli, Ozlem; Kayisli, Umit A; Basar, Murat; Semerci, Nihan; Schatz, Frederick; Lockwood, Charles J

    2015-01-01

    Use of long-acting progestin only contraceptives (LAPCs) offers a discrete and highly effective family planning method. Abnormal uterine bleeding (AUB) is the major side effect of, and cause for, discontinuation of LAPCs. The endometria of LAPC-treated women display abnormally enlarged, fragile blood vessels, decreased endometrial blood flow and oxidative stress. To understanding to mechanisms underlying AUB, we propose to identify LAPC-modulated unique gene cluster(s) in human endometrial stromal cells (HESCs). Protein and RNA isolated from cultured HESCs treated 7 days with estradiol (E2) or E2+ medroxyprogesterone acetate (MPA) or E2+ etonogestrel (ETO) or E2+ progesterone (P4) were analyzed by quantitative Real-time (q)-PCR and immunoblotting. HSCORES were determined for immunostained-paired endometria of pre-and 3 months post-Depot MPA (DMPA) treated women and ovariectomized guinea pigs (GPs) treated with placebo or E2 or MPA or E2+MPA for 21 days. In HESCs, whole genome analysis identified a 67 gene group regulated by all three progestins, whereas a 235 gene group was regulated by E2+ETO and E2+MPA, but not E2+P4. Ingenuity pathway analysis identified glucocorticoid receptor (GR) activation as one of upstream regulators of the 235 MPA and ETO-specific genes. Among these, microarray results demonstrated significant enhancement of FKBP51, a repressor of PR/GR transcriptional activity, by both MPA and ETO. q-PCR and immunoblot analysis confirmed the microarray results. In endometria of post-DMPA versus pre-DMPA administered women, FKBP51 expression was significantly increased in endometrial stromal and glandular cells. In GPs, E2+MPA or MPA significantly increased FKBP51 immunoreactivity in endometrial stromal and glandular cells versus placebo- and E2-administered groups. MPA or ETO administration activates GR signaling and increases endometrial FKBP51 expression, which could be one of the mechanisms causing AUB by inhibiting PR and GR-mediated transcription. The resultant PR and/or GR-mediated functional withdrawal may contribute to associated endometrial inflammation, aberrant angiogenesis, and bleeding.

  3. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    PubMed

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience. © 2016 Associated Professional Sleep Societies, LLC.

  4. TD-60 links RalA GTPase function to the CPC in mitosis

    PubMed Central

    Papini, Diana; Langemeyer, Lars; Abad, Maria A.; Kerr, Alastair; Samejima, Itaru; Eyers, Patrick A.; Jeyaprakash, A. Arockia; Higgins, Jonathan M. G.; Barr, Francis A.; Earnshaw, William C.

    2015-01-01

    TD-60 (also known as RCC2) is a highly conserved protein that structurally resembles the Ran guanine exchange factor (GEF) RCC1, but has not previously been shown to have GEF activity. TD-60 has a typical chromosomal passenger complex (CPC) distribution in mitotic cells, but associates with integrin complexes and is involved in cell motility during interphase. Here we show that TD-60 exhibits GEF activity, in vitro and in cells, for the small GTPase RalA. TD-60 or RalA depletion causes spindle abnormalities in prometaphase associated with abnormal centromeric accumulation of CPC components. TD-60 and RalA apparently work together to contribute to the regulation of kinetochore–microtubule interactions in early mitosis. Importantly, several mitotic phenotypes caused by TD-60 depletion are reverted by the expression of a GTP-locked mutant, RalA (Q72L). The demonstration that a small GTPase participates in the regulation of the CPC reveals a level of mitotic regulation not suspected in previous studies. PMID:26158537

  5. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

    PubMed

    Fero, M L; Rivkin, M; Tasch, M; Porter, P; Carow, C E; Firpo, E; Polyak, K; Tsai, L H; Broudy, V; Perlmutter, R M; Kaushansky, K; Roberts, J M

    1996-05-31

    Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.

  6. Activation of RNA Polymerase III Transcription in Cells Transformed by Simian Virus 40

    PubMed Central

    Larminie, Christopher G. C.; Sutcliffe, Josephine E.; Tosh, Kerrie; Winter, Andrew G.; Felton-Edkins, Zoe A.; White, Robert J.

    1999-01-01

    RNA polymerase (Pol) III transcription is abnormally active in fibroblasts that have been transformed by simian virus 40 (SV40). This report presents evidence that two separate components of the general Pol III transcription apparatus, TFIIIB and TFIIIC2, are deregulated following SV40 transformation. TFIIIC2 subunits are expressed at abnormally high levels in SV40-transformed cells, an effect which is observed at both protein and mRNA levels. In untransformed fibroblasts, TFIIIB is subject to repression through association with the retinoblastoma protein RB. The interaction between RB and TFIIIB is compromised following SV40 transformation. Furthermore, the large T antigen of SV40 is shown to relieve repression by RB. The E7 oncoprotein of human papillomavirus can also activate Pol III transcription, an effect that is dependent on its ability to bind to RB. The data provide evidence that both TFIIIB and TFIIIC2 are targets for activation by DNA tumor viruses. PMID:10373542

  7. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  8. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  9. Excess caffeine exposure impairs eye development during chick embryogenesis

    PubMed Central

    Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong

    2014-01-01

    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305

  10. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.

    PubMed

    Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua

    2015-11-01

    Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Intestinal inflammation modulates expression of the iron-regulating hormone hepcidin depending on erythropoietic activity and the commensal microbiota.

    PubMed

    Shanmugam, Nanda Kumar N; Trebicka, Estela; Fu, Ling-Lin; Shi, Hai Ning; Cherayil, Bobby J

    2014-08-01

    States of chronic inflammation such as inflammatory bowel disease are often associated with dysregulated iron metabolism and the consequent development of an anemia that is caused by maldistribution of iron. Abnormally elevated expression of the hormone hepcidin, the central regulator of systemic iron homeostasis, has been implicated in these abnormalities. However, the mechanisms that regulate hepcidin expression in conditions such as inflammatory bowel disease are not completely understood. To clarify this issue, we studied hepcidin expression in mouse models of colitis. We found that dextran sulfate sodium-induced colitis inhibited hepcidin expression in wild-type mice but upregulated it in IL-10-deficient animals. We identified two mechanisms contributing to this difference. Firstly, erythropoietic activity, as indicated by serum erythropoietin concentrations and splenic erythropoiesis, was higher in the wild-type mice, and pharmacologic inhibition of erythropoiesis prevented colitis-associated hepcidin downregulation in these animals. Secondly, the IL-10 knockout mice had higher expression of multiple inflammatory genes in the liver, including several controlled by STAT3, a key regulator of hepcidin. The results of cohousing and fecal transplantation experiments indicated that the microbiota was involved in modulating the expression of hepcidin and other STAT3-dependent hepatic genes in the context of intestinal inflammation. Our observations thus demonstrate the importance of erythropoietic activity and the microbiota in influencing hepcidin expression during colitis and provide insight into the dysregulated iron homeostasis seen in inflammatory diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Expression of β-catenin protein in hepatocellular carcinoma and its relationship with alpha-fetoprotein.

    PubMed

    Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua

    2016-12-01

    This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.

  13. Role of the Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    DTIC Science & Technology

    2005-05-01

    AD Award Number: DAMD17-03-1-0243 TITLE: Role of the Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast...Glycoprotein Processing in Breast Cancer 5b.GRANTNUMBER Cells DAAD17-03-1-0243 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Sergey N... processing of glycoproteins, exocytosis, protein delivery systems, gene expression, western and northern blot analysis, immunotiuorescence, gradient

  14. Neuropathogenesis of persistent infection with Borna disease virus.

    PubMed

    Honda, Tomoyuki

    2015-01-01

    Borna disease virus (BDV), belonging to the non-segmented, negative-stranded RNA viruses, persistently infects the central nervous system of many mammals. Neonatal BDV infection in rodent models induces neurodevelopmental disturbance without overt inflammatory responses, resulting in a wide range of neurobehavioral abnormalities, such as anxiety, abnormal play behaviors, and cognitive deficits, resembling those of autism patients. Therefore, studies of BDV could provide a valuable model to investigate neuropathogenesis of neurodevelopmental disorders. However, the detailed neuropathogenesis of BDV has not been revealed. Here, we proposed two novel mechanisms that may contribute to BDV neuropathology. The first mechanism is abnormal IGF signaling. Using transgenic mice expressing BDV P protein in glial cells (P-Tg) that show neurobehavioral abnormalities resembling those in BDV-infected animals, we found that the upregulation of insulin-like growth factor (IGF) binding protein 3 in the astrocytes disturbs the IGF signaling and induces the Purkinje cell loss in BDV infection. The other is the integration of BDV sequences into the host genome. We recently found that BDV mRNAs are reverse-transcribed and integrated into the genome of infected cells. BDV integrants have the potential to produce their translated products or piRNAs, suggesting that BDV might exhibit the pathogenicity thorough these molecules. We also demonstrated that BDV integrants affect neighboring gene expression. Collectively, BDV integrants may alter transcriptome of infected cells, affecting BDV neuropathology.

