Science.gov

Sample records for aboard aircraft communicating

  1. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service... technical and licensing rules for Earth Stations Aboard Aircraft (ESAA), i.e., earth stations on aircraft...-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz (space-to-Earth or downlink) and 14.0-14.5 GHz...

  2. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... of Earth Stations Aboard Aircraft (ESAA) in the 14.0-14.5 GHz band from secondary to primary and... stations of the FSS on a primary basis in the 11.7-12.2 GHz band (space-to-Earth), on an unprotected...

  3. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... proposed rule that appeared in the Federal Register of March 8, 2013. The document proposed rules for...

  4. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission. ACTION... collection associated with the Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service rules for Earth Stations Aboard Aircraft (ESAA) communicating with...

  5. Facial nerve palsy aboard a commercial aircraft.

    PubMed

    Grossman, Alon; Ulanovski, David; Barenboim, Erez; Azaria, Bella; Goldstein, Liav

    2004-12-01

    Facial baroparesis is facial nerve palsy secondary to barotrauma. This phenomenon is frequently seen in divers, but is under-reported there and has rarely been described in aviators or passengers aboard commercial aircraft. We describe a 24-yr-old healthy aviator who experienced an episode of facial nerve palsy during ascent while traveling as a passenger aboard a commercial flight. The probable pathogenesis of this phenomenon in this case is described.

  6. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  7. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  8. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  9. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  10. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  11. Crewmen of the Gemini 7 spacecraft arrive aboard aircraft carrier

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts James A. Lovell Jr., (left), pilot, and Frank Borman, command pilot, are shown just after they arrived aboard the aircraft carrier U.S.S. Wasp. Greeting the astronauts are Donald Stullken (at Lovell's right), Recovery Operations Branch, Landing and Recovery Division; Dr. Howard Minners (standing beside Borman), Flight Medicine Branch, Cneter Medical Office, Manned Spacecraft Center, and Bennett James (standing behind Borman), a NASA Public Affairs Officer.

  12. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  13. 78 FR 77484 - Agency Information Collection Activities: Documents Required Aboard Private Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Documents Required Aboard Private Aircraft AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security... the Paperwork Reduction Act of 1995 (Pub. L. 104-13; 44 U.S.C. 3507). DATES: Written comments...

  14. 76 FR 76430 - Agency Information Collection Activities: Documents Required Aboard Private Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Documents Required Aboard Private Aircraft AGENCY: U.S. Customs and Border Protection, Department of Homeland Security...-0058. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security will...

  15. An analysis on the detection of biological contaminants aboard aircraft.

    PubMed

    Hwang, Grace M; DiCarlo, Anthony A; Lin, Gene C

    2011-01-17

    The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft.

  16. An Analysis on the Detection of Biological Contaminants Aboard Aircraft

    PubMed Central

    Hwang, Grace M.; DiCarlo, Anthony A.; Lin, Gene C.

    2011-01-01

    The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft. PMID:21264266

  17. Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Lachenmeier, T.; Hatfield, M. C.

    2014-12-01

    The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.

  18. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  19. Analysis of communication in the standard versus automated aircraft

    NASA Technical Reports Server (NTRS)

    Veinott, Elizabeth S.; Irwin, Cheryl M.

    1993-01-01

    Past research has shown crew communication patterns to be associated with overall crew performance, recent flight experience together, low-and high-error crew performance and personality variables. However, differences in communication patterns as a function of aircraft type and level of aircraft automation have not been fully addressed. Crew communications from ten MD-88 and twelve DC-9 crews were obtained during a full-mission simulation. In addition to large differences in overall amount of communication during the normal and abnormal phases of flight (DC-9 crews generating less speech than MD-88 crews), differences in specific speech categories were also found. Log-linear analyses also generated speaker-response patterns related to each aircraft type, although in future analyses these patterns will need to account for variations due to crew performance.

  20. 8 CFR 286.2 - Fee for arrival of passengers aboard commercial aircraft or commercial vessels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.2 Fee for arrival of passengers aboard..., per individual is charged and collected by the Commissioner for the immigration inspection of each... Act, per individual, is charged and collected by the Commissioner for the immigration inspection at...

  1. 8 CFR 286.2 - Fee for arrival of passengers aboard commercial aircraft or commercial vessels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.2 Fee for arrival of passengers aboard..., per individual is charged and collected by the Commissioner for the immigration inspection of each... Act, per individual, is charged and collected by the Commissioner for the immigration inspection at...

  2. 8 CFR 286.2 - Fee for arrival of passengers aboard commercial aircraft or commercial vessels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.2 Fee for arrival of passengers aboard..., per individual is charged and collected by the Commissioner for the immigration inspection of each... Act, per individual, is charged and collected by the Commissioner for the immigration inspection at...

  3. 8 CFR 286.2 - Fee for arrival of passengers aboard commercial aircraft or commercial vessels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.2 Fee for arrival of passengers aboard..., per individual is charged and collected by the Commissioner for the immigration inspection of each... Act, per individual, is charged and collected by the Commissioner for the immigration inspection at...

  4. 8 CFR 286.2 - Fee for arrival of passengers aboard commercial aircraft or commercial vessels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.2 Fee for arrival of passengers aboard..., per individual is charged and collected by the Commissioner for the immigration inspection of each... Act, per individual, is charged and collected by the Commissioner for the immigration inspection at...

  5. Measurements of total odd nitrogen (NOy) aboard MOZAIC in-service aircraft: instrument design, operation and performance

    NASA Astrophysics Data System (ADS)

    Volz-Thomas, A.; Berg, M.; Heil, T.; Houben, N.; Lerner, A.; Petrick, W.; Raak, D.; Pätz, H.-W.

    2005-02-01

    A small system for the unattended measurement of total odd nitrogen (NOy, i.e., the sum of NO and its atmospheric oxidation products) aboard civil in-service aircraft in the framework of MOZAIC is described. The instrument employs the detection of NO by its chemiluminescence with O3 in combination with catalytic conversion of the other NOy compounds to NO at 300°C on a gold surface in the presence of H2. The instrument has a sensitivity of 0.4-0.7cps/ppt and is designed for unattended operation during 1-2 service cycles of the aircraft (400-800 flight hours). The total weight is 50kg, including calibration system, compressed gases, mounting, and safety measures. The layout and inlet configuration are governed by requirements due to the certification for passenger aircraft. Laboratory tests are described regarding the conversion efficiency for NO2 and HNO3 (both >98%). Interference by non-NOy species is <1% for CH3CN and NH3, <5x10-5% for N2O (corresponding to <0.2ppt fake NOy from ambient N2O) and 100% for HCN. The time response of the instrument is <1s (90% change) for NO2. The response for HNO3 is nonlinear: 20s for 67%, 60s for 80%, and 150s for 90% response, respectively.

