Science.gov

Sample records for abnormally high flow

  1. Abnormal high surface heat flow caused by the Emeishan mantle plume

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  2. Quantification of the DNA content of structurally abnormal X chromosomes and X chromosome aneuploidy using high resolution bivariate flow karyotyping.

    PubMed

    Trask, B; van den Engh, G; Nussbaum, R; Schwartz, C; Gray, J

    1990-01-01

    Quantification of the Hoechst and chromomycin A3 fluorescence intensities of mitotic human chromosomes isolated from karyotypically normal and abnormal cells was performed with a dual beam flow cytometer. The resultant flow karyotypes contain information about the relative DNA content and base composition of chromosomes and their relative frequencies in the mitotic cell sample. The relative copy number of X and Y chromosomes was determined for 38 normal males and females and 6 cell lines with X or Y chromosome aneuploidy. Flow karyotype diagnoses corresponded with conventional cytogenetic results in all cases. We show that chromosome DNA content can be derived from peak position in Hoechst vs. chromomycin flow karyotypes. These values are linearly related to propidium iodide staining intensity as measured with flow cytometry and to the binding of gallocyanin chrome alum to phosphate groups as measured with slide-based scanning photometry. Cell lines with deleted or dicentric X chromosomes ranging in length from 0.53 to 1.95 times normal were analyzed by using flow cytometry. The measured difference in DNA content between a normal X and each of the structurally abnormal chromosomes was linearly correlated to the difference predicted from cytogenetics and/or probe analyses. Deletions of 3-5 Mb, which were at and below the detection limits of conventional cytogenetics, could be quantified by flow karyotyping in individuals with X-linked diseases such as Duchenne muscular dystrophy, choroideremia, and ocular albinism/ichthyosis. The results show that the use of flow karyotyping to quantify the size of restricted regions of the genome can complement conventional cytogenetics and other physical mapping techniques in the study of genetic disorders. PMID:2106419

  3. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  4. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  5. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  6. Regional cerebral blood flow abnormalities in chronic solvent abusers.

    PubMed

    Okada, S; Yamanouchi, N; Kodama, K; Uchida, Y; Hirai, S; Sakamoto, T; Noda, S; Komatsu, N; Sato, T

    1999-06-01

    This study aimed to reveal regional abnormalities of cerebral blood flow (CBF) and their relation to amotivational syndrome which causes poor social prognosis in solvent abusers Sixteen chronic solvent abusers (12 males and four females) along with five normal subjects underwent single photon emission computed tomography with N-isopropyl-p[123I]iodoamphetamine. The patients received a clinical evaluation with the Scale for the Assessment of Negative Symptoms. Using a semiquantitative method (normalized by the parietal cortex count), patients showed a statistically significant decrease in regional cerebral blood flow (rCBF) in the bilateral prefrontal cortices (P<0.01). In addition, the severity of hypoperfusion in the bilateral prefrontal cortices was related to the degree of severity of the avolition-apathy scale on SANS (left; P<0.05, right; P<0.01) even after excluding the effect of antipsychotics. These results suggest that rCBF abnormalities, especially in the prefrontal cortex, develop in chronic solvent abusers, and that this frontal hypoperfusion may be a biological basis of amotivational syndrome. PMID:10459736

  7. Differentiation of abnormal blood flow patterns in coronary arteries based on Doppler catheter recordings.

    PubMed

    Denardo, S J; Yock, P G; Hargrave, V K; Srebro, J P; Ports, T A; Talbot, L

    1991-09-01

    Abnormal arterial blood flow patterns have been implicated as etiologic factors in thrombosis and atherosclerosis. Intravascular pulsed Doppler ultrasound techniques with fast-Fourier transform analysis offer the opportunity to measure these abnormalities. The authors hypothesized that statistical analysis of radial-directed beam spectra could be used to distinguish disturbed from non-disturbed flow and that analysis of conventional axial-directed beam spectra could then be used to distinguish laminar high-shear from laminar low-shear flow. They developed a scaled-up in-vitro model of coronary flow consisting of a glycerol/H2O test fluid flowing through an acrylic cylinder at Reynolds numbers spanning the typical physiologic range within the coronary arteries. A scaled-up Doppler catheter with the capacity for 90 degrees reflection of the beam was placed centrally. Disturbed flow was created by introducing a flow screen, and altered shear rates were produced by changing the Reynolds number. For the radial-directed beam studies, the coefficients of variation of the Doppler spectra for the disturbed flow states were significantly greater than for the nondisturbed flow states (p less than 0.01). For the axial-directed beam studies, the coefficients of variation of the Doppler spectra for the laminar high-shear flow states were significantly greater than for the laminar low-shear flow states (p less than 0.01). They conclude that abnormal blood flow patterns can be differentiated by the selective use of radial-directed and axial-directed Doppler catheter recordings. PMID:1928812

  8. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  9. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, Stephen F.; Castleberry, Kim N.

    1998-01-01

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.

  10. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  11. Regional cerebral blood flow abnormalities in Alzheimer's Disease

    SciTech Connect

    Rezai, K.; Damasio, H.; Graff-Radford, N.; Eslinger, P.; Kirchner, P.

    1985-05-01

    In 37 patients (ages 58-81) with senile dementia of Alzheimer type (SDAT), regional cerebral blood flow (rCBF) was studied utilizing a dedicated SPECT system (Tomomatic-64) that produces rCBF images from 4-minute clearance of Xenon-133 in the brain. The authors have modified the device to acquire 5 continuous tomographic slices simultaneously. A consistent pattern of diminished blood flow was seen in 33 patients in the posterior-temporal and lower-parietal brain regions. Computer programs were developed to quantitate the size of the affected brain tissue in the posterolateral brain areas (confined to the posterior 40% and the lateral 25% of the major and minor brain axes respectively). They have previously reported normal rCBF in 25 volunteers to be greater than 45 ml/min/100g with less than 10% regional variation. Hence, an area was considered abnormal if rCBF measured less than 40 ml/min/100g or was less than 70% of the mean rCBF value in the anterior temporal-frontal regions.

  12. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    SciTech Connect

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  13. Extrarenal abnormalities in Tc-99m-DTPA renal blood flow studies

    SciTech Connect

    Shih, W.J.; Domstad, P.A.; DeLand, F.H.

    1985-01-01

    The authors observed extrarenal abnormalities during renal flow scintigraphy and retrospectively reviewed 90 patient studies to determine the types and frequencies of such abnormal findings. For each routine Tc-99m-DTPA renal flow study, they obtained nine 2-second sequential images, which included the heart, abdominal aorta, spleen and kidneys. Eighty abnormalities, observed in 62 patients, were divided into three categories: aortic, 37 cases; splenic, 40 cases; and miscellaneous, 3 cases. Other correlative studies including Tc-99m sulfur colloid-spleen scintigraphy, ultrasonography (US), CT, aortography, and surgical and/or autopsy findings were available for corroboration in 56 of 80 lesions.

  14. Abnormal Myocardial Blood Flow Reserve Observed in Cardiac Amyloidosis

    PubMed Central

    Nel, Karen; Senior, Roxy; Greaves, Kim

    2016-01-01

    We performed real-time myocardial contrast echocardiography on a patient with cardiac amyloidosis and previous normal coronary angiography presenting with atypical chest pain to assess myocardial blood flow reserve (MBFR). Myocardial contrast echocardiography was performed and flash microbubble destruction and replenishment analysis was used to calculate myocardial blood flow. Dipyridamole was used to achieve hyperemia. MBFR was derived from the ratio of peak myocardial blood flow at hyperemia and rest. The results show a marked reduction in MBFR in our patient. Previous reports of luminal obstruction of intramyocardial rather than epicardial vessels by amyloid deposition may be causing microvascular dysfunction. PMID:27081447

  15. Cerebral blood flow in normal and abnormal sleep and dreaming

    SciTech Connect

    Meyer, J.S.; Ishikawa, Y.; Hata, T.; Karacan, I.

    1987-07-01

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreaming CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.

  16. High incidence of MYC and BCL2 abnormalities in mantle cell lymphoma, although only MYC abnormality predicts poor survival

    PubMed Central

    Li, Chengwen; Zhong, Shizhen; Chen, Weiwei; Li, Zengjun; Xiong, Wenjie; Liu, Wei; Liu, Enbin; Cui, Rui; Ru, Kun; Zhang, Peihong; Xu, Yan; An, Gang; Lv, Rui; Qi, Junyuan; Wang, Jianxiang; Cheng, Tao; Qiu, Lugui

    2015-01-01

    The incidence and prognostic role of MYC and BCL2 rearrangements in mature B-cell lymphomas have been extensively studied, except the infrequent mantle cell lymphoma (MCL). Here, we analyzed the MYC and BCL2 abnormalities and other cytogenetic aberrations by fluorescence in situ hybridization (FISH) in 50 MCL patients with bone marrow involvement. Eighteen patients (36.0%) had MYC gains and/or amplifications, and twelve patients (24.0%) had BCL2 gains and/or amplifications. Among the 18 patients with MYC abnormality, four had simultaneous MYC translocations, but no BCL2 translocation was detected among patients with BCL2 abnormality. Only two patients (4.0%) had both MYC and BCL2 abnormalities. The patients with a MYC abnormality had a significantly higher tumor burden, a higher percentage of medium/high risk MIPI group and genomic instability compared to those without this abnormality. However, no significant difference was observed between patients with or without a BCL2 abnormality in terms of clinical and cytogenetic factors. Patients with a MYC abnormality had poorer progress-free survival (PFS) (9.0 vs. 48.0 months, p = .000) and overall survival (OS) (12.0 vs. 94.5 months, p = .000), but the presence of a BCL2 abnormality did not significantly influence either PFS or OS. In multivariate analysis, the MYC abnormality was the independent adverse factor for both PFS and OS, and intensive chemotherapy did not improve the outcome of these patients. Thus, the presence of a MYC but not BCL2 abnormality predicted the poor survival of MCL patients, and a new treatment strategy should be developed for these patients. PMID:26517511

  17. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  18. Using peripheral smear review, age and absolute lymphocyte count as predictors of abnormal peripheral blood lymphocytoses diagnosed by flow cytometry.

    PubMed

    Andrews, Jared M; Cruser, Dan L; Myers, Jerome B; Fernelius, Colby A; Holm, Mitchel T; Waldner, Dale L

    2008-09-01

    Absolute lymphocytosis in the elderly raises the possibility of malignancy and generally warrants further investigation. To better correlate clinical variables with the frequency of neoplastic lymphoid processes in this population, we retrospectively reviewed archived flow cytometric analyses from peripheral blood specimens on patients of 50 years of age and older that had been deemed suspicious for a lymphoproliferative process after peripheral smear review. Age, absolute lymphocyte count (ALC), white blood cell count and relative lymphocyte count were correlated with the results of flow cytometry. Of 71 total cases, 42 (59%) had an abnormal immunophenotype. Independent variables that showed significant differences between normal and abnormal immunophenotype were mean age (p = 0.001) and ALC (p = 0.0032). We combined age and absolute lymphocyte count variables to look for the best possible cutoff values to predict the likelihood of an abnormal immunophenotype. ALC cutoff values of >or=4 x 10(9) cells/L for patients over 67 years of age, and >6.7 x 10(9) cells/L for patients between 50 and 67 years of age, had a high sensitivity for detecting an abnormal immunophenotype. PMID:18798107

  19. High Prevalence of Prothrombotic Abnormalities in Multifocal Osteonecrosis

    PubMed Central

    Peris, Pilar; Reverter, Joan Carles; Espinosa, Gerard; Martinez-Ferrer, Angeles; Monegal, Ana; Monteagudo, Juan; Tàssies, Dolors; Guañabens, Nuria

    2013-01-01

    Abstract Multifocal or multiple osteonecrosis (ON), defined by the involvement of 3 or more anatomic sites, is unusual, being observed in only 3%–10% of patients diagnosed with ON. We report the clinical characteristics of a cohort of 29 patients with multifocal ON from a single center and evaluate the prevalence of associated prothrombotic abnormalities in 26 of these patients. We conducted a retrospective study of all patients diagnosed with multifocal ON evaluated in our institution during the last 20 years. We recorded clinical manifestations and underlying diagnoses. A wide thrombophilic profile was performed, including antithrombin, protein C, protein S, lupus anticoagulant, anticardiolipin antibodies, activated protein C resistance, factor V Leiden, mutation G-20210-A of the prothrombin gene, and factor VIII. Coagulation test results were compared with those in a healthy control group and a group of patients with history of lower-extremity deep venous thrombosis. The mean age of the patients was 49.2 ± 15 years (range, 28–81 yr). The mean number of ON localizations per patient was 5.2 ± 2.3 (range, 3–11). Hips were the most commonly affected joint (82%), followed by knees (58%), shoulders (37%), and ankles (13%). Most patients had an underlying disease process, and 12 of 25 (48%) patients had coagulation test abnormalities. The most common alterations were high factor VIII levels and antiphospholipid antibody (aPL) positivity in 24% and 20% of cases, respectively. These abnormalities were more prevalent in patients with multifocal ON compared with patients in the control groups. Sixty-one percent of patients had a history of corticosteroid treatment. Patients with coagulation abnormalities had a higher number of ON localizations per patient (6.5 ± 2.7 vs. 3.88 ± 0.8; p = 0.002) and a higher prevalence of atypical ON localizations (25% vs. 0%; p = 0.05). In conclusion, in the present cohort of patients with multifocal ON, 48% of the patients had at

  20. Relationship between paravascular abnormalities and foveoschisis in highly myopic patients

    PubMed Central

    Kamal-Salah, R; Morillo-Sanchez, M J; Rius-Diaz, F; Garcia-Campos, J M

    2015-01-01

    Purpose To describe the prevalence of paravascular abnormalities in highly myopic patients and its relationship with myopic foveoschisis (MF). Methods Cross-sectional study of 250 highly myopic eyes. All of the patients underwent a complete ophthalmologic examination that included optical coherence tomography . Results Optical coherence tomography images showed 170 eyes (68%) with paravascular microfolds (PM), 121 eyes (48.4%) presented paravascular retinal cysts (PC), and 35 eyes (14%) with paravascular lamellar holes . All the eyes with PCs had PMs. Out of the 250 eyes, 48 (19.2%) had paravascular retinoschisis (PR). All the eyes (100%) with PR had paravascular cysts and PMs. Sixteen eyes (6.4%) had foveoschis. The spherical equivalent (P<0.00), PR (P=0.01), and the presence of tractional structures (P<0.00) were associated with increased risk for foveoschsis in the multivariate study. Conclusions PMs were the lesions most often observed in the paravascular area in highly myopic eyes. MF would be a result of the action of different forces (intra- and extra-ocular forces), specially tractional structures, on precursor lesions (paravascular cyst and paravascular restinoschisis). Further studies are needed to confirm these results. PMID:25359287

  1. Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Wu, Junjie; Zhu, Jie; Mao, Zhu; Said, Ayman H.; Leu, Bogdan M.; Cheng, Jinguang; Uwatoko, Yoshiya; Jin, Changqing; Zhou, Jianshi

    2014-09-01

    Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature.

  2. Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures

    PubMed Central

    Lin, Jung-Fu; Wu, Junjie; Zhu, Jie; Mao, Zhu; Said, Ayman H.; Leu, Bogdan M.; Cheng, Jinguang; Uwatoko, Yoshiya; Jin, Changqing; Zhou, Jianshi

    2014-01-01

    Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature. PMID:25186916

  3. Abnormal elastic and vibrational behaviors of magnetite at high pressures.

    PubMed

    Lin, Jung-Fu; Wu, Junjie; Zhu, Jie; Mao, Zhu; Said, Ayman H; Leu, Bogdan M; Cheng, Jinguang; Uwatoko, Yoshiya; Jin, Changqing; Zhou, Jianshi

    2014-01-01

    Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to ~20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C11 and C44) and a hardening in the off-diagonal constant (C12) at ~8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A1g and T2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe(2+)-Fe(3+)-Fe(2+) ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at ~8 GPa and room temperature. PMID:25186916

  4. Treatment of blood flow abnormality using mucosal delivery of nitric oxide.

    PubMed

    Lee, Chi H

    2011-06-01

    This review focuses on clinical application of intravaginal formulations containing nitric oxide (NO). Poly(D,L-lactic acid-co-glycolic acid)-based microparticles or nanoparticles encapsulated with nitric oxide prodrugs, such as diethylenetriamine diazeniumdiolate and S-nitrosoglutathione, have been developed for the treatment of blood flow abnormality in various diseases including diabetes. Advanced nanotechnology allows for production of novel formulations with the capability of long-term protection, preserving the integrity of the NO donors, and delivering NO in a controlled and sustained release manner at the mucosal sites. The gene expressions of MAPK and PKC in the vaginal mucosa upon exposure to microparticles were evaluated for the mechanistic study involved with blood flow changes. The blood flow changes and protein expression of the vaginal mucosa upon exposure to intravaginal formulations containing NO donors supported that NO therapy would be suitable for the treatment of blood flow abnormality. This review subsequently would help to establish a scientific foundation for clinical trials of intravaginal NO delivery systems in humans. PMID:25788240

  5. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    SciTech Connect

    Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.

  6. Abnormally high expression of proteasomes in human leukemic cells.

    PubMed Central

    Kumatori, A; Tanaka, K; Inamura, N; Sone, S; Ogura, T; Matsumoto, T; Tachikawa, T; Shin, S; Ichihara, A

    1990-01-01

    Proteasomes are eukaryotic ring-shaped or cylindrical particles with multicatalytic protease activities. To clarify the involvement of proteasomes in tumorigenesis of human blood cells, we compared their expression in human hematopoietic malignant tumor cells with that in normal peripheral blood mononuclear cells. Immunohistochemical staining showed considerably increased concentrations of proteasomes in leukemic cells from the bone marrow of patients with various types of leukemia and the predominant localization of these proteasomes in the nuclei. Moreover, enzyme immunoassay and Northern blot analysis indicated that the concentrations of proteasomes and their mRNA levels were consistently much higher in a variety of malignant human hematopoietic cell lines than in resting peripheral lymphocytes and monocytes from healthy adults. Proteasome expression was also greatly increased in normal blood mononuclear cells during blastogenic transformation induced by phytohemagglutinin; their expression increased in parallel with induction of DNA synthesis and returned to the basal level with progress of the cell cycle. Thus, abnormally high expression of proteasomes may play an important role in transformation and proliferation of blood cells and in specific functions of hematopoietic tumor cells. Images PMID:2205851

  7. High prevalence of thyroid ultrasonographic abnormalities in primary aldosteronism.

    PubMed

    Armanini, Decio; Nacamulli, Davide; Scaroni, Carla; Lumachi, Franco; Selice, Riccardo; Fiore, Cristina; Favia, Gennaro; Mantero, Franco

    2003-11-01

    The study was performed to evaluate the prevalence of thyroid abnormalities detected by ultrasonography and, in particular, of multinodular nontoxic goiter in primary aldosteronism. We analyzed 80 consecutive of patients with primary hyperaldosteronism (40 with unilateral adenoma and 40 with idiopathic hyperaldosteronism) and 80 normotensive healthy controls, comparable for age, sex, iodine intake, and geographical area. Blood pressure, thyroid palpation, thyroid function, and ultrasonography were evaluated. The prevalence of ultrasonographic thyroid abnormalities was 60% in primary aldosteronism and 27% in controls (p < 0.0001). There was a statistically significant difference in prevalence of these abnormalities in unilateral adenoma and idiopathic hyperaldosteronism with respect to controls (p < 0.05 and p < 0.0001, respectively). The prevalence of multinodular nontoxic goiter in idiopathic hyperaldosteronism was higher than in controls (p < 0.001) and, in particular, in female patients. From these data it seems to be worth considering the existence of primary hyperaldosteronism in patients with multinodular goiter and hypertension. PMID:14665720

  8. High Goblet Cell Count Is Inversely Associated with Ploidy Abnormalities and Risk of Adenocarcinoma in Barrett’s Esophagus

    PubMed Central

    Sanchez, Carissa A.; Liu, Karen; Fong, Pui Yee; Li, Xiaohong; Cowan, David S.; Rabinovitch, Peter S.; Reid, Brian J.; Blount, Patricia L.

    2015-01-01

    Purpose Goblet cells may represent a potentially successful adaptive response to acid and bile by producing a thick mucous barrier that protects against cancer development in Barrett's esophagus (BE). The aim of this study was to determine the relationship between goblet cells (GC) and risk of progression to adenocarcinoma, and DNA content flow cytometric abnormalities, in BE patients. Experimental Design Baseline mucosal biopsies (N=2988) from 213 patients, 32 of whom developed cancer during the follow up period, enrolled in a prospective dynamic cohort of BE patients were scored in a blinded fashion, for the total number (#) of GC, mean # of GC/crypt (GC density), # of crypts with ≥ 1 GC, and the proportion of crypts with ≥1 GC, in both dysplastic and non-dysplastic epithelium separately. The relationship between these four GC parameters and DNA content flow cytometric abnormalities and adenocarcinoma outcome was compared, after adjustment for age, gender, and BE segment length. Results High GC parameters were inversely associated with DNA content flow cytometric abnormalities, such as aneuploidy, ploidy >2.7N, and an elevated 4N fraction > 6%, and with risk of adenocarcinoma. However, a Kaplan-Meier analysis showed that the total # of GC and the total # crypts with ≥1 GC were the only significant GC parameters (p<0.001 and 0.003, respectively). Conclusions The results of this study show, for the first time, an inverse relationship between high GC counts and flow cytometric abnormalities and risk of adenocarcinoma in BE. Further studies are needed to determine if GC depleted foci within esophageal columnar mucosa are more prone to neoplastic progression or whether loss of GC occurs secondary to underlying genetic abnormalities. PMID:26230607

  9. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  10. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  11. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  12. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  13. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds...

  14. Estimation of ecological high flow

    NASA Astrophysics Data System (ADS)

    Lin, Jen-Yang; Chen, Yen-Chang; Hsienshao Tsao, Eric

    2006-02-01

    Floods can destroy fish habitat. During a flood a fish has to seek shelters (refuges) to survive. It is necessary to know the maximum discharge that the fish can sustain against the strong current. Ecological and hydraulic engineers can simulate the flow condition of high flow for designing the refuge when restoring and enhancing the rivers are needed. Based on the average ratio of the mean and maximum velocities invariant with time, discharge and water level, this paper tries to introduce the concept of ecological high flow. The mean-maximum velocity ratio can be used to estimate the mean velocity of the river. If the maximum velocity of the cross section is replaced by the maximum sustained swimming speeds of fish, the mean velocity of ecological high flow can be calculated with the constant ratio. The cross-sectional area can be estimated by the gage height. Then the ecological high flow can be estimated as the product of mean velocity of ecological high flow multiplied by the cross-sectional area. The available data of the upstream of the Dacha River where is the habitat of the Formosan landlocked salmon were used to illustrate the estimation of the ecological high flow. Any restoration project at Sonmou that try to improve the stream habitat can use the ecological high flow to design the hydraulic structure at suitable location to offer refuges for the Formosan landlocked salmon that is an endangered species in Taiwan

  15. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  16. Grain Flow at High Stresses

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  17. Flow Control Effectiveness at High Speed Flows

    NASA Astrophysics Data System (ADS)

    Kontis, K.; Lada, C.

    2005-02-01

    The effects of two important flow control techniques, i.e. jet control and dimples, on the aerodynamic characteristics and performance of a number of body configurations have been studied experimentally. The dimple studies have been carried out in a transonic-supersonic wind tunnel and the jet studies in a hypersonic gun tunnel at a Mach number of 8.2. Air was used as the working gas. The tests employed schlieren photography and oil-flow to study the overall flow field. Quantitative studies have been made by pressure measurements.

  18. Method of curved surface abnormal holes vision measurement based on high precision turntable

    NASA Astrophysics Data System (ADS)

    Lyu, Laipeng; Bi, Chao; Fang, Jianguo; Zhu, Yong; Wang, Liping

    2015-10-01

    For solving the difficult problem that there is no effective way to measure abnormal holes located at blade erection loop of aero-engine case, an image measurement system based on high precision air-bearing turntable is established in this paper. The issue that monocular vision can't measure curved surface has overcome by using high precision turntable to make sure high positioning accuracy of the surface abnormal holes and high-resolution microscope lens which is used to image local tiny features. Besides, an algorithm of determining the boundary points of a trailing edge on the contour of abnormal hole is proposed to achieve a rapid fitting and accuracy. After experiments and analysis, results show that the system can be used to measure local tiny features on curved surfaces validly and efficiently.

  19. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  20. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  1. Time Orientation in the Positive and Negative Free Phantasies of Mildly Abnormal Versus Normal High School Males

    ERIC Educational Resources Information Center

    Rychlak, Joseph F.

    1973-01-01

    This study contrasts a group of mildly'' abnormal high school males with matched normals in a two-session free phantasy procedure. Mildly abnormal boys phantasized more negative contents than normal boys. Normal boys projected more positive phantasies into the future than mildly abnormal boys. A logical learning theory'' embracing the…

  2. Detection of an Abnormal Myeloid Clone by Flow Cytometry in Familial Platelet Disorder With Propensity to Myeloid Malignancy

    PubMed Central

    Ok, Chi Young; Leventaki, Vasiliki; Wang, Sa A.; Dinardo, Courtney; Medeiros, L. Jeffrey; Konoplev, Sergej

    2016-01-01

    Objectives To report aberrant myeloblasts detected by flow cytometry immunophenotypic studies in an asymptomatic patient with familial platelet disorder with propensity to myeloid malignancy, a rare autosomal dominant disease caused by germline heterozygous mutations in Runt-related transcription factor 1. Methods Morphologic evaluation, flow cytometry immunophenotypic studies, nanofluidics-based qualitative multiplex reverse transcriptase polymerase chain reaction, Sanger sequencing, and next-generation sequencing-based mutational hotspot analysis of 53 genes were performed on bone marrow biopsy and aspirate samples. Results Flow cytometry immunophenotypic analysis showed 0.6% CD34+ blasts with an abnormal immunophenotype: CD13 increased, CD33+, CD38 decreased, CD117 increased, and CD123 increased. Conclusions The acquisition of new phenotypic aberrancies in myeloblasts as detected by flow cytometry immunophenotypic studies might be a harbinger of impending myelodysplastic syndrome or acute myeloid leukemia in a patient with familial platelet disorder with propensity to myeloid malignancy. PMID:26800764

  3. An Algorithm for the Segmentation of Highly Abnormal Hearts Using a Generic Statistical Shape Model.

    PubMed

    Alba, Xenia; Pereanez, Marco; Hoogendoorn, Corne; Swift, Andrew J; Wild, Jim M; Frangi, Alejandro F; Lekadir, Karim

    2016-03-01

    Statistical shape models (SSMs) have been widely employed in cardiac image segmentation. However, in conditions that induce severe shape abnormality and remodeling, such as in the case of pulmonary hypertension (PH) or hypertrophic cardiomyopathy (HCM), a single SSM is rarely capable of capturing the anatomical variability in the extremes of the distribution. This work presents a new algorithm for the segmentation of severely abnormal hearts. The algorithm is highly flexible, as it does not require a priori knowledge of the involved pathology or any specific parameter tuning to be applied to the cardiac image under analysis. The fundamental idea is to approximate the gross effect of the abnormality with a virtual remodeling transformation between the patient-specific geometry and the average shape of the reference model (e.g., average normal morphology). To define this mapping, a set of landmark points are automatically identified during boundary point search, by estimating the reliability of the candidate points. With the obtained transformation, the feature points extracted from the patient image volume are then projected onto the space of the reference SSM, where the model is used to effectively constrain and guide the segmentation process. The extracted shape in the reference space is finally propagated back to the original image of the abnormal heart to obtain the final segmentation. Detailed validation with patients diagnosed with PH and HCM shows the robustness and flexibility of the technique for the segmentation of highly abnormal hearts of different pathologies. PMID:26552082

  4. Abnormal Pap Smear and Diagnosis of High-Grade Vaginal Intraepithelial Neoplasia: A Retrospective Cohort Study.

    PubMed

    Sopracordevole, Francesco; Mancioli, Francesca; Clemente, Nicolò; De Piero, Giovanni; Buttignol, Monica; Giorda, Giorgio; Ciavattini, Andrea

    2015-10-01

    The aim of this study was to analyze the correlation between the first diagnosis of high-grade Vaginal Intraepithelial Neoplasia (HG-VaIN: VaIN 2-VaIN 3) and the cytological abnormalities on the referral pap smear.All the women with histological diagnosis of HG-VaIN consecutively referred to the Gynecological Oncology Unit of the Aviano National Cancer Institute (Aviano, Italy) from January 1991 to April 2014 and with a pap smear performed in the 3 months before the diagnosis were considered, and an observational cohort study was performed.A total of 87 women with diagnosis of HG-VaIN were identified. Major cytological abnormalities (HSIL and ASC-H) on the referral pap smear were significantly more frequent than lesser abnormalities (ASC-US and LSIL) in postmenopausal women (64.9% vs 36.7%, P = 0.02) and in women with a previous diagnosis of HPV-related cervical preinvasive or invasive lesions (70.5% vs 39.5%, P = 0.01). Diagnosis of VaIN 3 was preceded by major cytological abnormalities in most of the cases (72.7% vs 27.3%, P < 0.001).The diagnosis of HG-VaIN can be preceded by different abnormalities on referral pap smear. Major abnormalities are usually reported in postmenopausal women and in women with previous cervical HPV-related disease. However, ASC-US or LSIL do not exclude HG-VaIN, especially VaIN2. An accurate examination of the whole vaginal walls (or vaginal vault) must be performed in all the women who underwent colposcopy for an abnormal pap smear, and a biopsy of all suspicious areas is mandatory. PMID:26496321

  5. Erythrocyte echinocytosis in liver disease. Role of abnormal plasma high density lipoproteins.

    PubMed Central

    Owen, J S; Brown, D J; Harry, D S; McIntyre, N; Beaven, G H; Isenberg, H; Gratzer, W B

    1985-01-01

    Echinocytes were frequently found in patients with liver disease when their blood was examined in wet films, but rarely detected in dried, stained smears. When normal erythrocytes (discocytes) were incubated with physiologic concentrations of the abnormal high density lipoproteins (HDL) from some jaundiced patients, echinocytosis developed within seconds. Other plasma fractions were not echinocytogenic. There was a close correlation between the number of echinocytes found in vivo and the ability of the corresponding HDL to induce discocyte-echinocyte transformation. On incubation with normal HDL, echinocytes generated in vitro rapidly reverted to a normal shape, and echinocytes from patients showed a similar trend. Echinocytosis occurred without change in membrane cholesterol content, as did its reversal, and was not caused by membrane uptake of lysolecithin or bile acids. Abnormal, echinocytogenic HDL showed saturable binding to approximately 5,000 sites per normal erythrocyte with an association constant of 10(8) M-1. Nonechinocytogenic patient HDL and normal HDL showed only nonsaturable binding. Several minor components of electrophoretically separated erythrocyte membrane proteins bound the abnormal HDL; pretreatment of the cells with trypsin or pronase reduced or eliminated binding. Echinocytosis by abnormal HDL required receptor occupancy, rather than transfer of constituents to or from the membrane, because cells reversibly prefixed in the discoid shape by wheat germ agglutinin, and then exposed to abnormal HDL, did not become echinocytes when the HDL and lectin were successively removed. Binding did not cause dephosphorylation of spectrin. We conclude that the echinocytes of liver disease are generated from discocytes by abnormal HDL, and we infer that the shape change is mediated by cell-surface receptors for abnormal HDL molecules. Images PMID:4077979

  6. Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension.

    PubMed

    Happé, C M; Szulcek, R; Voelkel, N F; Bogaard, H J

    2016-08-01

    In pulmonary arterial hypertension (PAH) structural and functional abnormalities of the small lung vessels interact and lead to a progressive increase in pulmonary vascular resistance and right heart failure. A current pathobiological concept characterizes PAH as a 'quasi-malignant' disease focusing on cancer-like alterations in endothelial cells (EC) and the importance of their acquired apoptosis-resistant, hyper-proliferative phenotype in the process of vascular remodeling. While changes in pulmonary blood flow (PBF) have been long-since recognized and linked to the development of PAH, little is known about a possible relationship between an altered PBF and the quasi-malignant cell phenotype in the pulmonary vascular wall. This review summarizes recognized and hypothetical effects of an abnormal PBF on the pulmonary vascular bed and links these to quasi-malignant changes found in the pulmonary endothelium. Here we describe that abnormal PBF does not only trigger a pulmonary vascular cell growth program, but may also maintain the cancer-like phenotype of the endothelium. Consequently, normalization of PBF and EC response to abnormal PBF may represent a treatment strategy in patients with established PAH. PMID:26804008

  7. Abnormal Heart Rate Turbulence Predicts Cardiac Mortality in Low, Intermediate and High Risk Older Adults

    PubMed Central

    Stein, Phyllis K.; Barzilay, Joshua I.

    2011-01-01

    Introduction We examined whether heart rate turbulence (HRT) adds to traditional risk factors for cardiac mortality in older adults at low, intermediate and high risk. Methods and Results N=1298, age ≥65 years, with 24-hour Holter recordings were studied. HRT, which quantifies heart rate response to ventricular premature contractions, was categorized as: both turbulence onset (TO) and turbulence slope (TS) normal; TO abnormal; TS abnormal; or both abnormal. Independent risks for cardiac mortality associated with HRT or, for comparison, elevated C-reactive protein (CRP) (>3.0 mg/L), were calculated using Cox regression analysis adjusted for traditional cardiovascular disease risk factors and stratified by the presence of no, isolated subclinical (i.e., intermediate risk) or clinical CVD. Having both TS and TO abnormal compared to both normal was associated with cardiac mortality in the low risk group [HR 7.9, 95% CI 2.8–22.5, (p<0.001)]. In the high and intermediate risk groups, abnormal TS and TO ([HR 2.2, 95% CI 1.5–4.0, p=0.016] and [HR 2.7, 95% CI 1.2–5.9, p=0.012]), respectively, were also significantly associated with cardiac mortality. In contrast, elevated CRP was associated with increased cardiac mortality risk only in low risk individuals [HR 2.5, 95% CI 1.3–5.1, p=0.009]. In the low risk group, the c-statistic was 0.706 for the base model, 0.725 for the base model with CRP, and 0.767 for the base model with HRT. Conclusions Abnormal HRT independently adds to risk stratification of low, intermediate and high risk individuals but appears to add especially to the stratification of those considered at low risk. PMID:21134026

  8. A simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion.

    PubMed

    Gonzalez, E; Schoephoerster, R T

    1996-01-01

    Alterations in left ventricle (LV) wall motion induced by ischemia will affect flow dynamics, and these altered flow fields can be used to evaluate LV pumping efficiency. LV chamber flow fields were obtained in this study by solving the discretized three-dimensional Navier-Stokes equations for viscous, incompressible unsteady flow by using the finite analytic method. Several cases of abnormal wall motion (AWM) were simulated by a manipulation of the boundary conditions to produce regions of hypokinesis, akinesis, and dyskinesis. These solutions were used to determine the central ejection region (CER), defined as the region of flow domain in which the obtained velocity field vectors are aligned +/- 3 degrees from the LV long axis. A CER coefficient was computed from information on the location and orientation of the CER within the LV cavity. Contraction of the spherical ventricle produced a vector field that was symmetric with respect to the long axis. For the simulations of AWM, an asymmetrical flow pattern developed, became more pronounced with increasing severity of AWM, and resulted in a shorter CER that shifted toward the ischemic region. The CER coefficients decreased monotonically with increased severity in AWM from 0.948 in the normal case to a low of 0.164 for the most severe case of AWM. The CER coefficient quantitatively displayed the sensitivity of the flow patterns to even moderate degrees of hypokinesis. In addition, visualization of the three-dimensional flow field reinforced the necessity of three-dimensional simulations to capture aspects of the flow that existing methods of two-dimensional flow imaging that use ultrasound may miss. PMID:8669717

  9. Trophoblastic Oxidative Stress in Relation to Temporal and Regional Differences in Maternal Placental Blood Flow in Normal and Abnormal Early Pregnancies

    PubMed Central

    Jauniaux, Eric; Hempstock, Joanne; Greenwold, Natalie; Burton, Graham J.

    2003-01-01

    Onset of the maternal-placental circulation was studied by Doppler ultrasonography in 65 pairs of age-matched normal and abnormal pregnancies. In normal pregnancies intervillous blood flow increased with gestational age, being detected in 9 of 25 cases at 8 to 9 weeks but in 18 of 20 at 12 to 13 weeks (P = 0.001). By contrast, in abnormal pregnancies flow was detected in nearly all cases (22 of 25) at 8 to 9 weeks (P < 0.001). In addition, regional differences were observed between the groups. Early flow was restricted to the peripheral regions of most normal placentas (P < 0.001), whereas in missed miscarriages it was most common in central regions or throughout the placenta (P < 0.05 and P < 0.001, respectively). Immunoreactivity for heat shock protein 70 and nitrotyrosine residues was greater in samples from peripheral than from central regions of normal placentas (P = 0.028 and P = 0.019, respectively), and from missed miscarriages compared to controls (P = 0.005 and P = 0.001, respectively). Our results indicate that oxidative damage to the trophoblast, induced by premature and widespread onset of the maternal placental circulation secondary to shallow trophoblast invasion, is a key factor in early pregnancy loss. High oxygen concentrations in the periphery of normal early placentas may similarly induce local regression of the villi, leading to formation of the chorion laeve. PMID:12507895

  10. High Flow Addition Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  11. Abnormal resting regional cerebral blood flow patterns and their correlates in schizophrenia

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.; Tant, S.R.; Robinson, L.; Prakash, R.

    1988-06-01

    Regional cerebral blood flow (CBF) was measured under resting conditions in 108 right-handed schizophrenic inpatients and a matched group of normal controls with the xenon 133 inhalation technique. Forty-six patients were free of all medication for two weeks. There were no significant differences in CBF to the two hemispheres. The patients showed a comparatively reduced anteroposterior (AP) gradient for CBF. Though there were no differences in frontal flow, the patients had higher flow to several postcentral brain regions, bilaterally. Cerebral blood flow in the patients correlated inversely with age and positively with carbon dioxide level. Women had higher flow than men. Duration of the illness was the only significant predictor of the reduced AP gradient in patients. Higher left temporal and right parietal flow were found to be the best discriminators between patients and controls. Mean hemispheric flow to both hemispheres and several brain regions correlated with the total score and the item, unusual thought content, of the Brief Psychiatric Rating Scale. There were no differences in regional CBF between medicated and unmedicated patients.

  12. STUDYING VENTRICULAR ABNORMALITIES IN MILD COGNITIVE IMPAIRMENT WITH HYPERBOLIC RICCI FLOW AND TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Stonnington, Cynthia M.; Thompson, Paul M.; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C.; Reiman, Eric M.; Caselli, Richard J.; Wang, Yalin

    2014-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer’s disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374

  13. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.