  15. Anderson's disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities.

    PubMed

    Silvain, M; Bligny, D; Aparicio, T; Laforêt, P; Grodet, A; Peretti, N; Ménard, D; Djouadi, F; Jardel, C; Bégué, J M; Walker, F; Schmitz, J; Lachaux, A; Aggerbeck, L P; Samson-Bouma, M E

    2008-12-01

    Anderson's disease (AD) or chylomicron retention disease (CMRD) is a rare hereditary lipid malabsorption syndrome linked to SARA2 gene mutations. We report in this study a novel mutation in two sisters for which the Sar1b protein is predicted to be truncated by 32 amino acids at its carboxyl-terminus. Because the SARA2 gene is also expressed in the muscle, heart, liver and placenta, extraintestinal clinical manifestations may exist. For the first time, we describe in this study in the two sisters muscular as well as cardiac abnormalities that could be related to the reported expression of SARA2 in these tissues. We also evaluated six other patients for potential manifestations of the SARA2 mutation. The creatine phosphokinase levels were increased in all patients [1.5-9.4 x normal (N)] and transaminases were moderately elevated in five of the eight patients (1.2-2.6 x N), probably related to muscle disease rather than to liver dysfunction. A decreased ejection fraction occurred in one patient (40%, N: 60%). The muscle, liver and placental tissues that were examined had no specific abnormalities and, in particular, no lipid accumulation. These results suggest that myolysis and other extraintestinal abnormalities can occur in AD/CMRD and that the clinical evaluation of patients should reflect this.

  16. Abnormal troponin I levels in a thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-01-21

    Thalassemia is a congenital hemoglobinopathy leading to anemia because of impaired erythropoiesis and peripheral hemolysis. Thalassemia major patients are transfusion dependent and it results in iron accumulation. The heart is one of the major organs affected with iron overload and iron induced cardiac dysfunction (pump and conduction abnormalities) remains the number one cause of death among thalassemia major patients. It has been reported that a high ferritin concentration is related to high troponin levels in hemodialysis patients receiving more intravenous iron sucrose. Abnormal troponin I levels have also been reported without acute coronary syndrome. We present a case of abnormal troponin I levels in Thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome. To our knowledge, this is the first report of abnormal troponin I levels in a Thalassemia major patient with high ferritin concentration and without acute coronary syndrome and also this case focuses attention on the importance of the correct evaluation of abnormal troponin I levels. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  17. Neuregulin: First Steps Towards a Structure

    NASA Technical Reports Server (NTRS)

    Ferree, D. S.; Malone, C. C.; Karr, L. J.

    2003-01-01

    Neuregulins are growth factor domain proteins with diverse bioactivities, such as cell proliferation, receptor binding, and differentiation. Neureguh- 1 binds to two members of the ErbB class I tyrosine kinase receptors, ErbB3 and ErbB4. A number of human cancers overexpress the ErbB receptors, and neuregulin can modulate the growth of certain cancer types. Neuregulin-1 has been shown to promote the migration of invasive gliomas of the central nervous system. Neuregulin has also been implicated in schizophrenia, multiple sclerosis and abortive cardiac abnormalities. The full function of neuregulin-1 is not known. In this study we are inserting a cDNA clone obtained from American Type Culture Collection into E.coli expression vectors to express neuregulin- 1 protein. Metal chelate affinity chromatography is used for recombinant protein purification. Crystallization screening will proceed for X-ray diffraction studies following expression, optimization, and protein purification. In spite of medical and scholarly interest in the neuregulins, there are currently no high-resolution structures available for these proteins. Here we present the first steps toward attaining a high-resolution structure of neuregulin- 1, which will help enable us to better understand its function

  18. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  19. Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia.

    PubMed

    Lewintre, Eloisa Jantus; Martín, Cristina Reinoso; Ballesteros, Carlos García; Montaner, David; Rivera, Rosa Farrás; Mayans, José Ramón; García-Conde, Javier

    2009-02-01

    Chronic lymphocytic leukemia is an adult-onset leukemia with a heterogeneous clinical behavior. When chronic lymphocytic leukemia cases were divided on the basis of IgV(H) mutational status, widely differing clinical courses were revealed. Since IgV(H) sequencing is difficult to perform in a routine diagnostic laboratory, finding a surrogate for IgV(H) mutational status seems an important priority. In the present study, we proposed the use of Cryptochrome-1 as a new prognostic marker in early-stage chronic lymphocytic leukemia. Seventy patients (Binet stage A, without treatment) were included in the study. We correlated Cryptochrome-1 mRNA with well established prognostic markers such as IgV(H) mutations, ZAP70, LPL or CD38 expression and chromosomal abnormalities. High Cryptochrome-1 expression correlated with IgV(H) unmutated samples. In addition, Cryptochrome-1 was a valuable predictor of disease progression in early-stage chronic lymphocytic leukemia, therefore it can be introduced in clinical practice with the advantage of a simplified method of quantification.

  20. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    PubMed

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the basis for the defective neural tube patterning observed in embryos of diabetic pregnancies.

  1. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis.

    PubMed

    Horal, Melissa; Zhang, Zhiquan; Stanton, Robert; Virkamäki, Antti; Loeken, Mary R

    2004-08-01

    Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.

  2. High glucose induces podocyte epithelial-to-mesenchymal transition by demethylation-mediated enhancement of MMP9 expression

    PubMed Central

    Ling, Li; Chen, Libo; Zhang, Changning; Gui, Shuyan; Zhao, Haiyan; Li, Zhengzhang

    2018-01-01

    Abnormal expression of matrix metalloproteinase 9 (MMP9) is correlated with podocyte epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the mechanisms underlying this process are not well defined. Site-specific demethylation may sustain high expression levels of target genes. In the present study, in order to investigate the association between DNA demethylation of MMP9 promoter and podocyte EMT in DN, human podocytes were cultured in high-glucose (HG) medium and a rat model of DN was established by intraperitoneal injection of streptozotocin (STZ) to determine whether site-specific demethylation of the MMP9 promoter was involved in regulating podocyte EMT in DN. The MTT assay was used to assess the effects of HG culture on the growth of podocytes, and the demethylation status of the MMP9 promoter was assessed by bisulfite sequencing polymerase chain reaction. mRNA and protein expression levels of MMP9, α-smooth muscle actin (α-SMA), podocalyxin and fibronectin-1 in podocytes were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses. The results demonstrated that HG treatment up regulated the expression of MMP9, α-SMA and fibronectin-1, but down regulated the expression of podocalyxin in podocytes. The MMP9 promoter region was revealed to contain a variety of demethylated CpG sites, and HG treatment reduced the rate of MMP9 promotermethylation, which, in turn, enhanced its promoter activity. In summary, these data suggested that demethylation of the MMP9 promoter may serve an important role in podocyte EMT in DN. The demethylation status of the MMP9 promoter maybe used as an important prognostic marker of DN in clinic. PMID:29436620

  3. Prader-Willi Syndrome: Intellectual Abilities and Behavioural Features by Genetic Subtype

    ERIC Educational Resources Information Center

    Milner, Katja M.; Craig, Ellen E.; Thompson, Russell J.; Veltman, Marijcke W. M.; Simon Thomas, N.; Roberts, Sian; Bellamy, Margaret; Curran, Sarah R.; Sporikou, Caroline M. J.; Bolton, Patrick F.

    2005-01-01

    Background: Studies of chromosome 15 abnormality have implicated over-expression of paternally imprinted genes in the 15q11-13 region in the aetiology of autism. To test this hypothesis we compared individuals with Prader-Willi syndrome (PWS) due to uniparental disomy (UPD--where paternally imprinted genes are over-expressed) to individuals with…

  4. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta.

    PubMed

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-23

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies.

  5. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta

    PubMed Central

    Malassiné, André; Frendo, Jean-Louis; Blaise, Sandra; Handschuh, Karen; Gerbaud, Pascale; Tsatsaris, Vassilis; Heidmann, Thierry; Evain-Brion, Danièle

    2008-01-01

    Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies. PMID:18215254

  6. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  7. Generation and phenotypic analysis of mice lacking all urea transporters.

    PubMed

    Jiang, Tao; Li, Yingjie; Layton, Anita T; Wang, Weiling; Sun, Yi; Li, Min; Zhou, Hong; Yang, Baoxue

    2017-02-01

    Urea transporters (UT) are a family of transmembrane urea-selective channel proteins expressed in multiple tissues and play an important role in the urine concentrating mechanism of the mammalian kidney. UT inhibitors have diuretic activity and could be developed as novel diuretics. To determine if functional deficiency of all UTs in all tissues causes physiological abnormality, we established a novel mouse model in which all UTs were knocked out by deleting an 87 kb of DNA fragment containing most parts of Slc14a1 and Slc14a2 genes. Western blot analysis and immunofluorescence confirmed that there is no expression of urea transporter in these all-UT-knockout mice. Daily urine output was nearly 3.5-fold higher, with significantly lower urine osmolality in all-UT-knockout mice than that in wild-type mice. All-UT-knockout mice were not able to increase urinary urea concentration and osmolality after water deprivation, acute urea loading, or high protein intake. A computational model that simulated UT-knockout mouse models identified the individual contribution of each UT in urine concentrating mechanism. Knocking out all UTs also decreased the blood pressure and promoted the maturation of the male reproductive system. Thus, functional deficiency of all UTs caused a urea-selective urine-concentrating defect with little physiological abnormality in extrarenal organs. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Generation and phenotypic analysis of mice lacking all urea transporters

    PubMed Central

    Jiang, Tao; Li, Yingjie; Layton, Anita T.; Wang, Weiling; Sun, Yi; Li, Min; Zhou, Hong; Yang, Baoxue

    2017-01-01

    Urea transporters (UT) are a family of transmembrane urea-selective channel proteins expressed in multiple tissues and play an important role in the urine concentrating mechanism of the mammalian kidney. UT inhibitors have been identified to have diuretic activity and might be developed as novel diuretics. To determine if functional deficiency of all UTs in all tissues causes physiological abnormality, we established a novel mouse model in which all UTs were knocked out by deleting an 87 kb of DNA fragment containing most parts of Slc14a1 and Slc14a2 genes. Western blot analysis and immunofluorescence confirmed that there is no expression of urea transporter in all-UT-knockout mice. Daily urine output was nearly 3.5-fold higher, with significantly lower urine osmolality, in all-UT-knockout-mice than that in wild-type mice, and urine osmolality was significantly lower. All-UT-knockout mice were not able to increase urinary urea concentration and osmolality after water deprivation, acute urea loading or high protein intake. A computational model that simulated UT knockout mouse models identified the individual contribution of each UT in urine concentrating mechanism. Knocking out all UTs also decreased the blood pressure and promoted the maturation of the male reproductive system. These results revealed that functional deficiency of all UTs caused urea selective urine concentrating defect with little physiological abnormality in extrarenal organs. PMID:27914708

  9. A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.

    PubMed

    Chao, Hsiao-Tuan; Davids, Mariska; Burke, Elizabeth; Pappas, John G; Rosenfeld, Jill A; McCarty, Alexandra J; Davis, Taylor; Wolfe, Lynne; Toro, Camilo; Tifft, Cynthia; Xia, Fan; Stong, Nicholas; Johnson, Travis K; Warr, Coral G; Yamamoto, Shinya; Adams, David R; Markello, Thomas C; Gahl, William A; Bellen, Hugo J; Wangler, Michael F; Malicdan, May Christine V

    2017-01-05

    Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Effects of Two Training Programs on Transcriptional Levels of Neurotrophins and Glial Cells Population in Hippocampus of Experimental Multiple Sclerosis.