  6. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  7. Motion synchronization in unmanned aircrafts formation control with communication delays

    NASA Astrophysics Data System (ADS)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2013-03-01

    This paper proposes a formation control strategy for unmanned aircrafts using a virtual structure. Cross coupled sliding mode controllers are introduced to cope with uncertainties in the attitude measurement systems of the unmanned aircrafts and unmeasurable bounded external disturbances such as wind effects, and also to provide motion synchronization in the multi-agent system. This motion synchronization strategy improves the agents convergence to their desired positions, and this is useful for a multi-agent system with faulty agents. Moreover, the proposed motion synchronization strategy is not restricted to specific communication topologies, and sufficient conditions are provided to guarantee the multi-agent system stability in the presence of communication delays. Numerical simulations are presented for a team of five unmanned aircrafts to make a pentagon formation and confirm the accepted performance of the proposed control strategy.

  8. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  9. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  10. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz...

  11. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz...

  12. Life-Cycle Cost Analysis for Small Unmanned Aircraft Systems Deployed Aboard Coast Guard Cutters

    DTIC Science & Technology

    2013-12-09

    CONOPS Concept of Operations COTS Commercial Off-the-Shelf CRP Communication Relay Package CWO Chief Warrant Officer DAU Defense Acquisition...communication relay packages ( CRPs ) “to extend the range of terrestrial communication—primarily radios” (Cheney-Peters, 2013). This technology has...three practical applications. First, an sUAS with a CRP can extend line-of-sight communications and act as an additional medium to transmit and enhance

  13. Study of Hand-Held Fire Extinguishers Aboard Civil Aviation Aircraft.

    DTIC Science & Technology

    1982-06-01

    the Association of Flight Attendants ( AFA ); and the National Academy of Sciences. The Aircraft Owners and Pilots * Association (AOPA) was surveyed by...organizations such as the Association of Flight Attendants ( AFA ). Additional special reports exist in which specific carrier fire statistics are provided...utilize a replaceable solid AFFF cartridge housed in a special delivery nozzle (Figure 16) attached to a stainless steel tank charged with water. When

  14. The high-energy radiation dose received aboard aircraft exposed to a terrestrial gamma- ray flash

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Grefenstette, B. W.; Hazelton, B. J.

    2008-12-01

    Terrestrial gamma-ray flashes (TGF) are large bursts of high energy radiation observed from space that originate from our atmosphere. These millisecond long flashes of gamma-rays are often so bright that they saturate detectors, even from 600 km away. Several independent observations suggest that terrestrial gamma-ray flashes originate from thunderstorms deep within the atmosphere, near the altitudes where commercial aircraft fly. Based upon the flux of gamma-rays observed by the RHESSI spacecraft, detailed gamma-ray propagation models show that at least 1.0E17 energetic, multi-MeV electrons, are typically produced at the source. This large number of energetic electrons could potentially be a hazard for aircraft passengers, pilots and electronics. Using theoretical and observational estimates of the size of the TGF source region, we calculate the high-energy radiation dose from the energetic electrons and the gamma-rays for an aircraft exposed to the TGF from a close range. Finally, we shall discuss upcoming observations that will help constrain this radiation risk from TGFs.

  15. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  16. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  17. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  18. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  19. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Elkins, J. W.; Dutton, G. S.; Volk, C. M.; Webster, C. R.; May, R. D.; Fahey, D. W.; Gao, R.-S.; Loewenstein, M.

    1996-01-01

    We compare volume mixing ratio profiles of N2O, CFC-11, CFC-12, CCl4, SF6, and HCl in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov. 1994. Good agreement is found between ATMOS and in situ correlations of [CFC-11], [CFC-12], and [SF6] with [N2O]. ATMOS measurements of [CCl4] are 15% high compared to ER-2 data, but agree within the systematic uncertainties. ATMOS observations of [HCl] vs [N2O] are within approximately 10% of ER-2 data for [HCl] > 1 ppbv, but exceed in situ measurements by larger fractional amounts for smaller [HCl]. ATMOS measurements of [ClONO2] agree well with values inferred from in situ observations of [ClO], [NO], and [O3]. The sum of [HCl] and [ClONO2] observed by ATMOS, supplemented by a minor contribution from [ClO] estimated with a photochemical model, is consistent with the levels of inorganic chlorine inferred from in situ measurements of chlorine source gases.

  20. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  1. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  2. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  3. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  4. Predicted Performances of Power Line Communication in Aircraft

    NASA Astrophysics Data System (ADS)

    Degardin, V.; Junqua, I.; Lienard, M.; Degauque, P.; Bertuol, S.; Genoulaz, J.; Dunand, M.

    2012-05-01

    The possibility of using power line communication to transmit information in a large aircraft is studied. The communication link, which has been identified and chosen in the frame of the TAUPE European project, is the cabin lighting system since its tree shape and large structure allows covering most of the other possible applications. A statistical theoretical analysis, based on the multiconductor transmission line theory, has been carried out to determine the properties of the channel transfer function. This has been done in two steps: First a simplified network was considered to outline the parameters of the network geometry playing an important role on the path loss, and then by modelling a test bench which will be used as a demonstrator. The PLC link has been modelled for predicting data rate and bit error rate, taking the EMC constraints into account.

  5. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  6. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  7. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  8. Self-Directed Violence Aboard U.S. Navy Aircraft Carriers: An Examination of General and Shipboard-Specific Risk and Protective Factors.