    PubMed

    Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin

    2015-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374

  14. Abnormal regional blood flow responses during and after exercise in human sympathetic denervation.

    PubMed Central

    Puvi-Rajasingham, S; Smith, G D; Akinola, A; Mathias, C J

    1997-01-01

    1. Blood pressure, superior mesenteric artery (SMA) and skeletal muscle blood flow, cardiac index (CI) and systemic vascular resistance responses to supine leg exercise were measured in six age-matched normal subjects (controls) and in eleven subjects with sympathetic denervation due to primary autonomic failure (AF). 2. During exercise, blood pressure rose in controls but fell markedly in AF. After exercise, blood pressure rapidly returned to baseline in controls but remained low in AF. During exercise, systemic vascular resistance fell in controls and AF but tended to fall further in AF and remained low post exercise. CI increased similarly in controls and AF. 3. During exercise, SMA blood flow fell similarly in controls and AF, but the fall initially was slower in AF; recovery was more rapid post exercise in controls. SMA vascular resistance tended to rise less and more slowly in AF and remained elevated post exercise. 4. Forearm muscle (FM) blood flow and FM vascular resistance did not change from resting values in controls or AF post exercise. After exercise, leg muscle (LM) blood flow rose and LM vascular resistance fell equally in both groups although LM blood flow remained elevated, 10 min post exercise in AF. 5. In sympathetically denervated humans, increased blood flow (due to excessive vasodilatation, lack of sympathetic restraint, or both) in leg muscle during and after exercise in combination with impaired splanchnic vasoconstriction in the early stages of exercise may have contributed to exercise-induced hypotension. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9457657

  15. Embolization Treatment of High-Flow Priapism.

    PubMed

    Kim, Kyung Rae

    2016-09-01

    Priapism is prolonged erection that persists beyond or is unrelated to sexual stimulation. There are two main types of priapism: high flow and low flow. The treatment of priapism will differ depending on the diagnosis of these two different types. In particular, interventional radiology plays a key role in treating patients with high-flow priapism. This article will review the diagnosis and treatment of the high-flow priapism. PMID:27582604

  16. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy

    PubMed Central

    Weninger, Wolfgang J.; Geyer, Stefan H.; Martineau, Alexandrine; Galli, Antonella; Adams, David J.; Wilson, Robert; Mohun, Timothy J.

    2014-01-01

    The arrival of simple and reliable methods for 3D imaging of mouse embryos has opened the possibility of analysing normal and abnormal development in a far more systematic and comprehensive manner than has hitherto been possible. This will not only help to extend our understanding of normal tissue and organ development but, by applying the same approach to embryos from genetically modified mouse lines, such imaging studies could also transform our knowledge of gene function in embryogenesis and the aetiology of developmental disorders. The International Mouse Phenotyping Consortium is coordinating efforts to phenotype single gene knockouts covering the entire mouse genome, including characterising developmental defects for those knockout lines that prove to be embryonic lethal. Here, we present a pilot study of 34 such lines, utilising high-resolution episcopic microscopy (HREM) for comprehensive 2D and 3D imaging of homozygous null embryos and their wild-type littermates. We present a simple phenotyping protocol that has been developed to take advantage of the high-resolution images obtained by HREM and that can be used to score tissue and organ abnormalities in a reliable manner. Using this approach with embryos at embryonic day 14.5, we show the wide range of structural abnormalities that are likely to be detected in such studies and the variability in phenotypes between sibling homozygous null embryos. PMID:25256713

  17. Nicotine in Combination With a High-Fat Diet Causes Intramyocellular Mitochondrial Abnormalities in Male Mice

    PubMed Central

    Sinha-Hikim, Indrani; Friedman, Theodore C.; Shin, Chang-Sung; Lee, Desean; Ivey, Rasheed

    2014-01-01

    Smoking is a major risk factor for diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. The health risk associated with smoking can be exaggerated by obesity. We hypothesize that nicotine when combined with a high-fat diet (HFD) can also cause ectopic lipid accumulation in skeletal muscle, similar to recently observed hepatic steatosis. Adult C57BL6 male mice were fed a normal chow diet or HFD and received twice-daily ip injections of nicotine (0.75 mg/kg body weight) or saline for 10 weeks. Transmission electron microscopy of the gastrocnemius muscle revealed substantial intramyocellular lipid accumulation in close association with intramyofibrillar mitochondria along with intramyofibrillar mitochondrial swelling and vacuolization in nicotine-treated mice on an HFD compared with mice on an HFD treated with saline. These abnormalities were reversed by acipimox, an inhibitor of lipolysis. Mechanistically, the detrimental effect of nicotine plus HFD on skeletal muscle was associated with significantly increased oxidative stress, plasma free fatty acid, and muscle triglyceride levels coupled with inactivation of AMP-activated protein kinase and activation of its downstream target, acetyl-coenzyme A-carboxylase. We conclude that 1) greater oxidative stress together with inactivation of AMP-activated protein kinase mediates the effect of nicotine on skeletal muscle abnormalities in diet-induced obesity and 2) adipose tissue lipolysis is an important contributor of muscle steatosis and mitochondrial abnormalities. PMID:24424058

  18. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    PubMed

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system. PMID:26195163

  19. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  20. Comparison of rootMUSIC and discrete wavelet transform analysis of Doppler ultrasound blood flow waveforms to detect microvascular abnormalities in type I diabetes.

    PubMed

    Agnew, Christina Elizabeth; McCann, A J; Lockhart, C J; Hamilton, P K; McVeigh, G E; McGivern, R C

    2011-04-01

    The earliest signs of cardiovascular disease occur in microcirculations. Changes to mechanical and structural properties of these small resistive vessels alter the impedance to flow, subsequent reflected waves, and consequently, flow waveform morphology. In this paper, we compare two frequency analysis techniques: 1) rootMUSIC and 2) the discrete wavelet transform (DWT) to extract features of flow velocity waveform morphology captured using Doppler ultrasound from the ophthalmic artery (OA) in 30 controls and 38 age and sex matched Type I diabetics. Conventional techniques for characterizing Doppler velocity waveforms, such as mean velocity, resistive index, and pulsatility index, revealed no significant differences between the groups. However, rootMUSIC and the DWT provided highly correlated results with the spectral content in bands 2-7 (30-0.8 Hz) significantly elevated in the diabetic group (p < 0.05). The spectral distinction between the groups may be attributable to manifestations of underlying pathophysiological processes in vascular impedance and consequent wave reflections, with bands 5 and 7 related to age. Spectral descriptors of OA blood velocity waveforms are better indicators of preclinical microvascular abnormalities in Type I diabetes than conventional measures. Although highly correlated DWT proved slightly more discriminatory than rootMUSIC and has the advantage of extending to subheart rate frequencies, which may be of interest. PMID:21138796

  1. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    PubMed Central

    Lee, Seong-Jong; Han, Jong-Min; Lee, Jin-Seok; Son, Chang-Gue; Im, Hwi-Jin; Jo, Hyun-Kyung; Yoo, Ho-Ryong; Kim, Yoon-Sik; Seol, In-Chan

    2015-01-01

    The medicinal plants Artemisia iwayomogi (A. iwayomogi) and Curcuma longa (C. longa) radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM). In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE) on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group) were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group) were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg) or curcumin (50 mg/kg). Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides), glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα). The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model. PMID:26508977

  2. Abnormal effective connectivity and psychopathological symptoms in the psychosis high-risk state

    PubMed Central

    Schmidt, André; Smieskova, Renata; Simon, Andor; Allen, Paul; Fusar-Poli, Paolo; McGuire, Philip K.; Bendfeldt, Kerstin; Aston, Jacqueline; Lang, Undine E.; Walter, Marc; Radue, Ernst-Wilhelm; Riecher-Rössler, Anita; Borgwardt, Stefan J.

    2014-01-01

    Background Recent evidence has revealed abnormal functional connectivity between the frontal and parietal brain regions during working memory processing in patients with schizophrenia and first-episode psychosis. However, it still remains unclear whether abnormal frontoparietal connectivity during working memory processing is already evident in the psychosis high-risk state and whether the connection strengths are related to psychopathological outcomes. Methods Healthy controls and antipsychotic-naive individuals with an at-risk mental state (ARMS) performed an n-back working memory task while undergoing functional magnetic resonance imaging. Effective connectivity between frontal and parietal brain regions during working memory processing were characterized using dynamic causal modelling. Results Our study included 19 controls and 27 individuals with an ARMS. In individuals with an ARMS, we found significantly lower task performances and reduced activity in the right superior parietal lobule and middle frontal gyrus than in controls. Furthermore, the working memory–induced modulation of the connectivity from the right middle frontal gyrus to the right superior parietal lobule was significantly reduced in individuals with an ARMS, while the extent of this connectivity was negatively related to the Brief Psychiatric Rating Scale total score. Limitations The modest sample size precludes a meaningful subgroup analysis for participants with a later transition to psychosis. Conclusion This study demonstrates that abnormal frontoparietal connectivity during working memory processing is already evident in individuals with an ARMS and is related to psychiatric symptoms. Thus, our results provide further insight into the pathophysiological mechanisms of the psychosis high-risk state by linking functional brain imaging, computational modelling and psychopathology. PMID:24506946

  3. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  4. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  5. Flow simulation and analysis of high-power flow batteries

    NASA Astrophysics Data System (ADS)

    Knudsen, E.; Albertus, P.; Cho, K. T.; Weber, A. Z.; Kojic, A.

    2015-12-01

    The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm2 to 400 cm2, are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation.

  6. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  7. Left-Hemispheric Microstructural Abnormalities in Children With High Functioning Autism Spectrum Disorder

    PubMed Central

    Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart

    2014-01-01

    Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103

  8. Abnormal endothelial function in young African-American females: discordance with blood flow.

    PubMed Central

    Bransford, T. L.; St Vrain, J. A.; Webb, M.

    2001-01-01

    In this pilot study, we sought to compare the vasodilatory and hemodynamic properties of the peripheral vasculature in the forearms of young, healthy African-American females to similarly matched white females. We used high-resolution ultrasound of the brachial artery to evaluate 11 African-American females and 8 white females. When normalized to nitrate-induced dilation, endothelium-dependent dilation was reduced in young African American females compared to white females (0.6 in African American females compared to 1.0 in white females). These results indicate the need for a larger study to examine this phenomenon. PMID:12653397

  9. High quality topic extraction from business news explains abnormal financial market volatility.

    PubMed

    Hisano, Ryohei; Sornette, Didier; Mizuno, Takayuki; Ohnishi, Takaaki; Watanabe, Tsutomu

    2013-01-01

    Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affects trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affects stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their "thematic" features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized facts in financial economies, namely that at certain times trading volumes appear to be "abnormally large," can be partially explained by the flow of news. In this sense, our results prove that there is no "excess trading," when restricting to times when news is genuinely novel and provides relevant financial information. PMID:23762258

  10. High Quality Topic Extraction from Business News Explains Abnormal Financial Market Volatility

    PubMed Central

    Hisano, Ryohei; Sornette, Didier; Mizuno, Takayuki; Ohnishi, Takaaki; Watanabe, Tsutomu

    2013-01-01

    Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affects trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affects stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their “thematic” features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized facts in financial economies, namely that at certain times trading volumes appear to be “abnormally large,” can be partially explained by the flow of news. In this sense, our results prove that there is no “excess trading,” when restricting to times when news is genuinely novel and provides relevant financial information. PMID:23762258

  11. The integrated method to select drilling muds for abnormally high pressure formations

    NASA Astrophysics Data System (ADS)

    Khorev, V. S.; Dmitriev, A. Yu; Boyko, I. A.; Kayumova, N. S.; Rakhimov, T. R.

    2016-03-01

    The article describes the method for choosing a drilling mud for drilling abnormally high pressure formations. A carefully selected drilling mud formulation would not only enhance an array of interrelated fluid properties, but also minimize the impact on the pay zones when the drill bit first penetrates the pay. To ensure a better assessment of drilling mud impact on the pay zone, it is reasonable to carry out the study focused on the analysis of technological parameters, involving filtration, acid and drilling mud tests, as well as formation damage analysis. This would enable evaluating the degree of mudding off, reservoirs acid fracturing effect and the risks of pipe sticking at significant depth. The article presents the results of the above-described study with regard to the currently used drilling mud and new experimental formulations developed at National Research Tomsk Polytechnic University (Drilling Mud and Cement Slurry Laboratory).

  12. Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats

    PubMed Central

    Shao, Shan-shan; Zhao, Yuan-fei; Song, Yong-feng; Xu, Chao; Yang, Jian-mei; Xuan, Shi-meng; Yan, Hui-li; Yu, Chun-xiao; Zhao, Meng; Xu, Jin; Zhao, Jia-jun

    2014-01-01

    Aim: Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. Methods: Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. Results: The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. Conclusion: Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification. PMID:25263336

  13. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Gliske, Stephen; Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  14. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma

    PubMed Central

    Carr-Wilkinson, Jane; O' Toole, Kieran; Wood, Katrina M.; Challen, Christine C.; Baker, Angela G.; Board, Julian R.; Evans, Laura; Cole, Michael; Cheung, Nai-Kong V.; Boos, Joachim; Köhler, Gabriele; Leuschner, Ivo; Pearson, Andrew D.J.; Lunec, John; Tweddle, Deborah A.

    2010-01-01

    Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14ARF pathway in 9/17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14ARF methylation and deletion by methylation-specific PCR and duplex PCR respectively, and MDM2 amplification by fluorescent in-situ hybridisation. Results: Abnormalities in the p53 pathway were identified in 20/41(49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6/41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, post chemotherapy and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio 3.4, 95% confidence interval 1.2, 9.9; p = 0.02). Upstream defects were present in 35% cases: MDM2 amplification in 3 cases, all at diagnosis & relapse and p14ARF inactivation in 12/41 (29%) cases: 3 had p14ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects where p53 independent therapies are indicated. PMID:20145180

  15. Abnormal high-Q modes of coupled stadium-shaped microcavities.

    PubMed

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-07-15

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a "rounded bow tie" mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to the whispering gallery mode. PMID:25121685

  16. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  17. Isotopic and Hydrogeochemical Studies on Abnormally High Ammonium of Natural Origin in A Coastal Aquifer-aquitard System

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiao, J. J.; Cherry, J.

    2010-12-01

    Excessive nitrogen concentration in water bodies is regarded as an environmental contamination because of its possible harm to human bodies and significant ecological effects. Previous studies commonly concerned on elevated nitrogen in water of anthropogenic origins, such as agricultural, domestic, sewage and industrial discharges, because people realize that it is necessary to manage negative influences of human being to the natural environment. Understanding contamination sources of nitrogen is crucial for both waste discharge management and pollutants cleanup. This study was aimed to 1) understand the spatial distribution of abnormally high ammonium groundwater in the Quaternary basalt aquifer in the Pearl River Delta (PRD), China; 2) to distinguish sources of recharge to the basalt aquifer; and 3) to identify the origin of the ammonium in the aquitard and aquifer system. Total 40 boreholes were drilled, and approximately 1000 deposit samples from the aquitard and over 200 groundwater samples from the Quaternary basalt aquifer were collected. A cluster of 7 piezometers was installed in Minzhong Town to study the hydraulic relationships between the aquitard and the basalt aquifer. The results demonstrated that the greater groundwater ammonium concentrations were preserved in the aquifer buried deeper. The ammonium concentration up to 390 mg/L was observed in the basalt sand and gravel Pleistocene aquifer of 20-50m deep, and this is the greatest concentration ever reported for natural groundwater globally. The Quaternary aquitard, which contained abundant sedimentary organic matter and was mainly composed of silt and clay, provided a strict anaerobic environment for sedimentary organic matter mineralization and ammonium preservation. Ammonium concentrations in the aquifer were predominantly controlled by the aquitard ammonium content. This naturally occurring abnormally high ammonium in the Quaternary sediments is areally extensive (over 1600 km2). Great

  18. Isolation and Characterization of an Abnormal High Density Lipoprotein in Tangier Disease

    PubMed Central

    Assmann, Gerd; Herbert, Peter N.; Fredrickson, Donald S.; Forte, Trudy

    1977-01-01

    The nature of the high density lipoproteins has been investigated in five patients homozygous for Tangier disease (familial high density lipoprotein deficiency). It has been established that Tangier high density lipoproteins, as isolated by ultracentrifugation, are morphologically heterogenous and contain several proteins (Apo B, albumin, and Apo A-II). An abnormal lipoprotein has been isolated from the d = 1.063-1.21 g/ml ultracentrifugal fraction by agarose-column chromatography which contains apoprotein A-II as the sole protein constituent. In negative-stain electron microscopy, these lipoproteins appeared as spherical particles 55-75 Å in diameter. By a variety of criteria (immunochemical, polyacrylamide electrophoresis, amino acid composition, and fluorescence measurements), apoprotein A-I the major apoprotein of normal high density lipoproteins and the C apoproteins were absent from this lipoprotein. As demonstrated by 125I very low density lipoprotein incubation experiments with Tangier plasma, C apoproteins did not associate with lipoproteins of d = 1.063-1.21 g/ml. Tangier apoprotein A-II, isolated to homogeneity by delipidation of the apoprotein A-II-containing lipoprotein or Sephadex G-200 guanidine-HCl chromatography of the d = 1.063-1.21 g/ml fraction, was indistinguishable from control apoprotein A-II with respect to amino acid composition and migration of tryptic peptides in urea-polyacrylamide electrophoresis. The ability of Tangier apoprotein A-II to bind phospholipid was demonstrated by in vitro reconstitution experiments and morphological and chemical analysis of lipid-protein complexes. It is concluded that normal high density lipoproteins, as defined by polypeptide composition and morphological appearance, are absent from Tangier plasma and that as a consequence, the impairment of C apoprotein metabolism contributes to the hypertriglyceridemia and fasting chylomicronemia observed in these patients. Images PMID:194920

  19. Abnormal Adrenal Responsiveness and Angiotensin II Dependency in High Renin Essential Hypertension

    PubMed Central

    Dluhy, Robert G.; Bavli, Sam Z.; Leung, Frank K.; Solomon, Harold S.; Moore, Thomas J.; Hollenberg, Norman K.; Williams, Gordon H.

    1979-01-01

    Adrenal responsiveness to angiotensin II (AII) and the diastolic blood pressure responses to saralasin were studied in 19 patients with high renin essential hypertension (HREH) on a 10-meq Na+/100 meq K+ diet. The increment in plasma renin activity (PRA) between supine and upright positions was used as an estimate of the acute stimulation of the adrenal gland by endogenous AII; the normal increment in plasma aldosterone divided by the increment in PRA was >3.8. 7 of 19 had abnormal upright posture responses with significantly greater mean PRA increments (24±6 ng/ml per h) and significantly smaller plasma aldosterone increments 47 ± 16 ng/dl) (P < 0.036) compared to the increments observed in HREH patients with normal adrenal responsiveness (PRA = 15 ± 1 ng/ml per h; plasma aldosterone = 87 ± 17 ng/dl). When AII was infused at doses of 0.1-3 ng/kg per min, only patients with normal posture responses had normal plasma aldosterone increments; plasma aldosterone levels failed to significantly increase even at the highest infusion rate in the patients with the abnormal upright posture responses. The AII competitive inhibitor, saralasin (0.3-30 μg/kg per min) was then infused to study the occurrence of angiotensinogenic hypertension in both HREH subgroups. The mean decline in diastolic blood pressure to saralasin in the subnormal adrenal responsive patients (−15 ± 3 mm Hg) was significantly greater than in the normal adrenal responsive group (−3 ± 2 mm Hg) (P < 0.02). It is concluded that patients with HREH are not a homogeneous population; approximately one-third have AII-dependent hypertension. In these patients, the mechanism responsible for the elevated renin and blood pressure could be a compensatory increase secondary to decreased adrenal responsiveness to AII. In the remainder, the high PRA levels have little, if any, causal role in the pathogenesis of the hypertension but could reflect a marker of other pathophysiologic processes. PMID:500810

  20. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  1. A high flow turbine CPAP system.

    PubMed

    Moran, J L; Jackson, M P; Cameron, D M; Peisach, A R; Cunningham, D N; O'Fathartaigh, M S

    1988-01-01

    A continuous high flow CPAP system incorporating a turbine blower is described. The system achieves inspiratory flow rates of 150 l/min or more by means of reticulated gas flow and inspired oxygen fractions of 0.21-0.95. Positive airway pressure is provided by weighted disc valves and a modified aviation-type CPAP face mask provides electronic communication with the patient. The mobility of the system also enables its use as an intermittent physiotherapy aid. Work of breathing of the system, as assessed by total pressure fluctuations is at a minimum. PMID:3053845

  2. Reproductive and behavioral abnormalities in tree swallows with high levels of PCB contamination

    SciTech Connect

    McCarty, J.; Secord, A.; Tillitt, D.

    1995-12-31

    Tree Swallows (Tachycineta bicolor) breeding along the Hudson River forage extensively on PCB contaminated insects that emerge from the river. The authors studied the reproductive ecology and behavior of tree swallows breeding at several sites along the Hudson River. These sites vary in the severity of PCB contamination. PCB levels in both eggs and chicks were found to be among the highest ever reported in this species, with concentrations comparable to those found in aquatic organisms in the Hudson River. In 1994 reproductive success at PCB contaminated sites was significantly impaired, relative to other sites in New York. Reduced reproductive success was largely attributed to high levels of nest abandonment during incubation and reduced hatchability of eggs. Growth and development of nestlings was not significantly impaired. Abnormal nest building behavior was also noted in 1994, and this was studied in detail in 1995. Nests from contaminated areas are significantly smaller than those at a nearby reference site and at other sites in New York. The authors suggest that the reduced reproductive outputs at these sites are, in large part, a result of effects on the behavior of incubating females. The population-level implications of these patterns are unknown.

  3. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  4. Chaotic behaviour of high Mach number flows

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.; Ghosh, S.

    1985-01-01

    The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.

  5. High prevalence of anterolateral ligament abnormalities in magnetic resonance images of anterior cruciate ligament-injured knees.

    PubMed

    Claes, Steven; Bartholomeeusen, Stijn; Bellemans, Johan

    2014-03-01

    The purpose of this study was to identify the newly described anterolateral ligament of the human knee on magnetic resonance imaging and to describe its eventual radiological abnormalities in anterior cruciate ligament-injured subjects. A retrospective cohort study on a series of consecutive subjects undergoing anterior cruciate ligament reconstructive surgery was performed. The MR images of 206 included knees were studied and the status of the anterolateral ligament status was judged to be either "non-visualized", "normal" or "abnormal". Of all the visualized anterolateral ligaments, 44 (21.3%) were considered uninjured, while 162 (78.8%) knees demonstrated radiological ALL abnormalities. The majority of ALL abnormalities were situated in the distal part of the ligament (77.8%). In conclusion, the anterolateral ligament can be identified on classic knee magnetic resonance images. Although anterior cruciate ligament injured subjects often demonstrated associated anterolateral ligament lesions, further research is needed in order to establish the clinical relevance of these highly frequent radiological abnormalities. PMID:24873084

  6. [An acute severe heat stroke patient showing abnormal diffuse high intensity of the cerebellar cortex in diffusion weighted image: a case report].

    PubMed

    Fujioka, Yusuke; Yasui, Keizo; Hasegawa, Yasuhiro; Takahashi, Akira; Sobue, Gen

    2009-10-01

    A 47-year-old man was admitted to the hospital because of general convulsion, loss of consciousness and hyperthermia. A diagnosis of acute heat stroke was made clinically and neuroradiologically. As the consciousness level ameliorated, he developed severe abulia and mutism, then cerebellar ataxic syndrome (viz. truncal ataxia, hypermetria, ataxic speech and nystagmus). An MRI (diffusion weighted image; DWI) disclosed abnormal diffuse high signal intensity of the cerebellar cortex with reduced apparent diffusion coefficient (ADC). Two months later after the onset, truncal ataxia and dysarthria significantly improved, while dysmetria of the extremities rather worsened. At that time, the abnormal signal intensity of the cerebellar cortex disappeared, and the cerebellum became atrophic. The cerebellar blood flow was significantly decreased on brain SPECT (99mTc-ECD). The abnormal DWI signal intensity of the cerebellar cortex in the present patient may represent the cytotoxic edema of Purkinje cells resulting from heat stroke-related hyperthermia It is essential to repeat MRI examination for cerebellar pathology and to obtain better insight into sequelae in patients with acute heat stroke. Protirelin tartrate seemed to be valid for improvement of abulia in the present patient. Further study is indicated. PMID:19999144

  7. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  8. Silicon carbide high temperature thermoelectric flow sensor

    NASA Astrophysics Data System (ADS)

    Lei, Man I.

    Current high temperature flow measurement devices are bulky, expensive and have slow response time. Therefore, there has been increasing demand for developing a flow sensor that has high temperature capability yet is small in size, fast in response time, and low in cost through mass fabrication. In this thesis, a high temperature flow sensor utilizing micromachining and microfabrication technology has been designed, simulated, fabricated, packaged and tested. This micro flow sensor is developed based on heavily-nitrogen-doped polycrystalline silicon carbide (n-SiC) thin film, a high temperature semiconductor well known for its mechanical robustness and chemical inertness in high temperatures and harsh environments. The small thermal mass and wide operating temperature range provide an excellent platform for a flow sensor operating with the thermal sensing principle. The n-SiC thermoelectric flow sensor prototype developed here is based on the calorimetric sensing mechanism. The sensor has a n-SiC heater for thermal marker creation, an upstream and a downstream n-SiC/p-Si thermopile for flow sensing, and a n-SiC thermistor for ambient temperature monitoring. This device is packaged in a stainless steel enclosure with a bypass channel. The tested flow range is between 0 to 20,000 sccm. The flow sensor has demonstrated high temperature capability and mechanical robustness up to 450 °C on a hotplate at zero flow condition, and up to 300 °C in a heated flow stream. The device has a response time of 8 ms. Maximum power consumption is 96 mW when operated at 8 mA (12 V) and 45 mW when operated at 5 mA (9V), with a sensor warm-up time less than 1 minute. In addition, the thermoelectric properties of n-SiC have been thoroughly studied through the characterization of the electrical resistivity, the Seebeck coefficient and the thermal conductivity of n-SiC thin film. The 0.93 microm-thick, n-SiC thin film utilized in the thermoelectric flow sensor has an electrical

  9. Flow Interaction With Highly Flexible Structures

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    Studying the interaction between fluid and structure is an essential step towards the understanding of many engineering and physical problems, from the flow instability of structures to the biolocomotion of insects, birds and fishes. The simulation of such problems is computationally challenging. This justifies the attempts to develop more sophisticated and more efficient numerical models of fluid-solid interactions. In this dissertation, we proposed numerical models both in potential flow and fully viscous flow for the interaction of immersed structure with a strongly unsteady flow. In particular we have developed efficient approaches to study two groups of problems, the flow interaction with skeleton-reinforced fish fins and flow interaction with highly flexible bluff bodies. Fins of bony fishes are characterized by a skeleton-reinforced membrane structure consisting of a soft collagen membrane strengthened by embedded flexible rays. Morphologically, each ray is connected to a group of muscles so that the fish can control the rotational motion of each ray individually, enabling multi-degree of freedom control over the fin motion and deformation. We have developed fluid-structure interaction models to simulate the kinematics and dynamic performance of a structurally idealized fin. The first method includes a boundary-element model of the fluid motion and a fully-nonlinear Euler-Bernoulli beam model of the embedded rays. In the second method, we use an improved immersed boundary approach. Using these models, we study thrust generation and propulsion efficiency of the fin at different combinations of parameters at both high-Re and intermediate-Re flow. Effects of kinematic as well as structural properties are examined. It has been illustrated that the fish's capacity to control the motion of each individual ray, as well as the anisotropic deformability of the fin determined by distribution of the rays (especially the detailed distribution of ray stiffness), is

  10. High-Lift Separated Flow About Airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1982-01-01

    TRANSEP Calculates flow field about low-speed single-element airfoil at high-angle-of-attack and high-lift conditions with massive boundary-layer separation. TRANSEP includes effects of weak viscous interactions and can be used for subsonic/transonic airfoil design and analysis. The approach used in TRANSEP is based on direct-inverse method and its ability to use either displacement surface or pressure as airfoil boundary condition.

  11. The mass mortality of blue mussels (Mytilus spp.) from the Atlantic coast of France is associated with heavy genomic abnormalities as evidenced by flow cytometry.

    PubMed

    Benabdelmouna, Abdellah; Ledu, Christophe

    2016-07-01

    Since 2014, France's blue mussel industry has been facing heavy mortality outbreaks (90-100%) affecting both juveniles and adults. This report presents evidence of heavy genomic abnormalities associated with mortality outbreaks in blue mussels, Mytilus edulis-galloprovincialis, from the Atlantic coast of France. In this study, ploidy characteristics of hemic cells were investigated using Flow CytoMetry (FCM), revealing an unusual, broad continuum of ploidy distribution from hypodiploidy to tetraploidy. FCM was additionally used to evaluate, at individual and populations levels, different thresholds of genomic abnormality (GA%) using the percentage of non-diploid nuclei. Individual mussels were considered to be abnormal when more than 10% of hemocytes in S-G2/M phase were present. At the population level, a threshold of 6% for the mean intensity of the abnormality is proposed, which means in the population, more than 6% of individual mussels have to present with more than 10% of their hemocytes in S-G2/M phase. GA% was found to be significantly predictive of the final mortality. Based on the established thresholds, only two mussel stocks analyzed in this study were considered to have good cytogenetic quality, while all other stocks appeared to be affected. FCM offers a very powerful tool to help manage current blue mussel mortality in France. We also believe that annual and extensive determination of cytogenetic quality of wild and cultivated mussel beds along with exclusive use of FCM-qualified mussel seeds should be a priority. PMID:27264803

  12. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  13. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  14. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  15. High-End Computing for Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    The objective of the First MIT Conference on Computational Fluid and Solid Mechanics (June 12-14, 2001) is to bring together industry and academia (and government) to nurture the next generation in computational mechanics. The objective of the current talk, 'High-End Computing for Incompressible Flows', is to discuss some of the current issues in large scale computing for mission-oriented tasks.

  16. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  17. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  18. Exit flows from highly porous media

    NASA Astrophysics Data System (ADS)

    Hall, M. J.; Hiatt, J. P.

    1994-02-01

    This paper presents laser velocimetry measurements of the streamwise component of mean velocities and turbulence intensities measured downstream from the exit plane of porous ceramic foams through which air is flowed. The recent development and commercial availability of porous ceramic foams has lead to their application in many fields. Their uses have extended to combustion, high-temperature fluid filtering, biotechnology, and as support matrix for catalysts. These applications have created an interest in their pore scale fluid mechanics, both within the porous matrix and along surfaces open to flow. One emerging application is porous ceramic burners which combust liquid or gaseous fuels within the pore matrix or along the surface of the ceramic. The ceramic foams have pore sizes ranging from 4 to 12 pores per cm (ppcm) and porosities of 85%. Mean velocities between 0.3 and 1.5 m/s were examined. Radial distributions of mean velocities show a jet-like structure through the pores, with local mean velocities reaching maximum values over two times the area mean velocity. Negative mean velocities were often observed between pores, suggesting that recirculation zones are present above the web-like struts surrounding the pores. Levels of turbulence intensities normalized by the area mean velocity ranged from 0.05 to 0.6 for the various flow rates and pore sizes. Turbulence intensities were found to increase with increasing pore size for a given flow rate.

  19. High Concentration Suspensions Under Strong Tidal Flows

    NASA Astrophysics Data System (ADS)

    Kineke, G. C.; Milligan, T. G.; Heath, K. M.; Law, B. A.

    2006-12-01

    An experiment investigating the influence of high-concentration suspensions of fine sediments (fluid muds) on a quasi-steady flow was carried out in the Petitcodiac River, Moncton, New Brunswick, Canada in August 2006. Concurrent measurements of fluid properties (salinity, temperature, density), suspended-sediment concentration, current velocity and shear were made throughout the water column over portions of several tidal cycles. The Petitcodiac was chosen because of consistently high suspended-sediment concentrations (0.5- >200 g/L) and large tidal range (>4 m) producing strong current velocities (> 1.5 m/s). Thus the Peticodiac serves as an ideal natural flume for examining the behavior of muddy suspensions under both accelerating and decelerating flows. Instrumentation included a profiling package with paired electromagnetic current meters mounted 0.6 m apart, a CTD, and an Optical Backscatterance Sensor with a pump system for in situ calibrations. Approximately 1.5 hours after the passage of the tidal bore and a fully mixed turbulent flow, the water column begins to stratify and a high concentration bottom layer forms persisting through the ensuing ebb. Measured suspended-sediment concentrations reached 286 g/L at the bottom and low shear rates of 0.13 s-1 in the upper water column increased to ~0.5 s-1 through the lutocline 1 m above the bed, and decreased to approximately 0 within the fluid mud. Analysis is in progress and the data set provides an excellent means to test threshold conditions regarding suppression of turbulence by sediment-induced stratification and the carrying capacity of turbulent flows.

  20. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  1. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental Respiratory Diseases with ventilatory functions indices for parenchymal abnormalities

    PubMed Central

    TAMURA, Taro; SUGANUMA, Narufumi; HERING, Kurt G.; VEHMAS, Tapio; ITOH, Harumi; AKIRA, Masanori; TAKASHIMA, Yoshihiro; HIRANO, Harukazu; KUSAKA, Yukinori

    2015-01-01

    The International Classification of High-Resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) is used to screen and diagnose respiratory illnesses. Using univariate and multivariate analysis, we investigated the relationship between subject characteristics and parenchymal abnormalities according to ICOERD, and the results of ventilatory function tests (VFT). Thirty-five patients with and 27 controls without mineral-dust exposure underwent VFT and HRCT. We recorded all subjects’ occupational history for mineral dust exposure and smoking history. Experts independently assessed HRCT using the ICOERD parenchymal abnormalities (Items) grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). High-resolution computed tomography showed that 11 patients had RO; 15 patients, IR; and 19 patients, EM. According to the multiple regression model, age and height had significant associations with many indices ventilatory functions such as vital capacity, forced vital capacity, and forced expiratory volume in 1 s (FEV1). The EM summed grades on the upper, middle, and lower zones of the right and left lungs also had significant associations with FEV1 and the maximum mid-expiratory flow rate. The results suggest the ICOERD notation is adequate based on the good and significant multiple regression modeling of ventilatory function with the EM summed grades. PMID:25810443

  2. Inversion of the western Pacific subtropical high dynamic model and analysis of dynamic characteristics for its abnormality

    NASA Astrophysics Data System (ADS)

    Hong, M.; Zhang, R.; Li, J. X.; Ge, J. J.; Liu, K. F.

    2013-02-01

    Based on time series data of 500 hPa potential field from NCEP/NCAR (National Center for Environmental Forecast of American/National Center for Atmospheric Research), a novel consideration of empirical orthogonal function (EOF) time-space separation and dynamic system reconstruction for time series is introduced. This method consists of two parts: first, the dynamical model inversion and model parameter optimization are carried out on the EOF time coefficient series using the genetic algorithm (GA), and, second, a nonlinear dynamic model representing the subtropical high (SH) activity and its abnormality is established. The SH activity and its abnormal mechanism is studied using the developed dynamical model. Results show that the configuration and diversification of the SH equilibriums have good correspondence with the actual short-medium term abnormal activity of the SH. Change of SH potential field brought by the combination of equilibriums is more complex than that by mutation, and their exhibition patterns are different. The mutation behavior from high-value to low-value equilibriums of the SH in summer corresponds with the southward drop of the SH in the observed weather process. The combination behavior of the two steady equilibriums corresponds with disappearance of the "double-ridge" phenomenon of the SH. Dynamical mechanisms of these phenomena are explained.

  3. High consumption of pulses is associated with lower risk of abnormal glucose metabolism in women in Mauritius

    PubMed Central

    Wennberg, M.; Söderberg, S.; Uusitalo, U.; Tuomilehto, J.; Shaw, J. E.; Zimmet, P. Z.; Kowlessur, S.; Pauvaday, V.; Magliano, D. J.

    2014-01-01

    Aims To investigate if consumption of pulses was associated with a reduced risk of developing abnormal glucose metabolism, increases in body weight and increases in waist circumference in a multi-ethnic cohort in Mauritius. Methods Population-based surveys were performed in Mauritius in 1992 and in 1998. Pulse consumption was estimated from a food frequency questionnaire in 1992 and outcomes were measured in 1998. At both time points, anthropometry was undertaken and an oral glucose tolerance test was performed. Results Mauritian women with the highest consumption of pulses (highest tertile) had a reduced risk of developing abnormal glucose metabolism [odds ratio 0.52; 95% CI 0.27, 0.99) compared with those with the lowest consumption, and also after multivariable adjustments. In women, a high consumption of pulses was associated with a smaller increase in BMI. Conclusions High consumption of pulses was associated with a reduced risk of abnormal glucose metabolism and a smaller increase in BMI in Mauritian women. Promotion of pulse consumption could be an important dietary intervention for the prevention of Type 2 diabetes and obesity in Mauritius and should be examined in other populations and in clinical trials. PMID:25346062

  4. Turbulence modeling for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh

    1993-01-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  5. Turbulence modeling for high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    1993-08-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  6. Sultan - forced flow, high field test facility

    SciTech Connect

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-09-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.

  7. Abnormally Low or High Ankle-Brachial Index Is Associated with Proliferative Diabetic Retinopathy in Type 2 Diabetic Mellitus Patients

    PubMed Central

    Chen, Szu-Chia; Hsiao, Pi-Jung; Huang, Jiun-Chi; Lin, Kun-Der; Hsu, Wei-Hao; Lee, Yu-Li; Lee, Mei-Yueh; Chang, Jer-Ming; Shin, Shyi–Jang

    2015-01-01

    Although some studies have reported that low ankle-brachial index (ABI) is associated with diabetic retinopathy (DR) in diabetic patients, it remains controversial as to which stage of DR. The aim of this study is to assess whether peripheral artery disease (PAD), indicated by abnormally low or high ABI, is associated with different stages of DR in patients with type 2 diabetes mellitus (DM), and further evaluate the risk factors. A total of 2001 (858 men and 1143 women) patients with type 2 DM who underwent ABI measurement in an outpatient clinic were enrolled. PAD was defined as ABI < 0.9 or ≧ 1.3 in either leg. DR was classified as non-DR, nonproliferative DR and proliferative DR stages. The clinical data were analyzed and the risk factors for abnormal ABI were determined by multivariate logistic regression analysis. The prevalence of ABI < 0.9 or ≧ 1.3 was 3.0%. Multivariate forward logistic regression analysis identified proliferative DR (vs. non-DR) was associated with abnormal ABI (odds ratio, 1.718; 95% confidence interval, 1.152 to 2.562; p = 0.008), but nonproliferative DR was not. Furthermore, the presence of coronary artery disease, cerebrovascular disease, declining renal function and patients without diuretics use were associated with abnormal ABI in patients with proliferative DR. Our study in patients of type 2 DM demonstrated that PAD was associated with proliferative DR. We emphasize the recommendation of performing the ABI test in this population at risk. PMID:26230390

  8. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  9. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  10. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  11. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  12. Cerebral blood flow at high altitude.