    PubMed

    Naghibzadeh, Maryam; Ranjbar, Rouhollah; Tabandeh, Mohammad Reza; Habibi, Abdolhamid

    2018-05-18

    The aim of the present study was to investigate the effects of high-intensity interval training (HIIT) versus low-intensity continuous training (LICT) on transcriptional levels of neurotrophic factors and oligodendrocyte/microglia cell loss in a cuprizone (CP) induced animal model of demyelination. Male C57BL/6 mice were assigned to six groups: control (C), cuprizone-induced demyelination (CP), interval training (IT), continuous training (CT), IT plus CP (ITCP), and CT plus CP (CTCP). Training programs on the treadmill were performed for four weeks, and then demyelination was induced by feeding mice a diet containing 0.2% cuprizone for five weeks. Animals that received cuprizone showed poorer motor function, lower expression of BDNF, GDNF, NGF, and fewer oligodendrocytes in the hippocampus compared to the control animals. The numbers of oligodendrocyte and microglia cells increased in the ITCP group compared to the CTCP group (P<0.05). Both training programs increased the mRNA levels of BDNF, GDNF and NGF, and the HIIT program was more effective than the LICT program (P<0.05). Both exercise programs prevented the abnormal neurological movements induced by cuprizone. Our results indicated that HIIT versus LICT had a greater neuroprotective effect against multiple sclerosis by improving gene expression for abnormal neurotrophins and cellular loss in the hippocampus. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Molecular and Functional Characterization of GR2-R1 Event Based Backcross Derived Lines of Golden Rice in the Genetic Background of a Mega Rice Variety Swarna

    PubMed Central

    Bollinedi, Haritha; S., Gopala Krishnan; Prabhu, Kumble Vinod; Singh, Nagendra Kumar; Mishra, Sushma; Khurana, Jitendra P.; Singh, Ashok Kumar

    2017-01-01

    Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB) using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm) but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI) driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis. PMID:28068433

  12. Molecular and Functional Characterization of GR2-R1 Event Based Backcross Derived Lines of Golden Rice in the Genetic Background of a Mega Rice Variety Swarna.

    PubMed

    Bollinedi, Haritha; S, Gopala Krishnan; Prabhu, Kumble Vinod; Singh, Nagendra Kumar; Mishra, Sushma; Khurana, Jitendra P; Singh, Ashok Kumar

    2017-01-01

    Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB) using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm) but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI) driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis.

  13. Abnormal dark-adapted electroretinogram in Best's vitelliform macular degeneration.

    PubMed

    Lachapelle, P; Quigley, M G; Polomeno, R C; Little, J M

    1988-10-01

    It is generally well accepted that in Best's vitelliform macular degeneration (BVMD) the electroretinogram (ERG) is normal whereas the electro-oculogram (EOG) is markedly abnormal. We describe a patient in whom BVMD was suspected on the basis of the clinical findings, EOG and family history (one of her daughters had the typical vitelliform lesion). However, her dark-adapted ERG was markedly abnormal. Similar anomalies were found in the dark-adapted ERG of the daughter. While the temporal features of the various ERG waves were well preserved, a substantial decrease in the amplitude of specific segments of the ERG signal was observed. A similar decrease in the amplitude of the oscillatory potentials was also found. We believe that this unusual combination of BVMD and abnormal dark-adapted ERG may be due to the reported reduced penetrance and variable expressivity of the BVMD gene(s).

  14. Introduction to the special section: Myelin and oligodendrocyte abnormalities in schizophrenia.

    PubMed

    Haroutunian, Vahram; Davis, Kenneth L

    2007-08-01

    A central tenet of modern views of the neurobiology of schizophrenia is that the symptoms of schizophrenia arise from a failure of adequate communication between different brain regions and disruption of the circuitry that underlies behaviour and perception. Historically this disconnectivity syndrome has been approached from a neurotransmitter-based perspective. However, efficient communication between brain circuits is also contingent on saltatory signal propagation and salubrious myelination of axons. The papers in this Special Section examine the neuroanatomical and molecular biological evidence for abnormal myelination and oligodendroglial function in schizophrenia through studies of post-mortem brain tissue and animal model systems. The picture that emerges from the studies described suggests that although schizophrenia is not characterized by gross abnormalities of white matter such as those evident in multiple sclerosis, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths.

  15. Molecular Diagnostics in the Neoplasms of the Pancreas, Liver, Gallbladder, and Extrahepatic Biliary Tract: 2018 Update.

    PubMed

    Zhang, Lei; Bluth, Martin H; Bhalla, Amarpreet

    2018-06-01

    Pancreatic neoplasms, including ductal adenocarcinoma, solid pseudopapillary neoplasm, pancreatic endocrine neoplasms, acinar cell carcinoma, and pancreatoblastoma, are associated with different genetic abnormalities. Hepatic adenomas with beta-catenin exon 3 mutation are associated with a high risk of malignancy. Hepatic adenoma with arginosuccinate synthetase 1 expression or sonic hedgehog mutations are associated with a risk of bleeding. Hepatocellular carcinoma and choangiocarcinoma display heterogeneity at both morphologic and molecular levels Cholangiocellular carcinoma is most commonly associated with IDH 1/2 mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.

    PubMed

    Cabral, Vinicius Duarte; Cerski, Marcelle Reesink; Sa Brito, Ivana Trindade; Kliemann, Lucia Maria

    2016-10-22

    Abnormalities in tumor suppressors p14, p16 and p53 are reported in several human cancers. In ovarian epithelial carcinogenesis, p16 and p53 show higher immunohistochemical staining frequencies in malignant tumors and are associated with poor prognoses. p14 was only analyzed in carcinomas, with conflicting results. There are no reports on its expression in benign and borderline tumors. This study aims to determine p14, p16 and p53 expression frequencies in ovarian benign, borderline and malignant tumors and their associations with clinical parameters. A cross-sectional study utilizing immunohistochemistry was performed on paraffin-embedded ovarian epithelial tumor samples. Clinical data were collected from medical records. Fisher's exact test and the Bonferroni correction were performed for frequency associations. Survival comparisons utilized Kaplan-Meier and log rank testing. Associations were considered significant when p < 0.05. p14 absent expression was associated with malignant tumors (60 % positive) (p = 0.000), while 93 % and 94 % of benign and borderline tumors, respectively, were positive. p16 was positive in 94.6 % of carcinomas, 75 % of borderline and 45.7 % of benign tumors (p = 0.000). p53 negative staining was associated with benign tumors (2.9 % positive) (p = 0.016) but no difference was observed between borderline (16.7 %) and malignant tumors (29.7 %) (p = 0.560). No associations were found between expression rates, disease-free survival times or clinical variables. Carcinoma subtypes showed no difference in expression. This is the first description of p14 expression in benign and borderline tumors. It remains stable in benign and borderline tumors, while carcinomas show a significant absence of staining. This may indicate that p14 abnormalities occur later in carcinogenesis. p16 and p53 frequencies increase from benign to borderline and malignant tumors, similarly to previous reports, possibly reflecting the accumulation of inactive mutant protein. The small sample size may have prevented statistically significant survival analyses and clinical correlations. Future studies should investigate genetic abnormalities in p14 coding sequences and include all types of ovarian epithelial tumors. Bigger sample sizes may be needed for significant associations.

  17. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors

    PubMed Central

    Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-01-01

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279

  18. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors.

    PubMed

    Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-07-20

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.

  19. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  20. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    PubMed

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  1. Prolonged striatal disinhibition as a chronic animal model of tic disorders.

    PubMed

    Vinner, Esther; Israelashvili, Michal; Bar-Gad, Izhar

    2017-12-01

    Experimental findings and theoretical models have associated Tourette syndrome with abnormal striatal inhibition. The expression of tics, the hallmark symptom of this disorder, has been transiently induced in non-human primates and rodents by the injection of GABA A antagonists into the striatum, leading to temporary disinhibition. The novel chronic model of tic expression utilizes mini-osmotic pumps implanted subcutaneously in the rat's back for prolonged infusion of bicuculline into the dorsolateral striatum. Tics were expressed on the contralateral side to the infusion over a period of multiple days. Tic expression was stable, and maintained similar properties throughout the infusion period. Electrophysiological recordings revealed the existence of tic-related local field potential spikes and individual neuron activity changes that remained stable throughout the infusion period. The striatal disinhibition model provides a unique combination of face validity (tic expression) and construct validity (abnormal striatal inhibition) but is limited to sub-hour periods. The new chronic model extends the period of tic expression to multiple days and thus enables the study of tic dynamics and the effects of behavior and pharmacological agents on tic expression. The chronic model provides similar behavioral and neuronal correlates of tics as the acute striatal disinhibition model but over prolonged periods of time, thus providing a unique, basal ganglia initiated model of tic expression. Chronic expression of symptoms is the key to studying the time varying properties of Tourette syndrome and the effects of multiple internal and external factors on this disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Altered Kinematics of Facial Emotion Expression and Emotion Recognition Deficits Are Unrelated in Parkinson's Disease.