    PubMed

    Saitzyk, Arlene; Vorm, Eric

    2016-04-01

    Self-directed violence (SDV), which includes suicidal ideation with and without intent, suicidal preparatory behaviors and attempts with and without harm, non-suicidal self-directed violence, and completed suicide, has been a rising concern in the military. Military shipboard personnel may represent a unique subset of this population due to the distinct nature of deployment stressors and embedded supports. As such, one might expect differences in the prevalence of SDV between this group and other active duty personnel, signifying a distinct operational impact. This study analyzed the prevalence of SDV among personnel assigned or deployed to U.S. Navy aircraft carriers, and examined whether occurrences varied by descriptors commonly identified in the literature (e.g., age, gender, marital status, pay grade/rank). This study also examined characteristics specific to life aboard a U.S. Navy aircraft carrier in order to better understand the issues particular to this population. Descriptive analyses and relative risk findings suggested similarities in demographic risk factors to the general military population, but also striking differences related to occupational specialty and assigned department. This study is the first to shed light on risk and protective factors relevant to shipboard personnel.

  9. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  10. A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.

  11. 14 CFR 135.161 - Communication and navigation equipment for aircraft operations under VFR over routes navigated by...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... aircraft is equipped with the two-way radio communication equipment necessary under normal operating... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... Communication and navigation equipment for aircraft operations under VFR over routes navigated by pilotage....

  12. Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments

    NASA Astrophysics Data System (ADS)

    Dixon, Cory

    This dissertation presents a decentralized gradient-based mobility control algorithm for the formation and maintenance of an optimal end-to-end communication chain using a team of unmanned aircraft acting as communication relays. With the use of unmanned aircraft (UA) as communication relays, a common mode of operation is to form a communication relay chain between a lead exploring node (which may be ground based or another UA) and a control station. In this type of operation the lead node is typically deployed to explore (sense) a remote region of interest that is beyond direct radio frequency (RF) communication range, or out of line-of-sight, to the control station. To provide non-line-of-sight service, and extend the communication range of the lead node, unmanned aircraft acting as communication relays are deployed in a convoy fashion behind the lead vehicle to form a cascaded relay chain. The focus of this work is the use of the mobility of a fixed number of relay aircraft to maximize the capacity of a directed communication chain from a source node to a destination node. Local objective functions are presented that use the signal-to-noise-and-interference ratio (SNIR) of neighbor communication links as inputs to maximize the end-to-end capacity of packet-based and repeater-type network chains. An adaptive gradient-based SNIR controller using the local objective function can show significant improvement in the capacity of the communication chain that is not possible with range-based controllers, or static deployment strategies, in RF environments containing unknown localized noise sources and terrain effects. Since the SNIR field is unknown, an online estimate of the SNIR field gradient is formed using methods of Stochastic Approximation from the orbital motion of the aircraft tracking a control point. Flight demonstrations using the Networked Unmanned Aircraft System Command, Control and Communications testbed were conducted to validate the controller

  13. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  14. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  15. Design and implementation of a Synthetic Aperture Radar for Open Skies (SAROS) aboard a C-135 aircraft

    SciTech Connect

    Cooper, D.W.; Murphy, M.; Rimmel, G.

    1994-08-01

    NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digital design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.

  16. The potential risk of communication media in conveying critical information in the aircraft maintenance organisation: a case study

    NASA Astrophysics Data System (ADS)

    Shukri, S. Ahmad; Millar, R. M.; Gratton, G.; Garner, M.

    2016-10-01

    In the world of aircraft maintenance organisation, verbal and written communication plays a pivotal role in transferring critical information in relation to aircraft safety and efficiency. The communication media used to convey the critical information between departments at an aircraft maintenance organisation have potential risk in misunderstanding of the information. In this study, technical and non-technical personnel from five different departments at an aircraft maintenance organisation were interviewed on the communication media they normally utilised to communicate six different work procedures that are closely related to aircraft safety and efficiency. This is to discover which communication media pose higher risk in misunderstanding critical information. The findings reveal that written communication pose higher risk of misinterpretation compared with verbal communication when conveying critical information between departments.

  17. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  18. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  19. A conformal SHF phased array for aircraft satellite communication

    NASA Astrophysics Data System (ADS)

    Cummings, R.; Kudrna, K.

    1984-03-01

    A receive-only 7.5 GHz microstrip phased array has been developed by Ball Aerospace Systems Division (BASD). This 256 radiating element array provides a gain of 20 dBic over a conical scan region of 120 deg. Two arrays with one on either side of an aircraft would provide near hemispherical coverage. The array consists of four subarrays and can be expanded to achieve higher gain when required. The array is left-hand circularly polarized and has three-bit digital PIN diode phase shifters for steering the beam. A microprocessor-based beam steering controller is used for calculating the phase shifter settings for each beam position. Each subarray includes radiating elements, quadrature hybrids, phase shifters, corporate feed, R.F. chokes in microstrip medium and hybrid PIN diode drivers. The array is approximately 1.5 inches thick and is conformal to the aircraft skin. It is a bolt on assembly only requiring aircraft skin entries for the R.F. output and for control lines. Transmit capability can be provided by merely changing the artwork to go to 8.5 GHz.

  20. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  1. Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.

    2005-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.

  2. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport and Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; Margitan, J. J.; Fahey, D. W.; Gao, R.-S.; Kelly, K. K.; Elkins, J. W.; Webster, C. R.; May, R. D.; Chan, K. R.; Abbas, M. M.; Goldman, A.

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y), H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of (N2O) show good agreement, as do measured correlations of (O3), (NO(y)), (H2O), and (CH4) with (N2O). Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of (NO(y)) determined by detection of individual species by ATMOS and the total (NOy) measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric (CO) observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  3. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; Margitan, J. J.; Fahey, D. W.; Gao, R.-S.; Kelly, K. K.; Elkins, J. W.; Webster, C. R.; May, R. D.; Chan, K. R.; Abbas, M. M.; Goldman, A.

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y) H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of [N2O] show good agreement, as do measured correlations of [O3], [NO(y)], [H2O], and [CH4] with [N2O]. Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of [NO(y)] determined by detection of individual species by ATMOS and the total [NO(y)] measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric [CO] observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  4. Analytic and subjective assessments of operator workload imposed by communications tasks in transport aircraft

    NASA Technical Reports Server (NTRS)

    Eckel, J. S.; Crabtree, M. S.

    1984-01-01

    Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.