    PubMed

    Ainslie, Philip N; Subudhi, Andrew W

    2014-06-01

    This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3-5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes: 1) hypoxic cerebral vasodilatation; 2) hypocapnic cerebral vasoconstriction; 3) hypoxic ventilatory response; and 4) hypercapnic ventilatory response. Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain's large and consistent demand for oxygen. This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided. PMID:24971767

  13. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  14. Mapping of Genetic Abnormalities of Primary Tumours from Metastatic CRC by High-Resolution SNP Arrays

    PubMed Central

    Sayagués, José María; Fontanillo, Celia; Abad, María del Mar; González-González, María; Sarasquete, María Eugenia; del Carmen Chillon, Maria; Garcia, Eva; Bengoechea, Oscar; Fonseca, Emilio; Gonzalez-Diaz, Marcos; De Las Rivas, Javier

    2010-01-01

    Background For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Methodology/Principal Findings Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. Conclusions/Significance In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process. PMID:21060790

  15. Maternal high-fat hypercaloric diet during pregnancy results in persistent metabolic and respiratory abnormalities in offspring

    PubMed Central

    Griffiths, Pamela S.; Walton, Cheryl; Samsell, Lennie; Perez, Miriam K.; Piedimonte, Giovanni

    2016-01-01

    Background: We have shown in a previous population-based study significant correlation between childhood asthma and early abnormalities of lipid and glucose metabolism. This study's specific aim was to determine whether maternal nutrition in pregnancy affects postnatal metabolic and respiratory outcomes in the offspring. Methods: On gestation day 1, dams were switched from standard chow to either high-fat hypercaloric diet or control diet. Terminal experiments were performed on newborn and weanling offspring of dams fed the study diet during gestation and lactation, and on adult offspring maintained on the same diet as their mother. Results: Pups born from high-fat hypercaloric diet (HFD) dams developed metabolic abnormalities persistent throughout development. Cytokine expression analysis of lung tissues from newborns born to HFD dams revealed a strong proinflammatory pattern. Gene expression of neurotrophic factors and receptors was upregulated in lungs of weanlings born to HFD dams, and this was associated to higher respiratory system resistance and lower compliance at baseline, as well as hyperreactivity to aerosolized methacholine. Furthermore, HFD dams delivered pups prone to develop more severe disease after respiratory syncytial virus (RSV) infection. Conclusion: Maternal nutrition in pregnancy is a critical determinant of airway inflammation and hyperreactivity in offspring and also increases risk for bronchiolitis independent from prepregnancy nutrition. PMID:26539661

  16. Improving patient flow and timeliness in the diagnosis and management of breast abnormalities: the impact of a rapid diagnostic unit

    PubMed Central

    Racz, J.M.; Holloway, C.M.B.; Huang, W.; Hong, N.J. Look

    2016-01-01

    Background Efforts to streamline the diagnosis and treatment of breast abnormalities are necessary to limit patient anxiety and expedite care. In the present study, we examined the effect of a rapid diagnostic unit (rdu) on wait times to clinical investigations and definitive treatment. Methods A retrospective before–after series, each considering a 1-year period, examined consecutive patients with suspicious breast lesions before and after initiation of the rdu. Patient consultations, clinical investigations, and lesion characteristics were captured from time of patient referral to initiation of definitive treatment. Outcomes included time (days) to clinical investigations, to delivery of diagnosis, and to management. Groups were compared using the Fisher exact test or Student t-test. Results The non-rdu group included 287 patients with 164 invasive breast carcinomas. The rdu group included 260 patients with 154 invasive carcinomas. The rdu patients had more single visits for biopsy (92% rdu vs. 78% non-rdu, p < 0.0001). The rdu group also had a significantly shorter wait time from initial consultation to delivery of diagnosis (mean: 2.1 days vs. 16.7 days, p = 0.0001) and a greater chance of receiving neoadjuvant chemotherapy (37% vs. 24%, p = 0.0106). Overall time from referral to management remained statistically unchanged (mean: 53 days with the rdu vs. 50 days without the rdu, p = 0.3806). Conclusions Introduction of a rdu appears to reduce wait times to definitive diagnosis, but not to treatment initiation, suggesting that obstacles to care delivery can occur at several points along the diagnostic trajectory. Multipronged efforts to reduce system-related delays to definitive treatment are needed. PMID:27330363

  17. EUROarray human papillomavirus (HPV) assay is highly concordant with other commercial assays for detection of high-risk HPV genotypes in women with high grade cervical abnormalities.

    PubMed

    Cornall, A M; Poljak, M; Garland, S M; Phillips, S; Machalek, D A; Tan, J H; Quinn, M A; Tabrizi, S N

    2016-06-01

    The purpose of this study was to evaluate the performance of the EUROIMMUN EUROArray HPV genotyping assay against the Roche Cobas 4800, Roche HPV Amplicor, Roche Linear Array and Qiagen Hybrid Capture 2 assays in the detection of high-risk HPV (HR-HPV) from liquid based cervical cytology samples collected from women undergoing follow-up for abnormal cervical cytology results. Cervical specimens from 404 women undergoing management of high-grade cytological abnormality were evaluated by EUROarray HPV for detection of HR-HPV genotypes and prediction of histologically-confirmed cervical intraepithelial neoplasia grade 2 or higher (≥CIN2). The results were compared to Hybrid Capture 2, Cobas 4800 HPV, Amplicor and Linear Array HPV. Positivity for 14 HR-HPV types was 80.0 % for EUROarray (95 % CI; 75.7-83.8 %). Agreement (κ, 95 % CI) between the EUROarray and other HPV tests for detection of HR-HPV was good to very good [Hybrid Capture κ = 0.62 (0.54-0.71); Cobas κ = 0.81 (0.74-0.88); Amplicor κ = 0.68 (0.60-0.77); Linear Array κ = 0.77 (0.70-0.85)]. For detection of HR-HPV, agreement with EUROarray was 87.90 % (Hybrid Capture), 93.58 % (Cobas), 92.84 % (Amplicor) and 92.59 % (Linear Array). Detection of HR-HPV was not significantly different between EUROarray and any other test (p < 0.001). EUROarray was concordant with other assays evaluated for detection of high-risk HPV and showed sensitivity and specificity for detection of ≥ CIN2 of 86 % and 71 %, respectively. PMID:27048314

  18. Highly Inclined Jets in Cross Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, I. M.; Zaman, K. B. M. Q.

    2003-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20deg and 45deg and yawed between Beta = 0deg and 90deg in increments of 15deg. The measurements were performed with two ×-wires providing all three components of velocity and turbulent stresses. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x, normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, ? max, with the downstream distance is significantly less at higher Beta but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, ?xmax is about five times larger for Beta = 75deg compared to the levels at Beta = 0deg. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J. Distributions of turbulent stresses for various cases are documented. Peak normal stresses are found to occur within the core of the streamwise vortices. With yaw, at lower values of J, high turbulence is also observed in the boundary layer underneath the jet-vortex structure

  19. Flow characteristics and methods of flow calculation of high-speed compressible flow through pipe orifices

    NASA Astrophysics Data System (ADS)

    Torizumi, Y.; Hirayama, N.; Maeda, T.

    1983-01-01

    Flow characteristics of a compressible gas flow through an orifice are investigated experimentally at pressure ratios below the regulation values of JIS and ASME. For practical mass flow measurements, a theoretical method of mass flow estimations is extended using one-dimensional flow theory and experimental data. Using the method, the accuracy of mass flow measurements with orifice meters is about + or 1% in the Reynolds number range of turbulent flows and also in supercritical flows. Tables of the product of flow coefficient and expansion factor are obtained by the method at various diameter ratios, pressure ratios, and specific heats.

  20. The “Little AVM”: A New Entity in High-flow versus Low-flow Vascular Malformations

    PubMed Central

    Stein, Michael; Guilfoyle, Regan; Courtemanche, Douglas J.; Moss, Wendy; Bucevska, Marija

    2014-01-01

    Background: Arteriovenous malformations (AVMs) are high-flow lesions with abnormal connections between arteries and veins without an intervening capillary bed. Infrequently, the radiographic diagnosis of a vascular lesion will not support the clinical diagnosis of an AVM. These “discrepant” lesions are not adequately captured within the current classification system and represent a treatment dilemma. The purpose of this study is to review our center’s experience with vascular malformations where incongruity in a patient’s clinical and radiographic presentation produces a diagnostic and therapeutic challenge. Methods: A retrospective chart review of patients with atypical AVM pre sen ta tions was performed. Parameters reviewed included patient history and demogra phics, clinical presentation, radiological imaging, and treatment modalities. Results: Over a 15-year period, we identified 7 cases of vascular malformations with discrepant clinical and radiological findings concerning flow characteristics. All patients were treated based on their radiological diagnosis and most were managed with sclerotherapy. No lesions evolved into a high-flow process, and there was no recurrence at a minimum of 24 months of follow-up. Conclusions: We have identified and described a unique subcategory of vascular malformations that have clinical features of high-flow malformations but radiological features of low-flow malformations. These lesions behave like low-flow malformations and should be treated as such. We propose that complex vascular malformations are best evaluated by both clinical and specialized diagnostic radiological means; the radiologic diagnoses should supplant what is found clinically, and ultimately treatment should be preferentially based on a radiological diagnosis. PMID:25426370

  1. Simulating Pressure Effects of High-Flow Volumes

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1985-01-01

    Dynamic test stresses realized without high-volume pumps. Assembled in Sections in gas-flow passage, contoured mandrel restricts flow rate to valve convenient for testing and spatially varies pressure on passage walls to simulate operating-pressure profile. Realistic test pressures thereby achieved without extremely high flow volumes.

  2. 'Abnormal' angle response curves of TW/Rs for near zero tilt and high tilt channeling implants

    SciTech Connect

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry; Colombeau, Benjamin; Todorov, Stan; Sinclair, Frank; Shim, Kyu-Ha; Henry, Todd

    2012-11-06

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected that the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.

  3. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  4. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  5. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  6. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    PubMed

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  7. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  8. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  9. Unsteady Flow Simulation of High-speed Turbopumps

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  10. Combustion accelerated swirling flows in high confinements

    NASA Astrophysics Data System (ADS)

    Weber, Roman; Dugue, Jacques

    Nine cold flows, 15 well-mixed flames, and eight type II diffusion flames of coke-oven gas are measured in the present study of the effect of combustion on the properties of swirl-induced internal recirculation zones (IRZ) formed in the vicinity of swirl-stabilized burners. Formulae for calculating the effective swirl number are presented. Attention is given to experiments in which initial swirling cold flows are combustion-accelerated; the position and degree of acceleration are systematically varied. The experimental results obtained deepen current understanding of the effects of combustion on swirling flows.

  11. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice

    PubMed Central

    Arnold, Steven E.; Lucki, Irwin; Brookshire, Bethany R.; Carlson, Gregory C.; Browne, Carolyn A.; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F.; Kim, Sangwon F.

    2014-01-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17 days or a moderate high fat diet (HFD, 45% kcal by fat) for 8 weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS616), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors. PMID:24686304

  12. Addressing the Uncertainty in Prescribing High Flows for River Restoration

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Sklar, L.; Braudrick, C. A.

    2002-12-01

    Flow prescriptions for environmental benefit in regulated rivers are commonly focused on the provision of minimum flow depths to achieve fish passage and holding habitat objectives. Assessment of these flows can be achieved readily and with reasonable confidence by using low-flow hydrological records and channel morphology data in combination with one dimensional hydraulic modeling. More recently, as understanding has increased of the critical role played by high flows in maintaining a wide range of habitats for instream and riparian flora and fauna, attention has turned to prescribing high flows to invoke the geomorphic processes that maintain suitable habitat niches. Prediction of the effects of these flows may require high-flow discharge and sediment transport data, high resolution topographic data, hydraulic and sediment transport modeling (often in two or three spatial dimensions), knowledge of the watershed historical context, and an understanding of the thresholds for channel morphological change. Not surprisingly, the associated level of uncertainty in this analysis increases tremendously. High flows are defined by a combination of magnitude, frequency, timing and duration parameters and their impact varies according to antecedent events. High flow bedload sediment transport records are rare, sediment transport equations are reliable usually to only an order of magnitude, practical applications of two and three-dimensional sediment transport models are in their infancy, the watershed historical record may be patchy with the link between cause and effect difficult to ascertain, and thresholds of channel morphological change are poorly understood. As the first step in reducing uncertainty, it is essential to state precisely the ecological target objectives of prescribed high flows, and to link these objectives to the hydraulic and geomorphic thresholds to be achieved or exceeded. Such thresholds provide the basis for a systematic classification of high flows

  13. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles.

    PubMed

    Hunt, W A; Joseph, J A; Rabin, B M

    1989-01-01

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied. PMID:11537313

  14. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    NASA Astrophysics Data System (ADS)

    Hunt, Walter A.; Joseph, James A.; Rabin, Bernard M.

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  15. Current source imaging for high spatial resolution magnetocardiography in normal and abnormal rat cardiac muscles

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Iramina, K.; Goto, K.; Ueno, S.

    2000-05-01

    The purpose of our study was to identify the current source produced by acute ischemia and infarction. We measured magnetocardiograms (MCG) and electrocardiograms (ECG) of five male rats using a high-resolution dc superconducting quantum interference device gradiometer in a magnetically shielded room after performing coronary artery occlusion. The spatial resolution of the detecting magnetic field of our system is higher than the typical system, thus permitting the measurement of magnetic fields in small animals. Distribution of the magnetic fields B(t) and distribution of |rot B(t)|, which corresponded to the distribution of the current source, were imaged by 12-channel MCGs. As a result, the distribution of current source changes in the affected area of the myocardium during the ST segment, and amplitude of the peak significantly increased after occlusion. Our system can be used to help clarify the mechanism of the ST shift related to severe heart disease.

  16. Behavioral and neurochemical abnormalities after exposure to low doses of high-energy iron particles

    SciTech Connect

    Hunt, W.A.; Joseph, J.A.; Rabin, B.M.

    1989-01-01

    Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.

  17. High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation In Vivo

    PubMed Central

    Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang

    2011-01-01

    The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  18. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    PubMed

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  19. [History of high-flow priapism: 1960-2005].

    PubMed

    Engel, O; Bartsch, G; Küfer, R; Braun, C; Hautmann, R E; Volkmer, B G

    2006-03-01

    High-flow priapism caused by a pathological arterial influx to the cavernous bodies was first described by F.B. Burt in 1960. The pathophysiological differentiation of high- and low-flow priapism was developed in 1983. The development of diagnostic tools for differentiation of different forms of priapism and the progress in the therapy of high-flow priapism from arterial ligation to supraselective embolization is presented. PMID:16307222

  20. Sasa quelpaertensis leaf extract improves high fat diet-induced lipid abnormalities and regulation of lipid metabolism genes in rats.

    PubMed

    Kim, Jina; Kim, Yoo-Sun; Lee, Hyun Ah; Lim, Ji Ye; Kim, Mina; Kwon, Oran; Ko, Hee-Chul; Kim, Se-Jae; Shin, Jae-Ho; Kim, Yuri

    2014-05-01

    Sasa quelpaertensis is a bamboo leaf that is only grown on Jeju Island in South Korea. It is used as a bamboo tea that is consumed for therapeutic purposes, particularly for its anti-diabetic, diuretic, and anti-inflammatory effects. This study investigated the effect of S. quelpaertensis leaf extract (SQE) on high fat-induced lipid abnormalities and regulation of lipid metabolism-related gene expressions in rats. SQE supplementation significantly decreased the levels of plasma triglycerides, total cholesterol, and low-density lipoprotein cholesterol as well as the atherogenic index. SQE restored levels of plasma high-density lipoprotein cholesterol, which were lowered by a high fat diet. Plasma and cardiac resistin levels were also significantly decreased by SQE supplementation. In adipose tissue, mRNA levels of CAAT/enhancer-binding protein β (C/EBPβ) were suppressed in the SQE group. SQE supplementation decreased the accumulation of lipid droplets, inflammatory cell infiltrations, levels of triglycerides, and total lipids in the liver and effectively down-regulated expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), and uncoupling protein 2 (UCP-2). These results suggest that SQE may be a potential treatment for high fat-related disorders by improving lipid profiles and modulating lipid metabolism. PMID:24738745

  1. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.

    PubMed

    Hernández-Romero, Diana; Sanchez-Amat, Antonio; Solano, Francisco

    2006-01-01

    The sequencing of the genome of Ralstonia solanacearum[Salanoubat M, Genin S, Artiguenave F, et al. (2002) Nature 415, 497-502] revealed several genes that putatively code for polyphenol oxidases (PPOs). This soil-borne pathogenic bacterium withers a wide range of plants. We detected the expression of two PPO genes (accession numbers NP_518458 and NP_519622) with high similarity to tyrosinases, both containing the six conserved histidines required to bind the pair of type-3 copper ions at the active site. Generation of null mutants in those genes by homologous recombination mutagenesis and protein purification allowed us to correlate each gene with its enzymatic activity. In contrast with all tyrosinases so far studied, the enzyme NP_518458 shows higher monophenolase than o-diphenolase activity and its initial activity does not depend on the presence of l-dopa cofactor. On the other hand, protein NP_519622 is an enzyme with a clear preference to oxidize o-diphenols and only residual monophenolase activity, behaving as a catechol oxidase. These catalytic characteristics are discussed in relation to two other characteristics apart from the six conserved histidines. One is the putative presence of a seventh histidine which interacts with the carboxy group on the substrate and controls the preference for carboxylated and decarboxylated substrates. The second is the size of the residue isosteric with the aromatic F261 reported in sweet potato catechol oxidase which acts as a gate to control accessibility to CuA at the active site. PMID:16403014

  2. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats

    PubMed Central

    Kang, Ki-Woon; Kim, Ok-Soon; Chin, Jung Yeon; Kim, Won Ho; Park, Sang Hyun; Choi, Yu Jeong; Shin, Jong Ho; Jung, Kyung Tae; Lim, Do-Seon

    2015-01-01

    Background Obesity is well-known as a risk factor for heart failure, including diastolic dysfunction. However, this mechanism in high-fat diet (HFD)-induced obese rats remain controversial. The purpose of this study was to investigate whether cardiac dysfunction develops when rats are fed with a HFD for 10 weeks; additionally, we sought to investigate the association between mitochondrial abnormalities, adenosine triphosphate (ATP) levels and cardiac dysfunction. Methods We examined myocardia in Wistar rats after 10 weeks of HFD (45 kcal% fat, n=6) or standard diet (SD, n=6). Echocardiography, histomorphologic analysis, and electron microscopy were performed. The expression levels of mitochondrial oxidative phosphorylation (OXPHOS) subunit genes, peroxisome-proliferator-activated receptor γ co-activator-1α (PGC1α) and anti-oxidant enzymes were assessed. Markers of oxidative stress damage, mitochondrial DNA copy number and myocardial ATP level were also examined. Results After 10 weeks, the body weight of the HFD group (349.6±22.7 g) was significantly higher than that of the SD group (286.8±14.9 g), and the perigonadal and epicardial fat weights of the HFD group were significantly higher than that of the SD group. Histomorphologic and electron microscopic images were similar between the two groups. However, in the myocardium of the HFD group, the expression levels of OXPHOS subunit NDUFB5 in complex I and PGC1α, and the mitochondrial DNA copy number were decreased and the oxidative stress damage marker 8-hydroxydeoxyguanosine was increased, accompanied by reduced ATP levels. Conclusion Diastolic dysfunction was accompanied by the mitochondrial abnormality and reduced ATP levels in the myocardium of 10 weeks-HFD-induced rats. PMID:26790384

  3. Three-dimensional flow phenomena in a transonic, high-through-flow, axial-flow compressor stage

    NASA Technical Reports Server (NTRS)

    Copenhaver, William W.; Hah, Chunill; Puterbaugh, Steven L.

    1992-01-01

    A detailed aerodynamic study of a transonic, high-through-flow, single stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.

  4. 5. GORGE HIGH DAM; LOOKING TOWARD INTAKE WITH WATER FLOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GORGE HIGH DAM; LOOKING TOWARD INTAKE WITH WATER FLOWING OVER THE TOP OF THE SPILLGATE, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Diagnostic accuracy of myocardial deformation indices for detecting high risk coronary artery disease in patients without regional wall motion abnormality

    PubMed Central

    Rostamzadeh, Alireza; Shojaeifard, Maryam; Rezaei, Yousef; Dehghan, Kasra

    2015-01-01

    Background: The prediction of coronary artery disease (CAD) by conventional echocardiographic measurements is principally based on the estimation of ejection fraction and regional wall motion abnormality (RWMA). This study aimed to determine whether strain echocardiography of left ventricle measured by velocity vector imaging (VVI) method could detect patients with a high-risk CAD. Methods: In a prospective study, a total of 119 consecutive patients who were assessed for eligibility were categorized into three groups: (1) without CAD as normal (n=59), (2) 1- or 2-vessel disease as low-risk (n=29), and (3) left main and/or 3-vessel disease as high-risk (n=31). The peaks of systolic strain and strain rate from 18 curves of apical views were averaged as global longitudinal strain and strain rate (GLS and GLSR), respectively; the 6 systolic peaks of strain and strain rate at base- and mid-ventricular of short axis views were averaged as mean radial strain rate (MRSR). Results: GLS, GLSR, and basal MRSR of left ventricle were significantly lower in the high-risk group (P=0.047, P=0.004 and P=0.030, respectively). Receiver operating characteristics curve showed that the optimal values of GLS, GLSR, and basal MRSR for detecting the severe CAD were -17%, -1 s-1, and 1.45 s-1 with the sensitivities of 77%, 71%, and 71% and the specificities of 63%, 67%, and 62%, respectively. Conclusion: Decrements in the GLS, GLSR, and basal MRSR of the left ventricle can detect the high-risk CAD cases among patients without RWMA at rest. PMID:26309603

  6. Case Report: Conversion of a Low-Flow to High-Flow Priapism

    PubMed Central

    Cahn, David; Courter, Elliot; Diorio, Gregory; Metro, Michael; Ginsberg, Phillip

    2015-01-01

    Priapism is defined as an erection lasting for more than 4 hours and can be grouped into 3 distinct subtypes: ischemic (low-flow), stuttering and non-ischemic (high-flow). Herein, we present an interesting case of conversion from a low-flow to high-flow priapism after a distal shunting procedure. This is a rare phenomenon that has a paucity of documented cases. Diagnosis requires prompt clinical suspicion and confirmatory testing including penile cavernosal blood gases and Doppler ultrasound. PMID:26889126

  7. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions.

    PubMed

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matt; Zachara, John M

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions. PMID:21216023

  8. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis

    PubMed Central

    Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  9. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis.

    PubMed

    Gilbert, Sam J; Meuwese, Julia D I; Towgood, Karren J; Frith, Christopher D; Burgess, Paul W

    2009-04-01

    Multi-voxel pattern analyses have proved successful in 'decoding' mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state ('mentalizing'versus 'non-mentalizing') in a 2 x 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370

  10. Embedded function methods for compressible high speed turbulent flow

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1989-01-01

    Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations.

  11. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  12. Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland

    PubMed Central

    Pollock, K G J; Kavanagh, K; Potts, A; Love, J; Cuschieri, K; Cubie, H; Robertson, C; Cruickshank, M; Palmer, T J; Nicoll, S; Donaghy, M

    2014-01-01

    Background: In Scotland, a national HPV immunisation programme began in 2008 for 12- to 13-year olds, with a catch-up campaign from 2008 to 2011 for those under the age of 18. To monitor the impact of HPV immunisation on cervical disease at the population level, a programme of national surveillance was established. Methods: We analysed colposcopy data from a cohort of women born between 1988 and 1992 who entered the Scottish Cervical Screening Programme (SCSP) and were aged 20–21 in 2008–2012. Results: By linking datasets from the SCSP and colposcopy services, we observed a significant reduction in diagnoses of cervical intraepithelial neoplasia 1 (CIN 1; RR 0.71, 95% CI 0.58 to 0.87; P=0.0008), CIN 2 (RR 0.5, 95% CI 0.4 to 0.63; P<0.0001) and CIN 3 (RR 0.45, 95% CI 0.35 to 0.58; P<0.0001) for women who received three doses of vaccine compared with unvaccinated women. Conclusions: To our knowledge, this is one of the first studies to show a reduction of low- and high-grade CIN associated with high uptake of the HPV bivalent vaccine at the population level. These data are very encouraging for countries that have achieved high HPV vaccine uptake. PMID:25180766

  13. High energy density redox flow device

    SciTech Connect

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  14. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  15. High-temperature counter-flow recuperator

    NASA Astrophysics Data System (ADS)

    Rudloff, F.

    1981-05-01

    The commercial potential of a helical recuperator design in recovering waste heat from industrial furnaces is reported. The helical recuperator concept consists of a cylindrical column with an interior helical interface which separates the preheat air and the combustion gas. The column operates in a teer flow mode and is formed from modular sections. The material evaluation consisted of exposing material samples to a soda-lime glass furnace environment for a fifteen week period. ECP-3, X-81, and Unichrome were the best suited for use in a soda-lime environment and ECP-3 was the best candidate with respect to manufacturing. Two potential design modifications were identified: a finned design and a double helix design. For materials that showed the greatest potential for use in the glass environment, the double helix design made from ECP-3 was the most economical producing payback periods of 6 to 14 years.

  16. High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff

    2006-01-01

    High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  17. Superselective Embolization with Coils in High-Flow Priapism

    SciTech Connect

    Kress, Oliver; Heidenreich, A.; Klose, Klaus Jochen; Wagner, Hans-Joachim; Alfke, Heiko

    2002-08-15

    Priapism can be divided into 'low-flow' veno-occlusive priapism and, especially in children, rare 'high-flow' arterial priapism. We report a 5-year-old boy who developed arterial priapism after blunt perineal trauma that was successfully treated by superselective embolization with microcoils.

  18. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  19. Assessing Flow Experiences in Highly Able Adolescent Learners.

    ERIC Educational Resources Information Center

    Whalen, Samuel P.

    The term "Flow Experiences" refers to periods of deep, intense involvement in activities that challenge but do not overwhelm one's skills. As conceptualized by M. Csikszentmihalyi (1990), Flow represents a distinct state of consciousness that integrates high but effortless concentration, intrinsic motivation, loss of awareness of self and clock…

  20. Early Detection of Left Atrial Energy Loss and Mechanics Abnormalities in Diabetic Patients with Normal Left Atrial Size: A Study Combining Vector Flow Mapping and Tissue Tracking Echocardiography

    PubMed Central

    Wang, Yi; Hou, Dailun; Ma, Rongchuan; Ding, Geqi; Yin, Lixue; Zhang, Mei

    2016-01-01

    Background Whether left atrial (LA) functional abnormalities already exist when the LA is of normal size is unknown. The aim of this study was to explore LA energy loss and mechanics changes using vector flow mapping (VFM) and two-dimensional tissue tracking (2DTT) echocardiography in patients with diabetes and normal LA size. Material/Methods This study included 47 normotensive patients with diabetes and 45 controls. The following indexes were measured: LA energy loss during systole (LAELs), early diastole (LAELed), and atrial contraction (LAELac); atrial longitudinal strain during systole (SLAs), early diastole (SLAed) and late diastole (SLAac); and peak LA strain rate during systole (SRLAs), early diastole (SRLAed), and atrial contraction (SRLAac). Results The LAELs and LAELed decreased in diabetic patients compared with controls (P=0.002, P<0.01, respectively), whereas the LAELac increased in diabetic patients (P<0.001). The SLAs, SLAed, SRLAs, and SRLAed (all P<0.01) were all lower in diabetic patients than in controls. However, there was no difference in the SLAac and SRLAac between the two groups. Multivariate regression analysis showed that the LAELs, LAELac, and SRLAs were independently associated with HbA1c in the whole study population. Conclusions LA energy loss and deformation mechanics are already impaired in diabetic patients with normal LA size and the long-term parameter of glycemic control was correlated with them. VFM combined with 2DTT might be a promising tool for the early detection of LA dysfunction caused by impaired glucose metabolism. PMID:27005947

  1. Collapse in High-Grade Stenosis during Pulsatile Flow Experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunichi; Tang, Dalin; Ku, David N.

    It has been hypothesized that blood flow through high grade stenotic arteries may produce conditions in which elastic flow choking may occur. The development of atherosclerotic plaque fracture may be exacerbated by the compressive stresses during collapse. This study explored the effects of pulsatile flow on stenotic flow collapse. Pulsatile flow was produced using a gear pump controlled by a digitized physiologic waveform. Upstream and downstream mean pressures and pulsatile flow rates were measured and digitized. An improved model of arterial stenosis was created using an elastomer with an incremental modulus of elasticity matched to a bovine carotid artery in the relevant range of collapse. Additionally, the model retained a very thick wall in the stenotic region similar to arterial disease. Flow choking was observed for pulsatile pressure drops close to those previously reported for steady flow. The phase difference between flow rate and pressure between upstream and downstream of the stenosis occurred by the compliance of tube and stenosis resistance. For 80% nominal stenosis by diameter and 100+/-30mmHg upstream pressure, collapse occurred for average pulsatile pressure drops of 93mmHg. Pulsatile flow experiments in this model revealed the range of conditions for the flow choking and the paradoxical collapse of the stenosis during systole with expansion during diastole. The stenosis severity was dynamic through the pulse cycle and was significantly greater under flow than the nominal severity. The results indicate that flow choking and stenotic compression may be significant in thick-walled arterial stenoses subjected to pulsatile flow.

  2. Flow mechanism of Forchheimer's cubic equation in high-velocity radial gas flow through porous media

    SciTech Connect

    Ezeudembah, A.S.; Dranchuk, P.M.

    1982-01-01

    Formal derivation of Forchheimer's cubic equation is made by considering the kinetic energy equation of mean flow and dimensional relations for one-dimensional, linear, incompressible fluid flow. By the addition of the cubic term, this equation is regarded as a modified Forchheimer's quadratic equation which accounts for the flow rates obtained beyond the laminar flow condition. The cubic equation spans a wide range of flow rates and regimes. For suitable use in gas flow studies, this equation has been adapted, modified, and corrected for the gas slippage effect. The physical basis of the cubic term has been established by using boundary layer theory to explain the high-velocity, high-pressure flow behavior through a porous path. Gamma, the main parameter in the cubic term, is related directly to a characteristic, dimensionless shape factor which is significant at higher flow rates. It is inversely related to viscosity, but has no dependence on the gas slippage coefficient in the higher flow regime. 25 references.

  3. Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy

    NASA Astrophysics Data System (ADS)

    Spence, C. J. T.; Buchmann, N. A.; Jermy, M. C.; Moore, S. M.

    2011-04-01

    Knowledge of the airflow characteristics within the nasal cavity with nasal high flow (NHF) therapy and during unassisted breathing is essential to understand the treatment's efficacy. The distribution and velocity of the airflow in the nasal cavity with and without NHF cannula flow has been investigated using stereoscopic particle image velocimetry at steady peak expiration and inspiration. In vivo breathing flows were measured and dimensionally scaled to reproduce physiological conditions in vitro. A scaled model of the complete nasal cavity was constructed in transparent silicone and airflow simulated with an aqueous glycerine solution. NHF modifies nasal cavity flow patterns significantly, altering the proportion of inspiration and expiration through each passageway and producing jets with in vivo velocities up to 17.0 ms-1 for 30 l/min cannula flow. Velocity magnitudes differed appreciably between the left and right sides of the nasal cavity. The importance of using a three-component measurement technique when investigating nasal flows has been highlighted.

  4. High Pressure Reverse Flow APS Engine

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  5. Three-dimensional flow phenomena in a transonic, high-throughflow, axial-flow compressor stage

    SciTech Connect

    Copenhaver, W.W.; Puterbaugh, S.L. ); Hah, C. )

    1993-04-01

    A detailed aerodynamic study of a transonic, high-throughflow, single-stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.

  6. Effect of high dose isoflurane on cerebral blood flow in macaque monkeys

    PubMed Central

    Li, Chun-Xia; Patel, Sudeep; Wang, Danny JJ; Zhang, Xiaodong

    2014-01-01

    The effect of high dose isoflurane on cerebral blood flow (CBF) was investigated in adult macaque monkeys receiving 1% to 2% isoflurane with the pseudo continuous arterial-spin-labeling (pCASL) MRI technique. High concentration (2%) of isoflurane resulted in significant increase in the mean CBF of the global, cortical, subcortical regions and the regional CBF in all subcortical structures and most cortical structures (such as motor cortex, anterior cingulate cortex, but not media prefrontal cortex). In addition, the changes of regional CBF in the affected regions correlated linearly with increasing isoflurane concentrations. The study demonstrates region specific CBF abnormal increase in adult macaque monkeys under high dose (2%) isoflurane and suggests the brain functionality in corresponding structures may be affected and need to be taken consideration in either human or non-human primate neuroimaging studies. PMID:24890304

  7. Performance of high flow rate samplers for respirable particle collection.

    PubMed

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin

    2010-08-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the

  8. Performance of High Flow Rate Samplers for Respirable Particle Collection

    PubMed Central

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin

    2010-01-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high

  9. High-flow frequencies for selected streams in Oklahoma

    USGS Publications Warehouse

    Huntzinger, Thomas L.

    1978-01-01

    Streamflow records are analyzed statistically to determine high-flow characteristics of selected streams in Oklahoma. Tables are included which show the 2-, 5-, 10-, 25-, 50-, and 100-year high-flow frequencies for durations of 1, 3, 7, 30, 90, and 365 days. The log-Pearson Type III frequency distribution was used in the computations. Streamflow records used include data extending from 1903 to 1974.

  10. Computational analysis of high-throughput flow cytometry data

    PubMed Central

    Robinson, J Paul; Rajwa, Bartek; Patsekin, Valery; Davisson, Vincent Jo

    2015-01-01

    Introduction Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools are readily available to handle this traditional role of the technology. Areas covered Expansion of flow cytometry to a high-throughput (HT) and high-content technology requires both advances in hardware and analytical tools. The historical perspective of flow cytometry operation as well as how the field has changed and what the key changes have been discussed. The authors provide a background and compelling arguments for moving toward HT flow, where there are many innovative opportunities. With alternative approaches now available for flow cytometry, there will be a considerable number of new applications. These opportunities show strong capability for drug screening and functional studies with cells in suspension. Expert opinion There is no doubt that HT flow is a rich technology awaiting acceptance by the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the capacity to change many current approaches to HT screening. The previous restrictions on the technology, based on its reduced capacity for sample throughput, are no longer a major issue. Overcoming this barrier has transformed a mature technology into one that can focus on systems biology questions not previously considered possible. PMID:22708834

  11. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    NASA Astrophysics Data System (ADS)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  12. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating

  13. Association of high viral load and abnormal liver function with high aflatoxin B1–albumin adduct levels in HIV-positive Ghanaians: preliminary observations

    PubMed Central

    Jolly, P.E.; Shuaib, F.M.; Jiang, Y.; Preko, P.; Baidoo, J.; Stiles, J.K.; Wang, J.-S.; Phillips, T.D.; Williams, J.H.

    2012-01-01

    We examined the association between certain clinical factors and aflatoxin B1–albumin adduct (AF-ALB) levels in HIV-positive people. Plasma samples collected from 314 (155 HIV-positive and 159 HIV-negative) people were tested for AF-ALB levels, viral load, CD4+ T-cell count, liver function profile, malaria parasitaemia, and hepatitis B and C virus infections. HIV-positive participants were divided into high and low groups based on their median AF-ALB of 0.93 pmol mg−1 albumin and multivariable logistic and linear regression methods used to assess relationships between clinical conditions and AF-ALB levels. Multivariable logistic regression showed statistically significant increased odds of having higher HIV viral loads (OR=2.84; 95% CI=1.17–7.78) and higher direct bilirubin levels (OR=5.47; 95% CI=1.03–22.85) among HIV-positive participants in the high AF-ALB group. There were also higher levels of total bilirubin and lower levels of albumin in association with high AF-ALB. Thus, aflatoxin exposure may contribute to high viral loads and abnormal liver function in HIV-positive people and so promote disease progression. PMID:21749228

  14. Laser velocimetry in highly three-dimensional and vortical flows

    NASA Technical Reports Server (NTRS)

    Novak, C. J.; Huie, C. R.; Cornelius, K. C.

    1986-01-01

    The need for experimentally determined 3-D velocity information is crucial to the understanding of highly 3-dimensional and vortical flow fields. In addition to gaining an understanding of the physics of flow fields, a correlation of velocity data is needed for advanced computational modelling. A double pass method for acquiring 3-D flow field information using a 2-D laser velocimeter (LV) is described. The design and implementation of a 3-D LV with expanded capabilities to acquire real-time 3-D flow field information are also described. Finally, the use of such an instrument in a wind tunnel study of a generic fighter configuration is described. The results of the wind tunnel study highlight the complexities of 3-D flow fields, particularly when the vortex behavior is examined over a range of angles of attack.

  15. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  16. Gravity Waves in Hot Planet Atmospheres with High Speed Flows

    NASA Astrophysics Data System (ADS)

    Cho, J. Y.-K.; Watkins, C. L.

    2013-09-01

    Many global hydrodynamics models have been used to study the large-scale flows of close-in extrasolar planet atmospheres. None of these models, however, resolve gravity waves which can significantly affect the large-scale flow and its associated variability in the atmosphere. Such waves are generated by a variety of mechanisms - including, inter alia, spatially or temporally varying diabatic heating, convective overshoots, hydrodynamic instabilities and adjustment processes. Previously, we have examined mesoscale gravity waves in an inviscid atmosphere with moderately fast background flows [1]. In this work, we study large-scale, as well as mesoscale, waves in atmospheres containing high-speed flows and regions of strong dissipation. The primary focus is on the waves' propagation characteristics and interaction with the mean-flow.

  17. Associations between sexually transmitted infections, high-risk human papillomavirus infection, and abnormal cervical Pap smear results in OB/GYN outpatients

    PubMed Central

    Kim, Tae Jin

    2016-01-01

    Objective This study aimed to examine the meaning and usefulness of sexually transmitted infection (STI) test when caring for patients who have abnormal cervical cytology and/or positive high-risk human papillomavirus (HPV) DNA test results. Methods Among patients who underwent liquid-based cervical cytology and HPV DNA tests at the Obstetrics and Gynecology outpatient clinic, 800 patients who showed abnormal cervical cytology were compared with 200 patients in the control group. Both groups were simultaneously tested via multiplex real-time polymerase chain reaction for seven types of STI-causative microorganisms. Results The positive rate of high-risk HPV infection in total STIs positive group was 1.47 times higher than that of total STIs negative group. The probability of a cytological diagnosis of a grade equal to or higher than atypical squamous cells-cannot exclude high grade squamous intraepithelial lesion (ASC-H) was significantly higher in patients testing positive for total STIs (1.46 times), Chlamydia trachomatis (3.21 times), or Mycoplasma genitalicum (3.58 times) than in those testing negative. The total STIs positive rate was significantly higher for those having a cytological diagnosis of a grade equal to or higher than atypical squamous cells of undetermined significance (ASC-US) when high-risk HPV test result was negative. Conclusion Correlations were present not only between STIs and high-risk HPV infection but also between abnormal cervical cytology and STIs. Therefore, additional evaluation of STIs will be helpful to appropriately diagnose and treat patients with abnormal cervical cytology, positive results on high-risk HPV DNA test, or a cytological diagnosis of ASC-US despite negative high-risk HPV DNA test result. PMID:27329197

  18. Investigation Flow Uniformity in a Supersonic Duct with High Enthalpy Flows

    NASA Technical Reports Server (NTRS)

    Balboni, John; Atler, Doug; Gokcen, Tahir; Hartman, G. Joseph (Technical Monitor)

    1995-01-01

    Flow uniformity in a high enthalpy facility is investigated. The scramjet research facility is composed of a rectangular combustor duct connected to a 100 MW electric arc air heater. The Mach 3.3 flow is accelerated through a two-dimensional contoured nozzle. Instream measurements were made with water-cooled Pitot probes and stagnation point heat flux gages at stream enthalpy levels ranging from 4 to 7 Mj/kg. Flow surveys were made on the flow centerline and off centerline in order to measure the three dimensional uniformity of the flow in the rectangular duct. Measurements indicated that although the flow in the aspect ratio 6:1 duct was relatively uniform on the centerline, three dimensional viscous effects were apparent near the corners. Flow through the nozzle and constant area duct was modeled computationally using a two dimensional, Navier-Stokes, reacting gas code. The computations predict that the flow in the test section is in vibrational equilibrium. The computed and measured Pitot pressure and heat flux profiles are in reasonable agreement with the experimental data.

  19. High and abnormal forms of aggression in rats with extremes in trait anxiety--involvement of the dopamine system in the nucleus accumbens.