    PubMed

    Bologna, Matteo; Berardelli, Isabella; Paparella, Giulia; Marsili, Luca; Ricciardi, Lucia; Fabbrini, Giovanni; Berardelli, Alfredo

    2016-01-01

    Altered emotional processing, including reduced emotion facial expression and defective emotion recognition, has been reported in patients with Parkinson's disease (PD). However, few studies have objectively investigated facial expression abnormalities in PD using neurophysiological techniques. It is not known whether altered facial expression and recognition in PD are related. To investigate possible deficits in facial emotion expression and emotion recognition and their relationship, if any, in patients with PD. Eighteen patients with PD and 16 healthy controls were enrolled in this study. Facial expressions of emotion were recorded using a 3D optoelectronic system and analyzed using the facial action coding system. Possible deficits in emotion recognition were assessed using the Ekman test. Participants were assessed in one experimental session. Possible relationship between the kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients were evaluated using the Spearman's test and multiple regression analysis. The facial expression of all six basic emotions had slower velocity and lower amplitude in patients in comparison to healthy controls (all P s < 0.05). Patients also yielded worse Ekman global score and disgust, sadness, and fear sub-scores than healthy controls (all P s < 0.001). Altered facial expression kinematics and emotion recognition deficits were unrelated in patients (all P s > 0.05). Finally, no relationship emerged between kinematic variables of facial emotion expression, the Ekman test scores, and clinical and demographic data in patients (all P s > 0.05). The results in this study provide further evidence of altered emotional processing in PD. The lack of any correlation between altered facial emotion expression kinematics and emotion recognition deficits in patients suggests that these abnormalities are mediated by separate pathophysiological mechanisms.

  3. [Brief video-assisted observation of visual attention, facial expression, and motor skills for diagnosis of attention deficit/hyperactivity disorder (ADHD)].

    PubMed

    Kühle, H J; Hoch, C; Rautzenberg, P; Jansen, F

    2001-10-01

    Can video assisted observation of visual attention, facial expression and motor skills contribute to the diagnosis of attention deficit/hyperactivity disorder (ADHD)? 20 children from 6 to 10 years of age, diagnosed for ADHD following the DSM-IV criteria, and an age and sex matched control group of 20 children with harmless upper airway infections were filmed during 3 minutes playing cards with their mothers and 7 minutes of oral arithmetic exercises. Two persons were trained for eight hours in recognizing 22 signs for visual attention loss, alterated facial expression like oversized and sustained smile and abnormal motor skills in ADHD-patient videos. Then they viewed minutes 2 and 3 and 3 and 4 of the 40 children in a randomized sequence and scored the signs. 8 of the 22 signs showed high (r > .75) and 9 showed medium (r > .6) interrater correlations. The presence of signs in the ADHD and in the control group was highly significantly different (a = 0.01, U-Test of Mann and Whitney) for 10 of the 22 signs and significantly different for other 4 signs (a = 0.05). The four field table comparison between the frequency of the signs showed correct positioning in 80% of all cases. The loss of visual attention was the most frequent sign in ADHD children. The signs of alterated facial expression were also among the highly correlated signs. These are used by us to find the individual dose for stimulant medication.

  4. The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia.

    PubMed

    Papakonstantinou, Nikos; Ntoufa, Stavroula; Chartomatsidou, Elisavet; Kotta, Konstantia; Agathangelidis, Andreas; Giassafaki, Lefki; Karamanli, Tzeni; Bele, Panagiota; Moysiadis, Theodoros; Baliakas, Panagiotis; Sutton, Lesley Ann; Stavroyianni, Niki; Anagnostopoulos, Achilles; Makris, Antonios M; Ghia, Paolo; Rosenquist, Richard; Stamatopoulos, Kostas

    2016-06-14

    The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL.

  5. The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia

    PubMed Central

    Chartomatsidou, Elisavet; Kotta, Konstantia; Agathangelidis, Andreas; Giassafaki, Lefki; Karamanli, Tzeni; Bele, Panagiota; Moysiadis, Theodoros; Baliakas, Panagiotis; Sutton, Lesley Ann; Stavroyianni, Niki; Anagnostopoulos, Achilles; Makris, Antonios M.; Ghia, Paolo; Rosenquist, Richard; Stamatopoulos, Kostas

    2016-01-01

    The histone methyltransferase EZH2 induces gene repression through trimethylation of histone H3 at lysine 27 (H3K27me3). EZH2 overexpression has been reported in many types of cancer and associated with poor prognosis. Here we investigated the expression and functionality of EZH2 in chronic lymphocytic leukemia (CLL). Aggressive cases with unmutated IGHV genes (U-CLL) displayed significantly higher EZH2 expression compared to indolent CLL cases with mutated IGHV genes (M-CLL); furthermore, in U-CLL EZH2 expression was upregulated with disease progression. Within U-CLL, EZH2high cases harbored significantly fewer (p = 0.033) TP53 gene abnormalities compared to EZH2low cases. EZH2high cases displayed high H3K27me3 levels and increased viability suggesting that EZH2 is functional and likely confers a survival advantage to CLL cells. This argument was further supported by siRNA-mediated downmodulation of EZH2 which resulted in increased apoptosis. Notably, at the intraclonal level, cell proliferation was significantly associated with EZH2 expression. Treatment of primary CLL cells with EZH2 inhibitors induced downregulation of H3K27me3 levels leading to increased cell apoptosis. In conclusion, EZH2 is overexpressed in adverse-prognosis CLL and associated with increased cell survival and proliferation. Pharmacologic inhibition of EZH2 catalytic activity promotes apoptosis, highlighting EZH2 as a novel potential therapeutic target for specific subgroups of patients with CLL. PMID:27191993

  6. Abnormal electrocardiographic findings in athletes: Correlation with intensity of sport and level of competition.

    PubMed

    Dores, Hélder; Malhotra, Aneil; Sheikh, Nabeel; Millar, Lynne; Dhutia, Harshil; Narain, Rajay; Merghani, Ahmed; Papadakis, Michael; Sharma, Sanjay

    2016-11-01

    Athletes can exhibit abnormal electrocardiogram (ECG) phenotypes that require further evaluation prior to competition. These are apparently more prevalent in high-intensity endurance sports. The purpose of this study was to assess the association between ECG findings in athletes and intensity of sport and level of competition. A cohort of 3423 competitive athletes had their ECGs assessed according to the Seattle criteria (SC). The presence of abnormal ECGs was correlated with: (1) intensity of sport (low/moderate vs. at least one high static or dynamic component); (2) competitive level (regional vs. national/international); (3) training volume (≤20 vs. >20 hours/week); (4) type of sport (high dynamic vs. high static component). The same endpoints were studied according to the 'Refined Criteria' (RC). Abnormal ECGs according to the SC were present in 225 (6.6%) athletes, more frequently in those involved in high-intensity sports (8.0% vs. 5.4%; p=0.002), particularly in dynamic sports, and competing at national/international level (7.1% vs. 4.9%; p=0.028). Training volume was not significantly associated with abnormal ECGs. By multivariate analysis, high-intensity sport (OR 1.55, 1.18-2.03; p=0.002) and national/international level (OR 1.50, 95% CI 1.04-2.14; p=0.027) were independent predictors of abnormal ECGs, and these variables, when combined, doubled the prevalence of this finding. According to the RC, abnormal ECGs decreased to 103 (3.0%), but were also more frequent in high-intensity sports (4.2% vs. 2.0%; p<0.001). There is a positive correlation between higher intensity of sports and increased prevalence of ECG abnormalities. This relationship persists with the use of more restrictive criteria for ECG interpretation, although the number of abnormal ECGs is lower. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    PubMed

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  8. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA

    USGS Publications Warehouse

    Braham, Ryan P.; Blazer, Vicki S.; Shaw, Cassidy H.; Mazik, Patricia M.

    2017-01-01

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects.

  9. Hierarchical cortical transcriptome disorganization in autism.

    PubMed

    Lombardo, Michael V; Courchesne, Eric; Lewis, Nathan E; Pramparo, Tiziano

    2017-01-01

    Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology. Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene network analysis was then utilized to identify between-group differences in how co-expression modules interact and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to determine whether dysregulated co-expression modules show enhanced interactions. We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation, response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation, and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also highly affected in ASD. These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the dysregulation of multiple coordinated transcriptional programs producing synergistic systems-level effects that cannot be fully appreciated by studying the individual component biological processes in isolation.

  10. Degranulation and shrinkage of dark cells in eccrine glands and elevated serum carcinoembryonic antigen in patients with acquired idiopathic generalized anhidrosis.