  5. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  6. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  7. Comparative Assessment of Aircraft-to-Weapon Communication Systems

    DTIC Science & Technology

    1971-12-01

    44 0 w w r-4 -4...4 -r4 Z LU w p 004 a 0 0 %V r-f LU 4 0 .r 0. 0 r4 -4 , 44 .0 -W -r4 0 0- W -4 r4 $4 - 0U w ,4 J 04., Ř r4 0c -W "J W ,. -4 rM 4W LU...Q-4HWg0 440Ŕ 0 . 0 LUw Ř Z LU 0 LU LU P 0 p LU LU w LU 0 0 0 Z 00u 0 -4L W ’ C4 C*4 C1 4 M~ CqJ CqJ M~ MU M C 4 ~ - 04j an U) -4- -4 E - 0 L u -4L...Confidential). Final Report Gontract N60162-68-C-0077 Industrial Nucleonics February 1969 6 A. P . Morgan Aircraft/weapon digital fuze selection sys ter. TTCP

  8. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  9. Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the

  10. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  11. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  12. Simulative Analysis of an Inter-aircraft Optical Wireless Communication System Using Amplifier

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-03-01

    In this paper, the simulative analysis of an inter-aircraft optical wireless communication (IaOWC) system has been presented using different system parameters and the performance of the system has been enhanced by the application of EDFA amplifier at the receiver end. A link range of 110 km at 2.5 Gbps has been achieved with same BER performance resulting in the performance enhancement of 47 % when compared to previous detection mechanism.

  13. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  14. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  15. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    NASA Technical Reports Server (NTRS)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  16. Why aircraft disinsection?

    PubMed

    Gratz, N G; Steffen, R; Cocksedge, W

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described.

  17. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  18. Group 12 ASCANs Davis and Jemison during zero gravity training aboard KC-135

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Group 12, 1987 Astronaut Class, candidates (ASCANs) N. Jan Davis (left) and Mae C. Jemison freefloat during the seconds of microgravity created aboard the KC-135 NASA 930 aircraft's parabolic flight. Davis and Jemison two of the recently-named ASCANs take a familiarization flight aboard the KC-135 'zero gravity' aircraft.

  19. Carrier Landing Parameters from Survey 45, Fleet and Training Command Aircraft Landing Aboard USS ENTERPRISE CVN-65 (Appendices B Through R)

    DTIC Science & Technology

    1991-12-01

    nu B-3 NADC-91124-0 MODEL F-14A AIRCRAFT USS ENTERPRISE (CVN-65) DAY LANDINGS FRESNEL LENS SETTING-3.50 DEGREES (.061 RADIANS) N-158 X-27.85 KNOTS...ENTERPRISE (CVN-65) DAY LANDINGS FRESNEL LENS SETTING-3.50 DEGREES (.061 RADIANS) N-158 1-27.85 KNOTS (14.32 METRES/SEC) A3-.38 S-3.39 KNOTS (1.74 XETRES...AIRCRAFT USS ENTERPRISE (CVN-65) DAY LANDINGS FRESNEL LENS SETTING-3.50 DEGREES (.061 RADIANS) N-158 1-140.43 KNOTS (72.24 METRES/SEC) A3--.01 8-4.03 KNOTS

  20. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  1. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  2. The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Otten, D. D.; Garabedian, A.; Morrison, D. D.; MALLINCKRODT; ZIPPER

    1970-01-01

    The objective was to determine on a priority basis the satellite applications to communications, navigation, and surveillance requirements for aircraft operating beyond 1975 over the contiguous United States and adjacent oceanic transition regions, and to determine if and how satellite technology can meet these requirements in a reliable, efficient, and economical manner. Major results and conclusions are as follows: (1) The satellite applications of greatest importance are surveillance and rapid collision warning communications; and (2) The necessary technology is available as demonstrated by an attractive system concept.

  3. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  4. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful...

  5. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful...

  6. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful...

  7. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful...

  8. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful...

  9. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if the apparatus used is of such design and is so operated as to be capable of producing and in fact...

  10. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if the apparatus used is of such design and is so operated as to be capable of producing and in fact...

  11. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if the apparatus used is of such design and is so operated as to be capable of producing and in fact...

  12. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  13. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  14. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  15. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  16. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  17. Concept for Multiple-Access Free-Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A design concept for a proposed airborne or spaceborne free-space optical-communication terminal provides for simultaneous reception of signals from multiple other opticalcommunication terminals aboard aircraft or spacecraft that carry scientific instruments and fly at lower altitudes. The concept reflects the need for rapid acquisition and tracking of the signals coming from the lower-altitude terminals as they move across the field of view.

  18. Gemini 12 crew receive Official welcome aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, receive Official welcome as they arrive aboard the aircraft carrier U.S.S. Wasp after their splashdown at the end of the Gemini 12 mission.

  19. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  20. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  1. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  2. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  3. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  4. Replacement of Asbestos Aboard Naval Aircraft.

    DTIC Science & Technology

    1981-11-10

    Facing Woven, containing asbestos yarn , tape, or cloth Nonwoven-dutch lining, transnission lining Asbestos-Cement Materials Flat sheets and wallboard, all...Siding shingles and clapboard, including aoccesorlas Roofing shingles Asbets Textiles Yarn , cord, and thread Cloth Other asbestos textiles. including...is further processed into two- ply yarn for weaving into Fiberfrax cloth, tape, and sleeving. Fiberfrax textiles have good insulating ability to

  5. Electromagnetic compatibility fundamentals applied to spacecraft radio communication systems

    NASA Technical Reports Server (NTRS)

    Haber, F.; Celebiler, M.; Weil-Malherbe, C.

    1971-01-01

    A design guide for minimizing electromagnetic interference in aerospace communication equipment for ground stations is presented. Specifically treated are the mechanisms of generating unwanted radio emissions that may affect station operations as well as other communications services, the mechanisms by which sensitive receivers become susceptible to interference, means for reducing interference, standard methods of measurement, and the problems of site selection. The sources of interference are viewed primarily as originating from communications transmitters aboard spacecraft and aircraft, ground transmitters within and outside the ground stations, and other electrical sources on the ground that are not intended to radiate.

  6. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  7. Astronaut Harrison Schmitt participates in simulation aboard KC-135

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt, lunar module pilot of the Apollo 17 lunar landing mission, simulates preparing to deploy the Surface Electrical Properties Experiment during lunar surface extravehicular activity (EVA) simulation training under one-sixth gravity conditions aboard a U.S. Air Force KC-135 aircraft.