    PubMed

    Beiderbeck, Daniela I; Reber, Stefan O; Havasi, Andrea; Bredewold, Remco; Veenema, Alexa H; Neumann, Inga D

    2012-12-01

    A better neurobiological understanding of high and abnormal aggression based on adequate animal models is essential for novel therapy and prevention. Selective breeding of rats for extremes in anxiety-related behavior resulted in two behavioral phenotypes with high and abnormal forms of aggression. Rats bred for low anxiety-related behavior (LAB) consistently show highest levels of aggression and little social investigation in the resident-intruder (RI) test, compared with non-selected low-aggressive (NAB) rats. High anxiety-related (HAB) rats also show higher levels of aggression than NAB rats, but to a lesser extent than LAB rats. Accordingly, extremes in inborn anxiety in both directions are linked to an increased aggression level. Further, both LAB and HAB, but not NAB males, display abnormal aggression (attacks towards vulnerable body parts, females or narcotized males), which is particularly prominent in LABs. Also, only in LAB rats, the nucleus accumbens (NAc) was found to be strongly activated in response to the RI test as reflected by increased c-fos and zif268 mRNA expression, and higher local dopamine release compared with NAB males, without differences in local dopamine receptor binding. Consequently, local pharmacological manipulation by infusion of an anesthetic (lidocaine, 20 μg/μl) or a dopamine D2 (haloperidol, 10 ng/μl), but not D1 (SCH-23390 10 ng/μl), receptor antagonist significantly reduced high aggression in LAB rats. Thus, LAB rats are an adequate model to study high and abnormal aggression. In LAB males, this is likely to be linked to hyper-activation of the reward system, as found in psychopathic patients. Specifically, activation of the accumbal dopamine system is likely to underlie the high aggression observed in LAB rats. PMID:22608548

  20. Age and sensory processing abnormalities predict declines in encoding and recall of temporally manipulated speech in high-functioning adults with ASD.

    PubMed

    Mayer, Jennifer L; Heaton, Pamela F

    2014-02-01

    While temporal and perceptual processing abnormalities, identified in a number of electrophysiological and brain imaging studies of individuals with (ASD), are likely to impact on speech perception, surprisingly little is known about the behavioral outcomes of such abnormalities. It has been hypothesized that rapid temporal processing deficits may be linked to impaired language development through interference with acoustic information during speech perception. The present study aimed to investigate the impact of temporal changes on encoding and recall of speech, and the associated cognitive, clinical, and behavioral correlates in adults with ASD. Research carried out with typically developing (TD) adults has shown that word recall diminishes as the speed of speech increases, and it was predicted that the magnitude of this effect would be far greater in those with ASD because of a preexisting rapid temporal processing deficit. Nineteen high-functioning adults with ASD, and age- and intelligence-matched TD controls performed verbatim recall of temporally manipulated sentences. Reduced levels of word recall in response to increases in presentation speed were observed, and this effect was greater in the older participants in the ASD group than in the control group. This is the first study to show that both sensory abnormalities and aging impact on speech encoding in ASD. Auditory processing deficits in ASD may be indicative of an association with the sensory abnormalities and social and communication impairments characterizing the disorder. PMID:24106132

  1. Is abnormal non-high-density lipoprotein cholesterol a gender-specific predictor for metabolic syndrome in patients with schizophrenia taking second-generation antipsychotics?

    PubMed

    Lin, Esther Ching-Lan; Shao, Wen-Chuan; Yang, Hsin-Ju; Yen, Miaofen; Lee, Sheng-Yu; Wu, Pei-Chun; Lu, Ru-Band

    2015-02-01

    Evidence supports an association between metabolic syndrome (MetS) and schizophrenia. However, specific risk factors for MetS and gender differences in patients with schizophrenia taking second-generation antipsychotics (SGAs) have not been well explored. A cross-sectional cohort of 329 Han Chinese patients was recruited in a psychiatric hospital in central Taiwan. Using the definitions of the International Diabetes Federation for Chinese, the prevalence of MetS was 23.7% (men: 25.7%; women: 21.2%). Logistic regression analyses showed that patients with a BMI ≥ 24 and an abnormal non-high-density lipoprotein cholesterol (non-HDL-C) were significantly (p < 0.001) more likely to develop MetS. A BMI ≥ 24 was a significant risk factor in men (OR: 6.092, p < 0.001) and women (OR: 5.886, p < 0.001). An abnormal non-HDL-C was a significant specific risk factor for men with MetS (OR: 4.127, p < 0.001), but not for women. This study supports a greater prevalence of MetS in patients with schizophrenia taking SGAs than in the general population. Abnormal BMI and non-HDL-C were significantly associated with developing MetS, and an abnormal non-HDL-C was a specific risk factor for men. Future development of specific interventions and regular monitoring for MetS is imperative for early identification and prevention. PMID:25034455

  2. Squirt flow in highly deformable multi-porosity materials

    NASA Astrophysics Data System (ADS)

    Kurzeja, Patrick; Bertoldi, Katia

    2015-11-01

    Squirt flow is a phenomenon that typically occurs in porous structures with more than one length scale, e.g., in fractured rocks or multi-porosity organic material. Due to a heterogeneous pore space, external compression induces fluid flow between the pores of different compressibility and finally causes a delayed and attenuated response. While this phenomenon is well understood in natural materials, little it is known about how to trigger and control it in artificially architected materials. Here, we will first show that squirt flow can occur in highly deformable, fluid-filled artificial materials if overall fluid drainage is prevented and then we will demonstrate how this can be controlled. Interestingly, this viscous-flow mechanism opens avenues for the design of smart materials with delayed stress-strain response (e.g., for high-impact applications) or additional attenuation regimes (e.g., below frequencies of internal resonance). Supported by DFG Grant KU 3351/1-1.

  3. Patients with MCI and N400 or P600 abnormalities are at very high risk for conversion to dementia

    PubMed Central

    Olichney, J.M.; Taylor, J.R.; Gatherwright, J.; Salmon, D.P.; Bressler, A.J.; Kutas, M.; Iragui-Madoz, V.J.

    2011-01-01

    Objective We sought cognitive event-related potential (ERP) biomarkers of disease progression and subsequent conversion to dementia in mild cognitive impairment (MCI). Background Two ERP components, the P600 and N400, are sensitive to abnormal episodic/declarative memory and semantic processing. When congruous category-exemplars are repeated, smaller P600s (relative to initial presentation) are normally elicited. Repetitions of semantically incongruous words yield smaller N400 amplitude. In mild Alzheimer disease (AD), abnormalities of both the N400 and P600 repetition effects are present, suggesting a wide-spread failure of synaptic plasticity. Methods Patients with amnestic MCI (n = 32) were longitudinally studied annually with an ERP paradigm in which semantically congruous (50%) and incongruous target words are repeated 10 to 140 seconds after initial presentation. ERP data were analyzed to contrast MCI-to-AD converters (within 3 years) vs nonconverters, using split-plot analyses of variance. Results A statistically significant P600 congruous word repetition effect was found only in the nonconverter group (F = 9.9, p = 0.005 vs MCI converters). This effect correlated with verbal memory measures. Repetition of incongruous words produced a significant N400 amplitude attenuation (across right-hemisphere sites) in nonconverters, but not in converters. Patients with MCI with abnormal/reduced N400 or P600 word repetition effects had an 87 to 88% likelihood of dementia within 3 years while those with normal/spared N400 and P600 repetition effects had only an 11 to 27% likelihood. Conclusions Abnormalities of the P600 or N400 in mild cognitive impairment are associated with an increased risk of subsequent conversion to Alzheimer disease (AD). These event-related potential components may offer useful biomarkers for the detection and staging of very early AD. PMID:18077800

  4. Study of high speed combustion flows by laser velocimetry

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1984-01-01

    The feasibility of laser velocimetry in a high temperature jet was assessed in a model of an aircraft engine combustor. Experiments show that the problems encountered in measuring combustion flow can flow can be overcome by a carefully designed optical set-up and an appropriate signal processing and data acquisition system. Laser Doppler velocimetry provides useful information about coherent structures in hot free jets. The measurements agree with measurements in an isothermal jet.

  5. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  6. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  7. Automated High-Dimensional Flow Cytometric Data Analysis

    NASA Astrophysics Data System (ADS)

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill

    Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.

  8. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  9. Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Spence, C. J. T.; Buchmann, N. A.; Jermy, M. C.

    2012-03-01

    Nasal high flow (NHF) cannulae are used to deliver heated and humidified air to patients at steady flows ranging from 5 to 50 l/min. In this study, the flow velocities in the nasal cavity across the complete respiratory cycle during natural breathing and with NHF has been mapped in vitro using time-resolved stereoscopic particle image velocimetry (SPIV). An anatomically accurate silicone resin model of a complete human nasal cavity was constructed using CT scan data and rapid prototyping. Physiological breathing waveforms were reproduced in vitro using Reynolds and Womersley number matching and a piston pump driven by a ball screw and stepper motor. The flow pattern in the nasal cavity with NHF was found to differ significantly from natural breathing. Velocities of 2.4 and 3.3 ms-1 occurred in the nasal valve during natural breathing at peak expiration and inspiration, respectively; however, on expiration, the maximum velocity of 3.8 ms-1 occurred in the nasopharynx. At a cannula flow rate of 30 l/min, maximal velocities of 13.6 and 16.5 ms-1 at peak expiration and inspiration, respectively, were both located in the cannula jet within the nasal valve. Results are presented that suggest the quasi-steady flow assumption is invalid in the nasal cavity during natural breathing; however, it was valid with NHF. Cannula flow has been found to continuously flush the nasopharyngeal dead space, which may enhance carbon dioxide removal and increase oxygen fraction.

  10. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.

    PubMed

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l(-1) with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l(-1)) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l(-1)). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries. PMID:25565112

  11. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  12. Miniature, high efficiency transducers for use in ultrasonic flow meters

    NASA Astrophysics Data System (ADS)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  13. flowCore: a Bioconductor package for high throughput flow cytometry

    PubMed Central

    Hahne, Florian; LeMeur, Nolwenn; Brinkman, Ryan R; Ellis, Byron; Haaland, Perry; Sarkar, Deepayan; Spidlen, Josef; Strain, Errol; Gentleman, Robert

    2009-01-01

    Background Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. Results We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. Conclusion The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis. PMID:19358741

  14. Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    2009-01-01

    Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.

  15. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  16. Multiple states in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2014-05-01

    The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov’s 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number, Re(106) (Taylor number Ta(1012)) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque- and local-velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov’s paradigm.

  17. Multiple states in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Huisman, Sander; van der Veen, Roeland; Sun, Chao; Lohse, Detlef

    2014-11-01

    The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and its large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher-dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number Re = O (106) (Taylor number Ta = O (1012) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque and local velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (i.e. very large Re) and questions Kolmogorov's paradigm.

  18. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  19. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  20. Vortex shedding flowmeters for liquids at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1985-01-01

    A number of vortex shedding flowmeter designs for flow measurements in liquid oxygen ducts on the space shuttle main engines have been tested in a high head water flow test facility. The results have shown that a vortex shedding element or vane spanning the duct can give a linear response to an average flow velocity of 46 m/s (150 ft/s) in a 1 1/2 inch nominal (41 mm actual) diameter duct while a vane partially spanning the duct can give a linear response to velocities exceeding 55 m/s (180 ft/s). The maximum pressure drops across the flow sensing elements extrapolate to less than 0.7 MPa (100 psi) at 56 m/s (184 ft/s) for liquid oxygen. The test results indicate that the vanes probably cannot be scaled up with pipe size, at least not linearly.

  1. High order parallel numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.

    1992-01-01

    The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.

  2. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  3. [High-flow priapism: early diagnosis and treatment].

    PubMed

    Pérez Céspedes, M; Tesedo Cubero, X; Latorre Más, F

    1993-09-01

    Contribution of a new case of high-flow priapism as clinical expression of an arterial-cavernous fistula caused by perineal injury. The diagnostic sequence was blood gasometry by means of puncture-aspiration of the cavernous body to establish the 'high-flow' taxonomical diagnose, with negative response to the intracavernous injection of vasoactive drugs; it was followed by arteriography, showing that the clinical picture was the result of an arterial-cavernous fistula, allowing at the same time a superselective therapeutic embolization. Vascular permeability and erection recovery were confirmed by ECO-doppler at the two- month assessment. PMID:8237533

  4. A high-performance flow-field structured iron-chromium redox flow battery

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S.

    2016-08-01

    Unlike conventional iron-chromium redox flow batteries (ICRFBs) with a flow-through cell structure, in this work a high-performance ICRFB featuring a flow-field cell structure is developed. It is found that the present flow-field structured ICRFB reaches an energy efficiency of 76.3% with a current density of 120 mA cm-2 at 25 °C. The energy efficiency can be as high as 79.6% with an elevated current density of 200 mA cm-2 at 65 °C, a record performance of the ICRFB in the existing literature. In addition, it is demonstrated that the energy efficiency of the battery is stable during the cycle test, and that the capacity decay rate of the battery is 0.6% per cycle. More excitingly, the high performance of the flow-field structured battery significantly lowers the capital cost at 137.6 kWh-1, which is 28.2% lower than that of the conventional ICRFB for 8-h energy storage.

  5. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  6. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    SciTech Connect

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  7. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  8. Genotype Distribution of Human Papillomavirus among Women with Cervical Cytological Abnormalities or Invasive Squamous Cell Carcinoma in a High-Incidence Area of Esophageal Carcinoma in China

    PubMed Central

    Wang, Yuanyuan; Wang, Shaohong; Shen, Jinhui; Peng, Yanyan; Chen, Lechuan; Mai, Ruiqin

    2016-01-01

    Data of HPV genotype including 16 high-risk HPV (HR-HPV) and 4 low-risk HPV from 38,397 women with normal cytology, 1341 women with cervical cytology abnormalities, and 223 women with ISCC were retrospectively evaluated by a hospital-based study. The prevalence of high-risk HPV (HR-HPV) was 6.51%, 41.83%, and 96.86% in women with normal cytology, cervical cytology abnormalities, and ISCC, respectively. The three most common HPV types were HPV-52 (1.76%), HPV-16 (1.28%), and HPV-58 (0.97%) in women with normal cytology, whereas the most prevalent HPV type was HPV-16 (16.85%), followed by HPV-52 (9.55%) and HPV-58 (7.83%) in women with cervical cytology abnormalities. Specifically, HPV-16 had the highest frequency in ASC-H (24.16%, 36/149) and HSIL (35.71%, 110/308), while HPV-52 was the most common type in ASC-US (8.28%, 53/640) and LSIL (16.80%, 41/244). HPV-16 (75.78%), HPV18 (10.31%), and HPV58 (9.87%) were the most common types in women with ISCC. These data might contribute to increasing the knowledge of HPV epidemiology and providing the guide for vaccine selection for women in Shantou. PMID:27610364

  9. Genotype Distribution of Human Papillomavirus among Women with Cervical Cytological Abnormalities or Invasive Squamous Cell Carcinoma in a High-Incidence Area of Esophageal Carcinoma in China.

    PubMed

    Wang, Yuanyuan; Wang, Shaohong; Shen, Jinhui; Peng, Yanyan; Chen, Lechuan; Mai, Ruiqin; Zhang, Guohong

    2016-01-01

    Data of HPV genotype including 16 high-risk HPV (HR-HPV) and 4 low-risk HPV from 38,397 women with normal cytology, 1341 women with cervical cytology abnormalities, and 223 women with ISCC were retrospectively evaluated by a hospital-based study. The prevalence of high-risk HPV (HR-HPV) was 6.51%, 41.83%, and 96.86% in women with normal cytology, cervical cytology abnormalities, and ISCC, respectively. The three most common HPV types were HPV-52 (1.76%), HPV-16 (1.28%), and HPV-58 (0.97%) in women with normal cytology, whereas the most prevalent HPV type was HPV-16 (16.85%), followed by HPV-52 (9.55%) and HPV-58 (7.83%) in women with cervical cytology abnormalities. Specifically, HPV-16 had the highest frequency in ASC-H (24.16%, 36/149) and HSIL (35.71%, 110/308), while HPV-52 was the most common type in ASC-US (8.28%, 53/640) and LSIL (16.80%, 41/244). HPV-16 (75.78%), HPV18 (10.31%), and HPV58 (9.87%) were the most common types in women with ISCC. These data might contribute to increasing the knowledge of HPV epidemiology and providing the guide for vaccine selection for women in Shantou. PMID:27610364

  10. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  11. High energy density Z-pinch plasmas using flow stabilization

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Bowers, C. A.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Knecht, S. D.; Lambert, K. K.; Lowrie, W.; Ross, M. P.; Weed, J. R.

    2014-12-01

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes - Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling

  12. Intensity fluctuations of ultrasonic scattering in a highly turbulent flow.

    PubMed

    Shen, C; Lemmin, U

    2000-05-01

    Aspects of ultrasound intensity fluctuations backscattered from additive microstructures in a turbulent flow have been investigated theoretically and experimentally for the conditions of a small insonified volume, a high sound frequency and strong turbulence. These conditions are typically found in high resolution Doppler sonar applications. An easily applicable expression for the auto-correlation of scattering intensity fluctuations is obtained by introducing open-channel turbulence theory, a semi-empirical scalar spectrum (including a Batchelor spectrum) and a Gaussian window function. Experiments carried out in a laboratory-clear water, open-channel flow for different turbulence levels verify the underlying assumptions. A good agreement is found with the predictions made with the above-derived expression. The feasibility of extracting flow information from the backscattered intensity fluctuations is discussed. PMID:10857575

  13. Automated high-dimensional flow cytometric data analysis

    PubMed Central

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I; Maier, Lisa M.; Baecher-Allan, Clare; McLachlan, Geoffrey J.; Tamayo, Pablo; Hafler, David A.; De Jager, Philip L.; Mesirov, Jill P.

    2009-01-01

    Flow cytometric analysis allows rapid single cell interrogation of surface and intracellular determinants by measuring fluorescence intensity of fluorophore-conjugated reagents. The availability of new platforms, allowing detection of increasing numbers of cell surface markers, has challenged the traditional technique of identifying cell populations by manual gating and resulted in a growing need for the development of automated, high-dimensional analytical methods. We present a direct multivariate finite mixture modeling approach, using skew and heavy-tailed distributions, to address the complexities of flow cytometric analysis and to deal with high-dimensional cytometric data without the need for projection or transformation. We demonstrate its ability to detect rare populations, to model robustly in the presence of outliers and skew, and to perform the critical task of matching cell populations across samples that enables downstream analysis. This advance will facilitate the application of flow cytometry to new, complex biological and clinical problems. PMID:19443687

  14. Properties of thin films for high temperature flow sensors

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    1991-01-01

    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.

  15. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  16. Characterization of non equilibrium effects on high quality critical flows

    SciTech Connect

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  17. Label-free high-throughput cell screening in flow

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire; Niazi, Kayvan R.; Rabizadeh, Shahrooz; Jalali, Bahram

    2013-01-01

    Flow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis. To eliminate the need for labeling, we introduce a label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously either as a stand-alone instrument or as an add-on to conventional flow cytometers. Cell protein concentration adds a parameter to cell classification, which improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. This system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. PMID:24049682

  18. Flow-ejecta Crater in Icaria Planum - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Global Surveyor Orbiter Camera (MOC) acquired this high resolution image of a flow ejecta crater on November 19, 1997, at 8:26 PM PST, about 18 minutes after the start the 45th orbit of Mars. The area shown is roughly 6.5 by 40.2 kilometers (4 by 25 miles), and is located near 40 degrees South latitude, 120 degrees West longitude. Features as small as 15-18 m (50-60 feet) across are visible in the picture.

    Flow ejecta craters are so named because the material blasted out of the crater during the impact process appears to have flowed across the surface of Mars. First seen in Mariner 9 images in 1973, and described in detail using Viking Orbiter images acquired in 1976-78, flow-ejecta craters are considered by many scientists to be evidence that liquid water could be found in the near-subsurface at the time the craters formed. This image, a factor of two better than any previous view of such features (and a factor of 33 better than the best Viking frame of the specific crater, 056A61), shows two smaller, pre-existing craters and the interaction of the flowing ejecta with these craters. The uppermost small crater has been over-topped and partly buried by the flow, while the flow has been diverted around the lower crater. Ridges formed where the flow 'stacked up' behind obstacles, or came to rest.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  20. Low-Leak, High-Flow Poppet Valve

    NASA Technical Reports Server (NTRS)

    Tervo, John N.

    1995-01-01

    Valve with conical poppet modified to incorporate smooth transition to segment of sphere at upstream end of cone. Constitutes sealing surface of poppet; results in leak rate equivalent to ball-type poppet, and extremely low flow losses. Also enables use of loose fit for guiding poppet, with resulting lower manufacturing cost, high reliability, and long operating life.

  1. Experimental determination of sound and high-speed flow interaction

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Silcox, R.

    1976-01-01

    A facility that was used to measure the interaction of flow with sound at high Mach numbers is described. Four inlets with different area variations (or axial gradients) were tested. Sound of selected frequencies and modes (0,0), (1,0), (2,0) was generated with eight circumferential acoustic drivers.

  2. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  3. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  4. Left globus pallidus abnormality in never-medicated patients with schizophrenia

    SciTech Connect

    Early, T.S.; Reiman, E.M.; Raichle, M.E.; Spitznagel, E.L.

    1987-01-01

    Schizophrenia is a severe psychiatric disorder characterized by onset in young adulthood, the occurrence of hallucinations and delusions, and the development of enduring psychosocial disability. The pathophysiology of this disorder remains unknown. Studies of cerebral blood flow and metabolism designed to identify brain abnormalities in schizophrenia have been limited by inadequate methods of anatomical localization and the possibility of persistent medication effects. The authors have now used positron emission tomography and a validated method of anatomical localization in an attempt to identify abnormalities of regional cerebral blood flow in newly diagnosed never-medicated patients with schizophrenia. An exploratory study of 5 patients and 10 normal control subjects identified abnormally high blood flow in the left globus pallidus of patients with schizophrenia. A replication study of 5 additional patients and 10 additional control subjects confirmed this finding. No other abnormalities were found.

  5. Left globus pallidus abnormality in never-medicated patients with schizophrenia.

    PubMed Central

    Early, T S; Reiman, E M; Raichle, M E; Spitznagel, E L

    1987-01-01

    Schizophrenia is a severe psychiatric disorder characterized by onset in young adulthood, the occurrence of hallucinations and delusions, and the development of enduring psychosocial disability. The pathophysiology of this disorder remains unknown. Studies of cerebral blood flow and metabolism designed to identify brain abnormalities in schizophrenia have been limited by inadequate methods of anatomical localization and the possibility of persistent medication effects. We have now used positron emission tomography and a validated method of anatomical localization in an attempt to identify abnormalities of regional cerebral blood flow in newly diagnosed never-medicated patients with schizophrenia. An exploratory study of 5 patients and 10 normal control subjects identified abnormally high blood flow in the left globus pallidus of patients with schizophrenia. A replication study of 5 additional patients and 10 additional control subjects confirmed this finding. No other abnormalities were found. PMID:3467374

  6. Choroidal Blood Flow Change in Eyes with High Myopia

    PubMed Central

    Yang, Young Seong

    2015-01-01

    Purpose To evaluate choroidal blood flow changes in eyes with high myopia according to the pulsatile components of ocular blood flow analysis. Methods A total of 104 subjects (52 males and 52 females) were included in this study. One eye of each participant was randomly selected and assigned to one of four refractive groups, designated as, hyperopes (n = 20; refractive error, ≥+1.00 diopter [D]), emmetropes (n = 28; refractive error, ±0.75 D), lower myopes (n = 33; refractive error, -1.00 to -4.75 D), and high myopes (n = 23; refractive error, ≤-5.00 D). Components of pulse amplitude (OBFa), pulse volume (OBFv), pulse rate (OBFr), and pulsatile ocular blood flow (POBF) were analyzed using a blood flow analyzer. Intraocular pressure and axial length were measured. Results Pulsatile components of OBFa, OBFv, and POBF showed positive correlations with refractive error and showed negative correlations with axial length (r = 0.729, r = 0.772, r = 0.781, respectively, all p < 0.001; r = -0.727, r = -0.762, r = -0.771, respectively, all p < 0.001). The correlations of refractive error and axial length with OBFr were irrelevant (r = -0.157, p = 0.113; r = 0.123, p = 0.213). High myopes showed significantly lower OBFa, OBFv, and POBF than the other groups (all p < 0.001). Conclusions Axial length changes in high myopes potentially influence choroidal blood flow, assuming the changes are caused by narrowing of the choroidal vessel diameter and increasing rigidity of the choroidal vessel wall. These finding explains the influence of axial length on OBFa, OBFv, and POBF, but not on OBFr. Thus, changes in axial length and the possible influence of these changes on the physical properties of choroidal vessels is the mechanism believed to be responsible for putting high myopes at risk for ocular vascular diseases. PMID:26457036

  7. Palpable pediatric thyroid abnormalities – diagnostic pitfalls necessitate a high index of clinical suspicion: a case report

    PubMed Central

    Klopper, Joshua P; McDermott, Michael T

    2007-01-01

    A 12-year-old girl presented with a 4 year history of an enlarged, firm thyroid gland. On exam, her thyroid was firm and fixed and an enlarged cervical lymph node was palpable as well. Though a thyroid ultrasound prior to referral was read as thyroiditis, clinical suspicion for thyroid carcinoma mandated continued investigation. The diagnosis of papillary thyroid cancer was established and her workup revealed lymph node metastases as well as a tremendous burden of pulmonary metastases. Pediatric thyroid cancer is extremely rare, but often presents with aggressive disease. Palpable thyroid abnormalities in an individual under 20-years-old should be viewed with suspicion and should be thoroughly investigated to rule out malignancy even in the face of negative diagnostic procedures. Though pediatric papillary thyroid cancer often presents with loco-regional and even distant metastatic disease, mortality rates in follow-up for as long as 20 years are very favorable. PMID:17587454

  8. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  9. A new approach to highly resolved measurements of turbulent flow

    NASA Astrophysics Data System (ADS)

    Puczylowski, J.; Hölling, A.; Peinke, J.; Bhiladvala, R.; Hölling, M.

    2015-05-01

    In this paper we present the design and principle of a new anemometer, namely the 2d-Laser Cantilever Anemometer (2d-LCA), which has been developed for highly resolved flow speed measurements of two components (2d) under laboratory conditions. We will explain the working principle and demonstrate the sensor’s performance by means of comparison measurements of wake turbulence with a commercial X-wire. In the past we have shown that the 2d-LCA is capable of being applied in liquid and particle-laden domains, but we also believe that other challenging areas of operation such as near-wall flows can become accessible.

  10. [Posttraumatic high-flow priapism in prepubertal age].

    PubMed

    Rico López, J; Amaya Gutiérrez, J; Blasco Hernández, P; Camacho Martínez, E; Salazar Murillo, R; Mayol Deya, A; García Pérez, M

    1998-06-01

    High flow priapism is an infrequent entity, generally following traumatic injuries in the genito-perineal area. Anamnesis, cavernous bodies blood gasometry and Doppler are the basic diagnostic tools for these condition. Therapeutical management is considerably different from that used for low flow venous priapism. Selective arteriography of the internal pudendal artery allows to locate the arterial lesion and, at the same time, to perform supraselective embolization of the lacerated cavernous artery which is currently considered the choice treatment. This paper presents the case report of a ten-year old patient successfully resolved through application of angioradiologic procedures. PMID:9734134

  11. High speed mask inspection data prep flow based on pipelining

    NASA Astrophysics Data System (ADS)

    Hung, Dan; Morales, Domingo; Canepa, Juan Pablo; Kim, Stephen; Liu, Po; Sier, Jean-Paul; LoPresti, Patrick

    2011-11-01

    Mask manufacturers are continuously challenged as a result of the explosive growth in mask pattern data volume. This paper presents a new pipelined approach to mask data preparation for inspection that significantly reduces the data preparation times compared to the conventional flows used today. The focus of this approach minimizes I/O bottlenecks and allows for higher throughput on computer clusters. This solution is optimized for the industry standard OASIS.MASK format. These enhancements in the data processing flow, along with optimizations in the data preparation system architecture, offer a more efficient and highly scalable solution for mask inspection data preparation.

  12. Flux-flow resistivity of three high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Evans, D.J.; Hull, J.R.; Seol, S.Y.

    1996-10-01

    Results of experiments on flux-flow resistivity (the relationship of voltage to current) of three high-temperature superconductors are described. The superconductors are a melt-cast BSCCO 2212 rod, a single filament BSCCO powder-in-tube (PIT) tape, and a multifilament PIT tape. The flux-flow resistivity of these superconductors was measured at three temperatures: 77 K (saturated liquid nitrogen), 87 K (saturated liquid argon), and 67 K (subcooled liquid nitrogen). Implications of the present results for practical applications are discussed.

  13. Nonequilibrium condensation in high-speed gas flows

    SciTech Connect

    Ryzhov, Y.A.; Pirumov, U.G.; Gorbunov, V.N. )

    1989-01-01

    Nonequilibrium condensation is an important aspect of weather forecasting, aerosol formation, and the design of jet propulsion engines, steam turbines and nuclear reactors. It has recently taken on a new significance with the development of technologies such as the production of fine powders, cluster spraying, the development of laser media and isotope separation. This book discusses the general theory of condensation in high speed gas flows, and the new theoretical, experimental and numerical methods necessary for solving the partial differential equations governing the flows.

  14. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  15. SHARP simulation of discontinuities in highly convective steady flow

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1987-01-01

    For steady multidimesional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  16. Experimental investigations of He II flows at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Van Sciver, Steve W.

    1991-01-01

    Fluid dynamics studies of He II at high Reynolds number (Re(d) greater than 10 exp 6) reveal characteristics which are best interpreted in terms of classical scaling relationships. In particular, the smooth tube friction factor is seen to correlate with the Von Karman-Nikuradse formulation. Also, the performance of a centrifugal pump is unchanged whether being used with He I or He II. These effects are expected to result provided the He II possesses a viscous sublayer and that the drag is determined by laminar flow within this layer. On the other hand, heat transfer in He II is substantially different from that of He I because of the unique internal convection mechanism present in this quantum fluid. These experiments are performed in the University of Wisconsin liquid helium flow facility which has unique capabilities of He II temperature, pressure and flow.

  17. Toward Immersed Boundary Simulation of High Reynolds Number Flows

    NASA Technical Reports Server (NTRS)

    Kalitzin, Georgi; Iaccarino, Gianluca

    2003-01-01

    In the immersed boundary (IB) method, the surface of an object is reconstructed with forcing terms in the underlying flow field equations. The surface may split a computational cell removing the constraint of the near wall gridlines to be aligned with the surface. This feature greatly simplifies the grid generation process which is cumbersome and expensive in particular for structured grids and complex geometries. The IB method is ideally suited for Cartesian flow solvers. The flow equations written in Cartesian coordinates appear in a very simple form and several numerical algorithms can be used for an efficient solution of the equations. In addition, the accuracy of numerical algorithms is dependent on the underlying grid and it usually deteriorates when the grid deviates from a Cartesian mesh. The challenge for the IB method lies in the representation of the wall boundaries and in providing an adequate near wall flow field resolution. The issue of enforcing no-slip boundary conditions at the immersed surface has been addressed by several authors by imposing a local reconstruction of the solution. Initial work by Verzicco et al. was based on a simple linear, one-dimensional operator and this approach proved to be accurate for boundaries largely aligned with the grid lines. Majumdar et al. used various multidimensional and high order polynomial interpolations schemes. These high order schemes, however, are keen to introduce wiggles and spurious extrema. Iaccarino & Verzicco and Kalitzin & Iaccarino proposed a tri-linear reconstruction for the velocity components and the turbulent scalars. A modified implementation that has proven to be more robust is reported in this paper. The issue of adequate near wall resolution in a Cartesian framework can initially be addressed by using a non-uniform mesh which is stretched near the surface. In this paper, we investigate an unstructured approach for local grid refinement that utilizes Cartesian mesh features. The computation

  18. High-flaps for natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L.

    1986-01-01

    A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.

  19. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  20. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  1. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  2. Detonation diffraction in combustible high-speed flows

    NASA Astrophysics Data System (ADS)

    Gui, Mingyue; Fan, Baochun; Li, Baoming

    2016-03-01

    Detonation propagating in a T-shaped tube with quiescent and moving hydrogen/oxygen/argon mixtures is numerically examined based on the Euler equations with detailed finite-rate chemistry using the fifth-order weighted essentially non-oscillatory scheme. When diffracted in a quiescent combustible mixture, the detonation wave propagating from the bottom of the T-shaped tube is influenced by the corner rarefaction waves and decays into a non-reacting shock. Subsequently, the decoupled shock reflects irregularly from the top wall. Through several reflections back and forth between the top and bottom walls, a planar detonation is finally re-established. When the combustible mixture in the horizontal part flows from the left to the right, the detonation products ejected from the vertical tube will retard the flow, generating a compression flow upstream and a rarefaction flow downstream. The disturbed detonation on the left side is stronger than that on the right side. The final planar detonation in the upstream direction propagates faster than the Chapman-Jouguet (CJ) detonation with compressed, fine cellular structures, whereas the detonation in the downstream direction propagates more slowly than the CJ detonation with elongated, coarse cellular structures. The details of the transient behavior of diffracting detonation in high-speed flows are discussed.

  3. Numerical Simulation of a High Mach Number Jet Flow

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.

    1993-01-01

    The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach

  4. Flow reduction in high-flow arteriovenous fistulas improve cardiovascular parameters and decreases need for hospitalization.

    PubMed

    Balamuthusamy, Saravanan; Jalandhara, Nishant; Subramanian, Anand; Mohanaselvan, Arvindselvan

    2016-07-01

    High output heart failure (HF) and pulmonary hypertension have been demonstrated in patients with prevalent arteriovenous (AV) fistulas. Fistulas with flow >2000 mL/minutes are more likely to induce changes in cardiac geometry and pulmonary artery pressure. The effects of reducing flow in AV access and its implications on HF decompensation and hospitalizations have not been studied. Retrospective analysis of 12 patients who needed hospitalization for acute Congestive Heart Failure (CHF) decompensation with AV access flow of 2 L/minutes (as defined by Kidney Disease Outcomes Quality Initiative (KDOQI)) or more were included in the study. All the patients underwent banding of their inflow at the anastomosis with perioperative access flow measurement. Follow-up period was 6 months. 2D echo was done at 6 months postbanding in addition to access flow and clinical evaluation. Complete data was available for all the 12 patients. Study data was collected on all the 12 patients. Mean age was 64.7 years. The mean access flow pre and postbanding were 3784 mL/minutes and 1178 mL/minutes, respectively (P < 0.001). Eighty percent of the patients had diabetes and 41% had coronary artery disease. There was a statistically significant decrease in cardiac output (pre = 7.06 L/minutes, post = 6.47 L/minutes P = 0.03), pulmonary systolic pressure (pre = 54 mmHg, post = 44 mmHg P = 0.02), left ventricular mass index (LVMI) (pre = 130 g/m(2) , post = 125 g/m(2) P = 0.006) and need for rehospitalization for CHF decompensation. The New York Heart Association (NYHA) staging improved by 1 stage postbanding (P = 0.002). The hospitalization rate was 3.75 ± 1.2 in the 6 months before banding and was decreased to 1.08 ± 1.2 (P = 0.002) postbanding. The hemoglobin level, predialysis systolic blood pressure, calcium phosphorous product and the use of Renin Angiotensin Aldosterone System (RAAS) blockade agents and calcium channel blockers

  5. Gas-solid flow characteristics in high-density CFB

    NASA Astrophysics Data System (ADS)

    Wang, Xue-yao; Fan, Bao-guo; Wang, Sheng-dian; Xu, Xiang; Xiao, Yun-han

    2012-08-01

    The gas-solid flow characteristics in the riser of a high density CFB of square (0.27 m×0.27 m×10.4 m) or circular ( ϕ 0.187m×10.4 m) cross section, using Geldart B particles (quartz sand), was investigated experimentally. The influence of riser structure on the hydrodynamic behaviors of a high-density circulating fluidized bed was investigated. The solid circulation rate was up to 321 kg/(m2s) with the circular cross-section under the operating conditions of the main bed air velocity 12.1 m/s and loosen wind and back-feed wind flow 25.1 m3/h. Different operating conditions on realizing high density circulation was analyzed, while both solids circulation rate and particle holdup depended highly on operating conditions. The circulating gas-solid flow was accompanied by an evidently-dense character in the riser's bottom zone and became fully developed in the middle and upper zones.

  6. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  7. Embedded function methods for compressible high speed turbulent flow

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1994-01-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  8. TRANSEP: A program for high lift separated flow about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1980-01-01

    A method and program called TRANSEP is presented that can be used for the analysis of the flow about a low speed airfoil under high lift, massive separation conditions. Since the present program is a modification of the direct-inverse TRANDES code, it can also be used for the design and analysis of transonic airfoils, including the effects of weak viscous interaction. Interactions on program usage, program modifications to convert TRANDES to TRANSEP, and sample cases and results are given.

  9. Pneumatic vortical flow control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Schiff, Lewis B.; Cummings, Russell M.

    1990-01-01

    The injection of thin, high-momentum jets of air into the fuselage forebody boundary layers of the F-18 aircraft is explored numerically as a means of controlling the onset of fuselage vortices and of generating yaw control forces. The study was carried out for an angle of attack of 30 deg with symmetrical and asymmetrical blowing configurations. One-sided blowing results in a strongly asymmetrical flow pattern in the fore portion of the fuselage, leading to a net lateral force.