    PubMed

    Sano, K; Asahina, M; Uehara, T; Matsumoto, K; Araki, N; Okuyama, R

    2017-12-01

    Acquired idiopathic generalized anhidrosis (AIGA) is characterized by anhidrosis/hypohidrosis without other autonomic and neurological dysfunctions. Pathologically, AIGA is considered to usually present no significant morphological alterations in eccrine glands, the secretory portion which consists of clear cells, dark cells, and myoepithelial cells. AIGA patients recently have been reported to show high serum concentrations of carcinoembryonic antigen (CEA). Our aim is to reveal morphological abnormalities of dark cells and investigate their relationship with serum CEA. We performed comparative analysis of eccrine glands between sweat-preserved and non-sweating skin in four AIGA patients. Serum CEA concentrations in 22 cases with AIGA were measured with healthy volunteers. Furthermore, we semiquantitatively investigated dermcidin, FoxA1 and CEA expression in eccrine glands of 12 cases with AIGA and 5 cases with non-AIGA. Marked degranulation and shrinkage of dark cells consistently occurred in AIGA. Furthermore, high serum CEA concentrations were found in 14 of 22 AIGA patients (over 60%), but serum CEA levels were not correlated with CEA expression in eccrine glands. Dermcidin expression in dark cells apparently decreased in AIGA patients, severely in those with high serum CEA and moderately in those with low serum CEA, while well-preserved expression was found in non-AIGA subjects. Our study suggests morphological damage and molecular dysregulation of dark cells, leading to impairment of their functions in AIGA patients. Severely damaged dark cells correspond to high serum CEA. Accordingly, these pathological changes in eccrine dark cells may be involved in anhidrosis/hypohidrosis of AIGA. © 2017 European Academy of Dermatology and Venereology.

  11. Prognostic Value of Abnormal p53 Expression in Locally Advanced Prostate Cancer Treated With Androgen Deprivation and Radiotherapy: A Study Based on RTOG 9202

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che Mingxin; DeSilvio, Michelle; Pollack, Alan

    2007-11-15

    Purpose: The goal of this study was to verify the significance of p53 as a prognostic factor in Radiation Therapy Oncology Group 9202, which compared short-term androgen deprivation (STAD) with radiation therapy (RT) to long-term androgen deprivation + RT in men with locally advanced prostate cancer (Pca). Methods and Materials: Tumor tissue was sufficient for p53 analysis in 777 cases. p53 status was determined by immunohistochemistry. Abnormal p53 expression was defined as 20% or more tumor cells with positive nuclei. Univariate and multivariate Cox proportional hazards models were used to evaluate the relationships of p53 status to patient outcomes. Results:more » Abnormal p53 was detected in 168 of 777 (21.6%) cases, and was significantly associated with cause-specific mortality (adjusted hazard ratio [HR] = 1.89; 95% confidence interval (CI) 1.14 - 3.14; p = 0.014) and distant metastasis (adjusted HR = 1.72; 95% CI 1.13-2.62; p = 0.013). When patients were divided into subgroups according to assigned treatment, only the subgroup of patients who underwent STAD + RT showed significant correlation between p53 status and cause-specific mortality (adjusted HR = 2.43; 95% CI = 1.32-4.49; p = 0.0044). When patients were divided into subgroups according to p53 status, only the subgroup of patients with abnormal p53 showed significant association between assigned treatment and cause-specific mortality (adjusted HR = 3.81; 95% CI 1.40-10.37; p = 0.0087). Conclusions: Abnormal p53 is a significant prognostic factor for patients with prostate cancer who undergo short-term androgen deprivation and radiotherapy. Long-term androgen deprivation may significantly improve the cause-specific survival for those with abnormal p53.« less

  12. Expression profile of doublesex/male abnormal-3-related transcription factor-1 during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus.

    PubMed

    Nozu, Ryo; Horiguchi, Ryo; Kobayashi, Yasuhisa; Nakamura, Masaru

    2015-11-01

    Sex change in fish involves a dramatic transformation of gonadal tissue and a switch in gametogenesis. Doublesex/male abnormal-3-related transcription factor-1 (DMRT1), encoded by the DMRT1 gene, is involved in testicular differentiation in a wide range of vertebrates as well as in sexual differentiation and gonadal sex change. In the present study, we investigated changes in the expression of dmrt1 during artificial gonadal sex change in the three-spot wrasse, Halichoeres trimaculatus, by real-time quantitative PCR and immunolocalization, using an anti-wrasse-Dmrt1 antibody that we prepared. We found that dmrt1 expression was predominantly observed in the testes, and that Dmrt1 was expressed in Sertoli cells of testes and a few granulosa cells surrounding vitellogenic oocytes of the ovary. Additionally, the upregulation of dmrt1 expression was consistent with an increase in spermatogenic cyst quantity rather than proliferation of presumptive spermatogonia, suggesting that dmrt1 is involved in the progression of spermatogenesis during sex change. Changes in the localization of Dmrt1 during gonadal sex change further implied that Sertoli cells originate from somatic cells adjacent to gonial germ cells during testicular formation in the three-spot wrasse. © 2015 Wiley Periodicals, Inc.

  13. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing's syndrome.

    PubMed

    Lecoq, Anne-Lise; Stratakis, Constantine A; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Deméocq, Vianney; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; de Herder, Wouter; Louiset, Estelle; Lacroix, André; Chanson, Philippe; Bouligand, Jérôme; Kamenický, Peter

    2017-09-21

    GIP-dependent Cushing's syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing's syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing's syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations.

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    USGS Publications Warehouse

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  15. Expression of the transcription factor Evi-1 in human erythroleukemia cell lines and in leukemias.

    PubMed

    Fontenay-Roupie, M; Bouscary, D; Melle, J; Viguié, F; Picard, F; Guesnu, M; Dreyfus, F

    1997-02-01

    The Evi-1 proto-oncogene is a zinc finger DNA binding protein. Although activation of the Evi-1 gene has been associated with chromosomal rearrangements of the 3q25-q28 region, ectopic expression of Evi-1 could also be observed in acute myelogenous leukemias and myelodysplastic syndromes without cytogenetic abnormalities of the 3q26 locus. In this study, human erythroleukemic cell lines were screened for the expression of Evi-1 mRNA by northern blotting. Evi-1 was expressed in all the erythroid cell lines, whether undifferentiated (K 562, HEL, LAMA 84) or exhibiting spontaneous terminal erythroid differentiation (KU 812, JK-1). Evi-1 mRNA levels were constant or elevated in hemoglobin-synthesizing KU 812 or K 562 cells in response to erythropoietin or hemin treatment, respectively. In human acute myeloblastic leukemias (AML), 11/30 expressed Evi-1 by RT-PCR. Among these cases, 4/6 erythroleukemias without abnormalities of the 3q25-q28 region were found positive. The presence of acidophilic erythroblasts (15-47% of bone marrow cells) accounted for the existence of a terminal erythroid differentiation in all Evi-1-positive AML M6, whereas one negative case was poorly differentiated and referred to as AML M6 variant. These results suggest that Evi-1 mRNA expression can coexist with erythroid differentiation.

  16. Corticotropin-Releasing Hormone Modulates Human Trophoblast Invasion through Carcinoembryonic Antigen-Related Cell Adhesion Molecule-1 Regulation

    PubMed Central

    Bamberger, Ana-Maria; Minas, Vassilis; Kalantaridou, Sophia N.; Radde, Jessica; Sadeghian, Helen; Löning, Thomas; Charalampopoulos, Ioannis; Brümmer, Jens; Wagener, Christoph; Bamberger, Christoph M.; Schulte, Heinrich M.; Chrousos, George P.; Makrigiannakis, Antonis

    2006-01-01

    Abnormalities in the process of trophoblast invasion may result in abnormal placentation. Both the embryonic trophoblast and maternal decidua produce corticotropin-releasing hormone (CRH), which promotes implantation. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is expressed in extravillous trophoblasts (EVTs) of normal human placenta, may also function in tro-phoblast/endometrial interactions. We investigated whether locally produced CRH plays a role in trophoblast invasion, primarily by regulating CEACAM1 expression. We examined cultures of freshly isolated human EVTs, which express CEACAM1, and an EVT-based hybridoma cell line, which is devoid of endogenous CEACAM1. CRH inhibited EVT invasion in Matrigel invasion assays, and this effect was blocked by the CRH receptor type 1 (CRHR1)-specific antagonist antalarmin. Additionally, CRH decreased CEACAM1 expression in EVTs in a dose-dependent manner. After transfection of the hybridoma cell line with a CEACAM1 expression vector, the invasiveness of these cells was strongly enhanced. This effect was inhibited by addition of blocking monoclonal antibody against CEACAM1. Furthermore, blocking of endogenous CEACAM1 in EVTs inhibited the invasive potential of these cells. Taken together these findings suggest that CRH inhibits trophoblast invasion by decreasing the expression of CEACAM1 through CRHR1, an effect that might be involved in the pathophysiology of clinical conditions, such as preeclampsia and placenta accreta. PMID:16400017

  17. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less

  18. Clinical analysis of a large kindred with the pallister ulnar-mammary syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamshad, M.; Root, S.; Carey, J.C.

    1996-11-11

    The ulnar-mammary syndrome (UMS) is an autosomal dominant disorder characterized by posterior limb deficiencies or duplications, apocrine/mammary gland hypoplasia and/or dysfunction, abnormal dentition, delayed puberty in males, and genital anomalies. We present the clinical descriptions of 33 members of a six generation kindred with UMS. The number of affected individuals in this family is more than the sum of all previously reported cases of UMS. The clinical expression of UMS is highly variable. While most patients have limb deficiencies, the range of abnormalities extends from hypoplasia of the terminal phalanx of the 5th digit to complete absence of the ulnamore » and 3rd, 4th, and 5th digits. Moreover, affected individuals may have posterior digital duplications with or without contralateral limb deficiencies. Apocrine gland abnormalities range from diminished axillary perspiration with normal breast development and lactation, to complete absence of the breasts and no axillary perspiration. Dental abnormalities include misplaced or absent teeth. Affected males consistently undergo delayed puberty, and both sexes have diminished to absent axillary hair. Imperforate hymen were seen in some affected women. A gene for UMS was mapped to chromosome area 12q23-q24.1. A mutation in the gene causing UMS can interfere with limb patterning in the proximal/distal, anterior/posterior, and dorsal/ventral axes. This mutation disturbs development of the posterior elements of forearm, wrist, and hand while growth and development of the anterior elements remain normal. 24 refs., 4 figs., 1 tab.« less

  19. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  20. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined bymore » molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and inhibiting HSC growth.« less

  1. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu

    Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT andmore » Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.« less

  2. Systemic analysis of different colorectal cancer cell lines and TCGA datasets identified IGF-1R/EGFR-PPAR-CASPASE axis as important indicator for radiotherapy sensitivity.