  8. Gemini 12 crew arrives aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    A happy Gemini 12 prime crew arrives aboard the aircraft carrier, U.S.S. Wasp. Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, had just been picked up from the splashdown area by helicopter.

  9. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  10. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  11. Gemini 4 astronauts relax aboard Navy helicopter after recovery

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 astronauts, James A. McDivitt (right), command pilot, and Edward H. White II, (left), pilot, relax aboard a U.S. Navy helicopter on their way to the aircraft carrier U.S.S. Wasp after recovery from the Gemini 4 spacecraft. They had been picked up out of the Atlantic Ocean following a successful splashdown (33532); White (left) and McDivitt listen to the voice of President Lyndon B. Johnson as he congratulated them by telephone on the successful mission. They are shown aboard the carrier U.S.S. Wasp just after their recovery (33533).

  12. 47 CFR 90.423 - Operation on board aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  13. 47 CFR 90.423 - Operation on board aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  14. 47 CFR 90.423 - Operation on board aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  15. 47 CFR 90.423 - Operation on board aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  16. 47 CFR 90.423 - Operation on board aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  17. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  18. High-performance two-axis gimbal system for free space laser communications onboard unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Locke, Michael; Czarnomski, Mariusz; Qadir, Ashraf; Setness, Brock; Baer, Nicolai; Meyer, Jennifer; Semke, William H.

    2011-03-01

    A custom designed and manufactured gimbal with a wide field-of-view and fast response time is developed. This enhanced custom design is a 24 volt system with integrated motor controllers and drivers which offers a full 180o fieldof- view in both azimuth and elevation; this provides a more continuous tracking capability as well as increased velocities of up to 479° per second. The addition of active high-frequency vibration control, to complement the passive vibration isolation system, is also in development. The ultimate goal of this research is to achieve affordable, reliable, and secure air-to-air laser communications between two separate remotely piloted aircraft. As a proof-of-concept, the practical implementation of an air-to-ground laserbased video communications payload system flown by a small Unmanned Aerial Vehicle (UAV) will be demonstrated. A numerical tracking algorithm has been written, tested, and used to aim the airborne laser transmitter at a stationary ground-based receiver with known GPS coordinates; however, further refinement of the tracking capabilities is dependent on an improved gimbal design for precision pointing of the airborne laser transmitter. The current gimbal pointing system is a two-axis, commercial-off-the-shelf component, which is limited in both range and velocity. The current design is capable of 360o of pan and 78o of tilt at a velocity of 60o per second. The control algorithm used for aiming the gimbal is executed on a PC-104 format embedded computer onboard the payload to accurately track a stationary ground-based receiver. This algorithm autonomously calculates a line-of-sight vector in real-time by using the UAV autopilot's Differential Global Positioning System (DGPS) which provides latitude, longitude, and altitude and Inertial Measurement Unit (IMU) which provides the roll, pitch, and yaw data, along with the known Global Positioning System (GPS) location of the ground-based photodiode array receiver.

  19. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  20. Development of NASA's Space Communications and Navigation Test Bed Aboard ISS to Investigate SDR, On-Board Networking and Navigation Technologies

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.

    2010-01-01

    NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.

  1. Digital Autonomous Terminal Access Communication (DATAC) system

    NASA Technical Reports Server (NTRS)

    Novacki, Stanley M., III

    1987-01-01

    In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.

  2. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  3. Space Station Live: ISS Communications Unit Upgrade

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

  4. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  5. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  6. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  7. Gemini 12 crew cut cake aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    A happy Gemini 12 prime crew slice a cake made aboard the aircraft carrier, U.S.S. Wasp. Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, had just been picked up from the splashdown area by helicopter.

  8. Gemini 9-A astronauts welcomed aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Thomas Stafford and Eugene Cernan (right) receive a warm welcome as they arrive aboard the prime recovery ship, the aircraft carrier U.S.S. Wasp. John C. Stonesifer, with the Manned Spacecraft Center's Landing and Recovery Division, stands next to microphone at left. The Gemini 9 spacecraft can be seen in the right background of the view.

  9. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  10. Observing the Great Plains Low-Level Jet Using the Aircraft Communications Addressing and Reporting System (ACARS): A Comparison with Boundary Layer Profiler Observations

    NASA Astrophysics Data System (ADS)

    Skinner, P. S.; Basu, S.

    2009-12-01

    Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.

  11. Communications

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald D.

    1990-01-01

    Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.

  12. Communication.

    ERIC Educational Resources Information Center

    Hancock, Alan

    An informal introduction to the study of communication deals with the major topics in the field. It presents basic theories of communication and language, reviews how language takes on meaning, explains the stimulus-response and Piaget theories of learning, and presents major theories dealing with communications and society. These theories include…

  13. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  14. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  15. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  16. Communicate!

    ERIC Educational Resources Information Center

    Chase, Stuart

    This ten chapter book is designed to provide high school students with an understanding of basic communication processes. The first five chapters include discussions of language development, function, and acquisition in relation to both human and non-human communication. The sixth chapter contains specimen linguistic analyses of speech and…

  17. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Claims Act or Suits in Admiralty Act. If you are killed aboard a military aircraft, your family may be... status of a particular flight, you should contact the agency sponsoring the flight. You and your family... exclude coverage for injuries or death sustained while traveling aboard a Government or military...

  18. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  19. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  20. 42 CFR 71.44 - Disinsection of aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  1. 42 CFR 71.44 - Disinsection of aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  2. 42 CFR 71.44 - Disinsection of aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  3. 42 CFR 71.44 - Disinsection of aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  4. 42 CFR 71.44 - Disinsection of aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  5. Review Article: Influenza Transmission on Aircraft

    PubMed Central

    Adlhoch, Cornelia

    2016-01-01

    Background: Air travel is associated with the spread of influenza through infected passengers and potentially through in-flight transmission. Contact tracing after exposure to influenza is not performed systematically. We performed a systematic literature review to evaluate the evidence for influenza transmission aboard aircraft. Methods: Using PubMed and EMBASE databases, we identified and critically appraised identified records to assess the evidence of such transmission to passengers seated in close proximity to the index cases. We also developed a bias assessment tool to evaluate the quality of evidence provided in the retrieved studies. Results: We identified 14 peer-reviewed publications describing contact tracing of passengers after possible exposure to influenza virus aboard an aircraft. Contact tracing during the initial phase of the influenza A(H1N1)pdm09 pandemic was described in 11 publications. The studies describe the follow-up of 2,165 (51%) of 4,252 traceable passengers. Altogether, 163 secondary cases were identified resulting in an overall secondary attack rate among traced passengers of 7.5%. Of these secondary cases, 68 (42%) were seated within two rows of the index case. Conclusion: We found an overall moderate quality of evidence for transmission of influenza virus aboard an aircraft. The major limiting factor was the comparability of the studies. A majority of secondary cases was identified at a greater distance than two rows from the index case. A standardized approach for initiating, conducting, and reporting contact tracing could help to increase the evidence base for better assessing influenza transmission aboard aircraft. PMID:27253070