  10. Calibration of high flow rate thoracic-size selective samplers.

    PubMed

    Lee, Taekhee; Thorpe, Andrew; Cauda, Emanuele; Harper, Martin

    2016-01-01

    High flow rate respirable size selective samplers, GK4.126 and FSP10 cyclones, were calibrated for thoracic-size selective sampling in two different laboratories. The National Institute for Occupational Safety and Health (NIOSH) utilized monodisperse ammonium fluorescein particles and scanning electron microscopy to determine the aerodynamic particle size of the monodisperse aerosol. Fluorescein intensity was measured to determine sampling efficiencies of the cyclones. The Health Safety and Laboratory (HSL) utilized a real time particle sizing instrument (Aerodynamic Particle Sizer) and polydisperse glass sphere particles and particle size distributions between the cyclone and reference sampler were compared. Sampling efficiency of the cyclones were compared to the thoracic convention defined by the American Conference of Governmental Industrial Hygienists (ACGIH)/Comité Européen de Normalisation (CEN)/International Standards Organization (ISO). The GK4.126 cyclone showed minimum bias compared to the thoracic convention at flow rates of 3.5 l min(-1) (NIOSH) and 2.7-3.3 l min(-1) (HSL) and the difference may be from the use of different test systems. In order to collect the most dust and reduce the limit of detection, HSL suggested using the upper end in range (3.3 l min(-1)). A flow rate of 3.4 l min(-1) would be a reasonable compromise, pending confirmation in other laboratories. The FSP10 cyclone showed minimum bias at the flow rate of 4.0 l min(-1) in the NIOSH laboratory test. The high flow rate thoracic-size selective samplers might be used for higher sample mass collection in order to meet analytical limits of quantification. PMID:26891196

  11. Calibration of high flow rate thoracic-size selective samplers

    PubMed Central

    Lee, Taekhee; Thorpe, Andrew; Cauda, Emanuele; Harper, Martin

    2016-01-01

    High flow rate respirable size selective samplers, GK4.126 and FSP10 cyclones, were calibrated for thoracic-size selective sampling in two different laboratories. The National Institute for Occupational Safety and Health (NIOSH) utilized monodisperse ammonium fluorescein particles and scanning electron microscopy to determine the aerodynamic particle size of the monodisperse aerosol. Fluorescein intensity was measured to determine sampling efficiencies of the cyclones. The Health Safety and Laboratory (HSL) utilized a real time particle sizing instrument (Aerodynamic Particle Sizer) and poly-disperse glass sphere particles and particle size distributions between the cyclone and reference sampler were compared. Sampling efficiency of the cyclones were compared to the thoracic convention defined by the American Conference of Governmental Industrial Hygienists (ACGIH)/Comité Européen de Normalisation (CEN)/International Standards Organization (ISO). The GK4.126 cyclone showed minimum bias compared to the thoracic convention at flow rates of 3.5 l min−1 (NIOSH) and 2.7–3.3 l min−1 (HSL) and the difference may be from the use of different test systems. In order to collect the most dust and reduce the limit of detection, HSL suggested using the upper end in range (3.3 l min−1). A flow rate of 3.4 l min−1 would be a reasonable compromise, pending confirmation in other laboratories. The FSP10 cyclone showed minimum bias at the flow rate of 4.0 l min−1 in the NIOSH laboratory test. The high flow rate thoracic-size selective samplers might be used for higher sample mass collection in order to meet analytical limits of quantification. PMID:26891196

  12. High strain-rate plastic flow in Fe and Al

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Eggert, Jon; Rudd, Robert; Bolme, Cynthia; Collins, Gilbert

    2011-06-01

    Understanding the nature and time-dependence of material deformation at high strain rates is an important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain is determined by the flow of dislocations through the crystal lattice and is a complex function of time, distance, sample purity, temperature, internal stresses, microstructure and strain rate. Under shock compression time-dependent plasticity is typically inferred by fitting elastic precursor stresses as a function of propagation distance with a phenomenologically based dislocation kinetics model. We employ a laser-driven ramp wave loading technique to compress 6-70 micron thick samples of bcc-Fe and fcc-Al over a strain rate range of 1e6-1e8 1/s. Our data show that for fixed sample thickness, stresses associated the onset of plasticity are highly dependent on the strain rate of compression and do not readily fit into the elastic stress - distance evolution descriptive of instantaneous shock loading. We find that the elastic stress at the onset of plasticity is well correlated with the strain rate at the onset of plastic flow for both shock- and ramp-wave experiments. Our data, combined with data from other dynamic compression platforms, reveal a sharp increase in the peak elastic stress at high strain rates, consistent with a transition in dislocation flow dominated by phonon drag. smith248@llnl.gov

  13. Experiment on fuel injection in high-enthalpy flow

    NASA Astrophysics Data System (ADS)

    Tanno, Hideyuki; Komuro, Tomoyuki; Sato, Kazuo; Itoh, Katsuhiro; Ueda, Shuichi

    2001-04-01

    An experiment of inert gas injection into a high enthalpy hypersonic air flow is described. Gaseous helium at room temperature was injected transversely through four (phi) 1.5 mm circular sonic injectors at a spacing of 20 mm, which was located 28 mm downstream from a backward-facing step of 4 mm height. The experiment was carried out in the high enthalpy shock tunnel HIEST under the free stream test condition at Mach number of 6.5 and at the velocity of 4 km/s. The purpose of the experiment was to examine transient behavior of the helium jet mixing with the test air flow. Sequential Schlieren flow visualization with high-speed CCD camera of 1 (mu) sec exposure time have been used. Pitot pressure profile in the helium jet was measured at three stream-wise location. The measurements showed that the helium jet reached to the steady state in less than 2 msec, which was within HIEST test duration.

  14. Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows

    NASA Technical Reports Server (NTRS)

    Sammy, Mo

    2010-01-01

    Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).

  15. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  16. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  17. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  18. Krohne Flow Indicator and High Flow Alarm Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    SciTech Connect

    MISKA, C.R.

    2000-09-03

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS.

  19. Assessment of transmitral flow after mitral valve edge-to-edge repair using High-speed particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.

  20. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE−/− Mice

    PubMed Central

    Zheng, Jiao; Liu, Binglin; Lun, Qixing; Yao, Weijuan; Zhao, Yunfang; Xiao, Wei; Huang, Wenzhe; Wang, Yonghua; Li, Jun; Tu, Pengfei

    2016-01-01

    Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia. PMID:26649134

  1. Hypertension, Abnormal Cholesterol, and High Body Mass Index among Non-Hispanic Asian Adults: United States, 2011-2012

    MedlinePlus

    ... high total cholesterol among non-Hispanic Asian adults did not differ by sex, age, education, or foreign- ... Figure 3 ). The prevalence of high total cholesterol did not differ significantly by sex, age, education, or ...

  2. Observations of shear flows in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, Eric C.

    The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.

  3. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  4. Molecular dynamics simulations of high speed rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    To understand the molecular behaviour of gases in high speed rarefied conditions, we perform molecular dynamics (MD) numerical experiments using the open source code Open FOAM. We use shear-driven Couette flows as test cases, where the two parallel plates are moving with a speed of Uw in opposite directions with their temperatures set to Tw. The gas rarefaction conditions vary from slip to transition, and compressibility conditions vary from low speed isothermal to hypersonic flow regimes, i.e. Knudsen number (Kn) from 0.01 to 1 and Mach number (Ma) from 0.05 to 10. We measure the molecular velocity distribution functions, the spatial variation of gas mean free path profiles and other macroscopic properties. Our MD results convey that flow properties in the near-wall non-equilibrium region do not merely depend on Kn, but they are also significantly affected by Ma. These results may yield new insight into diffusive transport in rarefied gases at high speeds.

  5. Transient flow characteristics of a high speed rotary valve

    NASA Astrophysics Data System (ADS)

    Browning, Patrick H.

    were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  6. High Reynolds number decay of turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2015-11-01

    We study the decay of high-Reynolds number turbulence in a Taylor-Couette facility for pure inner cylinder rotation. The rotation of the inner cylinder (Rei = 2 ×106) is suddenly decelerated as fast as possible, thus removing the energy input within seconds. Local velocity measurements show that the decay in this wall-bounded inhomogeneous flow is faster than observed for homogeneous isotropic turbulent flows, due to the strong viscous drag applied by the inner and outer cylinder surfaces. We found that the decay over time can be described with the differential equation Re . (t) =cf (Re)Re2 , where the effects of the walls are included through the friction coefficient. A self-similar behavior of the azimuthal velocity is found: its normalized velocity profile as a function of the radius collapses over time during the decay process.

  7. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  8. Turbulence and transition modeling for high-speed flows

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1993-01-01

    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.

  9. High speed optical holography of retinal blood flow.

    PubMed

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms. PMID:27472604

  10. High Resolution Magnetotail Simulations of Bursty Bulk Flows

    NASA Astrophysics Data System (ADS)

    Buzulukova, N.; Dorelli, J.; Glocer, A.; Fok, M. C. H.; Toth, G.

    2014-12-01

    We present the results of high resolution resistive MHD simulations of bursty bulk flows using the BATSRUS magnetosphere model. We performed a number of runs with three levels of constant resistivity. For each resistivity level, we studied the dependence on tail resolution and looked for solutions where numerical resistivity was small compared to the set physical resistivity. For constant solar wind driving (southward Bz IMF), we found the formation of bursty bulk flows (BBFs) and dipolarization fronts when the resistivity was below a critical value. We extracted virtual s/c data through dipolarization fronts and BBFs and compared with observed properties of BBFs. We also studied the ionospheric response to BBF formation. By switching on/off the ring current module (CRCM) in the BATSRUS, we examined relationship between BBFs and ring current injections.

  11. Experimental investigation of a nitrogen high-enthalpy flow

    SciTech Connect

    Fasoulas, S.; Auweter-Kurtz, M.; Habiger, H.A.

    1994-01-01

    This article presents experimental results of a nitrogen high-enthalpy plasma flow obtained within a test campaign at the Institut fuer Raumfahrtsysteme. Different measurement techniques have been applied to determine the flowfield properties in flow direction and the distributions at two cross sections, i.e., pressure, heat flux, velocity, electron density, and temperature measurements. These measurements make possible the calculations of the local specific enthalpy and the mass flux distributions of the plasma plume. The experimental data at the first cross section are to be used as initial and boundary conditions; the comparison of the calculated and experimental results at the second cross section allow the verification of the models used in numerical codes. 24 refs.

  12. Modeling and simulation of high-speed wake flows

    NASA Astrophysics Data System (ADS)

    Barnhardt, Michael Daniel

    High-speed, unsteady flows represent a unique challenge in computational hypersonics research. They are found in nearly all applications of interest, including the wakes of reentry vehicles, RCS jet interactions, and scramjet combustors. In each of these examples, accurate modeling of the flow dynamics plays a critical role in design performance. Nevertheless, literature surveys reveal that very little modern research effort has been made toward understanding these problems. The objective of this work is to synthesize current computational methods for high-speed flows with ideas commonly used to model low-speed, turbulent flows in order to create a framework by which we may reliably predict unsteady, hypersonic flows. In particular, we wish to validate the new methodology for the case of a turbulent wake flow at reentry conditions. Currently, heat shield designs incur significant mass penalties due to the large margins applied to vehicle afterbodies in lieu of a thorough understanding of the wake aerothermodynamics. Comprehensive validation studies are required to accurately quantify these modeling uncertainties. To this end, we select three candidate experiments against which we evaluate the accuracy of our methodology. The first set of experiments concern the Mars Science Laboratory (MSL) parachute system and serve to demonstrate that our implementation produces results consistent with prior studies at supersonic conditions. Second, we use the Reentry-F flight test to expand the application envelope to realistic flight conditions. Finally, in the last set of experiments, we examine a spherical capsule wind tunnel configuration in order to perform a more detailed analysis of a realistic flight geometry. In each case, we find that current 1st order in time, 2nd order in space upwind numerical methods are sufficiently accurate to predict statistical measurements: mean, RMS, standard deviation, and so forth. Further potential gains in numerical accuracy are

  13. A low frequency, high amplitude rhythmic fluctuation of laser-Doppler skin blood flow after subarachnoid phenol block.

    PubMed

    Kano, T; Shimoda, O; Gotou, K; Morioka, T

    1993-07-01

    A 51-year-old male with a huge chondrosarcoma received subarachnoid dorsal root blocks with 10% phenol in glycerine to treat severe pain along the left leg. The dermatomes below the Th9 lost all somatic sensation on the left side after the nerve blocks, but the patient was not completely relieved from the pain. Laser-Doppler flowmetry on the toe of the left foot disclosed an increased blood flow and an abnormal fluctuation of the cutaneous capillary blood flow, i.e. a high amplitude rhythmic (HAR) wave with 2.5 to 3 cycles.min-1. The low frequency HAR wave persisted for the subsequent 3 months until a tingling sensation returned to the left leg. It would seem that some travelling roots of the sympathetic nerve were preserved from the chemical neurolysis and the remaining efferent and afferent nerve fibers were responsible for the persisting low frequency HAR wave and pain in the left leg. PMID:8409217

  14. High-Speed Unsteady Flows around Concave Axisymmetric Bodies: Flow Instabilities and their Suppression

    NASA Astrophysics Data System (ADS)

    Panaras, A.; Drikakis, D.

    2009-01-01

    The axisymmetric concave body, i.e. a body in which the normals to its surface intersect, is a typical configuration about which shock/shock interactions appear. Various shapes of axisymmetric concave bodies are used in a variety of applications in aeronautics. For exampe: axisymmetric jet inlets with conical centerbody, ballistic missiles drag reduction by spike, plasma or hot gas injection, parachutes for pilot-ejection capsules. However, it is well known that two distinct modes of instability appear around a concave body in the high-speed flow regime, for a certain range of geometric parameters. These instabilities can cause undesirable effects such as severe vibration of the structure, heating and pressure loads. According to the experimental evidence, the unsteady flow is characterized by periodic radial inflation and collapse of the conical separation bubble formed around the forebody (pulsation). Various explanations have been given for the driving mechanism of the instabilities. They are based on interpretation of experimental results or on numerical simulation of the related flows. A merging of the leading explanations is done, and basic rules for the passive suppression of the instabilities are applied, in order to enforce the proposed driving mechanism of the instabilities. Most of the analysis is based on numerical simulations.

  15. Turbulence measurements in high-speed flows by resonant fluoresence

    NASA Technical Reports Server (NTRS)

    Miles, R. B.

    1982-01-01

    Both mean flow and turbulence measurements were investigated using the resonant Doppler velocimeter in a Mach 3.2 nitrogen flow. Data are presented showing velocity, temperature and pressure measured point by point across the flow field. This data is compared with conventional pitot and temperature surveys. Turbulence was induced by a small metal tab in the flow and observed by both hot wire and RDV techniques. Photographs of the flow field demonstrate the utility of the RDV for quantitative flow field visualization.

  16. Topology and grid adaption for high-speed flow computations

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.

    1989-01-01

    This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.

  17. Passive scalars in turbulent channel flow at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio; Bernardini, Matteo; Orlandi, Paolo

    2015-11-01

    We study passive scalars in turbulent plane channels at computationally high Reynolds number, which allows to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow, and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies spanning each half-channel, which are caused by production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the velocity and scalar eddies is observed, the main difference being that the latter have more convoluted interfaces, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection events. We acknowledge that the results reported in this paper have been achieved using the PRACE Research Infrastructure resource FERMI based at CINECA, Casalecchio di Reno, Italy.

  18. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  19. Visualizing the internal structure of subaqueous, high-concentration sediment-laden flows: implication of rheology to flow structure

    NASA Astrophysics Data System (ADS)

    Perillo, M. M.; Buttles, J.; Mohrig, D. C.; Kane, I.; Pontén, A.; Brown, D.; Minton, B. W.

    2013-12-01

    Subaqueous sediment-laden flows are thought to be the main mechanism transporting sediments to the deep sea. Understanding the processes governing these flows is crucial to building predictive models of flow behaviour, sediment transport and deposition and is applicable to a wide range of disciplines. Physical modelling using a wide range of experimental facilities and measurement techniques has significantly advanced our understanding of these sediment-laden flows and their ability to erode, transport and deposit sediments. However, for the case of high-sediment concentration flows, measuring flow and depositional properties is still a challenge. Here, we present results from an acoustic reflection technique that allows for direct and noninvasive visualization of the internal structure of high concentration, clay-rich, sand-laden flows with a range of initial yield strengths (0-26 Pa). As the acoustic signal travels through the sediment-laden flow, it encounters zones of varying acoustic impedance that are due to temporal and spatial changes in sediment concentration, grain size and sorting, and flow mixing. The reflected signal is processed and interpreted using seismic techniques developed in exploration geophysics. The ultrasonic reflection data captured two distinct flow stages, an active stage and a post-depositional creeping stage. The clay-rich sand-laden flows showed stratification expressed by three clear vertical zones: (a) an upper relatively dilute turbulent zone, (b) a zone with high sediment concentration and significantly reduced mixing and (c) an aggrading bed of static grains.

  20. High-throughput single-microparticle imaging flow analyzer

    PubMed Central

    Goda, Keisuke; Ayazi, Ali; Gossett, Daniel R.; Sadasivam, Jagannath; Lonappan, Cejo K.; Sollier, Elodie; Fard, Ali M.; Hur, Soojung Claire; Adam, Jost; Murray, Coleman; Wang, Chao; Brackbill, Nora; Di Carlo, Dino; Jalali, Bahram

    2012-01-01

    Optical microscopy is one of the most widely used diagnostic methods in scientific, industrial, and biomedical applications. However, while useful for detailed examination of a small number (< 10,000) of microscopic entities, conventional optical microscopy is incapable of statistically relevant screening of large populations (> 100,000,000) with high precision due to its low throughput and limited digital memory size. We present an automated flow-through single-particle optical microscope that overcomes this limitation by performing sensitive blur-free image acquisition and nonstop real-time image-recording and classification of microparticles during high-speed flow. This is made possible by integrating ultrafast optical imaging technology, self-focusing microfluidic technology, optoelectronic communication technology, and information technology. To show the system’s utility, we demonstrate high-throughput image-based screening of budding yeast and rare breast cancer cells in blood with an unprecedented throughput of 100,000 particles/s and a record false positive rate of one in a million. PMID:22753513

  1. Implicit turbulence modeling for high reynolds number flows.

    SciTech Connect

    Margolin, L. G.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A.

    2001-01-01

    We continue our investigation of the implicit turbulence modeling property of the nonoscillatory finite volume scheme MPDATA. We start by comparing MPDATA simulations of decaying turbulence in a triply periodic cube with analogous pseudospectral studies. In the regime of direct numerical simulation, MPDATA is shown to agree closely with the pseudospectral model. As viscosity is reduced, the two model results diverge. We study the MPDATA results in the inviscid limit, using a combination of mathematical analysis and computational experiment. We validate the inviscid MPDATA results as representing the turbulent flow in the limit of very high Reynolds number.

  2. Local isotropy in high Reynolds number turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1993-01-01

    This is a report on the continuation of experiments, which Dr. Srinivas Veeravalli and the present author started in 1991, to investigate the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods like large-eddy simulation. The importance of Kolmogorov's ideas arises from the fact that they create a foundation for turbulence theory.

  3. Numerical solution of compressible viscous flows at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Maccormack, R. W.

    1981-01-01

    A new numerical method which was used to reduce the computation time required in fluid dynamics to solve the Navier-Stokes equations at flight Reynolds numbers is described. The method is the implicit analogue of the explicit finite different method. It uses this as its first stage, while the second stage removes the restrictive stability condition by recasting the difference equations in an implicit form. The resulting matrix equations to be solved are either upper or lower block bidiagonal equations. The new method makes it possible and practical to calculate many important three dimensional, high Reynolds number flow fields on computers.

  4. Experimental study of highly turbulent isothermal opposed-jet flows

    NASA Astrophysics Data System (ADS)

    Coppola, Gianfilippo; Gomez, Alessandro

    2010-10-01

    Opposed-jet flows have been shown to provide a valuable means to study a variety of combustion problems, but have been limited to either laminar or modestly turbulent conditions. With the ultimate goal of developing a burner for laboratory flames reaching turbulence regimes of relevance to practical systems, we characterized highly turbulent, strained, isothermal, opposed-jet flows using particle image velocimetry (PIV). The bulk strain rate was kept at 1250 s-1 and specially designed and properly positioned turbulence generation plates in the incoming streams boosted the turbulence intensity to well above 20%, under conditions that are amenable to flame stabilization. The data were analyzed with proper orthogonal decomposition (POD) and a novel statistical analysis conditioned to the instantaneous position of the stagnation surface. Both POD and the conditional analysis were found to be valuable tools allowing for the separation of the truly turbulent fluctuations from potential artifacts introduced by relatively low-frequency, large-scale instabilities that would otherwise partly mask the turbulence. These instabilities cause the stagnation surface to wobble with both an axial oscillation and a precession motion about the system axis of symmetry. Once these artifacts are removed, the longitudinal integral length scales are found to decrease as one approaches the stagnation line, as a consequence of the strained flow field, with the corresponding outer scale turbulent Reynolds number following a similar trend. The Taylor scale Reynolds number is found to be roughly constant throughout the flow field at about 200, with a value virtually independent of the data analysis technique. The novel conditional statistics allowed for the identification of highly convoluted stagnation lines and, in some cases, of strong three-dimensional effects, that can be screened, as they typically yield more than one stagnation line in the flow field. The ability to lock on the

  5. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Astrophysics Data System (ADS)

    Sjoegreen, Bjoern; Yee, Helen C.

    2002-11-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great

  6. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states. PMID:26005782

  7. Abnormal Functional Specialization within Medial Prefrontal Cortex in High-Functioning Autism: A Multi-Voxel Similarity Analysis

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Meuwese, Julia D. I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in "decoding" mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males)…

  8. High speed flow cytometer droplet formation system and method

    DOEpatents

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  9. Vortex Generator Induced Flow in a High Re Boundary Layer

    NASA Astrophysics Data System (ADS)

    Velte, C. M.; Braud, C.; Coudert, S.; Foucaut, J.-M.

    2014-12-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices. Studying the downstream development in the ensemble and spanwise averaged measurements, it is observed that the impact from the rectangular and triangular VGs differs. For the rectangular VGs, self-similarity in the streamwise component was confirmed.

  10. Velocity measurements on highly turbulent free surface flow using ADV

    NASA Astrophysics Data System (ADS)

    Cea, L.; Puertas, J.; Pena, L.

    2007-03-01

    The 3D instantaneous velocity recorded with an acoustic Doppler velocimeter (ADV) in a highly turbulent free surface flow is analysed using several filters in order to eliminate the corrupted data from the sample. The filters used include the minimum/maximum threshold, the acceleration threshold, and the phase-space threshold. Following some ideas of the phase-space filter, a new method based on the 3D velocity cross-correlation is proposed and tested. A way of computing the constants of the acceleration threshold method is proposed, so no parameters need to be fixed by the user, which makes the filtering process simpler, more objective and more efficient. All the samples analysed are highly turbulent. Nevertheless, the turbulence intensity and the air entrainment vary widely in the flow under study, which produces data records of different quality depending on the measurement point. The performance of the filtering methods when applied to samples of different quality, and the effects of the filtering process in the mean velocity, turbulent kinetic energy and frequency spectra are discussed.

  11. CPAP and High-Flow Nasal Cannula Oxygen in Bronchiolitis.

    PubMed

    Sinha, Ian P; McBride, Antonia K S; Smith, Rachel; Fernandes, Ricardo M

    2015-09-01

    Severe respiratory failure develops in some infants with bronchiolitis because of a complex pathophysiologic process involving increased airways resistance, alveolar atelectasis, muscle fatigue, and hypoxemia due to mismatch between ventilation and perfusion. Nasal CPAP and high-flow nasal cannula (HFNC) oxygen may improve the work of breathing and oxygenation. Although the mechanisms behind these noninvasive modalities of respiratory support are not well understood, they may help infants by way of distending pressure and delivery of high concentrations of warmed and humidified oxygen. Observational studies of varying quality have suggested that CPAP and HFNC may confer direct physiologic benefits to infants with bronchiolitis and that their use has reduced the need for intubation. No trials to our knowledge, however, have compared CPAP with HFNC in bronchiolitis. Two randomized trials compared CPAP with oxygen delivered by low-flow nasal cannula or face mask and found some improvements in blood gas results and some physiologic parameters, but these trials were unable to demonstrate a reduction in the need for intubation. Two trials evaluated HFNC in bronchiolitis (one comparing it with headbox oxygen, the other with nebulized hypertonic saline), with the results not seeming to suggest important clinical or physiologic benefits. In this article, we review the pathophysiology of respiratory failure in bronchiolitis, discuss these trials in detail, and consider how future research studies may be designed to best evaluate CPAP and HFNC in bronchiolitis. PMID:25836649

  12. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem. PMID:22377853

  13. Abnormal regional cerebral blood flow found by technetium-99m ethyl cysteinate dimer brain single photon emission computed tomography in systemic lupus erythematosus patients with normal brain MRI findings.

    PubMed

    Chen, J J-H; Yen, R-F; Kao, A; Lin, C-C; Lee, C-C

    2002-11-01

    In this study, technetium-(99m) ethyl cysteinate dimer ((99m)Tc ECD) brain single photon emission computed tomography (SPECT) was used to detect regional cerebral blood flow (rCBF) of the brain in SLE patients with normal brain magnetic resonance imaging (MRI) findings. Twenty female SLE patients were enrolled in this study, divided into two groups. Group 1 consisted of 10 patients with neuropsychiatric manifestations. Group 2 consisted of 10 patients without neuropsychiatric manifestations. All patients had normal brain MRI findings. Another 10 SLE patients with abnormal MRI findings were included as group 3 for comparison. Meanwhile, 10 healthy female volunteers also underwent brain MRI and (99m)Tc ECD brain SPECT for comparison. The scans revealed hypoperfusion lesions in 9/20 (45%) SLE patients, including 7/10 (70%) cases in group 1 and 2/10 (20%) cases in group 2. In contrast, all 10 patients (100%) in group 3 had abnormal (99m)Tc ECD brain SPECT findings. The parietal lobes were the most commonly involved areas. We conclude that (99m)Tc ECD brain SPECT is more sensitive for detecting rCBF changes than is brain MRI in detecting the brain anatomic changes, and may have a diagnostic value in lupus cerebral involvement. However, (99m)Tc ECD brain SPECT may not be indicated for SLE patients with normal MRI and mild neuropsychiatric symptoms/signs, such headaches and dizziness. PMID:12447638

  14. Prevalence of High-Risk Human Papillomavirus (HR-HPV) Genotypes and Multiple Infections in Cervical Abnormalities from Northern Xinjiang, China

    PubMed Central

    Du, Jingyun; Jiang, Jianjun; Jia, Xuesong; Chen, Chuangfu; Wang, Yuanzhi

    2016-01-01

    Multiple human papillomavirus (HPV) genotypes often coexist within the cervical epithelia and are frequently detected together in various grades of the cervical neoplasia. To date, only a few reports exist on multiple HPV infections of HPV in Xinjiang Uygur Autonomous Region (XUAR). In the present study, we investigated the prevalence of High-Risk HPV (HR-HPV) genotypes and multiple infections. Cervical cytology samples were collected from 428 women who presented cervical abnormalities. Genotyping of HPV was performed by polymerase chain reaction–sequencing based typing (PCR-SBT) using consensus primers and specific primers. Of them, 166 samples were positive for HPV according to PCR results using the consensus primers. These samples contained cervical abnormalities enriched with inflammation (n = 107), cervical intraepithelial neoplasia (CIN) I (n = 19), CINII-III (n = 9) and cervical cancer (n = 31). Of the 166 HPV positive samples as determined by PCR analysis, 151 were further typed by PCR-SBT using 19 pairs of genotype-specific primers. Using this method, 17 different HR-HPV genotypes were identified. The most frequently observed HPV genotypes were HPV16 (44.0%, 73/166), 53 (28.9%, 48/166), 52 (25.3%, 42/166), 58 (22.3%, 37/166) and 35 (17.5%, 29/166). The proportions of single and multiple infections in the HPV-positive specimens were 34.9% and 65.1%, respectively. Multiple HPV types were most prevalent in the inflammatory state (63.0%), followed by cervical cancer (24.1%), CINI (11.1%), and CINII-III (1.9%). The results of our data analyses suggested that i) multiple HPV infection is not necessarily correlated with the severity of cervical abnormalities; and ii) among the multiple HPV infections, double infections combined with HPV16 is the most common. In addition, L1 full-length sequences of the top five high-risk HPV genotypes were amplified and sequenced. According to the L1 sequence of the epidemic genotypes that were amplified, we found that these

  15. Flow cytometry

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.

    1984-09-01

    Flow cytometry instrumentation developed from early efforts to count cells and particles in liquid suspension as they passed through a sensing device. Since the mid-1960's sophisticated instruments have been designed for analyzing cells based on various cytological, biochemical, and functional properties. These instruments have revolutionized automated cell analysis methods in that measurements are made at high speed, multiparameter data is correlated on each cell, statistical precision is high, and cells are separated in high purity from heterogeneous mixtures for identification and functional analysis. Advanced instruments capable of measuring cell volume, surface area, multicolor fluorescence, fluorescence polarization, light scatter within various angular regions, and axial light loss (extinction) at different wavelengths are being used in biomedical research for analyzing and sorting normal and abnormal cell populations. This article reviews the development of flow cytometers, the conceptual basis of flow measurements, and discusses some of the numerous applications of the technology in biology and medicine.

  16. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus. PMID:26800576

  17. Compressive high speed flow microscopy with motion contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Stroud, Jasper R.; Tran, Dung N.; Tran, Trac D.; Chin, Sang; Foster, Mark A.

    2016-03-01

    High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=&phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.

  18. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  19. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  20. Abnormalities in carbohydrate and lipid metabolisms in high-fructose dietfed insulin-resistant rats: amelioration by Catharanthus roseus treatments.

    PubMed

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2013-09-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it. PMID:23334857

  1. Salivary abnormalities in Prader-Willi Syndrome

    SciTech Connect

    Hart, S.; Poshva, C.

    1994-09-01

    Although abnormal saliva is a well documented finding in PWS, little is known about the saliva in these individuals. We have recently undertaken a study to characterize the salivary composition from PW patients and to see if there is any correlation with their underlying molecular diagnosis (deletion vs. disomy). We have collected whole saliva on 3 patients; 2 had normal high-resolution karyotype analysis (Cases 1 & 3) and 1 had a deletion of 15q11q13 (Case 3). For all parameters, Case 3`s values were notably different from those of his unaffected sibling. The salivary flow rates and concentrations for all 3 PW patients are similar and are significantly different from normal controls (mean {plus_minus} SE) (p<0.05). Although this data is from only 3 PW patients, it provides valuable information. First, decreased flow appears to be due to an effect of PWS and not medications since Cases 2 & 3 are not on any medications. Second, decreased flow appears to be present in younger as well as older individuals. Third, deviations from normal in the salivary composition are evident. It is possible that these alterations are concentration effects relative to a decrease in flow rate. We are currently obtaining saliva from more PW individuals to see if these alterations are present in all PW patients and whether they can be applied as a screening test.

  2. Breathing abnormalities in sleep in achondroplasia.

    PubMed Central

    Waters, K A; Everett, F; Sillence, D; Fagan, E; Sullivan, C E

    1993-01-01

    Overnight sleep studies were performed in 20 subjects with achondroplasia to document further the respiratory abnormalities present in this group. Somatosensory evoked potentials (SEPs) were recorded in 19 of the subjects to screen for the presence of brainstem abnormalities, which are one of the potential aetiological mechanisms. Fifteen children aged 1 to 14 years, and five young adults, aged 20 to 31 years were included. All had upper airway obstruction and 15 (75%) had a pathological apnoea index (greater than five per hour). Other sleep associated respiratory abnormalities, including partial obstruction, central apnoea, and abnormal electromyographic activity of accessory muscles of respiration, also showed a high prevalence. SEPs were abnormal in eight (42%), but there was no correlation between abnormal SEPs and apnoea during sleep, either qualitatively or quantitatively. A high prevalence of both sleep related respiratory abnormalities and abnormal SEPs in young subjects with achondroplasia was demonstrated. However, the sleep related respiratory abnormalities do not always result in significant blood gas disturbances or correlate with abnormal SEPs in this group. PMID:8215519

  3. Elastic turbulence in high Reynolds number polymer drag reduced flows

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; White, Christopher

    2011-11-01

    The present study discusses the existence of small scale dynamics resembling elastic turbulence in polymeric transitional and maximum drag reduction (MDR) flows. The observed flow patterns are driven by elastic stress and occur in regions of very low turbulence found before and after the breakdown of nonlinear instabilities in polymeric transitional flows leading to MDR. A state of polymer-dominated spanwise instabilities was found, resulting in a structure of the wall shear quite different than the structures observed in transitional Newtonian flow. Similar instabilities are observed in the wake of the head of hairpin vortices in simulated MDR flows, an extended region of extensional flow of the order of the Kolmogorov scale in the normal direction. The important Reynolds number is not that of flow (Reτ = 300 and 600 for the Newtonian flows) but that of the local turbulent flow, which according to Kolmogorov approaches unity in the above mentioned flows, a reasonable magnitude for elastic turbulence. The existence of small scale elastic turbulence in transitional and MDR flows explains the phenomenon of early turbulence first observed in the 70s and challenges the notion that, in drag reduced flows, the energy flows only from large to small scales and never goes back from polymers to flow.

  4. Neuroanatomic and cognitive abnormalities in attention-deficit/hyperactivity disorder in the era of 'high definition' neuroimaging.

    PubMed

    Baroni, Argelinda; Castellanos, F Xavier

    2015-02-01

    The ongoing release of the Human Connectome Project (HCP) data is a watershed event in clinical neuroscience. By attaining a quantum leap in spatial and temporal resolution within the framework of a twin/sibling design, this open science resource provides the basis for delineating brain-behavior relationships across the neuropsychiatric landscape. Here we focus on attention-deficit/hyperactivity disorder (ADHD), which is at least partly continuous across the population, highlighting constructs that have been proposed for ADHD and which are included in the HCP phenotypic battery. We review constructs implicated in ADHD (reward-related processing, inhibition, vigilant attention, reaction time variability, timing and emotional lability) which can be examined in the HCP data and in future 'high definition' clinical datasets. PMID:25212469

  5. Neuroanatomic and Cognitive Abnormalities in Attention-Deficit/Hyperactivity Disorder in the Era of “High Definition” Neuroimaging

    PubMed Central

    Baroni, Argelinda; Castellanos, F. Xavier

    2014-01-01

    The ongoing release of the Human Connectome Project (HCP) data is a watershed event in clinical neuroscience. By attaining a quantum leap in spatial and temporal resolution within the framework of a twin/sibling design, this open science resource provides the basis for delineating brain-behavior relationships across the neuropsychiatric landscape. Here we focus on attention-deficit/hyperactivity disorder (ADHD), which is at least partly continuous across the population, highlighting constructs that have been proposed for ADHD and which are included in the HCP phenotypic battery. We review constructs implicated in ADHD (reward-related processing, inhibition, vigilant attention, reaction time variability, timing and emotional lability) which can be examined in the HCP data and in future “high definition” clinical datasets. PMID:25212469

  6. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate.

    PubMed

    Mulloy, Barbara; Wu, Nian; Gyapon-Quast, Frederick; Lin, Lei; Zhang, Fuming; Pickering, Matthew C; Linhardt, Robert J; Feizi, Ten; Chai, Wengang

    2016-07-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. (1)H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  7. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate

    PubMed Central

    2016-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. 1H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  8. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  9. High-flow nasal cannula oxygen therapy in adults.

    PubMed

    Nishimura, Masaji

    2015-01-01

    High-flow nasal cannula (HFNC) oxygen therapy comprises an air/oxygen blender, an active humidifier, a single heated circuit, and a nasal cannula. It delivers adequately heated and humidified medical gas at up to 60 L/min of flow and is considered to have a number of physiological effects: reduction of anatomical dead space, PEEP effect, constant fraction of inspired oxygen, and good humidification. While there have been no big randomized clinical trials, it has been gaining attention as an innovative respiratory support for critically ill patients. Most of the available data has been published in the neonatal field. Evidence with critically ill adults are poor; however, physicians apply it to a variety of patients with diverse underlying diseases: hypoxemic respiratory failure, acute exacerbation of chronic obstructive pulmonary disease, post-extubation, pre-intubation oxygenation, sleep apnea, acute heart failure, patients with do-not-intubate order, and so on. Many published reports suggest that HFNC decreases breathing frequency and work of breathing and reduces needs of escalation of respiratory support in patients with diverse underlying diseases. Some important issues remain to be resolved, such as its indication, timing of starting and stopping HFNC, and escalating treatment. Despite these issues, HFNC oxygen therapy is an innovative and effective modality for the early treatment of adults with respiratory failure with diverse underlying diseases. PMID:25866645

  10. High heat flux burnout in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1995-09-01

    The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling. The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80 °C), channel orientation (vertical and horizontal). A maximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: T in=30°, p=2.5 MPa, u=40 m/s, D=2.5 mm (smooth channel) Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  11. Efficient simulation of detached flows at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Vega, Jose M.; Asensio, Victor; Herrero, Raul; Varas, Fernando

    2014-11-01

    A method is presented for the computationally efficient simulation of quasi-periodic detached flows in multi-parameter problems at very large Reynolds numbers, keeping in mind a variety of applications, including helicopter flight simulators, control and certification of unmanned aerial vehicles, control of wind turbines, conceptual design in aeronautics, and civil aerodynamics. In many of these applications, the large scale flows (ignoring the smaller turbulent scales) are at most quasi-periodic, namely the Fourier transform exhibits a finite set of concentrated peaks resulting from the nonlinear passive interaction of periodic wakes. The method consists in an offline preprocess and the online operation. In the preprocess, a standard CFD solver (such as URANS) is used in combination with several ingredients such as an iterative combination proper orthogonal decomposition and fast Fourier transform. The online operation is made with a combination of high order singular value decomposition and interpolation. The performance of the method is tested considering the ow over a fairly complex urban topography, for various free stream intensities and orientations, seeking real time online simulations.

  12. Experimental Analysis of Flow over a Highly Maneuverable Airframe

    NASA Astrophysics Data System (ADS)

    Spirnak, Jonathan; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Eaton, John; Team HMA Team

    2015-11-01

    One way to reduce the collateral damage in war is by increasing the accuracy of indirect fire weapons. The Army Research Laboratory is currently developing a Highly Maneuverable Airframe (HMA) consisting of four deflecting canards to provide in-flight maneuverability while fins maintain short duration aerodynamic stability. An experiment was conducted using Magnetic Resonance Velocimetry (MRV) techniques to gather three dimensional, three-component velocity data for fluid flow over a scaled down HMA model. Tests were performed at an angle of attack of 2.3° and canard deflection angles of 0° and 2°. The resulting data serve to both validate computational fluid dynamics (CFD) simulations and understand the flow over this complex geometry. Particular interest is given to the development of the tip and inboard vortices that originate at the canard/body junction and the canard tips to determine their effects on airframe stability. Results show the development of a strong tip vortex and four weaker inboard vortices off each canard. Although the weaker inboard vortices dissipate rapidly downstream of the canard trailing edges, the stronger tip vortices persist until reaching the fins approximately six chord lengths downstream of the canard trailing edges. Team HMA designed and built the water channel and airframe for this experiment.

  13. High flow nasal cannula in children: a literature review.

    PubMed

    Mikalsen, Ingvild Bruun; Davis, Peter; Øymar, Knut

    2016-01-01

    High flow nasal cannula (HFNC) is a relatively new non-invasive ventilation therapy that seems to be well tolerated in children. Recently a marked increase in the use of HFNC has been seen both in paediatric and adult care settings. The aim of this study was to review the current knowledge of HFNC regarding mechanisms of action, safety, clinical effects and tolerance in children beyond the newborn period.We performed a systematic search of the databases PubMed, Medline, EMBASE and Cochrane up to 12th of May 2016. Twenty-six clinical studies including children on HFNC beyond the newborn period with various respiratory diseases hospitalised in an emergency department, paediatric intensive care unit or general ward were included. Five of these studies were interventional studies and 21 were observational studies. Thirteen studies included only children with bronchiolitis, while the other studies included children with various respiratory conditions. Studies including infants hospitalised in a neonatal ward, or adults over 18 years of age, as well as expert reviews, were not systematically evaluated, but discussed if appropriate.The available studies suggest that HFNC is a relatively safe, well-tolerated and feasible method for delivering oxygen to children with few adverse events having been reported. Different mechanisms including washout of nasopharyngeal dead space, increased pulmonary compliance and some degree of distending airway pressure may be responsible for the effect. A positive clinical effect on various respiratory parameters has been observed and studies suggest that HFNC may reduce the work of breathing. Studies including children beyond the newborn period have found that HFNC may reduce the need of continuous positive airway pressure (CPAP) and invasive ventilation, but these studies are observational and have a low level of evidence. There are no international guidelines regarding flow rates and the optimal maximal flow for HFNC is not known, but few

  14. Brain abnormalities in high-risk violent offenders and their association with psychopathic traits and criminal recidivism.