    PubMed

    Chen, Lin; Zhu, Zhe; Gao, Wei; Jiang, Qixin; Yu, Jiangming; Fu, Chuangang

    2017-09-05

    Insulin-like growth factor 1 receptor (IGF-1R) is proved to contribute the development of many types of cancers. But, little is known about its roles in radio-resistance of colorectal cancer (CRC). Here, we demonstrated that low IGF-1R expression value was associated with the better radiotherapy sensitivity of CRC. Besides, through Quantitative Real-time PCR (qRT-PCR), the elevated expression value of epidermal growth factor receptor (EGFR) was observed in CRC cell lines (HT29, RKO) with high radio-sensitivity compared with those with low sensitivity (SW480, LOVO). The irradiation induced apoptosis rates of wild type and EGFR agonist (EGF) or IGF-1R inhibitor (NVP-ADW742) treated HT29 and SW480 cells were quantified by flow cytometry. As a result, the apoptosis rate of EGF and NVP-ADW742 treated HT29 cells was significantly higher than that of those wild type ones, which indicated that high EGFR and low IGF-1R expression level in CRC was associated with the high sensitivity to radiotherapy. We next conducted systemic bioinformatics analysis of genome-wide expression profiles of CRC samples from the Cancer Genome Atlas (TCGA). Differential expression analysis between IGF-1R and EGFR abnormal CRC samples, i.e. CRC samples with higher IGF-1R and lower EGFR expression levels based on their median expression values, and the rest of CRC samples identified potential genes contribute to radiotherapy sensitivity. Functional enrichment of analysis of those differential expression genes (DEGs) in the Database for Annotation, Visualization and Integrated Discovery (DAVID) indicated PPAR signaling pathway as an important pathway for the radio-resistance of CRC. Our study identified the potential biomarkers for the rational selection of radiotherapy for CRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Developing Gene Silencing for the Study and Treatment of Dystonia

    DTIC Science & Technology

    2016-10-01

    eliminate the symptoms? Are the motor deficits in DYT1 dystonia reversible? We propose to use a novel rat model of DYT1 dystonia and infuse antisense...suppressing expression of mutant torsinA in striatum or cerebellum using AAV1 reverses the motor phenotype in aged DYT1 rats . 4. IMPACT What was...different areas of the brain, and w e w ill measure if they are able to reverse known abnormalities that occur in the brain of DYT1 rats , including abnormal

  4. Abnormal morphology of the penis in male rats exposed neonatally to diethylstilbestrol is associated with altered profile of estrogen receptor-alpha protein, but not of androgen receptor protein: a developmental and immunocytochemical study.

    PubMed

    Goyal, H O; Braden, T D; Williams, C S; Dalvi, P; Mansour, M M; Mansour, M; Williams, J W; Bartol, F F; Wiley, A A; Birch, L; Prins, G S

    2004-05-01

    Objectives of the study were to determine developmental changes in morphology and expression of androgen receptor (AR) and estrogen receptor (ER)alpha in the body of the rat penis exposed neonatally to diethylstilbestrol (DES). Male pups received DES at a dose of 10 microg per rat on alternate days from Postnatal Day 2 to Postnatal Day 12. Controls received olive oil vehicle only. Tissue samples were collected on Days 18 (prepuberty), 41 (puberty), and 120 (adult) of age. DES-induced abnormalities were evident at 18 days of age and included smaller, lighter, and thinner penis, loss of cavernous spaces and associated smooth muscle cells, and increased deposition of fat cells in the corpora cavernosa penis. Fat cells virtually filled the entire area of the corpora cavernosa at puberty and adulthood. Plasma testosterone (T) was reduced to an undetectable level, while LH was unaltered in all treated groups. AR-positive cells were ubiquitous and their profile (incidence and staining intensity) did not differ between control and treated rats of the respective age groups. Conversely, ERalpha-positive cells were limited to the stroma of corpus spongiosus in all age groups of both control and treated rats, but the expression in treated rats at 18 days was up-regulated in stromal cells of corpora cavernosa, coincident with the presence of morphological abnormalities. Hence, this study reports for the first time DES-induced developmental, morphological abnormalities in the body of the penis and suggests that these abnormalities may have resulted from decreased T and/or overexpression of ERalpha.

  5. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    PubMed

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  6. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder.

    PubMed

    Perlman, Susan B; Almeida, Jorge R C; Kronhaus, Dina M; Versace, Amelia; Labarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-03-01

    Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. Thirty-one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block-design emotion processing task requiring color-labeling of a color flash superimposed on a task-irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top-down) and following (bottom-up) activity between the PFC and the left and right amygdalae. Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted-BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed-BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted-BD and depressed-BD subjects. EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala-PFC circuitry, supporting implicit emotion processing between remitted-BD and depressed-BD subjects, which may underlie changes from remission to depression in BD. © 2012 John Wiley and Sons A/S.

  7. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  8. Inducible Transgenic Models of BRCA1 Function

    DTIC Science & Technology

    1998-10-01

    development, and for signs of hyperplasia, dysplasia and neoplasia. Specific Aim 3. Inducibly abolish Brcal expression in the mammary epithelium of...abnormalities in mammary epithelial proliferation, differentiation and development, and for signs of hyperplasia, dysplasia and neoplasia. 6...Lyu MS, Kozak CA and Leder P. Expression of Brcal is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice

  9. Increased avidity for Dpp/BMP2 maintains the proliferation of progenitors-like cells in the Drosophila eye.

    PubMed

    Neto, Marta; Aguilar-Hidalgo, Daniel; Casares, Fernando

    2016-10-01

    During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism.

    PubMed

    Alazami, Anas M; Al-Owain, Mohammad; Alzahrani, Fatema; Shuaib, Taghreed; Al-Shamrani, Hussain; Al-Falki, Yahya H; Al-Qahtani, Saleh M; Alsheddi, Tarfa; Colak, Dilek; Alkuraya, Fowzan S

    2012-10-01

    Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P-TEFb) as well as its competing role in HMGA1-mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype. © 2012 Wiley Periodicals, Inc.

  11. Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia.

    PubMed

    Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard

    2016-09-01

    Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.

  12. Influences of Reduced Expression of Maternal Bone Morphogenetic Protein 2 on Embryonic Development

    PubMed Central

    Singh, Ajeet P.; Castranio, Trisha; Scott, Greg; Guo, Dayong; Harris, Marie A.; Ray, Manas; Harris, Stephan E.; Mishina, Yuji

    2009-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. During a course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3’ untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/−) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. Embryos exhibiting these abnormalities were increased when genotypes of the pregnant females were different; when expression levels of Bmp2 in maternal tissues were lower, a larger proportion of fn/− embryos exhibit these abnormalities. These results suggest that the expression levels of Bmp2 together in both in embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds. PMID:18769073

  13. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism.

    PubMed

    Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y

    1997-03-20

    The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.

  14. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.

    PubMed

    Matsuoka, Satoshi; Seki, Takahiro; Matsumoto, Kouji; Hara, Hiroshi

    2016-12-01

    Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO 4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.

  15. Role of endometrial cancer abnormal MMR protein in screening Lynch-syndrome families.

    PubMed

    Long, Qiongxian; Peng, Yong; Tang, Zhirong; Wu, Cailiang

    2014-01-01

    To identify patients with endometrial cancer with potential Lynch-related DNA mismatch repair (MMR) protein expression defects and to explore the role of these defects in screening for LS. Endometrial cancers from 173 patients recruited to the Nanchong Central Hospital were tested for MMR (MLH1, MSH2, PMS2, and MSH6) protein expression using immunohistochemistry (IHC). In the 173 tumor tissue samples, the expression loss rates of MSH6, MSH2, PMS2 and MLH1 protein were 16.18% (28/173), 12.14% (21/173), 7.51% (13/173) and 5.78% (10/173), respectively. The total loss rate of MMR protein was 29.89% (27/87). There were 19 patients with a family history of cancer, of which 18 patients demonstrated loss of expression of MMR protein. In the 22 abnormal MMR patients without family history, five families were found to have Lynch-associated cancer (colorectal cancer, endometrial cancer, ovarian cancer, stomach cancer) after follow-up for two years. MMR proteins play an important role in the progress of endometrial cancer. The routine testing of MMR proteins in endometrial cancer can contribute to the screening of LS families, especially small families.