  6. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  7. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  8. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  9. Clear Sky Column Closure Studies of Urban-Marine and Mineral-Dust Aerosols Using Aircraft, Ship, Satellite and Ground-Based Measurements in ACE-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Russell, Philip B.; Livingston, John M.; Gasso, Santiago; Hegg, Dean A.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Oestroem, Elisabeth; Noone, Kevin J.; Durkee, Philip A.; Jonsson, Haflidi H.; Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paola; Andreae, Meinrat O.; Kapustin, Vladimir N.; Bates, Timothy S.; Quinn, Patricia K.

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2), European urban-marine and African mineral-dust aerosols were measured aboard the Pelican aircraft, the Research Vessel Vodyanitskiy from the ground and from satellites.

  10. Structural Analysis of the QCM Aboard the ER-2

    NASA Technical Reports Server (NTRS)

    Jones, Phyllis D.; Bainum, Peter M.; Xing, Guangqian

    1997-01-01

    As a result of recent supersonic transport (SST) studies on the effect they may have on the atmosphere, several experiments have been proposed to capture and evaluate samples of the stratosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000 - 70,000 feet. The ER-2 is primarily used by NASA for Earth resources to test new sensor systems before they are placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. Some of the experiments are designed to extract data from the atmosphere around the ER-2. For the current flight experiment, the QCM is housed in a frame that is connected to an outer pod that is attached to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM is a frequency induced instrument. Therefore, a structural analysis of the instrument within the frame is imperative to determine if resonance and/or undesirable deformations occur.

  11. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  12. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  13. Monte Carlo calculation of the radiation field at aircraft altitudes.

    PubMed

    Roesler, S; Heinrich, W; Schraube, H

    2002-01-01

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.

  14. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  15. Communications

    NASA Technical Reports Server (NTRS)

    Bonelle, G. J.

    1984-01-01

    Communications in any system is one of the last technologies to be considered, and sometimes it is considered too late to impact the system. This was somewhat the impression on reviewing the NASA budget for two mission scenarios for the space station. However, that budget fortunately was well spent, and the money was spent to get the most benefit per dollar. Another thing that is very often forgotten is that technology is not produced in a vacuum. In fact, in conducting independent research and development (IR&D), the first phase is to define the requirements which must be time phased, becuase very often the conditions will change during the life of the system. From the requirements, a set of architectures that are at least representative of that era are produced. If the exact requirements were not established, at least boundaries are set on the requirements for that architecture. When this is completed, then the technology that is really needed is defined. The major criticism of the work that was presented to the panel is the lack of a firm set of requirements.

  16. Aircraft and satellite thermographic systems for wildfire mapping and assessment

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Myers, J. S.

    1987-01-01

    Two complementary sensors, the DAEDALUS DEI-1260 Multispectral Scanner aboard the NASA U-2 aircraft and the Advanced Very High Resolution Radiometer aboard National Oceanographic and Atmospheric Administration orbiting satellites were tested for their applicability in monitoring and predicting parameters such as fire location, temperature and rate of spread, soil heating and cooling rates, and plume characteristics and dimensions. In addition, the satellite system was tested for its ability to extend the relationships found between fire characteristics and biospheric consequences to regional and global scales. An overall system design is presented, and special requirements are documented for the application of this system for fire research and management.

  17. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  18. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  19. Aircraft Electronics Maintenance Training Simulator. Curriculum Outlines.

    ERIC Educational Resources Information Center

    Blackhawk Technical Coll., Janesville, WI.

    Instructional materials are provided for nine courses in an aircraft electronics maintenance training program. Courses are as follows: aviation basic electricity, direct current and alternating current electronics, basic avionic installations, analog electronics, digital electronics, microcomputer electronics, radio communications, aircraft…

  20. Airworthiness Standards for Civil Aircraft of the USSR.

    DTIC Science & Technology

    requirements of the International Civil Aviation Organization ( ICAO ) presented in Appendices 8 (’Airworthiness of Aircraft’), 6 (’Operation of Aircraft...8217) and 10 (’Aviation Electrical Communication’) to the Chicago Convention of 1944. In connection with this, the aircraft which satisfy the requirements of NLGS-2 will simultaneously meet the standards of the ICAO .

  1. Aircraft recognition and tracking device

    NASA Astrophysics Data System (ADS)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  2. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  3. Electromagnetic Propagation Prediction Inside Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Hankins, Genevieve; Vahala, Linda; Beggs, John H.

    2004-01-01

    Electromagnetic propagation models for signal strength prediction within aircraft cabins are essential for evaluating and designing a wireless communication system to be implemented onboard aircraft. A model was developed using Wireless Valley's SitePlanner; which is commercial grade software intended for predictions within office buildings. The performance of the model was evaluated through a comparison with test data measurements taken on several aircraft. The comparison concluded that the model can accurately predict power propagation within the cabin. This model can enhance researchers understanding of power propagation within aircraft cabins and will aid in future research.

  4. Astronauts Schirra and Stafford welcomed aboard the U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Walter M. Schirra Jr. (shaking hands) and Thomas P. Stafford received an Official welcome as they arrive aboard the aircraft carrier U.S.S. Wasp following their 25 hour 52 minute mission in space. The three Navy officers greeting the astronauts are (left to right) Vice Admiral Charles E. Weakley, commander of the Antisubmarine Warfare Force of the Atlantic Fleet; Rear Admiral William E. Leonard, commander of Antisubmarine Task Group Bravo, of which the Wasp is the flagship; and Capt. G.E. Hartley, commander of the Wasp.