    PubMed

    Leutgeb, V; Leitner, M; Wabnegger, A; Klug, D; Scharmüller, W; Zussner, T; Schienle, A

    2015-11-12

    Measures of psychopathy have been proved to be valuable for risk assessment in violent criminals. However, the neuronal basis of psychopathy and its contribution to the prediction of criminal recidivism is still poorly understood. We compared structural imaging data from 40 male high-risk violent offenders and 37 non-delinquent healthy controls via voxel-based morphometry. Psychopathic traits and risk of violence recidivism were correlated with gray matter volume (GMV) of regions of interest previously shown relevant for criminal behavior. Relative to controls, criminals showed less GMV in the prefrontal cortex (PFC) and more GMV in cerebellar regions and basal ganglia structures. Within criminals, we found a negative correlation between prefrontal GMV and psychopathy. Additionally, there was a positive correlation between cerebellar GMV and psychopathy as well as risk of recidivism for violence. Moreover, GMVs of the basal ganglia and supplementary motor area (SMA) were positively correlated with anti-sociality. GMV of the amygdala was negatively correlated with dynamic risk for violence recidivism. In contrast, GMV of (para)limbic areas (orbitofrontal cortex, insula) was positively correlated with anti-sociality and risk of violence recidivism. The current investigation revealed that in violent offenders deviations in GMV of the PFC as well as areas involved in the motor component of impulse control (cerebellum, basal ganglia, SMA) are differentially related to psychopathic traits and the risk of violence recidivism. The results might be valuable for improving existing risk assessment tools. PMID:26362887

  15. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model. PMID:25990651

  16. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  17. Pediatric intraoral high-flow arteriovenous malformation: a diagnostic challenge.

    PubMed

    Petel, Roy; Ashkenazi, Malka

    2014-01-01

    Arteriovenous malformations (AVMs) are rarely reported in the dental pediatric literature. They may develop adjacent to primary molars and can be life-threatening due to their potential for massive bleeding. The most common symptom associated with documented cases of AVMs is spontaneous gingival bleeding. Other clinical signs include pain, erythematous gingiva, resorption and mobility of teeth, soft tissue discoloration, facial swelling, and asymmetry. Radiographically, AVMs are osteolytic lesions. The purpose of this report was to describe the challenge of diagnosis of a high-flow arteriovenous malformation located in the primary maxillary molar region, which was misdiagnosed as a dentoalveolar abscess adjacent to previously treated primary molars. A decision to extract a tooth with gingival swelling and associated spontaneous bleeding should be made after the differential diagnosis of a vascular malformation has been ruled out. PMID:25303512

  18. Nonequilibrium viscous flow over Jovian entry probes at high altitudes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Szema, K. Y.; Tiwari, S. N.

    1979-01-01

    The viscous chemical nonequilibrium flow around a Jovian entry body is investigated at high altitudes using two different methods. First method is only for the stagnation region and integrates the full Navier-Stokes equations from the body surface to the freestream. The second method uses viscous shock layer equations between the body surface and the shock. Due to low Reynolds numbers, both methods use surface slip boundary conditions and the second method also uses shock slip boundary conditions. The results of the two methods are compared at the stagnation point. It is found that the entire shock layer is under chemical nonequilibrium at higher altitudes and that the slip boundary conditions are important at these altitudes.

  19. High-flow nasal cannula: Mechanisms, evidence and recommendations.

    PubMed

    Manley, Brett J; Owen, Louise S

    2016-06-01

    The use of high-flow nasal cannula (HF) therapy as respiratory support for preterm infants is rapidly increasing, due to its perceived ease of use and other potential benefits over the standard 'non-invasive' respiratory support, continuous positive airway pressure (CPAP). The evidence from randomized trials suggests that HF is an alternative to CPAP for post-extubation support of preterm infants. Limited data are available from randomized trials comparing HF with CPAP as primary support, and few trials have included extremely preterm infants. This review discusses the proposed mechanisms of action of HF, the evidence from clinical trials of HF use in preterm infants, and proposes recommendations for evidence-based practice. PMID:26869581

  20. Uncertainty quantification for flow in highly heterogeneous porous media

    SciTech Connect

    Tartakovsky, D. M.; Xiu, D.

    2004-01-01

    Natural porous media are highly heterogeneous and characterized by parameters that are often uncertain due to the lack of sufficient data. This uncertainty (randomness) occurs on a multiplicity of scales. We focus on geologic formations with the two dominant scales of uncertainty: a large-scale uncertainty in the spatial arrangement of geologic facies and a small-scale uncertainty in the parameters within each facies. We propose an approach that combines random domain decompositions (RDD) and polynomial chaos expansions (PCE) to account for the large- and small-scales of uncertainty, respectively. We present a general framework and use a one-dimensional flow example to demonstrate that our combined approach provides robust, non-perturbative approximations for the statistics of the system states.

  1. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  2. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  3. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  4. Flow of High Internal Phase Ratio Emulsions through Pipes

    NASA Astrophysics Data System (ADS)

    Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.

    2015-04-01

    The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.

  5. High energy sodium based room temperature flow batteries

    NASA Astrophysics Data System (ADS)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  6. High speed magnetized flows in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Borrero, J. M.; Orozco Suárez, D.; Ruiz Cobo, B.

    2014-09-01

    Context. We analyzed spectropolarimetric data recorded with Hinode/SP in quiet-Sun regions located at the disk center. We found single-lobed Stokes V profiles showing highly blue- and red-shifted signals. Oftentimes both types of events appear to be related to each other. Aims: We aim to set constraints on the nature and physical causes of these highly Doppler-shifted signals, as well as to study their spatial distribution, spectropolarimetric properties, size, and rate of occurrence. Also, we plan to retrieve the variation of the physical parameters with optical depth through the photosphere. Methods: We have examined the spatial and polarimetric properties of these events using a variety of data from the Hinode spacecraft. We have also inferred the atmospheric stratification of the physical parameters by means of the inversion of the observed Stokes profiles employing the Stokes Inversion based on Response functions (SIR) code. Finally, we analyzed their evolution using a time series from the same instrument. Results: Blue-shifted events tend to appear over bright regions at the edge of granules, while red-shifted events are seen predominantly over dark regions on intergranular lanes. Large linear polarization signals can be seen in the region that connects them. The magnetic structure inferred from the time series revealed that the structure corresponds to a Ω-loop, with one footpoint always over the edge of a granule and the other inside an intergranular lane. The physical parameters obtained from the inversions of the observed Stokes profiles in both events show an increase with respect to the Harvard-Smithonian reference atmosphere in the temperature at log τ500 ∈ (-1, -3) and a strong magnetic field, B ≥ 1 kG, at the bottom of the atmosphere that quickly decreases upward until vanishing at log τ500 ≈ -2. In the blue-shifted events, the LOS velocities change from upflows at the bottom to downflows at the top of the atmosphere. Red-shifted events

  7. Bioenergetic abnormalities associated with severe left ventricular hypertrophy.

    PubMed Central

    Zhang, J; Merkle, H; Hendrich, K; Garwood, M; From, A H; Ugurbil, K; Bache, R J

    1993-01-01

    Transmurally localized 31P-nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of severe pressure overload left ventricular hypertrophy (LVH) on myocardial high energy phosphate content. Studies were performed on 8 normal dogs and 12 dogs with severe left ventricular hypertrophy produced by banding the ascending aorta at 8 wk of age. Spatially localized 31P-NMR spectroscopy provided measurements of the transmural distribution of myocardial ATP, phosphocreatine (CP), and inorganic phosphate (Pi); spectra were calibrated from measurements of ATP content in myocardial biopsies using HPLC. Blood flow was measured with microspheres. In hypertrophied hearts during basal conditions, ATP was decreased by 42%, CP by 58%, and the CP/ATP ratio by 32% in comparison with normal. Increasing myocardial blood flow with adenosine did not correct these abnormalities, indicating that they were not the result of persistent hypoperfusion. Atrial pacing at 200 and 240 beats per min caused no change in high energy phosphate content in normal hearts but resulted in further CP depletion with Pi accumulation in the inner left ventricular layers of the hypertrophied hearts. These changes were correlated with redistribution of blood flow away from the subendocardium in LVH hearts. These findings demonstrate that high energy phosphate levels and the CP/ATP ratio are significantly decreased in severe LVH. These abnormalities are proportional to the degree of hypertrophy but are not the result of persistent abnormalities of myocardial perfusion. In contrast, depletion of CP and accumulation of Pi during tachycardia in LVH are closely related to the pacing-induced perfusion abnormalities and likely reflect subendocardial ischemia. PMID:8349829

  8. Low flow and high flow responses to converting natural grassland into bluegum ( Eucalyptus globulus) in Nilgiris watersheds of South India

    NASA Astrophysics Data System (ADS)

    Sikka, A. K.; Samra, J. S.; Sharda, V. N.; Samraj, P.; Lakshmanan, V.

    2003-01-01

    A concern has been raised in many parts of the world over the effect of large scale planting of Eucalyptus on hydrological behaviour of small watersheds. Hydrological response of watersheds due to conversion of natural grasslands into bluegum ( Eucalyptus globulus) plantations on low flows and high flows has been presented in this paper. The concept of using low flow index (LFI) as a tool to study and quantify the effects of bluegum plantation on low flow regime has been demonstrated. Conversion of natural grasslands into bluegum plantations has resulted in decreased low flow volume as well as peak flow, which in turn increased the soil moisture losses. These effects were more pronounced during the second rotation (i.e. first coppiced growth) as compared to the first rotation. Significant reduction in low flow as a result of decline in base flow could be predicted with LFI decreasing by 2.0 and 3.75 times, in the first and second rotation, respectively. Moderation in peak discharge rates was also observed as a result of bluegum plantation. Probability plots of peak discharge tend to suggest that the effect of bluegum plantation on peak flows become insignificant for the floods with higher return periods. These results clearly suggest that caution need to be exercised while planning large scale conversion of natural grasslands into bluegum plantations in the catchments of hydro-electric reservoirs in the Nilgiris which adversely affects water availability especially during lean flow period.

  9. Abnormal cerebral vasodilation in aneurysmal subarachnoid hemorrhage: use of serial 133Xe cerebral blood flow measurement plus acetazolamide to assess cerebral vasospasm.

    PubMed

    Tran Dinh, Y R; Lot, G; Benrabah, R; Baroudy, O; Cophignon, J; Seylaz, J

    1993-10-01

    A patient with cerebral vasospasm following subarachnoid hemorrhage (SAH) was investigated by serial measurement of cerebral blood flow (CBF) using the xenon-133 emission tomography method. The CBF was measured before and after acetazolamide injection. On Day 2 after SAH, there was early local hyperperfusion in the middle cerebral artery (MCA) territory, ipsilateral to the left posterior communicating artery aneurysm. The regional CBF of this arterial territory decreased slightly after acetazolamide injection, probably because of vasoplegia and the "steal" phenomenon, and thus surgery was delayed. A right hemiplegia with aphasia and disturbed consciousness occurred 4 days later (on Day 6 after SAH) due to arterial vasospasm, despite treatment with a calcium-channel blocker. The initial hyperemia of the left MCA territory was followed by ischemia. The vasodilation induced by acetazolamide administration was significantly subnormal until Day 13, at which time CBF and vasoreactivity amplitude returned to normal and the patient's clinical condition improved. Surgery on Day 14 and outcome were without complication. It is concluded that serial CBF measurements plus acetazolamide injection are useful for monitoring the development of cerebral vasospasm to determine the most appropriate time for aneurysm surgery. PMID:8410215

  10. [Abnormal cerebral blood flow distributions during the post-ictal phase of febrile status epilepticus in three pediatric patients measured by arterial spin labeling perfusion MRI].

    PubMed

    Hirano, Keiko; Fukuda, Tokiko

    2016-05-01

    The ability to visualize brain perfusion is important for identifying epileptic foci. We present three pediatric cases showing asymmetrical cerebral blood flow (CBF) distributions during the post-ictal phase of febrile status epilepticus measured by arterial spin labeling (ASL) perfusion MRI. During the acute phase, regional CBF measurements in the areas considered including epileptic foci were higher than in the corresponding area of the contralateral hemisphere, though the exact quantitative value varied between cases. We could not identify the correct epileptogenic foci, because those ASL images were taken after the prolonged and extraordinary activation of neurons in the affected area. During the recovery phase, the differences reduced and the average regional CBF measurement was 54.6 ± 6.1 ml/100 g per minute, which was a little less than the number of previous ASL studies. ASL perfusion MRI imaging provides a method for evaluating regional CBF by using magnetically labeled arterial blood water as an endogenous tracer. With this technique, we can repeatedly evaluate both the brain structure and the level of perfusion at the same time. ASL is noninvasive and easily accessible, and therefore it could become a routine tool for assessment of perfusion in daily practice of pediatric neurology. PMID:27349086

  11. Electron Flow to a Satellite at High Positive Potential

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1996-01-01

    The Tethered Satellite System (TSS) is designed to deploy a 1.6 m diameter spherical satellite a distance of 20 km above the space shuttle orbiter on an insulated conducting tether. Because of the passage of the conducting tether through the earth's magnetic field, an emf is generated producing a positive satellite potential of about 5000 V. Electron flow under the influence of this high positive potential is the focus of the present analysis. The ionospheric parameters at TSS orbit altitude are; thermal velocity of electrons, 1.9 x 10(exp 5) M/S, thermal velocity of the ions, 1.1 x 10(exp 3) m/s, velocity of the satellite 8 x 10(exp 3) m/s. The electrons, with a Debye length, lambda(D) = 0.49 cm, spiral about the earth's magnetic field lines (0.4 Gauss) with a radius of about 3 cm and the ions spiral with a radius of 5 m. Under these conditions, the electron thermal energy, kT is 0.17 eV. The TSS satellite radius, r(p) is 163 Debye lengths. There is an extensive literature on the interaction of satellites with the near-earth ionospheric plasma. The space charge limitation to the electron current collected by a sphere at positive electrical potential was calculated by Langmuir and Blodgett (1924). Parker and Murphy (1967) recognized the importance of the influence of the earth's magnetic field and used the guiding center approximation to calculate the electron current collected by a positive charged satellite. More recently Ma and Schunk (1989) have calculated the time dependent flow of electrons to a spherical satellite at positive potential utilizing numerical methods and Sheldon (1994) used similar methods to solve this problem for the steady state. In order to analyze some of the phenomena that occurred in the ionosphere during the TSS flights, it would be useful to have analytic expressions for these electron flows. The governing equations are very complex and an exact analytical solution is not likely. An approximate analytical solution is feasible however

  12. Characteristics of high gradient insulators for accelerator and high power flow applications

    SciTech Connect

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented.

  13. Furosemide Pharmacokinetics in Adult Rats become Abnormal with an Adverse Intrauterine Environment and Modulated by a Post-Weaning High-Fat Diet.

    PubMed

    DuBois, Barent N; Pearson, Jacob; Mahmood, Tahir; Thornburg, Kent; Cherala, Ganesh

    2016-06-01

    Adult individuals born with intrauterine growth restriction (IUGR) have physiological maladaptations that significantly increase risk of chronic disease. We suggested that such abnormalities in organ function would alter pharmacokinetics throughout life, exacerbated by environmental mismatch. Pregnant and lactating rats were fed either a purified control diet (18% protein) or low-protein diet (9% protein) to produce IUGR offspring. Offspring were weaned onto either laboratory chow (11% fat) or high-fat diet (45% fat). Adult offspring (5 months old) were dosed with furosemide (10 mg/kg i.p.) and serum and urine collected. The overall exposure profile in IUGR males was significantly reduced due to a ~35% increase in both clearance and volume of distribution. Females appeared resistant to the IUGR phenotype. The effects of the high-fat diet trended in the opposite direction to that of IUGR, with increased drug exposure due to decreases in both clearance (31% males, 46% females) and volume of distribution (24% males, 44% females), with a 10% longer half-life in both genders. The alterations in furosemide pharmacokinetics and pharmacodynamics were explained by changes in the expression of renal organic anion transporters 1 and 3, and sodium-potassium-chloride cotransporter-2. In summary, this study suggests that IUGR and diet interact to produce subpopulations with similar body-weights but dissimilar pharmacokinetic profiles; this underlines the limitation of one-size-fits-all dosing which does not account for physiological differences in body composition resulting from IUGR and diet. PMID:26550796

  14. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  15. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  16. Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The objective of this paper is to evaluate the performance of a newly developed low dissipative sixth-order spatial and fourth-order temporal scheme for viscous reactive flows interacting with shock waves that contain fine scale flow structures. The accuracy and efficiency of the scheme, and to what degree the scheme can capture the correct physical wave speeds of stiff reactive flows will be included.

  17. Optic flow asymmetries bias high-speed steering along roads.

    PubMed

    Kountouriotis, Georgios K; Shire, Katy A; Mole, Callum D; Gardner, Peter H; Merat, Natasha; Wilkie, Richard M

    2013-01-01

    How do animals and insects use visual information to move through the world successfully? Optic flow, the pattern of motion at the eye, is a powerful source of information about self-motion. Insects and humans are sensitive to the global pattern of optic flow and try to maintain flow symmetry when flying or walking. The environments humans encounter, however, often contain demarcated paths that constrain future trajectories (e.g., roads), and steering has been successfully modeled using only road edge information. Here we examine whether flow asymmetries from a textured ground plane influences humans steering along demarcated paths. Using a virtual reality simulator we observed that different textures on either side of the path caused predictable biases to steering trajectories, consistent with participants reducing flow asymmetries. We also generated conditions where one textured region had no flow (either the texture was removed or the textured region was static). Despite the presence of visible path information, participants were biased toward the no-flow region consistent with reducing flow asymmetries. We conclude that optic flow asymmetries can lead to biased locomotor steering even when traveling along demarcated paths. PMID:23988389

  18. PDF methods for combustion in high-speed turbulent flows

    NASA Technical Reports Server (NTRS)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  19. Flow separation in rocket nozzles under high altitude condition

    NASA Astrophysics Data System (ADS)

    Stark, R.; Génin, C.

    2016-03-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  20. Stratified wakes, the high Froude number approximation, and potential flow

    NASA Astrophysics Data System (ADS)

    Vasholz, David P.

    2011-12-01

    Properties of a steady wake generated by a body moving uniformly at constant depth through a stratified fluid are studied as a function of two parameters inserted into the linearized equations of motion. The first parameter, μ, multiplies the along-track gradient term in the source equation. When formal solutions for an arbitrary buoyancy frequency profile are written as eigenfunction expansions, one finds that the limit μ → 0 corresponds to a high Froude number approximation accompanied by a substantial reduction in the complexity of the calculation. For μ = 1, upstream effects are present and the eigenvalues correspond to critical speeds above which transverse waves disappear for any given mode. For sufficiently high modes, the high Froude number approximation is valid. The second tracer multiplies the square of the buoyancy frequency term in the linearized conservation of mass equation and enables direct comparisons with the limit of potential flow. Detailed results are given for the simplest possible profile, in which the buoyancy frequency is independent of depth; emphasis is placed upon quantities that can, in principle, be experimentally measured in a laboratory experiment. The vertical displacement field is written in terms of a stratified wake form factor {{H}} , which is the sum of a wavelike contribution that is non-zero downstream and an evanescent contribution that appears symmetrically upstream and downstream. First- and second-order cross-track moments of {{H}} are analyzed. First-order results predict enhanced upstream vertical displacements. Second-order results expand upon previous predictions of wavelike resonances and also predict evanescent resonance effects.

  1. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  2. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  3. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  4. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  5. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  6. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  7. Two-dimensional, high flow, precisely controlled monodisperse drop source

    NASA Astrophysics Data System (ADS)

    Dressler, John L.

    1993-03-01

    A versatile acoustically-driven fluid atomizer was designed and operated that creates precise monodisperse sprays by Rayleigh breakup or polydisperse sprays by the acoustic driving of amplitude dependent instabilities. The atomizer forms a cylindrical, conical, or flat (sheet) liquid jet by means of a photofabricated nozzle. The spray pattern and spray volume are altered by changing the nozzle. A piezoelectric driver, constructed to efficiently couple energy to the liquid, modulates the fluid velocity. When operated at low power, the drop generator can produce arrays of monodisperse drops as small as 15 microns in diameter. Operating the piezoelectric driver at high power produces perturbations with sufficient energy to break the liquid jets into drops, with a net increase in surface energy. The resulting drop sizes are influenced by the frequency and amplitude of the driving signal and nozzle size. The spatial distribution of the spray is controlled by the spacing and geometry of the holes in the nozzle plate, the amplitude of the acoustic signal, and the swirl in the fluid manifold. This device is more robust than the typical acoustic drop generator because small drops can be made from large holes, reducing the plugging problem. No air flow is used.

  8. EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER

    SciTech Connect

    Dong Subo; Katz, Boaz; Socrates, Aristotle

    2013-01-20

    With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, future Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.

  9. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  10. Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice.

    PubMed

    Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2016-01-01

    In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6(-/-) mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6(-/-) and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6(-/-) mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6(-/-) mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6(-/-) mice on a HFD as compared with IL-6(-/-) mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243

  11. Development and validation of an high-performance liquid chromatography-diode array detector method for the simultaneous determination of six phenolic compounds in abnormal savda munziq decoction

    PubMed Central

    Tian, Shuge; Liu, Wenxian; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

    2015-01-01

    Aims: Given the high-effectiveness and low-toxicity of abnormal savda munziq (ASMQ), its herbal formulation has long been used in traditional Uyghur medicine to treat complex diseases, such as cancer, diabetes, and cardiovascular diseases. Settings and Design: ASMQ decoction by reversed-phase high-performance liquid chromatography coupled with a diode array detector was successfully developed for the simultaneous quality assessment of gallic acid, protocatechuic acid, caffeic acid, rutin, rosmarinic acid, and luteolin. The six phenolic compounds were separated on an Agilent TC-C18 reversed-phase analytical column (4.6 × 250 mm, 5 μm) by gradient elution using 0.3% aqueous formic acid (v/v) and 0.3% methanol formic acid (v/v) at 1.0 mL/min. Materials and Methods: The plant material was separately ground and mixed at the following ratios (10): Cordia dichotoma (10.6), Anchusa italic (10.6), Euphorbia humifusa (4.9), Adiantum capillus-veneris (4.9), Ziziphus jujube (4.9), Glycyrrhiza uralensis (7.1), Foeniculum vulgare (4.9), Lavandula angustifolia (4.9), Dracocephalum moldavica L. (4.9), and Alhagi pseudoalhagi (42.3). Statistical Analysis Used: The precisions of all six compounds were <0.60%, and the average recoveries ranged from 99.39% to 104.85%. Highly significant linear correlations were found between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of six active components in ASMQ. Conclusions: Given the simplicity, precision, specificity, and sensitivity of the method, it can be utilized as a quality control approach to simultaneously determining the six phenolic compounds in AMSQ. PMID:25709227

  12. Analytical studies of separated vortex flow on highly swept wings

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1978-01-01

    A subsonic potential flow mathematical model of the flow past slender aerodynamic surfaces with sharp edges and separated vortex flow is reported. Comparisons with experimental data are presented for overall forces and pressure distributions for a series of thin, low aspect ratio wings, including both flat and conically cambered ones. A discussion is presented of the limitations of the current theory, and some suggestions are made as to how the theory might be improved. Details of program data input modifications for three-dimensional geometry are described in an appendix.

  13. Percutaneous Direct Puncture Embolization with N-butyl-cyanoacrylate for High-flow Priapism.

    PubMed

    Tokue, Hiroyuki; Shibuya, Kei; Ueno, Hiroyuki; Tokue, Azusa; Tsushima, Yoshito

    2016-09-01

    There are many treatment options in high-flow priapism. Those mentioned most often are watchful waiting, Doppler-guided compression, endovascular highly selective embolization, and surgery. We present a case of high-flow priapism in a 57-year-old man treated by percutaneous direct puncture embolization of a post-traumatic left cavernosal arteriovenous fistula using N-butyl-cyanoacrylate. Erectile function was preserved during a 12-month follow-up. No patients with percutaneous direct puncture embolization for high-flow priapism have been reported previously. Percutaneous direct puncture embolization is a potentially useful and safe method for management of high-flow priapism. PMID:27164971

  14. Plasma flow at a high Mach-number

    SciTech Connect

    Yu, Bing; Hameiri, Eliezer

    2013-09-15

    Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.

  15. Tailoring Inlet Flow to Enable High Accuracy Compressor Performance Measurements

    NASA Astrophysics Data System (ADS)

    Brossman, John R.; Smith, Natalie R.; Talalayev, Anton; Key, Nicole L.

    2011-12-01

    To accomplish the research goals of capturing the effects of blade row interactions on compressor performance, small changes in performance must be measurable. This also requires axi-symmetric flow so that measuring one passage accurately captures the phenomena occurring in all passages. Thus, uniform inlet flow is a necessity. The original front-driven compressor had non-uniform temperature at the inlet. Additional challenges in controlling shaft speed to within tight tolerances were associated with the use of a viscous fluid coupling. Thus, a new electric motor, with variable frequency drive speed control was implemented. To address the issues with the inlet flow, the compressor is now driven from the rear resulting in improved inlet flow uniformity. This paper presents the design choices of the new layout in addition to the preliminary performance data of the compressor and an uncertainty analysis.

  16. Future high flows in Jinhua River Basin, east China

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tian, Y.; Zhang, X.

    2012-12-01

    The extreme high flows in Jinhua River basin under the impact of climate change for the future period 2011-2040 is analyzed in this study. The future projections are obtained through the PRECIS model with a resolution of 50km×50km under emission scenario A1B. The daily precipitation from the regional climate model PRECIS is bias corrected by distribution based scaling method. Afterwards, three lumped hydrological models (GR4J, HBV and Xinanjiang) are used to simulate the daily discharge, driven with both bias corrected and raw precipitation from the PRECIS model for 2011-2040. It is found that for the three hydrological models, the simulated annual maximum discharges are higher by using the raw precipitation from PRECIS than by bias corrected precipitation at any return period. The largest difference reaches 8000 m3/s. Meanwhile, there are differences in the annual maximum discharge derived from hydrological models (see Figure 1). The largest difference between three models is about 3200 m3/s. In most of the time, the GR4J model predicts the highest annual maximum discharge; the lowest is for Xinanjiang and HBV is in between. Compared to date, the flood risk in the future under scenario A1B tends to be larger estimated by GR4J and smaller by Xinanjiang. The HBV model predicts petty much similar results as the present. With different models, the changing range of design discharge for 100 years return period is six times as much as that for 3 years return period, indicating large uncertainty from hydrological models. design discharge versus return periods from the observation, the GR4J model, the HBV model and the Xinanjiang model for the Jinhua River Basin

  17. Canonical exact coherent structures embedded in high Reynolds number flows.

    PubMed

    Deguchi, K; Hall, P

    2014-07-28

    The applications and implications of two recently addressed asymptotic descriptions of exact coherent structures in shear flows are discussed. The first type of asymptotic framework to be discussed was introduced in a series of papers by Hall & Smith in the 1990s and was referred to as vortex-wave interaction theory (VWI). New results are given here for the canonical VWI problem in an infinite region; the results confirm and extend the results for the infinite problem inferred the recent VWI computation of plane Couette flow. The results given define for the first time exact coherent structures in unbounded flows. The second type of canonical structure described here is that recently found for asymptomatic suction boundary layer and corresponds to freestream coherent structures (FCS), in boundary layer flows. Here, it is shown that the FCS can also occur in flows such as Burgers vortex sheet. It is concluded that both canonical problems can be locally embedded in general shear flows and thus have widespread applicability. PMID:24936006

  18. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  19. An analytical model for highly seperated flow on airfoils at low speeds

    NASA Technical Reports Server (NTRS)

    Zunnalt, G. W.; Naik, S. N.

    1977-01-01

    A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.

  20. High-Flow, High-Molecular-Weight, Addition-Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.

    1993-01-01

    In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.

  1. Vortex design of a diagonal flow impeller with high specific speed

    NASA Astrophysics Data System (ADS)

    Kamada, Yoshihisa; Yamaguchi, Sumio; Sasaki, Kazuto; Inoue, Masahiro

    1986-09-01

    The 'vortex design' method applied to an axial flow compressor stage has been extended to a diagonal flow impeller with high specific speed. For a given type of vortex flow, the through flow problem is solved by the streamline curvature method, and a blade element is determined on the basis of this solution. However, for any vortex type except free vortex, the exit flow condition changes due to a secondary flow induced by vortices shed from the trailing edges. The given vortex type can be obtained by correcting this effect with a so-called secondary flow theory.The validity of this method has been examined in experiments on three kinds of vortex flows: free vortex type, and constant tangential velocity types with or without correction of the secondary flow effects.

  2. Numerical simulation of high speed chemically reacting flows

    NASA Astrophysics Data System (ADS)

    Schuricht, Scott Richard

    A single step second-order accurate flux-difference-splitting method has been developed for solving unsteady quasi-one-dimensional and two-dimensional flows of multispecies fluids with finite rate chemistry. A systematic method for incorporating the source term effects into the wave strength parameters of Roe's linearized approximate Riemann solver is presented that is consistent with characteristic theory. The point implicit technique is utilized to achieve second-order time accuracy of the local area source term The stiffness associated with the chemical reactions is removed by implicitly integrating the kinetics system using the LSODE package. From the implicit integration, values of the species production rates are developed and incorporated into the flux-difference-splitting framework using a source term projection and splitting technique that preserves the upwind nature of source terms. Numerous validation studies are presented to illustrate the capability of the numerical method. Shock tube and converging-diverging nozzle cases show the method is second order accurate in space and time for one-dimensional flows. A supersonic source flow case and a subsonic sink flow case show the method is second order spatially accurate for two-dimensional flows. Static combustion and steady supersonic combustion cases illustrate the ability of the method to accurately capture the ignition delay for hydrogen-air mixtures. Demonstration studies are presented to illustrate the capabilities of the method. One-dimensional flow in a shock tube predicts species dissociation behind the main shock wave. One-dimension flow in supersonic nozzles predicts the well-known chemical freezing effect in an expanding flow. Two-dimensional cases consisted of a model of a scramjet combustor and a rocket motor nozzle. A parametric study was performed on a model of a scramjet combustor. The parameters studied were; wall angle, inlet Mach number, inlet temperature, and inlet equivalence ratio

  3. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  4. Adapting high-level language programs for parallel processing using data flow

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1988-01-01

    EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.

  5. Characterization of medium and high flow series 1500 LARC-TPI

    NASA Technical Reports Server (NTRS)

    Burks, H. D.; St. Clair, T. L.; Gautreaux, C. R.

    1990-01-01

    An imidized version of LARC-TPI was developed on NASA's request for use by both aerospace and electronic industries. Two batches of LARC-TPI 1500 Series, consisting of medium-flow and high-flow pellets with different inherent viscosities, are characterized for their dynamic and isothermal melt flow properties at 340 C, mechanical properties of extrudates, extrudate porosity, and degree of crystallinity. The Series shows significantly better melt flow properties than previosly examimed forms of this polymer.

  6. Post-translationally Abnormal Collagens of Prolyl 3-Hydroxylase-2 Null Mice Offer a Pathobiological Mechanism for the High Myopia Linked to Human LEPREL1 Mutations*

    PubMed Central

    Hudson, David M.; Joeng, Kyu Sang; Werther, Rachel; Rajagopal, Abbhirami; Weis, MaryAnn; Lee, Brendan H.; Eyre, David R.

    2015-01-01

    Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2n/n) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2n/n mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia. PMID:25645914

  7. High prevalence of cardiovascular and respiratory abnormalities in advanced, intensively treated (transplanted) myeloma: The case for ‘late effects’ screening and preventive strategies

    PubMed Central

    Samuelson, Clare; O'Toole, Laurence; Boland, Elaine; Greenfield, Diana; Ezaydi, Yousef; Ahmedzai, Sam H.; Snowden, John A.

    2016-01-01

    Objectives: Modern management of myeloma has significantly improved survival, with increasing numbers of patients living beyond a decade. However, little is known about the long-term cardiovascular and respiratory status of intensively treated and multiply relapsed survivors. Methods: We performed detailed cardiovascular and respiratory evaluations in patients with intensively treated, advanced but stable myeloma. All patients had received at least two lines of treatment, including at least one haematopoietic stem cell transplantation procedure, but had stable, controlled disease and were off active treatment at the time of evaluation. Results: Thirty-two patients with a median duration of 6 years (range 2–12) from original diagnosis of myeloma and three lines (range 2–6) of treatment were evaluated. Despite normal physical examination in the majority, there was a high prevalence of sub-clinical cardiac and respiratory dysfunction, reflected by abnormalities of electrocardiography (45%), echocardiography (50%), serum N-terminal pro-B-type natriuretic peptide level (NT-pro-BNP, 50%), and pulmonary function testing (45%). NT-pro-BNP level correlated negatively with quality of life (P = 0.012) and positively with serum ferritin (P = 0.027). Dyspnoea score correlated with BMI (P = 0.001). Risk factors for cardiovascular disease (obesity, hypertension, hyperlipidaemia, and hyperinsulinaemia) were common. Discussion: Even in the absence of overt clinical features, the majority of intensively treated long-term survivors of myeloma have established cardiovascular and/or respiratory dysfunction, above levels expected in the general population of a similar age. Conclusion: This study supports routine screening and lifestyle modification combined with primary and secondary preventive strategies to reduce cardiovascular and respiratory disease and to preserve quality of life in transplanted myeloma patients. PMID:27077780

  8. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-11-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. PMID:2479266

  9. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed Central

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-01-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. Images Figure 5 PMID:2479266

  10. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  11. The critical layer in pipe flow at high Reynolds number.

    PubMed

    Viswanath, D

    2009-02-13

    We report the computation of a family of travelling wave solutions of pipe flow up to Re=75000. As in all lower branch solutions, streaks and rolls feature prominently in these solutions. For large Re, these solutions develop a critical layer away from the wall. Although the solutions are linearly unstable, the two unstable eigenvalues approach 0 as Re-->infinity at rates given by Re-0.41 and Re-0.87; surprisingly, the solutions become more stable as the flow becomes less viscous. The formation of the critical layer and other aspects of the Re-->infinity limit could be universal to lower branch solutions of shear flows. We give implementation details of the GMRES-hookstep and Arnoldi iterations used for computing these solutions and their spectra, while pointing out the new aspects of our method. PMID:18990661

  12. High frequency sound attenuation in short flow ducts

    NASA Technical Reports Server (NTRS)

    Posey, J. W.

    1978-01-01

    A geometrical acoustics approach is proposed as a practical design tool for absorbent liners in such short flow ducts as may be found in turbofan engine nacelles. As an example, a detailed methodology is presented for three different types of sources in a parallel plate duct containing uniform ambient flow. A plane wave whose wavefronts are not normal to the duct walls, an arbitrarily located point source, and a spatially harmonic line source are each considered. Optimal wall admittance distributions are found, and it is shown how to estimate the insertion loss for any admittance distribution. The extension of the methodology to realistic source distributions in variable area cylindrical or annular ducts containing arbitrary flow is shown to be conceptually straightforward and computationally practical on a vector-hardware digital computer.

  13. Flow and diffusion of high-stakes test scores

    PubMed Central

    Marder, M.; Bansal, D.

    2009-01-01

    We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades. PMID:19805049

  14. Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow.

    PubMed

    Li, Chunyan; Wu, Pei-ming; Wu, Zhizhen; Limnuson, Kanokwan; Mehan, Neal; Mozayan, Cameron; Golanov, Eugene V; Ahn, Chong H; Hartings, Jed A; Narayan, Raj K

    2015-10-01

    Cerebral blood flow (CBF) plays a critical role in the exchange of nutrients and metabolites at the capillary level and is tightly regulated to meet the metabolic demands of the brain. After major brain injuries, CBF normally decreases and supporting the injured brain with adequate CBF is a mainstay of therapy after traumatic brain injury. Quantitative and localized measurement of CBF is therefore critically important for evaluation of treatment efficacy and also for understanding of cerebral pathophysiology. We present here an improved thermal flow microsensor and its operation which provides higher accuracy compared to existing devices. The flow microsensor consists of three components, two stacked-up thin film resistive elements serving as composite heater/temperature sensor and one remote resistive element for environmental temperature compensation. It operates in constant-temperature mode (~2 °C above the medium temperature) providing 20 ms temporal resolution. Compared to previous thermal flow microsensor based on self-heating and self-sensing design, the sensor presented provides at least two-fold improvement in accuracy in the range from 0 to 200 ml/100 g/min. This is mainly achieved by using the stacked-up structure, where the heating and sensing are separated to improve the temperature measurement accuracy by minimization of errors introduced by self-heating. PMID:26256480

  15. Hepatic perfusion abnormalities during CT angiography: Detection and interpretation

    SciTech Connect

    Freeny, P.C.; Marks, W.M.

    1986-06-01

    Twenty-seven perfusion abnormalities were detected in 17 of 50 patients who underwent computed tomographic angiography (CTA) of the liver. All but one of the perfusion abnormalities occurred in patients with primary or metastatic liver tumors. Perfusion abnormalities were lobar in nine cases, segmental in 11, and subsegmental in seven; 14 were hypoperfusion and 13 were hyperperfusion abnormalities. The causes for the abnormalities included nonperfusion of a replaced hepatic artery (n = 11), cirrhosis and nodular regeneration (n = 3), altered hepatic hemodynamics (e.g., siphoning, laminar flow) caused by tumor (n = 7), contrast media washout from a nonperfused vessel (n = 1), compression of adjacent hepatic parenchyma (n = 1), and unknown (n = 4). Differentiation of perfusion abnormalities from tumor usually can be made by comparing the morphology of the known tumor with the suspected perfusion abnormality, changes of each on delayed CTA scans, and review of initial angiograms and other imaging studies.

  16. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (i.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  17. HIGH TEMPERATURE CONTINUOUS FLOW CURING OF SWEET ONIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was undertaken to investigate the feasibility of heat treating sweet onions under controlled commercial conditions. Three batches, approximately 2.5 tons each, were passed through a single pass continuous flow drier. Air temperatures of 43 and 46 C were used to cure sweet onions for 17 and...

  18. High speed viscous flow calculations about complex configurations

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.

    1986-01-01

    Applications of the NASA Ames Parabolized Navier-Stokes (PNS) code to a variety of complex generic configurations is presented. The algorithm, boundary conditions, initial conditions, and grid generators are discussed as applied to these configurations. The PNS code was used as the mainline procedure to numerically simulate the viscous supersonic flow over these generic configurations. The turbulence model that was used in this study is the Baldwin-Lomax model. The boundary conditions are the usual viscous no slip at the wall, and a characteristic procedure is used to fit the bow shock wave which is the outermost boundary. An elliptic grid generator is employed to discretize the flow domain. In addition, an equilibrium air capability has been incorporated into the code. It uses the curve fits of Tannehill, et al. The flow regimes vary from a Mach number of 2 up to 25. Both laminar and turbulent flow are considered. Varying angles of attack have also been computed. Configurations vary from simple cone-type bodies to lifting winged bodies, such as the space shuttle or the generic supersonic cruise fighter.

  19. High speed viscous flow calculations about complex configurations

    NASA Astrophysics Data System (ADS)

    Chaussee, D. S.

    1986-04-01

    Applications of the NASA Ames Parabolized Navier-Stokes (PNS) code to a variety of complex generic configurations is presented. The algorithm, boundary conditions, initial conditions, and grid generators are discussed as applied to these configurations. The PNS code was used as the mainline procedure to numerically simulate the viscous supersonic flow over these generic configurations. The turbulence model that was used in this study is the Baldwin-Lomax model. The boundary conditions are the usual viscous no slip at the wall, and a characteristic procedure is used to fit the bow shock wave which is the outermost boundary. An elliptic grid generator is employed to discretize the flow domain. In addition, an equilibrium air capability has been incorporated into the code. It uses the curve fits of Tannehill, et al. The flow regimes vary from a Mach number of 2 up to 25. Both laminar and turbulent flow are considered. Varying angles of attack have also been computed. Configurations vary from simple cone-type bodies to lifting winged bodies, such as the space shuttle or the generic supersonic cruise fighter.