  16. Disease expression in Usher syndrome caused by VLGR1 gene mutation (USH2C) and comparison with USH2A phenotype.

    PubMed

    Schwartz, Sharon B; Aleman, Tomas S; Cideciyan, Artur V; Windsor, Elizabeth A M; Sumaroka, Alexander; Roman, Alejandro J; Rane, Tej; Smilko, Elaine E; Bennett, Jean; Stone, Edwin M; Kimberling, William J; Liu, Xue-Zhong; Jacobson, Samuel G

    2005-02-01

    To investigate the retinal disease expression in USH2C, the subtype of Usher syndrome type 2 recently shown to be caused by mutation in the VLGR1 gene, and compare results with those from USH2A, a more common cause of Usher syndrome. Three siblings with USH2C and 14 patients with USH2A were studied. Visual function was measured by kinetic perimetry, static chromatic perimetry, and electroretinography (ERG). Central retinal microstructure was studied with optical coherence tomography (OCT). The siblings with VLGR1 mutation showed abnormal photoreceptor-mediated function in all retinal regions, and there was greater rod than cone dysfunction. USH2A had a wider spectrum of disease expression and included patients with normal function in some retinal regions. When abnormalities were detected, there was more rod than cone dysfunction. Retinal microstructure in both USH2C and USH2A shared the abnormality of loss of outer nuclear layer thickness. Central retinal structure in both genotypes was complicated by cystic macular lesions. A coincidental finding in an USH2C patient was that oral intake of antihistamines was associated with temporary resolution of the macular cystic change. USH2C and USH2A manifest photoreceptor disease with rod- and cone-mediated visual losses and thinning of the outer nuclear layer. An orderly progression through disease stages was estimated from cross-sectional and limited longitudinal data. Intrafamilial and interfamilial variation in retinal severity in USH2A, however, suggests that genetic or nongenetic modifiers may be involved in the disease expression.

  17. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  18. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    PubMed

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  19. Antagonism of CD11b with Neutrophil Inhibitory Factor (NIF) Inhibits Vascular Lesions in Diabetic Retinopathy

    PubMed Central

    Veenstra, Alexander A.; Tang, Jie; Kern, Timothy S.

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response. PMID:24205223

  20. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  1. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  2. Are premorbid abnormal personality traits associated with behavioural and psychological symptoms in dementia?

    PubMed

    Prior, Jack; Abraham, Rajesh; Nicholas, Helen; Chan, Tom; Vanvlymen, Jeremy; Lovestone, Simon; Boothby, Harry

    2016-09-01

    The study aims to investigate associations between behavioural and psychological symptoms of dementia (BPSD) and abnormal premorbid personality traits. Data were obtained from 217 patients with a diagnosis of probable Alzheimer's disease. Behavioural and psychological symptoms of late-onset dementia were assessed with the Neuropsychiatric Inventory. Premorbid personality traits were assessed using the Standardised Assessment of Personality. Abnormal premorbid personality traits were categorised with Diagnostic and Statistical Manual of Mental Disorders fourth edition and International Statistical Classification of Diseases and Related Health Problems-10 diagnostic criteria for personality disorders. Abnormal premorbid personality traits were associated with increased behavioural and psychological symptoms in dementia. Cluster A (solitary/paranoid) premorbid personality traits were associated with anxiety, depression and hallucinations. Cluster C (anxious/dependent) traits were associated with a syndrome of depression. The presence of Clusters A (solitary/paranoid) and C (anxious/dependent) abnormal premorbid personality traits seems to affect the expression of certain behavioural and psychological symptoms in dementia, depression in particular. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Benign paroxysmal vertigo of childhood: diagnostic value of vestibular test and high stimulus rate auditory brainstem response test.

    PubMed

    Zhang, Daogong; Fan, Zhaomin; Han, Yuechen; Wang, Mingming; Xu, Lei; Luo, Jianfen; Ai, Yu; Wang, Haibo

    2012-01-01

    To investigate the diagnostic value of vestibular test and high stimulus rate auditory brainstem response (ABR) test and the possible mechanism responsible for benign paroxysmal vertigo of childhood (BPVC). Data of 56 patients with BPVC in vertigo clinic of our hospital from May 2007 to September 2008 were retrospectively analyzed in this study. Patients with BPVC were tested with pure tone audiometry, high stimulus rate auditory brainstem response test (ABR), transcranial Doppler sonography (TCD), bithermal caloric test, and VEMP. The results of the hearing and vestibular function test were compared and analyzed. There were 56 patients with BPVC, including 32 men, 24 women, aged 3-12 years old, with an average of 6.5 years. Among 56 cases of BPVC patients, the results of pure tone audiometry were all normal. High stimulus rate ABR was abnormal in 66.1% (37/56) of cases. TCD showed 57.1% abnormality in 56 cases, including faster flow rate in 28 cases and slower flow rate in 4 cases. High stimulus rate ABR and TCD were both abnormal in 48.2% (27/56) of cases. Bithermal caloric test was abnormal in 14.3% (8/56) of cases. VEMP showed 32.1% abnormality, including amplitude abnormality in 16 cases and latency abnormality in 2 cases. The abnormal rate of VEMP was much higher than that of caloric test. Vascular mechanisms might be involved in the pathogenesis of BPVC and there is strong evidence for close relationship between BPVC and migraine. High stimulus rate ABR is helpful in the diagnosis of BPVC. The inferior vestibular pathway is much more impaired than the superior vestibular pathway in BPVC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Münster AML-study group

    PubMed Central

    Coenen, Eva A.; Zwaan, C. Michel; Reinhardt, Dirk; Harrison, Christine J.; Haas, Oskar A.; de Haas, Valerie; Mihál, Vladimir; De Moerloose, Barbara; Jeison, Marta; Rubnitz, Jeffrey E.; Tomizawa, Daisuke; Johnston, Donna; Alonzo, Todd A.; Hasle, Henrik; Auvrignon, Anne; Dworzak, Michael; Pession, Andrea; van der Velden, Vincent H. J.; Swansbury, John; Wong, Kit-fai; Terui, Kiminori; Savasan, Sureyya; Winstanley, Mark; Vaitkeviciene, Goda; Zimmermann, Martin; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2013-01-01

    In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases. PMID:23974201

  6. Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats.

    PubMed

    El Batsh, Maha M; El Batch, Manal M; Shafik, Noha M; Younos, Ibrahim H

    2015-12-15

    Progression of diabetes mellitus is accompanied by metabolic disorders together with psychological deficits including cognitive dysfunctions. Herein, we used a murine streptozotocin (STZ)-induced diabetes to investigate the beneficial effects of vildagliptin not only on metabolic abnormalities, but also on diabetes-induced cognitive decline. Sixty rats were divided randomly and equally into 2 groups; one remains normal and the other serves as STZ- induced diabetic. Both groups were further divided equally into 2 groups; one received vehicle and the other received oral vildagliptin for 8 weeks. Cognitive behavior was assessed using novel object recognition test. Blood samples were collected to measure metabolic parameters and dipeptidyl peptidase (DPP)-IV activity. Brains were removed and investigated for the levels of inflammatory and oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD) and tumor necrosis factor-α (TNF-α), in addition to brain-derived neurotrophic factor (BDNF) and relative expression of nuclear factor kappa B (NF-κB)/p65. Treatment of STZ-induced diabetic rats with vildagliptin increased their body weight and corrected diabetes-induced memory and learning impairment. Moreover, vildagliptin significantly decreased serum levels of glucose and lipids (except high density lipoprotein) together with brain MDA, TNF-α, serum DPP-IV activities and NF-κB/p65 gene expression. On the other hand, vildagliptin significantly increased brain BDNF, SOD as well as serum insulin. Results suggested that vildagliptin has a protective role in counteracting both metabolic abnormalities and memory deficits in diabetic rats, possibly via its anti-hyperglycemic, anti-inflammatory, antioxidant effects, together with reduction of brain NF-κB/p65 over expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    PubMed

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    PubMed Central

    Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2011-01-01

    Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243

  10. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities.

    PubMed

    Giri, Dinesh; Vignola, Maria Lillina; Gualtieri, Angelica; Scagliotti, Valeria; McNamara, Paul; Peak, Matthew; Didi, Mohammed; Gaston-Massuet, Carles; Senniappan, Senthil

    2017-11-15

    Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat.

    PubMed

    Cernecka, Hana; Doka, Gabriel; Srankova, Jasna; Pivackova, Lenka; Malikova, Eva; Galkova, Kristina; Kyselovic, Jan; Krenek, Peter; Klimas, Jan

    2016-11-15

    We hypothesized that peroxisome proliferator-activated receptors (PPARs) might be involved in a complex protective action of ACE inhibitors (ACEi) in anthracyclines-induced cardiomyopathy. For purpose of study, we compared effects of ramipril on cardiac dysfunction, cardiac failure markers and PPAR isoforms in moderate and severe chronic daunorubicin-induced cardiomyopathy. Male Wistar rats were administered with a single intravenous injection of daunorubicin: 5mg/kg (moderate cardiomyopathy), or 15mg/kg (severe cardiomyopathy) or co-administered with daunorubicin and ramipril (1mg/kg/d, orally) or vehicle for 8 weeks. Left ventricular function was measured invasively under anesthesia. Cardiac mRNA levels of heart failure markers (ANP, Myh6, Myh7, Myh7b) and PPARs (alpha, beta/delta and gama) were measured by qRT-PCR. Protein expression of NADPH subunit (gp91phox) was measured by Western blot. Moderate cardiomyopathy exhibited only minor cardiac dysfunction what was corrected by ramipril. In severe cardiomyopathy, hemodynamic dysfunction remained unaltered upon ramipril although it decreased the significantly up-regulated cardiac ANP mRNA expression. Simultaneously, while high-dose daunorubicin significantly decreased PPARbeta/delta and PPARgama mRNA, ramipril normalized these abnormalities. Similarly, ramipril reduced altered levels of oxidative stress-related gp91phox. On the other hand, ramipril was unable to correct both the significantly decreased relative abundance of Myh6 and increased Myh7 mRNA levels, respectively. In conclusion, ramipril had a protective effect on cardiac function exclusively in moderate chronic daunorubicin-induced cardiomyopathy. Although it normalized abnormal PPARs expression and exerted also additional protective effects also in severe cardiomyopathy, it was insufficient to influence impaired cardiac function probably because of a shift in myosin heavy chain isoform content. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    PubMed

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-07-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.

  13. Erbb4 Deletion from Medium Spiny Neurons of the Nucleus Accumbens Core Induces Schizophrenia-Like Behaviors via Elevated GABAA Receptor α1 Subunit Expression.