  5. Briefcase Communicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo at bottom right, a U.S. Park Police officer is demonstrating a battery-powered communications system, sufficiently compact to be packed in a briefcase-size container, which can send and receive signals over great distances by means of satellite relay. Key to the system's efficacy is the high-powered transmitting and receiving equipment aboard such NASA satellites as the Applications Technology Satellite6 (ATS-6) and the joint U.S.-Canadian Communications Technology Satellite (CTS); this enables the briefcase communicator to pick up satellite-relayed signals by means of the small hook-on antenna shown instead of the more elaborate-ground equipment customarily needed. Developed by NASA's Goddard Space Flight Center, the communicator is intended for use in emergency situations. It has utility, for example, in disasters, such as floods and hurricanes, where power failure disrupts conventional communications; for on-the-spot transmissions from major accident sites; or in remote areas where no other means of communication exists

  6. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  7. Optics in aircraft engines

    NASA Astrophysics Data System (ADS)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  8. Repair and maintenance of fiber optic data links on Navy aircraft

    NASA Astrophysics Data System (ADS)

    Fryland, Eric

    1992-02-01

    This paper will examine the problems and concerns of repairing fiber optic data links on carrier based Navy aircraft and will present the results of fiber optic splice testing that was performed aboard the USS Abraham Lincoln (CVN-72) in January 1991. Mechanical splicing of 50/125 micrometer fiber was performed at the various Navy maintenance levels in order to quantify the effects of the aircraft carrier environment on fiber optic splicing. Results, conclusions and recommendations will be given.

  9. STDN network operations procedure for Apollo range instrumentation aircraft, revision 1

    NASA Technical Reports Server (NTRS)

    Vette, A. R.; Pfeiffer, W. A.

    1972-01-01

    The Apollo range instrumentation aircraft (ARIA) fleet which consists of four EC-135N aircraft used for Apollo communication support is discussed. The ARIA aircraft are used to provide coverage of lunar missions, earth orbit missions, command module/service module separation to spacecraft landing, and assist in recovery operations. Descriptions of ARIA aircraft, capabilities, and instrumentation are included.

  10. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  11. Sun sensing guidance system for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. D. (Principal Investigator)

    1982-01-01

    A sun sensing guidance system for high altitude aircraft is described. The system is characterized by a disk shaped body mounted for rotation aboard the aircraft in exposed relation to solar radiation. The system also has a plurality of mutually isolated chambers; each chamber being characterized by an opening having a photosensor disposed therein and arranged in facing relation with the opening for receiving incident solar radiation and responsively providing a voltage output. Photosensors are connected in paired relation through a bridge circuit for providing heading error signals in response to detected imbalances in intensities of solar radiation.

  12. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  13. Digital, Satellite-Based Aeronautical Communication

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  14. Aircraft Corrosion

    DTIC Science & Technology

    1981-08-01

    chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont...IATA member airlines at $100 million based on 1976 operations. Thus the numbers are large, but detailed analyses on specific aircraft types, in known...demonstrate this in any quantitative way with accurate figures. Better information is required on the cost of corrosion, together with analyses of the

  15. Aircraft Ducting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.

  16. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  17. Pathfinder-Plus aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  18. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  19. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  20. 14 CFR 91.711 - Special rules for foreign civil aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... VFR operations which require two-way radio communications under this part unless at least one crewmember of that aircraft is able to conduct two-way radio communications in the English language and is on...— (1) That aircraft is equipped with— (i) Radio equipment allowing two-way radio communication with...

  1. STS-26 infrared communications flight experiment (IRCFE) developer J. Prather

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Aerospace communications technologist Joseph L. Prather is pictured with the infrared communications flight experiment (IRCFE) which will fly aboard Discovery, Orbiter Vehicle (OV) 103, on STS-26. Prather has worked on communications using infrared light, rather than radio waves, since he started at JSC as a cooperative education student in 1981. His work and research led to the development of the experiment.

  2. Aircraft earth station for experimental mobile satellite system

    NASA Astrophysics Data System (ADS)

    Ohmori, S.; Hase, Y.; Kosaka, K.; Tanaka, M.

    A mobile satellite communication system, which can provide high quality service for small ships and aircraft, has been studied in Japan. This system is scheduled to be carried into experimental and evaluation phase in 1987, when a geostationary satellite (ETS-V) is launched by a Japanese rocket. This paper describes an aircraft earth station, which can establish telephone communication links for passengers on board the aircraft. The new technologies, especially an airborne phased array antenna, are developed. This is the first development in the world in mobile satellite communication areas.

  3. Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe

    2016-11-01

    The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.

  4. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  5. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  6. Shipboard trials of the Quiet Short-Haul Research Aircraft /QSRA/

    NASA Technical Reports Server (NTRS)

    Martin, J. L.; Strickland, P. B.

    1980-01-01

    The feasibility of the application of advanced state-of-the-art high lift STOL aircraft in the aircraft carrier environment was evaluated using the NASA Quiet Short-Haul Research Aircraft (QSRA). The QSRA made repeated unarrested landings and free deck takeoffs from the USS Kitty Hawk while being flown by three pilots of significant different backgrounds. The exercise demonstrated that the USB propulsive lift technology presents no unusual problems in the aircraft carrier environment. Optimum parameters for landing the QSRA were determined from the shore-based program; these proved satisfactory during operations aboard ship. Correlation of shipboard experience with shore-based data indicates that both free deck takeoffs and unarrested landings could be conducted with zero to 35 knots of wind across the deck of an aircraft carrier the size of the USS Kitty Hawk.

  7. 11. Interior view of communications compartment. View toward rear of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of communications compartment. View toward rear of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  8. 10. Interior view of communications compartment. View toward front of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view of communications compartment. View toward front of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  9. Mechanistic studies of polymeric samples exposed aboard STS 8

    NASA Technical Reports Server (NTRS)

    Liang, Ranty H.; Gupta, Amitava; Chung, Shirley Y.; Oda, Keri L.