  20. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  1. Liver Enzymes Abnormalities among Highly Active Antiretroviral Therapy Experienced and HAART Naïve HIV-1 Infected Patients at Debre Tabor Hospital, North West Ethiopia: A Comparative Cross-Sectional Study

    PubMed Central

    Tulu, Ketema Tafess; Zegeye, Amtatachew Moges; Wubante, Amarech Asratie

    2016-01-01

    Liver disease has emerged as the most common non-AIDS-related cause of death in HIV patients. However, there is limited data regarding this condition including our setting in Ethiopia. Hence, liver enzyme abnormalities among highly active antiretroviral therapy (HAART) experienced and HAART naïve patients were assessed in this study. A total of 164 HAART experienced and 164 HAART naïve patients were studied. Blood specimen was collected to determine alanine aminotransferase (ALT) and aspartate aminotransferase (AST), CD4 count, and viral hepatitis. The prevalence of liver enzyme abnormality was 20.1% and 22.0% among HAART experienced and HAART naïve patients, respectively. The HAART experienced patients had higher mean ALT than HAART naïve patients (P = 0.002). Viral hepatitis (AOR = 6.02; 95% CI = 1.87–19.39), opportunistic infections (AOR = 2.91; 95% CI = 1.04–8.19), current CD4 count <200 cells/mm3 (AOR = 2.16; 95% CI = 1.06–4.39), and male sex (AOR = 1.83; 95% CI = 1.001–3.33) were associated with elevated ALT and/or AST. In conclusion, liver enzyme abnormalities were high in both HAART experienced and HAART naïve HIV-1 infected patients. Hence, monitoring and management of liver enzyme abnormalities in HIV-1 infected patients are important in our setting. PMID:27493798

  2. Medical management of abnormal pregnancy.

    PubMed

    Ratnam, S S; Prasad, R N

    1990-06-01

    Medical termination of abnormal pregnancy requires specific techniques since some conditions make therapy more effective, e.g., missed abortion intrauterine death and molar pregnancy, and others less so, e.g. anencephalic pregnancy. In all cases it is best to terminate the pregnancy as soon as possible to reduce anguish and risks of complications such as consumptive coagulopathy. Oxytocin is not consistently effective, but intraamniotic rivanol has oxytocic properties, and prostaglandins (PGs) are effective by several routes. Surgical methods are more popular in Japan and the US. A diagnostic flow chart is included and described. For missed abortion and fetal death vacuum aspiration or dilatation and evacuation are appropriate for early pregnancy, or PGs are used for later pregnancy, unless there are medical contraindications. Anencephalic pregnancy, usually diagnoses in 2nd or 3rd trimester, is resistant to medical therapy and must often be terminated by cesarean section. Molar pregnancy can be managed with vacuum aspiration at any length of gestation, but must be completed by curettage. Intraamniotic PGs are not advised for mole or fetal death. PG analogs can be administered intramuscularly, or vaginally in gel form. Other types of abnormal pregnancy that can be managed with PGs are spina bifida, hydrocephalus, hydrops fetalis, Dandy-Walker syndrome and Down's syndrome. Tubal pregnancy can be evacuated with intratubally administered PGs under laparoscopic control, thereby preserving tubal integrity. PMID:2225605

  3. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  4. Defining high-flow seasons using temporal streamflow patterns from a global model

    NASA Astrophysics Data System (ADS)

    Lee, D.; Ward, P.; Block, P.

    2015-11-01

    Globally, flood catastrophes lead all natural hazards in terms of impacts on society, causing billions of dollars of damages annually. Here, a novel approach to defining high-flow seasons (3-month) globally is presented by identifying temporal patterns of streamflow. The main high-flow season is identified using a volume-based threshold technique and the PCR-GLOBWB model. In comparison with observations, 40 % (50 %) of locations at a station (sub-basin) scale have identical peak months and 81 % (89 %) are within 1 month, indicating fair agreement between modeled and observed high-flow seasons. Minor high-flow seasons are also defined for bi-modal flow regimes. Identified major and minor high-flow seasons together are found to well represent actual flood records from the Dartmouth Flood Observatory, further substantiating the model's ability to reproduce the appropriate high-flow season. These high-spatial-resolution high-flow seasons and associated performance metrics allow for an improved understanding of temporal characterization of streamflow and flood potential, causation, and management. This is especially attractive for regions with limited observations and/or little capacity to develop early warning flood systems.

  5. Right Liver Lobe Hypoplasia and Related Abnormalities

    PubMed Central

    Alicioglu, Banu

    2015-01-01

    Summary Background Hypoplasia and agenesis of the liver lobe is a rare abnormality. It is associated with biliary system abnormalities, high location of the right kidney, and right colon interposition. These patients are prone to gallstones, portal hypertension and possible surgical complications because of anatomical disturbance. Case Report Magnetic resonance imaging features of a rare case of hypoplasia of the right lobe of the liver in a sigmoid cancer patient are presented. Conclusions Hypoplasia of the right liver should not be confused with liver atrophy; indeed, associations with other coexistent abnormalities are also possible. Awareness and familiarity with these anomalies are necessary to avoid fatal surgical and interventional complications. PMID:26634012

  6. High flow, low mobile weight quick disconnect system

    NASA Technical Reports Server (NTRS)

    Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)

    2010-01-01

    A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.

  7. F-14A aircraft high-speed flow simulations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Rosen, B. S.

    1985-01-01

    A model of the Grumman/Navy F-14A aircraft was developed for analyses using the NASA/Grumman Transonic Wing-Body Code. Computations were performed for isolated wing and wing fuselage glove arrangements to determine the extent of aerodynamic interference effects which propagate outward onto the main wing outer panel. Additional studies were conducted using the full potential analysis, FLO 22, to calibrate any inaccuracies that might accrue because of small disturbance code limitations. Comparisons indicate that the NASA/Grumman code provides excellent flow simulations for the range of wing sweep angles and flow conditions that will be of interest for the upcoming F-14 Variable Sweep Flight Transition Experiment.

  8. Lithium mass flow control for high power Lorentz Force Accelerators

    NASA Astrophysics Data System (ADS)

    Kodys, Andrea D.; Emsellem, Gregory; Cassady, Leonard D.; Polk, James E.; Choueiri, Edgar Y.

    2001-02-01

    A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators (LiLFAs). The new, mechanically actuated, liquid lithium feed system has been designed and tested as a central component of a campaign to obtain basic data and establish scaling laws and performance relations for these thrusters. Calibration data are presented which demonstrate reliable and controllable feed of liquid lithium to the vaporizer hollow cathode of the thruster at flow rates between 10 and 120 mg/s. The ability to thermally track the liquid lithium through the system by the use of external temperature measurements is demonstrated. In addition, recent developments are presented in the establishment and successful testing of a lithium handling facility and safety procedures allowing for the in-house loading of the feed system and the neutralization, cleaning and disposal of up to 300 g of lithium. .

  9. Plane and Three-Dimensional Flow at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1946-01-01

    For two- and three-dimensional flow in a compressible medium, a simple relation is given by which, to a first approximation, the quantitative influence of compressibility upon the velocities and pressures can be understood in a clear manner. In the application of this relation the distinct behaviors of two-dimensional and axially symmetric three-dimensional flow with increasing Mach number are brought out. For slender elliptic cylinders and ellipsoids of revolution, calculations are made of the critical Mach number; that is, the Mach number at which local sonic velocity is achieved on the body. As a further example, the lifting wing of finite span is considered, and it is shown that the increase of wing lift with Mach number at a given angle of attack is greatly dependent upon the aspect ratio b(exp 2)/F.

  10. Detailed design of a quiet high flow fan

    NASA Technical Reports Server (NTRS)

    Soltau, J. D.; Orelup, M. J.; Beguhn, A. A.; Wiles, F. M.; Anderson, M. J.

    1977-01-01

    A single stage fan was designed to demonstrate the noise abatement properties of near-sonic inlet flow and long-chord stator vanes for the reduction of both upstream and downstream propagated fan source noise. It is designed to produce a pressure ratio of 1.653:1 with an adiabatic efficiency of 83.9%. The fan has a 508 mm inlet diameter with a hub/tip ratio of 0.426 and a design tip speed of 533.4 m/sec. The design inlet specific flow rate is 219.71 kg/sec sq m and there are 10 tandem stator vanes with a combined aspect ratio of 0.54.

  11. Nonintrusive fast response oxygen monitoring system for high temperature flows

    NASA Technical Reports Server (NTRS)

    Oh, Daniel B.; Stanton, Alan C.

    1993-01-01

    A new technique has been developed for nonintrusive in situ measurement of oxygen concentration, gas temperature, and flow velocity of the test media in hypersonic wind tunnels. It is based on absorption of near-infrared radiation from inexpensive GaAlAs laser diodes used in optoelectronics industry. It is designed for simultaneous measurements along multiple lines of sight accessed by fiber optics. Molecular oxygen concentration is measured from the magnitude of absorption signals; rotational gas temperature is measured from the intensity ratio of two oxygen absorption lines; and the flow velocity is measured from the Doppler shift of the absorption line positions. This report describes the results of an extensive series of tests of the prototype instrument in laboratory flames emphasizing assessment of the instruments capabilities for quantitative measurement of O2 concentration (mole fraction) and gas temperature.

  12. 3-D High-Lift Flow-Physics Experiment - Transition Measurements

    NASA Technical Reports Server (NTRS)

    McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild

    2005-01-01

    An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.

  13. Locally adapted traits maintained in the face of high gene flow.

    PubMed

    Fitzpatrick, S W; Gerberich, J C; Kronenberger, J A; Angeloni, L M; Funk, W C

    2015-01-01

    Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high- to low-predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high-predation source site showed high phenotypic similarity with native low-predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations. PMID:25363522

  14. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Hai

    2014-05-01

    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  15. A multigrid nonoscillatory method for computing high speed flows

    NASA Technical Reports Server (NTRS)

    Li, C. P.; Shieh, T. H.

    1993-01-01

    A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.

  16. A high performance magnetorheological valve with a meandering flow path

    NASA Astrophysics Data System (ADS)

    Imaduddin, Fitrian; Amri Mazlan, Saiful; Rahman, Mohd Azizi Abdul; Zamzuri, Hairi; Ubaidillah; Ichwan, Burhanuddin

    2014-06-01

    The huge developments in the field of magnetorheological (MR) fluid-based devices will have a great influence on the future of mechatronic applications due to the ease of interfacing between electronic controls and the mechanical components that they provide. Among various MR fluid-based devices, an MR valve would be particularly significant for the development of other devices, if it could be successfully achieved. One of the most challenging obstacles to MR valve development is the difficulty of achieving device miniaturization while, at the same time, improving the achievable performance. This study demonstrates a novel design for an MR valve, using the meandering flow path approach in order to increase the effective area so that the MR fluid can be regulated within a small-sized valve. The meandering flow path is formed by combining multiple annular, radial and orifice flow channels. In order to analyze the valve performance, a mathematical model of the proposed MR valve is derived and combined with numerical simulation using the finite element method, with the intention of predicting the achievable pressure drop that can be generated by the valve. The predicted MR valve performances are then experimentally evaluated using an oscillation-disturbed bypass hydraulic cylinder. The simulation results show that the proposed MR valve design could yield substantial pressure drop improvement, which is confirmed by the experiment.

  17. Radiolabeling and Quantification of Cellular Levels of Phosphoinositides by High Performance Liquid Chromatography-coupled Flow Scintillation.

    PubMed

    Ho, Cheuk Y; Choy, Christopher H; Botelho, Roberto J

    2016-01-01

    Phosphoinositides (PtdInsPs) are essential signaling lipids responsible for recruiting specific effectors and conferring organelles with molecular identity and function. Each of the seven PtdInsPs varies in their distribution and abundance, which are tightly regulated by specific kinases and phosphatases. The abundance of PtdInsPs can change abruptly in response to various signaling events or disturbance of the regulatory machinery. To understand how these events lead to changes in the amount of PtdInsPs and their resulting impact, it is important to quantify PtdInsP levels before and after a signaling event or between control and abnormal conditions. However, due to their low abundance and similarity, quantifying the relative amounts of each PtdInsP can be challenging. This article describes a method for quantifying PtdInsP levels by metabolically labeling cells with (3)H-myo-inositol, which is incorporated into PtdInsPs. Phospholipids are then precipitated and deacylated. The resulting soluble (3)H-glycero-inositides are further extracted, separated by high-performance liquid chromatography (HPLC), and detected by flow scintillation. The labeling and processing of yeast samples is described in detail, as well as the instrumental setup for the HPLC and flow scintillator. Despite losing structural information regarding acyl chain content, this method is sensitive and can be optimized to concurrently quantify all seven PtdInsPs in cells. PMID:26780479

  18. Red-Backed Vole Brain Promotes Highly Efficient In Vitro Amplification of Abnormal Prion Protein from Macaque and Human Brains Infected with Variant Creutzfeldt-Jakob Disease Agent

    PubMed Central

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human

  19. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  20. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  1. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  2. High-frequency, resonance-enhanced microactuators with active structures for high-speed flow control

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip Andrew

    The need for actuators that are adaptable for use in a wide array of applications has been the motivation behind actuator development research over the past few years. Recent developments at the Advanced Aero-Propulsion Laboratory (AAPL) at Florida State University have produced a microactuator that uses the unsteadiness of a small-scale impinging jet to produce pulsed, supersonic microjets -- this is referred to as the Resonance-Enhanced Microjet (REM) actuator. Prior studies on these actuators at AAPL have been somewhat limited in that the actuator response has only been characterized through pressure/acoustic measurements and qualitative flow visualizations. Highly-magnified particle image velocimetry (PIV) measurements were performed to measure the velocity fields of both a 1 mm underexpanded jet and an REM actuator. The results demonstrate that this type of microactuator is capable of producing pulsed, supersonic microjets that have velocities of approximately 400 m/s that are sustained for significant portions of their cycles (> 60 %). These are the first direct velocity measurements of these flowfields, and they allow for a greater understanding of the flow physics associated with this microactuator. The previous studies on the REM actuators have shown that the microactuator volume is among the principal parameters in determining the actuator's maximum-amplitude frequency component. In order to use this actuator in a closed-loop, feedback control system, a modified design that incorporates smart materials is studied. The smart materials (specifically piezoelectric ceramic stack actuators) have been implemented into the microactuator to actively change its geometry, thus permitting controllable changes in the microactuator's resonant frequency. The distinct feature of this design is that the smart materials are not used to produce the primary perturbation or flow from the actuator (which has in the past limited the control authority of other designs) but to

  3. Contribution to the Problem of Flow at High Speed

    NASA Technical Reports Server (NTRS)

    Schmieden, C.; Kawalki, K. H.

    1949-01-01

    The authors regret that due to the lack of time the investigations could not be carried out to a more finished form. Especially in the first part it was intended to include a few further applications and to use them in the general considerations of this part. In spite of the fact that the intentions of the authors could not be realized, the authors felt that it would serve the aims of the competition to present part I in its present fragmentary form. The topics include: 1) A Few General Remarks Covering the Prandtl-Busemann Method; and 2) Effect of Compressibility in Axially Symmetrical Flow around an Ellipsoid.

  4. Two-Phase Flow Modelling Perspectives Based on Novel High-Resolution Acoustic Measurements of Uniform Steady Sheet-Flow

    NASA Astrophysics Data System (ADS)

    Chauchat, J.; Revil-Baudard, T.; Hurther, D.

    2014-12-01

    Sheet flow is believed to be a major process for morphological evolution of natural systems. An important research effort has been dedicated to laboratory and numerical studies of sheet flow regime that have allowed to make some progress in the understanding of the underlying physical processes. Recent advances made in high resolution measurement techniques allows to give new insights into the small scale physical processes. In this contribution, a novel uniform and steady sheet flow dataset based on an Acoustic Concentration and Velocity Profiler (ACVP) is presented. Profile of colocated velocities (streamwise and wall-normal) and sediment concentration has been measured at high-resolution (3 mm ; 78 Hz for the velocities and 4.9 Hz for the concentration). The measured profiles extend over the whole water column, from the free surface down to the fixed bed and an ensemble averaging over eleven realisations of the same experimental conditions has been used to obtain mean profiles of streamwise velocity, concentration, sediment flux and turbulent shear stress. The present experiment corresponds to a Shields number of θ=0.44 and a suspension number of ws/u*=1.1 corresponding to the lower limit of the no-suspension sheet flow regime. The analysis of the mixing length profile allows to identify two layers, a dilute suspension layer dominated by turbulence and a dense moving bed layer dominated by granular interactions. Our measurements show that the Von Karman parameter is reduced by a factor of more than two and that the Schmidt number is almost constant with a mean value of σs=0.44. Frictional and collisional interactions are encountered in the bed layer. Frictional interactions dominate close to the fixed bed interface whereas collisional interactions seems to control the flow at the transition between the dense and dilute layers. The relevancy of different constitutive laws for two-phase flow models are discussed.

  5. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.

    PubMed

    Yang, SeungCheol; Choi, Jiyeon; Yeo, Jeong-Gu; Jeon, Sung-Il; Park, Hong-Ran; Kim, Dong Kook

    2016-06-01

    Flow-electrode capacitive deionization (FCDI) is novel capacitive deionization (CDI) technology that exhibits continuous deionization and a high desalting efficiency. A flow-electrode with high capacitance and low resistance is required for achieving an efficient FCDI system with low energy consumption. For developing high-performance flow-electrode, studies should be conducted considering porous materials, conductive additives, and electrolytes constituting the flow-electrode. Here, we evaluated the desalting performances of flow-electrodes with spherical activated carbon and aqueous electrolytes containing various concentrations of NaCl in the FCDI unit cell for confirming the effect of salt concentration on the electrolyte of a flow-electrode on desalting efficiency. We verified the necessity of a moderate amount of salt in the flow-electrode for compensating for the reduction in the performance of the flow-electrode, attributed to the resistance of water used as the electrolyte. Simultaneously, we confirmed the potential use of salt water with a high salt concentration, such as seawater, as an aqueous electrolyte for the flow-electrode. PMID:27162028

  6. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  7. Development of a new correlation to calculate permeability for flows with high Knudsen number

    NASA Astrophysics Data System (ADS)

    Esmaeil, Dehdashti

    2016-02-01

    Flows with high Knudsen number play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow with high Knudsen number using modified lattice Boltzmann method (LBM) through a porous medium in a channel. The effect of collision between molecules and solid walls, which is required to accurately simulate transition flow regime, is taken into account using a modified relaxation time. Slip velocity on the wall, which is another significant difficulty in simulating transition flow regime, is captured using the slip reflection boundary condition (SRBC). The geometry of porous medium is considered as in-line and staggered. The results are in good agreement with previous works. A new correlation is obtained between permeability, Knudsen number and porosity for flows in transition flow regimes.

  8. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  9. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  10. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  11. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  12. Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, B.; Kritsuk, A. G.

    2016-02-01

    The Yee & Sjögreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov et al. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjögreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the

  13. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  14. The effect of solid particles on flow regime and implications for slug flow in high-crystallinity magmas

    NASA Astrophysics Data System (ADS)

    Belien, I. L.; Cashman, K. V.; Rempel, A. W.; Rust, A.; Phillips, J.

    2009-12-01

    Strombolian explosions are a common form of activity in small mafic systems. Strombolian eruptions are commonly attributed to a conduit-filling gas bubble rising and bursting at the magma free surface, and expelling magma as it bursts. This flow regime, called slug flow, has been identified for two-phase systems in which gas flows through a liquid. At many volcanoes exhibiting the Strombolian eruption style however, the crystallinity of the magma can be quite high (up to 50% at Stromboli). It is generally assumed that the primary effect of particles is to increase the bulk viscosity of the fluid; unknown is the effect of adding particles on two-phase flow regimes. To explore the role of particles on the slug flow regime, we have performed a set of analogue experiments in which air rises at different flow rates through a cylindrical tube filled with a mixture of corn syrup (magma) and varying proportions of solid particles (crystals). In previous studies, we have shown that bubbles a few times larger than the particles tend to split into smaller bubbles through interaction with particles in dense suspensions. Under these conditions it is unlikely that large conduit-filling bubbles will be able to form or maintain themselves. In this study we investigate the influence of particles on bubbles that are several orders of magnitude larger than the particles and approach the width of the conduit. Initial observations show that periodic bubbles are formed when a pressure gradient exists across the particle-liquid suspension. Bubbles tend to be conduit-filling when the particle concentration is low. When the concentration approaches 50%, smaller bubbles are formed. This shift in bubble size suggests that it may be difficult, or even impossible, for large (conduit-filling) bubbles to ascend through highly crystalline mafic magmas. Changing the flow rate of air changes the frequency with which bubbles form. Our results start to constrain the conditions of gas flux and magma

  15. Transient flow of highly concentrated suspensions investigated using the ultrasound velocity profiler pressure difference method

    NASA Astrophysics Data System (ADS)

    Ouriev (Ur'ev), Boris; Windhab, Erich

    2003-11-01

    In the present work, the transient pressure driven shear flow of highly concentrated suspensions was investigated. The authors applied a novel Doppler-based ultrasound velocity profiler (Met-Flow SA)-pressure difference (UVP-PD) methodology (Ouriev B 2000 PhD Thesis Zurich ISBN: 3-905609-11-8, Ouriev B and Windhab E 2002 J. Exp. Fluids 32 204-11), for the investigation of concentrated suspensions in steady and transient flows. Model suspensions with two different solid phase concentrations and fluid matrixes were analysed in shear steady flow at different volumetric flow rates. Transient flow was initiated by abrupt flow interruption. Simultaneous recording of the pressure gradient (Windhab E 1986 Thesis VDI) and real time flow velocity profiles enables analyses of transient rheological flow properties. Both velocity and rheological information were simultaneously measured on-line and evaluated off-line. The rheological characteristics of the suspensions in transient flow are compared with those in steady flow and conclusions are drawn.

  16. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  17. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Astrophysics Data System (ADS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-12-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  18. Is a high-latitude, second, reversed meridional flow cell the Sun's common choice?

    NASA Astrophysics Data System (ADS)

    Dikpati, M.

    2012-04-01

    Observations of surface Doppler meridional flow show that a high-latitude, reversed (equatorward) meridional flow cell, along with a poleward primary flow-cell, occurred during cycles 20, 21 and 22. The reversed cell vanished during most of cycle 23, but is reappearing in the current cycle 24. We explore theoretically what the Sun's natural choice of polar-region flow can be. We build a hydrodynamical model for computing and understanding the Sun's large-scale high latitude flows that includes Coriolis forces, turbulent diffusion of momentum and gyroscopic pumping. We solve for the meridional flow in a spherical 'polar cap' with a boundary at about 60-degree latitude. We find that there always exists at least one node in the latitudinal flow profile if the turbulent viscosity in the Sun's convection zone is 1010 to 1015 cm2 s-1. The Sun's turbulent viscosity is generally thought to be in the range of 1012 - 1013 cm2 s-1. For certain combinations of turbulent viscosity values and flow-speeds at the polar-cap boundary, our model exhibits 'node merging', producing only one flow-cell going all the way to the pole from the equator. These results suggest that it is more natural for the Sun to have one or more high-latitude reversed cells, but occasionally a single, unusually long primary cell, as was observed in cycle 23.

  19. Universal intermittent properties of particle trajectories in highly turbulent flows.

    PubMed

    Arnèodo, A; Benzi, R; Berg, J; Biferale, L; Bodenschatz, E; Busse, A; Calzavarini, E; Castaing, B; Cencini, M; Chevillard, L; Fisher, R T; Grauer, R; Homann, H; Lamb, D; Lanotte, A S; Lévèque, E; Lüthi, B; Mann, J; Mordant, N; Müller, W-C; Ott, S; Ouellette, N T; Pinton, J-F; Pope, S B; Roux, S G; Toschi, F; Xu, H; Yeung, P K

    2008-06-27

    We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R{lambda}in[120:740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, pointing towards the existence of a universal behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is found to capture the intermittency of velocity statistics over the whole three decades of temporal scales investigated here. PMID:18643666

  20. Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Arnèodo, A.; Benzi, R.; Berg, J.; Biferale, L.; Bodenschatz, E.; Busse, A.; Calzavarini, E.; Castaing, B.; Cencini, M.; Chevillard, L.; Fisher, R. T.; Grauer, R.; Homann, H.; Lamb, D.; Lanotte, A. S.; Lévèque, E.; Lüthi, B.; Mann, J.; Mordant, N.; Müller, W.-C.; Ott, S.; Ouellette, N. T.; Pinton, J.-F.; Pope, S. B.; Roux, S. G.; Toschi, F.; Xu, H.; Yeung, P. K.

    2008-06-01

    We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range Rλ∈[120∶740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, pointing towards the existence of a universal behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is found to capture the intermittency of velocity statistics over the whole three decades of temporal scales investigated here.

  1. A high resolution upwind scheme for multi-component flows

    NASA Astrophysics Data System (ADS)

    Igra, D.; Takayama, K.

    2002-04-01

    Conservative schemes usually produce non-physical oscillations in multi-component flow solutions. Many methods were proposed to avoid these oscillations. Some of these correction schemes could fix these oscillations in the pressure profile at discontinuities, but the density profile still remained diffused between the two components. In the case of gas-liquid interfaces, density diffusion is not acceptable. In this paper, the interfacial correction scheme proposed by Cocchi et al. was modified to be used in conjunction with the level-set approach. After each time step two grid points that bound the interface are recalculated by using an exact Riemann solver so that pressure oscillations and the density diffusion at discontinuities were eliminated. The scheme presented here can be applied to any type of conservation law solver. Some examples solved by this scheme and their results are compared with the exact solution when available. Good agreement is obtained between the present results and the exact solutions. Copyright

  2. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  3. Use of high-resolution upwind scheme for vortical flow simulations

    NASA Technical Reports Server (NTRS)

    Fujii, Kozo; Obayashi, Shigeru

    1989-01-01

    For vortical flow simulations at high Reynolds number, it is important to keep the artificial dissipation as small as possible since it induces unphysical decay of the vortex strength. One way to accomplish this is to decrease the grid spacing. Another way is to use computational schemes having little dissipation. In the present paper, one of the high-resolution upwind schemes called 'MUSCL with Roe's average'is applied to vortical flow simulations. Two examples are considered. One is the leading-edge separation-vortex flow over a strake-delta wing. The other is a high-angle of attack supersonic flow over a spaceplane-like configuration. The comparison with the central difference solutions indicates that the present upwind scheme is less dissipative and thus has better resolution for the vortical flows.

  4. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  5. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  6. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  7. TanDEM-X high resolution DEMs and their applications to flow modeling

    NASA Astrophysics Data System (ADS)

    Wooten, Kelly M.

    Lava flow modeling can be a powerful tool in hazard assessments; however, the ability to produce accurate models is usually limited by a lack of high resolution, up-to-date Digital Elevation Models (DEMs). This is especially obvious in places such as Kilauea Volcano (Hawaii), where active lava flows frequently alter the terrain. In this study, we use a new technique to create high resolution DEMs on Kilauea using synthetic aperture radar (SAR) data from the TanDEM-X (TDX) satellite. We convert raw TDX SAR data into a geocoded DEM using GAMMA software [Werner et al., 2000]. This process can be completed in several hours and permits creation of updated DEMs as soon as new TDX data are available. To test the DEMs, we use the Harris and Rowland [2001] FLOWGO lava flow model combined with the Favalli et al. [2005] DOWNFLOW model to simulate the 3-15 August 2011 eruption on Kilauea's East Rift Zone. Results were compared with simulations using the older, lower resolution 2000 SRTM DEM of Hawaii. Effusion rates used in the model are derived from MODIS thermal infrared satellite imagery. FLOWGO simulations using the TDX DEM produced a single flow line that matched the August 2011 flow almost perfectly, but could not recreate the entire flow field due to the relatively high DEM noise level. The issues with short model flow lengths can be resolved by filtering noise from the DEM. Model simulations using the outdated SRTM DEM produced a flow field that followed a different trajectory to that observed. Numerous lava flows have been emplaced at Kilauea since the creation of the SRTM DEM, leading the model to project flow lines in areas that have since been covered by fresh lava flows. These results show that DEMs can quickly become outdated on active volcanoes, but our new technique offers the potential to produce accurate, updated DEMs for modeling lava flow hazards.

  8. Application of Runge-Kutta scheme for high-speed inviscid internal flows

    NASA Technical Reports Server (NTRS)

    Moitra, A.; Turkel, E.; Kumar, A.

    1986-01-01

    A multi-stage Runge-Kutta method is analyzed for solving the two-dimensional Euler equations for external and internal flow problems. Subsonic, supersonic and, highly supersonic flows are studied. Various techniques for accelerating the convergence to a steady state are described and analyzed. Effects of the grid aspect ratio on the rate of convergence are evaluated. An enthalpy damping technique applicable to supersonic flows is described in detail. Numerical results for supersonic flows containing both oblique and normal shocks are presented confirming the efficiency of the method.

  9. Application of a Runge-Kutta scheme for high-speed inviscid internal flows

    NASA Technical Reports Server (NTRS)

    Moitra, A.; Turkel, E.; Kumar, A.

    1986-01-01

    A multi-stage Runge-Kutta method is analyzed for solving the two-dimensional Euler equations for external and internal flow problems. Subsonic, supersonic and, highly supersonic flows are studied. Various techniques for accelerating the convergence to a steady state are described and analyzed. Effects of the grid aspect ratio on the rate of convergence are evaluated. An enthalpy damping technique applicable to supersonic flows is described in detail. Numerical results for supersonic flows containing both oblique and normal shocks are presented confirming the efficiency of the method.

  10. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  11. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  12. Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes.

    PubMed

    Berson, Arganthaël; Blanc-Benon, Philippe

    2007-10-01

    The flow inside a thermoacoustic couple is investigated experimentally using particle image velocimetry. Measurements show the oscillation of the shear layers flowing out of a single stack, thus forming an asymmetric vortex street at high driving amplitudes. Development of vortices is also observed within the gap of a thermoacoustic couple. It causes the flow not to repeat from one acoustic period to another. The nonperiodicity of the flow will lead to unsteady heat transfer between the stack and heat exchangers and to the oscillation of the cooling load. PMID:17902740

  13. Control of High-Speed Spray Flows Using a Steady, Parallel Control Flow Under the Influence of the Coanda Effect

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton

    2007-11-01

    An experimental demonstration of a jet vectoring technique used in our novel spray device called a Coanda-assisted Spray Manipulation (CSM) nozzle is presented. The CSM makes use of a Coanda-like effect on axisymmetric geometries through the interaction of a high volume-flow primary jet flowing through the center of a collar and a secondary high-momentum jet parallel to the first and adjacent to a convex collar. The control jet attaches to the convex wall and vectors due to the Coanda effect, entraining and vectoring the primary jet, resulting in controllable r-theta directional spraying. Various annular secondary exit holes and curved wall radii were tested over a range of momentum flux ratios to study the effects of these variables on the vectored jet angle. Particle Image Velocimetry (PIV) was used to determine the vectoring angle and the profile of the primary jet in each experiment. The experiments show that the secondary exit hole size and curve wall radius, along with the momentum ratios of the two jets predominantly affect the vectoring angle of the primary jet. Also, the jet profile is largely unchanged with vectoring for high velocity flows, which is important for the thermal spray applications for which CSM will be used.

  14. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  15. Nanedi Vallis: Sustained Water Flow? - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This picture of a canyon on the Martian surface was obtained a few minutes after 10 PM PST, January 8, 1998 by the Mars Orbiter Camera (MOC), during the 87th orbit around Mars of the Mars Global Surveyor spacecraft. It shows the canyon of Nanedi Vallis, one of the Martian valley systems cutting through cratered plains in the Xanthe Terra region of Mars. The picture covers an area 9.8 km by 18.5 km (6.1 mi by 11.5 mi), and features as small as 12 m (39 ft) can be seen. The canyon is about 2.5 km (1.6 mi) wide. Rocky outcrops are found along the upper canyon walls; weathered debris found on the lower canyon slopes and along the canyon floor. The origin of this canyon is enigmatic: some features, such as terraces within the canyon (as seen near the top of the frame) and the small 200 m (660 ft) wide channel (also seen near the top of the frame) suggest continual fluid flow and downcutting. Other features, such as the lack of a contributing pattern of smaller channels on the surface surrounding the canyon, box-headed tributaries, and the size and tightness of the apparent meanders (as seen, for example, in the Viking image 89A32), suggest formation by collapse. It is likely that both continual flow and collapse have been responsible for the canyon as it now appears. Further observations, especially in areas west of the present image, will be used to help separate the relative effects of these and other potential formation and modification processes.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  16. High Reynolds number effects on a localized stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Diamessis, Peter

    2015-11-01

    We report large-eddy simulations (LES) of the turbulent flow behind a sphere of diameter D translating at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N. These simulations are performed using a spectral-multidomain-penalty incompressible Navier-Stokes solver, at Reynolds numbers Re ≡ UD / ν ∈ { 5 ×103 , 105 , 4 ×105 } and Froude numbers Fr ≡ 2 U / (ND) ∈ { 4 , 16 , 64 } . An increasingly richer turbulent fine-structure is observed within the larger-scale quasi-horizontal vortices at later times. Turbulent transport of momentum is examined during the non-equilibrium (NEQ) regime of the turbulent life cycle, with an emphasis on the vertical transport that occurs after the establishment of local buoyancy control. The turbulent viscosities in both horizontal and vertical directions are estimated through the LES data; possible parameterization of the vertical turbulent viscosity with the buoyancy Reynolds number Reb = ɛ / (νN2) (or its easy-to-obtain surrogates) is discussed. The dynamical role of the buoyancy Reynolds number in choosing the vertical turbulence length scales is also investigated. ONR grant N00014-13-1-0665 (managed by Dr. R. Joslin); HPCMP Frontier Project FP-CFD-FY14-007 (P.I.: Dr. S. de Bruyn Kops).

  17. Summary of in-flight flow visualization obtained from the NASA high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Delfrate, John H.; Zuniga, Fanny A.

    1991-01-01

    A summary of the surface and off-surface flow visualization results obtained in flight on the F-18 high alpha research vehicle (HARV) is presented, highlighting the extensive 3-D vortical flow on the aircraft at angles of attack up to 50 degs. The emitted fluid technique, as well as tufts and flow cones, were used to document the surface flow. A smoke generator system injected smoke into the vortex cores generated by the forebody and leading edge extensions (LEXs). Documentation was provided by onboard still and video, by air-to-air, and by postflight photography. The surface flow visualization techniques revealed laminar separation bubbles near the forebody apex, lines of separation on the forebody and LEX, and regions of attached and separated flow on the wings and fins. The off-surface flow visualization techniques showed the path of the vortex cores on the forebody and LEX as well as the LEX vortex core breakdown location. An interaction between the forebody and LEX vortices was noted. The flow over the surfaces of the vertical tail was categorized into regions of attached, unsteady, or separated flow using flow tufts.

  18. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  19. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, P.R.

    1984-01-01

    Information on high flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood control storage and dam safety. High flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High flow magnitude and frequency data are given for 91 streamflow gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1 , 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage basin characteristics of contributing-drainage area; 50-yr, 24-hr rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31% to 49%, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more yr of record on the same stream, the data for the gaging station may be used to improve the regression estimates. (Author 's abstract)

  20. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert

    1986-01-01

    Information on high-flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood-control storage and dam safety. High-flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High-flow magnitude and frequency data are given for 91 streamflow-gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1, 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High-flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage-basin characteristics of contributing-drainage area; 50-year, 24-hour rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31 to 49 percent, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more years of record on the same stream, the data for the gaging station may be used to improve the regression estimates.

  1. Development of a FBG vortex flow sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Cheng, L. K.; Schiferli, W.; Nieuwland, R. A.; Franzen, A.; den Boer, J. J.; Jansen, T. H.

    2011-05-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300 ºC and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are envisaged. The flow sensor uses a specially-designed bluff body to generate vortex-induced pressure fluctuations as a function of flow. The pressure fluctuations result in mechanical strain fluctuations in the sensor plate which is attached to the bluff-body. This is detected by means of a Fibre Bragg Grating (FBG). The frequency of the pressure fluctuations is proportional to the flow velocity and is measured by analyzing the spectrum of the FBG sensor signal. Flow velocity measurements ranging from ~1 m/s to ~25 m/s have been demonstrated. Special mechanical design, gluing and packaging processes have been developed to enable applications at high temperatures and high pressures (HPHT). Although the working principle is the same as for conventional vortex flow meters, this flow sensor does not require electronics, which is a great advantage at high temperatures.

  2. High Incidence of Progressive Postnatal Cerebellar Enlargement in Costello Syndrome: Brain Overgrowth Associated with HRAS Mutations as the Likely Cause of Structural Brain and Spinal Cord Abnormalities

    PubMed Central

    Gripp, Karen W.; Hopkins, Elisabeth; Doyle, Daniel; Dobyns, William B.

    2010-01-01

    Costello syndrome is a rasopathy caused by germline mutations in the proto-oncogene HRAS. Its presentation includes failure-to-thrive with macrocephaly, characteristic facial features, hypertrophic cardiomyopathy, papillomata, malignant tumors, and cognitive impairment. In a systematic review we found absolute or relative macrocephaly (100%), ventriculomegaly (50%), and other abnormalities on brain and spinal cord imaging studies in 27/28 individuals. Posterior fossa crowding with cerebellar tonsillar herniation (CBTH) was noted in 27/28 (96%), and in 10/17 (59%) with serial studies posterior fossa crowding progressed. Sequelae of posterior fossa crowding and CBTH included hydrocephalus requiring shunt or ventriculostomy (25%), Chiari 1 malformation (32%) and syrinx formation (25%). Our data reveal macrocephaly with progressive frontal bossing and CBTH, documenting an ongoing process rather than a static congenital anomaly. Comparison of images obtained in young infants to subsequent studies demonstrated postnatal development of posterior fossa crowding. This process of evolving megalencephaly and cerebellar enlargement is in keeping with mouse model data, delineating abnormal genesis of neurons and glia, resulting in an increased number of astrocytes and enlarged brain volume. In Costello syndrome and macrocephaly-capillary malformation syndrome disproportionate brain growth is the main factor resulting in postnatal CBTH and Chiari 1 malformation. PMID:20425820

  3. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study.

    PubMed

    Klauser, Paul; Zhou, Juan; Lim, Joseph K W; Poh, Joann S; Zheng, Hui; Tng, Han Ying; Krishnan, Ranga; Lee, Jimmy; Keefe, Richard S E; Adcock, R Alison; Wood, Stephen J; Fornito, Alex; Chee, Michael W L

    2015-11-01

    There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS. PMID:25745033

  4. Spontaneous remission of acute myeloid leukemia relapse after hematopoietic cell transplantation in a high-risk patient with 11q23/MLL abnormality.