    PubMed

    Geng, Hong-Yan; Zhang, Jing; Yang, Jian-Ming; Li, Yue; Wang, Ning; Ye, Mao; Chen, Xiao-Juan; Lian, Hong; Li, Xiao-Ming

    2017-08-02

    Medium spiny neurons (MSNs), the major GABAergic projection neurons in the striatum, are implicated in many neuropsychiatric diseases such as schizophrenia, but the underlying mechanisms remain unclear. We found that a deficiency in Erbb4 , a schizophrenia risk gene, in MSNs of the nucleus accumbens (NAc) core, but not the dorsomedial striatum, markedly induced schizophrenia-like behaviors such as hyperactivity, abnormal marble-burying behavior, damaged social novelty recognition, and impaired sensorimotor gating function in male mice. Using immunohistochemistry, Western blot, RNA interference, electrophysiology, and behavior test studies, we found that these phenomena were mediated by increased GABA A receptor α1 subunit (GABA A R α1) expression, which enhanced inhibitory synaptic transmission on MSNs. These results suggest that Erbb4 in MSNs of the NAc core may contribute to the pathogenesis of schizophrenia by regulating GABAergic transmission and raise the possibility that GABA A R α1 may therefore serve as a new therapeutic target for schizophrenia. SIGNIFICANCE STATEMENT Although ErbB4 is highly expressed in striatal medium spiny neurons (MSNs), its role in this type of neuron has not been reported previously. The present study demonstrates that Erbb4 deletion in nucleus accumbens (NAc) core MSNs can induce schizophrenia-like behaviors via elevated GABA A receptor α1 subunit (GABA A R α1) expression. To our knowledge, this is the first evidence that ErbB4 signaling in the MSNs is involved in the pathology of schizophrenia. Furthermore, restoration of GABA A R α1 in the NAc core, but not the dorsal medium striatum, alleviated the abnormal behaviors. Here, we highlight the role of the NAc core in the pathogenesis of schizophrenia and suggest that GABA A R α1 may be a potential pharmacological target for its treatment. Copyright © 2017 the authors 0270-6474/17/377450-15$15.00/0.

  14. Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia-reperfusion injury.

    PubMed

    Feng, Min; Wang, Lirui; Chang, Siyuan; Yuan, Pu

    2018-05-31

    The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia-reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P < 0.05). Additionally, p38MAPK and JNK blockers (SB239063 and SP600125, respectively) had an effect on rats same as that of PHC. Although Drp1 blocker (Mdivi-1) showed a similar cardioprotective effect (P < 0.05), it did not affect the expression of MAPKs and apoptosis-related proteins (P > 0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P < 0.05). PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preproenkephalin expression in peripheral blood mononuclear cells of acutely underweight and recovered patients with anorexia nervosa.

    PubMed

    Weiss, Deike; Infante-Duarte, Carmen; Salbach-Andrae, Harriet; Burghardt, Roland; Hamann, Isabell; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Ehrlich, Stefan

    2010-08-01

    The prohormone preproenkephalin (ppE) and its derived peptides are involved in leukocyte functioning as well as in the regulation of hunger and satiety. Various abnormalities of the immune and endocrine systems have been described in states of malnutrition such as anorexia nervosa (AN). We hypothesized that ppE expression in AN patients may vary depending on the state of the disorder and the extent of malnutrition. Expression of ppE mRNA was analysed in peripheral blood mononuclear cells of 29 underweight and 29 weight-recovered patients with AN and compared to that in 29 healthy control women. The extent of malnutrition was characterized by BMI and plasma leptin. Psychological distress and eating disorder specific-psychopathology was determined with the Symptom Checklist-90-Revised and the Eating Disorders Inventory-2. ppE gene expression was similar in all 3 groups and was not related to nutritional status or eating disorder symptoms. However, a significant negative correlation was found between ppE expression and obsessive-compulsive, depressive and anxious symptoms. In addition, ppE expression was higher in smokers compared to non-smokers. Although malnutrition and hypoleptinaemia as seen in patients with AN were not related to peripheral ppE expression, we demonstrated reduced ppE expression in patients with elevated psychological distress. Similar associations have been shown in animal models of stress. It remains speculative if psychological symptoms and/or stress may augment immune abnormalities in AN patients via a pathway that is independent of nutritional status and involves ppE. (c) 2010 S. Karger AG, Basel.

  16. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain*♦

    PubMed Central

    Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit

    2017-01-01

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733

  17. Abnormal Uterine Bleeding Is Associated With Increased BMP7 Expression in Human Endometrium.

    PubMed

    Richards, Elliott G; El-Nashar, Sherif A; Schoolmeester, John K; Keeney, Gary L; Mariani, Andrea; Hopkins, Matthew R; Dowdy, Sean C; Daftary, Gaurang S; Famuyide, Abimbola O

    2017-05-01

    Abnormal uterine bleeding (AUB), a common health concern of women, is a heterogeneous clinical entity that is traditionally categorized into organic and nonorganic causes. Despite varied pharmacologic treatments, few offer sustained efficacy, as most are empiric, unfocused, and do not directly address underlying dysregulated molecular mechanisms. Characterization of such molecular derangements affords the opportunity to develop and use novel, more successful treatments for AUB. Given its implication in other organ systems, we hypothesized that bone morphogenetic protein (BMP) expression is altered in patients with AUB and hence comprehensively investigated dysregulation of BMP signaling pathways by systematically screening 489 samples from 365 patients for differences in the expression of BMP2, 4, 6, and 7 ligands, BMPR1A and B receptors, and downstream SMAD4, 6, and 7 proteins. Expression analysis was correlated clinically with data abstracted from medical records, including bleeding history, age at procedure, ethnicity, body mass index, hormone treatment, and histological diagnosis of fibroids, polyps, adenomyosis, hyperplasia, and cancer. Expression of BMP7 ligand was significantly increased in patients with AUB (H-score: 18.0 vs 26.7; P < .0001). Patients reporting heavy menstrual bleeding (menorrhagia) as their specific AUB pattern demonstrated significantly higher BMP7 expression. Significantly, no differences in the expression of any other BMP ligands, receptors, or SMAD proteins were observed in this large patient cohort. However, expression of BMPR1A, BMPR1B, and SMAD4 was significantly decreased in cancer compared to benign samples. Our study demonstrates that BMP7 is a promising target for future investigation and pharmacologic treatment of AUB.

  18. Aberrant lymphoid antigen expression in acute myeloid leukemia in Saudi Arabia.

    PubMed

    El-Sissy, Azza H; El-Mashari, May A; Bassuni, Wafaa Y; El-Swaayed, Aziza F

    2006-09-01

    Immunophenotyping improves both accuracy and reproducibility of acute leukemia classification and is considered particularly useful for identifying aberrant lineage association of acute leukemia, biphenotypic and bilineal acute leukemia, as well as monitoring minimal residual disease. Some immunophenotypes correlate with cytogenetic abnormalities and prognosis. Is to determine aberrant lymphoid antigen expression in Saudi acute myeloid leukemia (AML), correlate them with FAB subtypes, evaluate early surface markers CD7 and CD56, and to investigate the role of cytoplasmic CD79a (a B cell marker that is assigned a high score of 2.0 in the WHO classification). Thirty four newly diagnosed AML cases were included in this study, 47% showed aberrant lymphoid antigen expression. CD9 was the most frequently expressed lymphoid antigen (29.4%) followed by CD7 & CD19 (11.8%), CD4 (8.8%) and CD22 (2.9%). CD9 was expressed in 3/6 (50%) of M3 cases, CD7 was expressed in 11.8% and was mostly confined to FAB M1 and M2 and associated with immature antigens CD34, HLA-DR and TdT. CD56 was expressed in 7/34 (20.6%) cases, three of these cases (42.9%) belonged to the monocytic group. CD56 was also detected in 2 cases with 11q23 rearrangement. CD56 was expressed in 2/7 (28.6%) M2 cases, and was associated with t (8;21) (q22;q22) together with CD19. Co-expression of CD56 and CD7 was detected in 2.9% of the cases. CD79a was expressed in one case together with CD19, diagnosed as acute biphenotypic leukemia, and was associated with t(8;21) (q22;q22). Minimal residual disease in AML is very difficult to trace, detection of aberrant expression of lymphoid antigens will make it easier. The high score given to CD79a by EGIL is questionable based on cytogenetic classification.

  19. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  20. Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction

    PubMed Central

    Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy

    2015-01-01

    Purpose The production of formulaic expressions (conversational speech formulas, pause fillers, idioms, and other fixed expressions) is excessive in the left hemisphere and deficient in the right hemisphere and in subcortical stroke. Speakers with Alzheimer's disease (AD), having functional basal ganglia, reveal abnormally high proportions of formulaic language. Persons with Parkinson's disease (PD), having dysfunctional basal ganglia, were predicted to show impoverished formulaic expressions in contrast to speakers with AD. This study compared participants with PD, participants with AD, and healthy control (HC) participants on protocols probing production and comprehension of formulaic expressions. Method Spontaneous speech samples were recorded from 16 individuals with PD, 12 individuals with AD, and 18 HC speakers. Structured tests were then administered as probes of comprehension. Results The PD group had lower proportions of formulaic expressions compared with the AD and HC groups. Comprehension testing yielded opposite contrasts: participants with PD showed significantly higher performance compared with participants with AD and did not differ from HC participants. Conclusions The finding that PD produced lower proportions of formulaic expressions compared with AD and HC supports the view that subcortical nuclei modulate the production of formulaic expressions. Contrasting results on formal testing of comprehension, whereby participants with AD performed significantly worse than participants with PD and HC participants, indicate differential effects on procedural and declarative knowledge associated with these neurological conditions. PMID:26183940

Top