    PubMed

    Hudecek, Michael; Bartsch, Kristina; Jäkel, Nadja; Heyn, Simone; Pfannes, Roald; Al-Ali, Haifa Kathrin; Cross, Michael; Pönisch, Wolfram; Gerecke, Ulrich; Edelmann, Jeanett; Ittel, Thomas; Niederwieser, Dietger

    2008-01-01

    A 35-year-old female patient was diagnosed with acute myeloid leukemia with multiple genetic aberrations [48 XX, del(3)(q21), +6, t(11;15)(q23;q15), +21] including an 11q23/MLL abnormality. The patient achieved a complete remission after one induction chemotherapy cycle. After three courses of consolidation, a matched unrelated hematopoietic cell transplantation (HCT) was performed. Following an upper respiratory tract infection 7 years after transplant, her blood counts declined to leukocytes of 1 x 10(9)/l, platelets of 51 x 10(9)/l and hemoglobin of 7.5 g/dl. A bone marrow aspirate revealed 55% leukemic blasts carrying the unfavorable genetic aberrations seen at initial diagnosis (11q23/MLL). In the absence of any disease-specific treatment, the leukemic blasts cleared from the bone marrow within 6 days after diagnosis of relapse and peripheral blood counts returned to normal. Molecular analysis of the 11q23/MLL rearrangement was used to evaluate minimal residual disease, which became undetectable in repetitive FISH analyses. This is the first report of spontaneous remission in a patient with initially a multiaberrant leukemic cell clone and a proven 11q23/MLL abnormality at relapse after HCT. PMID:18367831

  5. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  6. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  7. Use of high-flow nasal cannula in neonates: Nationwide survey in Japan.

    PubMed

    Motojima, Yukiko; Ito, Masato; Oka, Shuntaro; Uchiyama, Atsushi; Tamura, Masanori; Namba, Fumihiko

    2016-04-01

    High-flow nasal cannula is a new modality of respiratory support and is increasing in popularity despite the lack of supporting evidence. We investigated the prevalence of its use in tertiary neonatal units in Japan. A paper-based survey was conducted. The response rate was 83%. High-flow nasal cannula was used in 46/80 units (58%), of which 96% used the high-flow nasal cannula without guidelines. It was used for several indications, including weaning off nasal continuous positive airway pressure and post-extubation respiratory support. The main perceived benefits of the cannula included better access to the neonate and reduced risk of nasal trauma. This survey found that high-flow nasal cannula is used without clear criteria and that clinical practice varies across neonatal units in Japan. Its use in neonates needs to be urgently evaluated. PMID:27095676

  8. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.

    PubMed

    Huang, Chih-Chung

    2009-08-01

    It was shown previously that ultrasonic scattering from whole blood varies during the flow cycle under pulsatile flow both in vitro and in vivo. It has been postulated that the cyclic variations of the backscattering signal are associated with red blood cell (RBC) aggregation in flowing whole blood. To obtain a better understanding of the relationship between blood backscattering and RBC aggregation behavior for pulsatile flowing blood, the present study used high-frequency ultrasound to characterize blood properties. The backscattering signals from both whole blood and an RBC suspension at different peak flow velocities (from 10 to 30 cm/s) and hematocrits (20% and 40%) under pulsatile flow (stroke rate of 20 beats/min) were measured with 3 single-element transducers at frequencies of 10, 35, and 50 MHz in a mock flow loop. To avoid the frequency response problem of a Doppler flowmeter, the integrated backscatter (IB) and flow velocity as functions of time were calculated directly using RF signals from flowing blood. The experimental results showed that cyclic variations of the IB curve were clearly observed at a low flow velocity and a hematocrit of 40% when using 50 MHz ultrasound, and that these variations became weaker as the peak flow velocity increased. However, these cyclic variations were detected only at 10 cm/s when using 10 MHz ultrasound. These results demonstrate that a high flow velocity can stop the formation of rouleaux and that a high hematocrit can promote RBC aggregation to produce cyclic variations of the backscattering signal under pulsatile flow. In addition, slight cyclic variations of the IB curve for an RBC suspension were observed at 35 and 50 MHz. Furthermore, the peak of the IB curve from whole blood led the peak of the velocity waveform when using high-frequency ultrasound, which could be explained by the assumption that a rapid flow can promote RBC aggregation under pulsatile flow. Together, the experimental results showed that the

  9. Detached eddy simulation of high-Reynolds-number turbulent flows using the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Bernardini, Matteo; Pirozzoli, Sergio; Orlandi, Paolo

    2015-11-01

    Detached Eddy Simulation based on the Spalart-Allmaras turbulence model is applied in conjunction with the immersed boundary method to simulate high-Reynolds number turbulent flows in complex geometries. A fourth-order, finite-difference solver capable of discretely preserving the kinetic energy in the limit of inviscid flow is adopted to solve the compressible Navier-Stokes equations and model-consistent, adaptive wall functions are employed to provide the proper numerical boundary conditions at the fluid/solid interface. Numerical tests, performed for several configurations involving massively separated flows, demonstrate that computations at high-Reynolds number, as typically occurring in flows of industrial relevance, can be successfully carried out using the immersed boundary strategy, providing predictions whose accuracy is comparable to that of standard, body-fitted, structured or unstructured flow solvers.

  10. Preliminary design study of a quiet, high flow fan (QHF) stage. [turbofans - quiet engine program

    NASA Technical Reports Server (NTRS)

    Walker, C. L.; Kisner, L. S.; Delaney, R. A.; Beguhn, A. A.; Frye, D. E.

    1974-01-01

    Concepts selected to reduce fan generated noise in a turbofan are presented. Near-sonic flow at the fan inlet to reduce upstream propagated noise and the use of long-chord vanes to reduce downstream noise is discussed. The near-sonic condition at the rotor inlet plane was achieved by designing for high specific mass flow and by maintaining the high flow at reduced power by variable stators and variable fan exhaust nozzle. The long-chord vanes reduce response to unsteady flow. The acoustic design showed that long-chord stators would significantly reduce turbofan source noise and that other stator design parameters have no appreciable effect on noise for the spacing and chord length of the turbofan design. Four rig flow paths studied in the aerodynamic preliminary design are discussed. Noise prediction results indicate that a turbofan powered aircraft would be under federal air regulations levels without any acoustic treatment.

  11. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  12. Abnormal ferrite in hyper-eutectoid steels

    SciTech Connect

    Chairuangsri, T.; Edmonds, D.V.

    2000-04-19

    The microstructural characteristics of ultra-high carbon hyper-eutectoid Fe-C and Fe-C-Cu experimental steels have been examined after isothermal transformation in a range just beneath the eutectoid temperature. Particular attention was paid to the formation of so-called abnormal ferrite, which refers to coarse ferrite grains which can form, in hyper-eutectoid compositions, on the pro-eutectoid cementite before the pearlite reaction occurs. Thus it is confirmed that the abnormal ferrite is not a result of pearlite coarsening, but of austenite decomposition before the conditions for coupled growth of pearlite are established. The abnormal ferrite formed on both allotriomorphic and Widmanstaetten forms of pro-eutectoid cementite, and significantly, it was observed that the pro-eutectoid cementite continued to grow, despite being enclosed by the abnormal ferrite. Under certain conditions this could lead to the eventual formation of substantially reduced amounts of pearlite. Thus, a model for carbon redistribution that allows the proeutectoid cementite to thicken concurrently with the abnormal ferrite is presented. The orientation relationships between the abnormal ferrite and pro-eutectoid cementite were also determined and found to be close to those which have been reported between pearlitic ferrite and pearlitic cementite.

  13. Prevalence of asymptomatic urinary abnormalities among adolescents.

    PubMed

    Fouad, Mohamed; Boraie, Maher

    2016-05-01

    To determine the prevalence of asymptomatic urinary abnormalities in adolescents, first morning clean mid-stream urine specimens were obtained from 2500 individuals and examined by dipstick and light microscopy. Adolescents with abnormal screening results were reexamined after two weeks and those who had abnormal results twice were subjected to systemic clinical examination and further clinical and laboratory investigations. Eight hundred and three (32.1%) individuals had urinary abnormalities at the first screening, which significantly decreased to 345 (13.8%) at the second screening, (P <0.001). Hematuria was the most common urinary abnormalities detected in 245 (9.8%) adolescents who had persistent urine abnormalities; 228 (9.1%) individuals had non glomerular hematuria. The hematuria was isolated in 150 (6%) individuals, combined with leukocyturia in 83 (3.3%) individuals, and combined with proteinuria in 12 (0.5%) individuals. Leukocyturia was detected in 150 (6%) of all studied adolescents; it was isolated in 39 (1.6%) individuals and combined with proteinuria in 28 (1.1%) of them. Asymptomatic bacteriuria was detected in 23 (0.9%) of all studied adolescents; all the cases were females. Proteinuria was detected in 65 (2.6%) of all the studied adolescents; 45 (1.8%) individuals had <0.5 g/day and twenty (0.8%) individuals had 0.5-3 g/day. Asymptomatic urinary abnormalities were more common in males than females and adolescents from rural than urban areas (P <0.01) and (P <0.001), respectively. The present study found a high prevalence of asymptomatic urinary abnormalities among adolescents in our population. PMID:27215241

  14. Spontaneous closure of posttraumatic high-flow carotid-cavernous fistula following cerebral angiography.

    PubMed

    Meena, Ugan Singh; Gupta, Pankaj; Shrivastava, Trilochan; Purohit, Devendra

    2016-01-01

    Traumatic carotid-cavernous fistula (TCCF) is a direct communication between cavernous portion of the internal carotid artery (ICA) and cavernous sinus due to tear in ICA. Most of the cases are treated by endovascular embolization. Spontaneous resolution of high-flow TCCFs is extremely rare. We report a case of posttraumatic, direct, high-flow carotid cavernous fistula (Barrow type A) that resolved spontaneously after cerebral angiography. PMID:27057229

  15. Spontaneous closure of posttraumatic high-flow carotid-cavernous fistula following cerebral angiography

    PubMed Central

    Meena, Ugan Singh; Gupta, Pankaj; Shrivastava, Trilochan; Purohit, Devendra

    2016-01-01

    Traumatic carotid-cavernous fistula (TCCF) is a direct communication between cavernous portion of the internal carotid artery (ICA) and cavernous sinus due to tear in ICA. Most of the cases are treated by endovascular embolization. Spontaneous resolution of high-flow TCCFs is extremely rare. We report a case of posttraumatic, direct, high-flow carotid cavernous fistula (Barrow type A) that resolved spontaneously after cerebral angiography. PMID:27057229

  16. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence.

    PubMed Central

    Anderson, D C; Schmalstieg, F C; Arnaout, M A; Kohl, S; Tosi, M F; Dana, N; Buffone, G J; Hughes, B J; Brinkley, B R; Dickey, W D

    1984-01-01

    Investigations of polymorphonuclear leukocyte (PMN) function were performed in a 5-yr-old white female with delayed umbilical cord separation, impaired pus formation, and a severe defect of PMN chemotaxis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated an almost total deficiency of a high molecular weight glycoprotein(s) (GP138) in the granule and membrane fractions of the patient's cells, and NaB3H4-galactose oxidase labeling demonstrated the absence of a major glycoprotein complex on the surface of her PMNs. Monoclonal antibodies (MAb) were employed in flow cytometry experiments to demonstrate that two previously characterized glycoproteins (Mo1 and LFA1) were undetectable on the surface of the patient's PMNs and monocytes. Immunoprecipitation of 125I-labeled patient cells with subunit specific MAbs confirmed that the alpha-subunits of Mo1 (155 kD) and LFA1 (177 kD) and their common beta-subunit (94 kD) were totally deficient. Functional analyses of patient PMNs demonstrated severe impairment of adherence- and adhesion-dependent cell functions including spreading, aggregation, orientation in chemotactic gradients, antibody-dependent cellular cytotoxicity, and phagocytosis of particles (Oil-Red-0-paraffin, zymosan) selectively opsonized with C3-derived ligands. Patient PMNs demonstrated a normal capacity to rosette with IgG or C3b-coated sheep erythrocytes, but rosette formation with C3bi-coated erythrocytes was profoundly diminished. Adhesion-independent functions including shape change, N-formyl-methionyl-leucyl-3H-phenylalanine binding, and O-2 generation or secretion elicited by soluble stimuli were normal. Membrane fluidity, surface charge, and microtubule assembly were also normal. These findings provide new evidence that critical PMN surface glycoproteins are required to facilitate multiple adhesion-dependent cellular functions of the inflammatory response. Images PMID:6746906

  17. Energy flow in high speed perforation and cutting

    SciTech Connect

    van Thiel, M.

    1980-10-07

    It is demonstrated that effects of long rod penetrators on targets can be modeled by introducing a high pressure (energy) column on the penetration path in place of the projectile. This energy can be obtained from the kinetic energy of the penetrator; the equations of state of the materials used and a Bernoulli penetration condition. The model is supported by detailed hydro calculations.

  18. The Lag Model Applied to High Speed Flows

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Lillard, Randolph P.

    2005-01-01

    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated.

  19. High-order discontinuous Galerkin methods for coupled thermoconvective flows under gravity modulation

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N. C.; Aristotelous, A. C.

    2015-10-01

    In this work, we develop a High-Order Symmetric Interior Penalty (SIP) Discontinuous Galerkin (DG) Finite Element Method (FEM) to investigate convective flows in a rectangular cavity subject to both vertical and horizontal temperature gradients. The whole cavity is subject to gravity modulation (g-jitter), simulating a microgravity environment. The sensitivity of the bifurcation problem makes the use of a high-order accurate and efficient technique essential. Our method is validated by solving the plane-parallel flow problem and the results were found to be in good agreement with published results. The numerical method was designed to be easily extendable to even more complex flows.

  20. Computational flow cytometry: helping to make sense of high-dimensional immunology data.

    PubMed

    Saeys, Yvan; Gassen, Sofie Van; Lambrecht, Bart N

    2016-07-01

    Recent advances in flow cytometry allow scientists to measure an increasing number of parameters per cell, generating huge and high-dimensional datasets. To analyse, visualize and interpret these data, newly available computational techniques should be adopted, evaluated and improved upon by the immunological community. Computational flow cytometry is emerging as an important new field at the intersection of immunology and computational biology; it allows new biological knowledge to be extracted from high-throughput single-cell data. This Review provides non-experts with a broad and practical overview of the many recent developments in computational flow cytometry. PMID:27320317

  1. CFD Simulation of Contaminant Decay for High Reynolds Flow in a Controlled Environment

    PubMed Central

    Lambert, Andrew R.; Lin, Ching-Long; Mardorf, Eunice; O'shaughnessy, Patrick

    2010-01-01

    This study examines the usage of computational fluid dynamics (CFDs) for estimating the time-elapsed decay of contaminants within a chamber experiencing high Reynolds flow. CFD results were compared with measurements taken at a controlled facility. In addition, parameters of the CFD simulation were examined; namely the effects of turbulence and inertial transport at high Reynolds number ventilating flows, as well as inlet duct configuration and its effect on the inlet velocity profile. The agreement between the computational and experimental clearance times was quite good, with percent errors as low as −5.32% at high flow rate and −11.8% at the lower flow rate. This study determined that for high Reynolds flow, diffusive transport effects may be ignored as the majority of mass is transported via the bulk stream, i.e. momentum transport. In addition, resolving the inlet velocity profile was of prime importance for accurate simulation of ventilating flows and prediction of contaminant washout. This was done by including the inlet duct geometry in the computational domain. In addition, it was found that despite different flow rates, the predicted contaminant washout took ∼12–13% longer than predicted assuming instantaneous mixing. Furthermore, percent error between computational and experimental data as low as −5.32% shows that CFD is a useful tool for studying ventilation phenomena. PMID:19671796

  2. CFD simulation of contaminant decay for high reynolds flow in a controlled environment.

    PubMed

    Lambert, Andrew R; Lin, Ching-Long; Mardorf, Eunice; O'Shaughnessy, Patrick

    2010-01-01

    This study examines the usage of computational fluid dynamics (CFDs) for estimating the time-elapsed decay of contaminants within a chamber experiencing high Reynolds flow. CFD results were compared with measurements taken at a controlled facility. In addition, parameters of the CFD simulation were examined; namely the effects of turbulence and inertial transport at high Reynolds number ventilating flows, as well as inlet duct configuration and its effect on the inlet velocity profile. The agreement between the computational and experimental clearance times was quite good, with percent errors as low as -5.32% at high flow rate and -11.8% at the lower flow rate. This study determined that for high Reynolds flow, diffusive transport effects may be ignored as the majority of mass is transported via the bulk stream, i.e. momentum transport. In addition, resolving the inlet velocity profile was of prime importance for accurate simulation of ventilating flows and prediction of contaminant washout. This was done by including the inlet duct geometry in the computational domain. In addition, it was found that despite different flow rates, the predicted contaminant washout took approximately 12-13% longer than predicted assuming instantaneous mixing. Furthermore, percent error between computational and experimental data as low as -5.32% shows that CFD is a useful tool for studying ventilation phenomena. PMID:19671796

  3. Turbulent secondary flows in high Reynolds number boundary layers induced by streamwise-elongated complex roughness

    NASA Astrophysics Data System (ADS)

    Anderson, William; Barros, Julio; Christensen, Kenneth

    2014-11-01

    It has been reported that complex roughness with a predominant streamwise elongation induces secondary mean flow heterogeneities in the above turbulent boundary layer (Mejia-Alvarez and Christensen, Phys. Fluids 25, 115 (2013), MAC; Nugroho et al., Int. J. Heat Fluid Flow 41, 90 (2013)). These mean secondary flows exist as transverse variations of mean streamwise velocity (so-called low- and high-momentum pathways, MAC) and are flanked by mean counter-rotating, boundary layer-scale circulations (Christensen and Barros, J. Fluid Mech. 748, R1 (2014)). In related work, we have used large-eddy simulation to model turbulent boundary layer flow over a suite of topographies composed of ``strips'' of high and low roughness length (drag imposed with the equilibrium logarithmic law); in all cases, we observe the formation of high- and low-momentum pathways (Willingham et al., Phys. Fluids 26, 025111 (2013)). Here, we investigate turbulence statistics from large-eddy simulation such as magnitudes and spatial gradients of Reynolds stresses and turbulence kinetic energy, to discern underlying physical processes responsible for the secondary flows. We demonstrate that elevated production of turbulence above ``high'' roughness necessitates the mean circulations by virtue of turbulent kinetic energy production-dissipation non-equilibrium. We propose that the mean flow is Prandtl's secondary flow of the second kind.

  4. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization

    SciTech Connect

    Blennow, E.; Telenius, H.; Nordenskjoeld, M.

    1995-01-02

    Extra structurally abnormal chromosomes (ESACs) are small supernumerary chromosomes often associated with developmental abnormalities and malformations. We present 50 probands with ESACs characterized by fluorescence in situ hybridization using centromere-specific probes and chromosome-specific libraries. ESAC-specific libraries were constructed by flow sorting and subsequent amplification by DOP-PCR. Using such ESAC-specific libraries we were able to outline the chromosome regions involved. Twenty-three of the 50 ESACs were inverted duplications of chromosome 15 (inv dup(15)), including patients with normal phenotypes and others with similar clinical symptoms. These 2 groups differed in size and shape of the inv dup(15). Patients with a large inv dup(15), which included the Prader-Willi region, had a high risk of abnormality, whereas patients with a small inv dup(15), not including the Prader-Willi region, were normal. ESACs derived from chromosomes 13 or 21 appeared to have a low risk of abnormality, while one out of 3 patients with an ESAC derived from chromosome 14 had discrete symptoms. One out of 3 patients with an ESAC derived from chromosome 22 had severe anomalies, corresponding to some of the manifestations of the cat eye syndrome. Small extra ring chromosomes of autosomal origin and ESACs identified as i(12p) or i(18p) were all associated with a high risk of abnormality. 42 refs., 2 figs., 2 tabs.

  5. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.

    PubMed

    Glasnov, Toma N; Kappe, C Oliver

    2011-10-17

    The popularity of dedicated microwave reactors in many academic and industrial laboratories has produced a plethora of synthetic protocols that are based on this enabling technology. In the majority of examples, transformations that require several hours when performed using conventional heating under reflux conditions reach completion in a few minutes or even seconds in sealed-vessel, autoclave-type, microwave reactors. However, one severe drawback of microwave chemistry is the difficulty in scaling this technology to a production-scale level. This Concept article demonstrates that this limitation can be overcome by translating batch microwave chemistry to scalable continuous-flow processes. For this purpose, conventionally heated micro- or mesofluidic flow devices fitted with a back-pressure regulator are employed, in which the high temperatures and pressures attainable in a sealed-vessel microwave chemistry batch experiment can be mimicked. PMID:21932289

  6. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and method of making same

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.

    1994-12-31

    This invention relates to a laminated metal composite, comprising alternating layers of low flow stress material and high flow stress material, and formed using flow constraining elements around each low flow stress layer; and a method of making same. A composite is a combination of at least two chemically distinct materials with a distinct interface separating the two materials. A metal matrix composite (MMC) is a composite material composed of a metal and a nonmetallic reinforcing agent such as silicon carbide (SiC) or graphite in continuous or discontinuous fiber, whisker, or discrete particulate form. A laminate is a material composed of several bonded layers. It is possible to have a laminate composed of multi-layers of a single type of material bonded to each other. However, such a laminate would not be considered to be a composite. The term {open_quotes}laminated metal composite{close_quotes} (LMC), as used herein, is intended to include a structural material composed of: (1) layers of metal or metal alloys interleaved with (2) a different metal, a metal alloy, or a metal matrix composite (MMC) containing strengthening agents.

  7. High-resolution mapping of the 1998 lava flows at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.

    2011-12-01

    Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has

  8. Transition in Hypersonic Flows Including High-temperature Gas Effects

    NASA Technical Reports Server (NTRS)

    Stemmer, Christian

    2003-01-01

    Hypersonic transition poses a special challenge for direct numerical simulations. Comparable data from Wind-tunnel tests or free-flight testing are not available or not accurate enough for comparison. The wind-tunnel testing does not allow for the exact match to the free-flight conditions at such high Mach-numbers. Flat-plate boundary-layer transition at high Mach-numbers is investigated in this work. A simulation case was chosen where chemical non-equilibrium plays an important role but ionization can be neglected. The chosen case at an altitude of H=50Km lies close to one point on the descent path of the Space Shuttle. The failure of the Space Shuttle has shown that an improved vehicle for space transportation is imperative in the close future. Transition research for an improved space-transportation vehicle is crucial in order to estimate the heat load during re-entry.

  9. In-flight flow visualization characteristics of the NASA F-18 high alpha research vehicle at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Delfrate, John H.; Richwine, David M.

    1991-01-01

    Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.

  10. Viscoelasticity as a Biomarker for High-Throughput Flow Cytometry

    PubMed Central

    Sawetzki, Tobias; Eggleton, Charles D.; Desai, Sanjay A.; Marr, David W.M.

    2013-01-01

    The mechanical properties of living cells are a label-free biophysical marker of cell viability and health; however, their use has been greatly limited by low measurement throughput. Although examining individual cells at high rates is now commonplace with fluorescence activated cell sorters, development of comparable techniques that nondestructively probe cell mechanics remains challenging. A fundamental hurdle is the signal response time. Where light scattering and fluorescence signatures are virtually instantaneous, the cell stress relaxation, typically occurring on the order of seconds, limits the potential speed of elastic property measurement. To overcome this intrinsic barrier to rapid analysis, we show here that cell viscoelastic properties measured at frequencies far higher than those associated with cell relaxation can be used as a means of identifying significant differences in cell phenotype. In these studies, we explore changes in erythrocyte mechanical properties caused by infection with Plasmodium falciparum and find that the elastic response alone fails to detect malaria at high frequencies. At timescales associated with rapid assays, however, we observe that the inelastic response shows significant changes and can be used as a reliable indicator of infection, establishing the dynamic viscoelasticity as a basis for nondestructive mechanical analogs of current high-throughput cell classification methods. PMID:24268140

  11. Novel ultrasound based time averaged flow mapping method for die entry visualization in flow of highly concentrated shear-thinning and shear-thickening suspensions

    NASA Astrophysics Data System (ADS)

    Ouriev (Ur'ev), Boris; Windhab, Erich

    2003-01-01

    In this work a methodology for high-resolution time averaged two-dimensional flow mapping of converging flows was explored. Flow of non-transparent, highly concentrated shear-thinning and shear-thickening suspensions was circulating through the entrance flow adapter with adjustable position of the die entry. The entrance region was scanned with the distance resolution of 2.7 mm × 1 mm, radial to axial displacement respectively. The time averaged flow map was composed from one-dimensional flow profiles measured along the ultrasonic sensor beam using the ultrasonic pulsed echo Doppler technique. Priory to die entry visualization an investigation of flow properties was performed using a novel in-line non-invasive measuring technique. The method is based on combination of the ultrasound velocity profiler velocity monitoring and pressure difference method. The rheological flow properties were derived from simultaneous recording and on-line analysis of the velocity profiles across the tube channel and related radial shear stress profiles calculated from the pressure loss along the flow channel. For the first time the entrance flow of shear-thickening suspension could be visualized. A comparison between the flow of the investigated model suspensions was qualitatively analysed. This method gives an opportunity for time averaged flow mapping of viscoelastic and viscous, non-transparent, multiphase and highly concentrated fluids.

  12. Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2003-01-01

    A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)

  13. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  14. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  15. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  16. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    SciTech Connect

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to the different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.

  17. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  18. Influence of objective function selection on modeling high and low flows in a changing climate

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Petheram, C.; Chiew, F. H.; Teng, J.; Wang, B.; Post, D. A.

    2012-12-01

    This study evaluates the ability of commonly used hydrological models at simulating streamflow under variable climate conditions for different streamflow characteristics. The models are calibrated using three objective functions that weight high and low flow characteristics differently. The models are calibrated using data from ten unregulated catchments in southeast Australia. The results show that when the GR4J model is calibrated against low flows, it performs better in simulating low flows over an independent period compared to the simulation when using a high-flow objective function but this improvement in simulating low flows comes at the cost of poor simulations of high flows. The simulation results for the Sacramento model are different to GR4J and show that the Sacramento model calibrated specifically against low flows does not necessarily perform better in simulating low flows for an independent period not used in model calibration. The results for the two models also show that a model calibrated specifically against low flows does not necessarily perform better in simulating the bias of the lower 30% of fdc for an independent period not used in model calibration. The simulation results for both of the models indicate that model parameters calibrated using an objective function which gives more weight to high and medium flows are suitable for simulating streamflow for an independent period with reasonably high daily NSE values. The results also show that objective functions which puts more weight on low flows or similar weight to all flows is not suitable for simulating streamflow for an independent period if the metric of interest is daily NSE. The simulation-bias results indicate that there is no clear under or overestimation of flows when model parameters calibrated against wet or dry periods are used to simulate streamflow for an independent dry or wet period. The overall results from this study indicate that there is no single objective function that

  19. Numerical aspects in modeling high Deborah number flow and elastic instability

    NASA Astrophysics Data System (ADS)

    Kwon, Youngdon

    2014-05-01

    Investigating highly nonlinear viscoelastic flow in 2D domain, we explore problem as well as property possibly inherent in the streamline upwinding technique (SUPG) and then present various results of elastic instability. The mathematically stable Leonov model written in tensor-logarithmic formulation is employed in the framework of finite element method for spatial discretization of several representative problem domains. For enhancement of computation speed, decoupled integration scheme is applied for shear thinning and Boger-type fluids. From the analysis of 4:1 contraction flow at low and moderate values of the Deborah number (De) the solution with SUPG method does not show noticeable difference from the one by the computation without upwinding. On the other hand, in the flow regime of high De, especially in the state of elastic instability the SUPG significantly distorts the flow field and the result differs considerably from the solution acquired straightforwardly. When the strength of elastic flow and thus the nonlinearity further increase, the computational scheme with upwinding fails to converge and evolutionary solution does not become available any more. All this result suggests that extreme care has to be taken on occasions where upwinding is applied, and one has to first of all prove validity of this algorithm in the case of high nonlinearity. On the contrary, the straightforward computation with no upwinding can efficiently model representative phenomena of elastic instability in such benchmark problems as 4:1 contraction flow, flow over a circular cylinder and flow over asymmetric array of cylinders. Asymmetry of the flow field occurring in the symmetric domain, enhanced spatial and temporal fluctuation of dynamic variables and flow effects caused by extension hardening are properly described in this study.

  20. Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions

    SciTech Connect

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2010-03-12

    Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of elliptic flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.

  1. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  2. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1985-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  3. Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.

    2006-01-01

    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are

  4. Quartz Measurement in Coal Dust with High-Flow Rate Samplers: Laboratory Study

    PubMed Central

    LEE, TAEKHEE; LEE, EUN GYUNG; KIM, SEUNG WON; CHISHOLM, WILLIAM P.; KASHON, MICHAEL; HARPER, MARTIN

    2015-01-01

    A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins–Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ~9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2–8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to

  5. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.

    1991-01-01

    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.

  6. A Study of Hypersonic Compression-Corner Flow at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Vetlutsky, V. N.; Ganimedov, V. L.

    2002-07-01

    To numerically solve the problem for the ramp flow at high Reynolds number, it is justified to use the classical Prandtl model and to part the flow into an inviscid region and a thin boundary layer. This model is based on a rigorous asymptotic theory and describes the flow the more accurately, the higher the Reynolds number is. Since a flow separation in a compression corner may occur, the present work deals with unsteady boundary-layer equations. The approximation error in discretization of boundary-layer equations is always smaller than the value of viscid terms since the Reynolds number can be eliminated from the equations by a suitable substitution of variables. Besides, the requirement for the sufficient number of points in the cross-flow direction can be fulfilled in the case of middle-class computers since the solution is being built in a narrow near-wall region.

  7. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.; Vidoni, T. J.

    1991-01-01

    The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented.

  8. Two-dimensional streaming flows in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Dreeben, Thomas D.; Chini, Gregory P.

    2011-05-01

    High-intensity discharge (HID) lamps embody a practical application in which acoustically generated streaming flows are used to significantly improve energy efficiency. Streaming in these lamps is examined using finite-element simulations in conjunction with available experimental results on the basis of the assumption that the streaming motion is excited by two-dimensional acoustic standing waves. Neither the magnitude nor the direction of the time-averaged flows is adequately explained by existing theory. Consequently, a modified streaming analysis is proposed in which the fluctuating flow is driven by an oscillating pressure field rather by a moving boundary and convective terms in both the instantaneous and streaming flows are included. Density variations are also shown to be important to the generation of the observed and simulated streaming. This analysis highlights the differences between streaming flows in HID lamps and those described in canonical problems appearing elsewhere in the literature.

  9. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    SciTech Connect

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-08-15

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  10. High-resolution Impedance Manometry Measurement of Bolus Flow Time in Achalasia and its Correlation with Dysphagia

    PubMed Central

    Lin, Zhiyue; Carlson, Dusty; Dykstra, Kristina; Sternbach, Joel; Hungness, Eric; Kahrilas, Peter J.; Ciolino, Jody D.; Pandolfino, John E.

    2015-01-01

    Background We assessed whether a high-resolution impedance manometry (HRIM) metric, bolus flow time (BFT) across the esophagogastric junction (EGJ), was abnormal in achalasia patients subtyped by the Chicago Classification and compared BFT to other HRM metrics. Methods HRIM studies were performed in 60 achalasia patients (14 type I, 36 type II and 10 type III) and 15 healthy controls. Studies were analyzed with a MATLAB program to calculate BFT using a virtual HRIM sleeve. Integrated relaxation pressure (IRP) and basal end-expiratory EGJ pressure were also calculated. The relationship between BFT and dysphagia symptom scores was assessed using the impaction dysphagia questionnaire (IDQ). Key Results Median BFT was significantly lower in achalasia patients (0.5 s, range 0.0 to 3.5 s) compared to controls (3.5 s, range 2.0 to 5.0 s) (P<0.05). BFT was significantly lower in types I and II than in type III achalasia in both the supine and upright positions (p<0.0001). BFT was the only HRIM metric significantly associated with IDQ score in both the supine (R2 =0.20, p=0.0046) and upright positions (R2 =0.27, p=0.0002). Conclusions & Inferences BFT was significantly reduced in all subtypes of achalasia and complementary to the IRP as a diagnostic discriminant in equivocal achalasia cases. Additionally, BFT had a more robust correlation with dysphagia severity compared to other metrics of EGJ function. PMID:26088614

  11. Power flow in long MITLs with high-inductance loads

    SciTech Connect

    Poukey, J.W.; Mazarkis, M.G.

    1994-12-31

    The authors are using the 2-D TWOQUICK simulation code to study a system consisting of a voltage adder, a long magnetically-insulated transmission line (MITL), and a large-inductance load which includes a conducting foil (short circuit). The object of this work is to produce a voltage pulse of typically 10 MV and several hundred ns which travels down a MITL of about 10 meters length and 5--10 ohms vacuum impedance, and then couples efficiently to a load of a few hundred nH inductance. They discuss modeling issues such as the use of simple transmission lines for parts of the system, and methods for representing the load. Important physics issues include voltage-pulse erosion in long MITLs, effects of reflected waves from the highly overmatched load impedance, and energy fraction delivered to the load. They calculate electron losses in all parts of the system. Parameter variations of interest include input voltage waveform, adder geometry, MITL length and impedance, and loaded configuration and inductance. Comparisons with circuit models (SCREAMER) will be shown.

  12. High efficiency, down flow air filter sealing and support system

    SciTech Connect

    Mattison, A.H.

    1986-07-15

    An assembly of high efficiency air filter units through which essentially all air entering a clean space below the units must pass to remove particulate matter down to sub-micron size from the air, the assembly comprising: (a) a plurality of air filter units each having a filter core of pleated media sealed in air-tight engagement on four sides to a surrounding, box-like, rigid frame, having side and end members; (b) means for supporting the filter units adjacent the upper surfaces thereof from structure above the space with adjacent units having the side and end members thereof providing adjoining vertical surfaces in closely spaced relation with the lower surfaces of the units in essentially the same horizontal plane to form at least a portion of the top of the space; and (c) a caulking material filling all spaces between the adjoining vertical surfaces of adjacent filter units, effectively sealing the spaces and providing the sole means preventing passage of air around the units.

  13. High-Flow Carotid Cavernous Fistula and the Use of a Microvascular Plug System: Initial Experience

    PubMed Central

    Shwe, Yamin; Paramasivam, Srinivasan; Ortega-Gutierrez, Santiago; Altschul, David; Berenstein, Alejandro; Fifi, Johanna T.

    2015-01-01

    Purpose We report our initial experience using a detachable microvascular plug system to occlude the internal carotid artery during endovascular treatment of high-flow carotid cavernous fistula. Case and Technique An 87-year-old patient was admitted for acute-onset double vision with associated right-eye ptosis. Exam revealed a pupil-sparing, partial right third cranial nerve palsy. MRI showed a carotid cavernous fistula with high-flow drainage. Digital subtraction angiography showed a high-flow, right-sided, direct carotid cavernous fistula with flow from the proximal right internal carotid artery. The ophthalmic artery, posterior communicating artery and anterior communicating arteries supplied retrograde flow to the fistula through the internal carotid artery. Obliteration of the fistula was achieved through coil embolization in combination with proximal and distal microvascular plugs (Reverse Medical, Irvine, Calif., USA). Conclusion The microvascular plug is a new addition to current endovascular embolization devices for the treatment of high-flow, direct carotid cavernous fistulas. This technique offers easy navigability through tortuous arteries, precise localization and immediate occlusion, which may allow shorter procedure and fluoroscopy times and increased cost-effectiveness. Larger case series are needed to support our observation. PMID:26019711

  14. High surface topography related to upper mantle flow beneath Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Komut, Tolga

    2015-11-01

    Eastern Anatolia region between north-south colliding Arabian and Eurasian plates has no significant crustal root and shallow (upper) mantle flow beneath seems to be vertically supporting its high topography. It has a high surface heat flow and the underlying mantle is characterized by low seismic velocity zones. Using a mantle density/temperature variation field derived from P-wave seismic velocity, current shallow mantle flow and resultant dynamic topography of Eastern Anatolia and adjacent Arabian foreland and Caucasus areas were calculated along a vertical section. The section crosses the tectonic boundaries interrelated with slab bodies (high seismic velocity/cold regions) and the low velocity zones above the slabs. According to the modelling experiments, the surface topography of Eastern Anatolia seems to be supported by shallow mantle flow dynamics. On the other hand, residual topography for the region was calculated using high resolution crustal thickness data. Positive residual topography that suggests an undercompensated state of Eastern Anatolia is in concordance with the dynamic topography anomaly. The modelled local shallow mantle flow support due to the density contrast between hot (low velocity) zones and underlying cold slab bodies beneath the area may be the present-day snapshot of the mantle flow uplift in Eastern Anatolia presence of which was previously suggested.

  15. Review of numerical simulations for high-speed, turbulent cavity flows

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Barakos, G. N.

    2011-04-01

    High speed flows inside cavities are encountered in many aerospace applications including weapon bays of combat aircraft as well as landing gear. The flow field inside these cavities is associated with strong acoustic effects, unsteadiness and turbulence. With increasing emphasis on stealth operation of unmanned combat air vehicles and noise concerns near airports, cavity flows attracted the interest of many researchers in aerodynamics and aeroacoustics. Several attempts were made using wind tunnel experimentation and computational fluid dynamics analyses to understand the complex flow physics associated with cavity flows and alleviate their adverse effects via flow control. The problem proved to be complex, and current research revealed a very complex flow with several flow phenomena taking place. With the aid of experiments, CFD methods were validated and then used for simulations of several cavity configurations. The detached-eddy and large-eddy simulation methods proved invaluable for these studies and their application highlights the need for advanced turbulence simulation techniques in aerospace. The success of these methods and a summary of the current status of the experimental and computational progress over the past twenty years is summarised in this paper.

  16. Characterization of horizontal flows around solar pores from high-resolution time series of images

    NASA Astrophysics Data System (ADS)

    Vargas Domínguez, S.; de Vicente, A.; Bonet, J. A.; Martínez Pillet, V.

    2010-06-01

    Context. Though there is increasing evidence linking the moat flow and the Evershed flow along the penumbral filaments, there is not a clear consensus regarding the existence of a moat flow around umbral cores and pores, and the debate is still open. Solar pores appear to be a suitable scenario to test the moat-penumbra relation as they correspond to a direct interaction between the umbra and the convective plasma in the surrounding photosphere without any intermediate structure in between. Aims: We study solar pores based on high-resolution ground-based and satellite observations. Methods: Local correlation tracking techniques were applied to different-duration time series to analyze the horizontal flows around several solar pores. Results: Our results establish that the flows calculated from different solar pore observations are coherent among each other and show the determining and overall influence of exploding events in the granulation around the pores. We do not find any sign of moat-like flows surrounding solar pores, but a clearly defined region of inflows surrounding them. Conclusions: The connection between moat flows and flows associated to penumbral filaments is hereby reinforced.

  17. Simulation of three-dimensional shear flow around a nozzle-afterbody at high speeds

    SciTech Connect

    Baysal, O.; Hoffman, W.B. )

    1992-06-01

    In this paper, turbulent shear flows at supersonic and hypersonic speeds around a nozzle-afterbody are simulated. The three-dimensional, Reynolds-averaged Navier-Stokes equations are solved by a finite-volume and implicit method. The convective and the pressure terms are differenced by an upwind-biased algorithm. The effect of turbulence is incorporated by a modified Baldwin-Lomax eddy viscosity model. The success of the standard Baldwin-Lomax model for this flow type is shown by comparing it to a laminar case. These modifications made to the model are also shown to improve flow prediction when compared to the standard Baldwin-Lomax model. These modifications to the model reflect the effects of high compressibility, multiple walls, vortices near walls, and turbulent memory effects in the shear layer. This numerically simulated complex flowfield includes a supersonic duct flow, a hypersonic flow over an external double corner, a flow through a non-axisymmetric, internal-external nozzle, and a three-dimensional shear layer. The specific application is for the flow around the nozzle-afterbody of a generic hypersonic vehicle powered by a scramjet engine. The computed pressure distributions compared favorably with the experimentally obtained surface and off-surface flow surveys.

  18. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  19. Design and Implementation of a Characterization Test Rig for Evaluating High Bandwidth Liquid Fuel Flow Modulators

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.

    2010-01-01

    A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.

  20. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.