    1987-01-01

    The early Shuttle flights and the attendant opportunity to deploy material samples to the near-Earth space environment, along well-defined trajectories and accompanied by detailed characterization of these samples prior to and following the flight exposure, have brought to light several novel phenomena associated with interaction of these materials with the space environment. JPL, in coordination with other NASA Centers, has carried out a research program to study the degradation and oxidation processes caused by interaction of these materials with atomic oxygen at an energy of 5 eV. In addition, energetic atomic oxygen is believed to be responsible for the shuttle glow first observed during the flight of STS-3. The shuttle glow phenomenon has been extensively studied and modeled because of its long-range potential impact on optical communication schemes and its more immediate impact on the Space Telescope. This report summarizes the results of certian material degradation and erosion experiments carried out aboard STS-8 between August 30, 1983 and September 5, 1983. Based on these data, a generic degradation model has been developed for common structural polymers.

  10. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  11. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  12. Handbook of aircraft noise metrics

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Pearsons, K. S.

    1981-01-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  13. A Case for Hypogravity Studies Aboard ISS

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2014-01-01

    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent

  14. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.

    2015-01-01

    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  15. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  16. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  17. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  18. Aircraft Integration and Flight Testing of 4STAR

    SciTech Connect

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  19. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  20. The vibro-acoustic mapping of low gravity trajectories on a Learjet aircraft

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Sutliff, T. J.

    1990-01-01

    Terrestrial low gravity research techniques have been employed to gain a more thorough understanding of basic science and technology concepts. One technique frequently used involves flying parabolic trajectories aboard the NASA Lewis Research Center Learjet aircraft. A measurement program was developed to support an isolation system conceptual design. This program primarily was intended to measure time correlated high frequency accelerations (up to 100 Hz) present at various locations throughout the Learjet during a series of trajectories and flights. As suspected, the measurements obtained revealed that the environment aboard such an aircraft can not simply be described in terms of the static level low gravity g vector obtained, but that it also must account for both rigid body and high frequency vibro-acoustic dynamics.

  1. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  2. System Safety in Aircraft Acquisition

    DTIC Science & Technology

    1984-01-01

    principal purpose is the prevention of accidents or deaths/ injuries related thereto. Until a recent meeting cosponsored by SOHP and OUSDRE, communication...results in preventing the loss of a single aircraft ML.214/9OV 83 ($15 million for the AH-64, $25 million for the F-18, $200 million for the B-1B). - An...acquisition program. There- fore, it is essential to have interest and support of system safety by "off-line" management at levels high enough to be effective

  3. Cyberinfrastructure for Aircraft Mission Support

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  4. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  5. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  6. The Effects of Cold Exposure on Wet Aircraft Passengers: A Review

    DTIC Science & Technology

    1994-05-01

    lation. AnnualRex. Physiol. 35:391-430, 1973. 6 9. Therminarias A., Flore P., Oddou-Chirpaz M.F., 13. Guyton A.C. The autonomic nevous system ; the Gharib C...spray system (CWSS) aboard commercial passenger aircraft has been suggested as a mechanism of reducing passenger death and injury from the fire and...exposure as well as the degree of protection provided to the individual, particularly the cardiorespiratory system , by CWSS would need to be fully

  7. Communications payloads for geostationary platforms

    NASA Technical Reports Server (NTRS)

    Fordyce, S. W.

    1978-01-01

    Trends in communication satellites show increasing reuse of the frequency spectrum through multiple spot beams and orthogonal polarization, as well as consortia operation. Current reliance on orbital arc separation for frequency reuse may be inadequate for the projected traffic growth and the orbital slotting proposals before the ITU. This paper notes that cost advantages can accrue through common use of spacecraft subsystems and multiple users' platforms aboard a common geostationary platform. The rationale for such platforms is described and potential payloads are suggested.

  8. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  9. Lunar Laser Communication System

    DTIC Science & Technology

    2014-10-01

    an uplink rate to the moon 5000 times that of radio tech- nology. The LLCS, flown aboard NASA’s Lunar Atmosphere and Dust Environment Explorer...NASA’s Lunar Atmosphere and Dust Envi- ronment Explorer spacecraft. Above, the LLCS’s ground terminal was deployed at White Sands, N.M., for the...OCT 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Lunar Laser Communication System 5a. CONTRACT NUMBER 5b

  10. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  11. Data Communications Over Aircraft Power Lines

    DTIC Science & Technology

    2005-06-01

    independent subchannels . These subchannels are carefully spaced such that their frequencies are orthogonal to each other. Figure 6 shows such a signal spectrum...Each subcarrier is located on all the other subchannels ’ spectra zero crossing points. By sampling at the subchannel’s center frequency, spectral...frequency division multiplexing (FDM) used in cable TV and analog radio broadcast, the aggregate bandwidth must be divided into numerous subchannels , with

  12. Mercury exposure aboard an ore boat.

    PubMed

    Roach, Richard R; Busch, Stephanie

    2004-06-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard.

  13. Monitoring Disasters by Use of Instrumented Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

    2009-01-01

    Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case

  14. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  15. Aircraft Survivability. Spring 2009

    DTIC Science & Technology

    2009-01-01

    Surviving an Aircraft Crash with Airbag Restraintsby Thomas Barth Inflatable restraint solutions have improved the survivability of commercial...Surviving an Aircraft Crash with Airbag Restraints by Thomas Barth Transport Aircraft Interiors The AmSafe Aviation Airbag entered service on commercial...all night.” Keithley also noted that, in his early days at BRL, Walt teamed up with a group of like-minded innovators, including Jim Foulk, Roland

  16. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  17. Requirements for the protection against aircraft noise.

    PubMed

    Wende, H; Ortscheid, J

    2004-01-01

    In preparation of the revised edition of the Air Traffic Noise Act the Federal Environmental Agency formulated targets for aircraft noise control. They were prepared oriented to the Federal Immission Control Act. The assessment periods were chosen analogously to the regulations on other traffic noise sources (rail traffic, road traffic). The control targets cover the following affected areas * aural, extra-aural health * night's sleep * annoyance * communication * recreation Considerable nuisance can be avoided by limiting the exposure to aircraft noise(outside) to equivalent levels below 55 dB(A) by day and 45 dB(A) at night, and impairment of health can be avoided by limiting the exposure to aircraft noise (outside) to equivalent levels below 60 dB(A) by day and 50 dB(A) at night.

  18. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  19. Structureborne noise in aircraft

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Metcalf, V. L.

    1987-01-01

    The amount of noise reaching an aircraft's interior by structureborne paths, when high levels of other noises are present, involves the measurement of transfer functions between vibrating levels on the wing and interior noise. The magnitude of the structureborne noise transfer function is established by exciting the aircraft with an electrodynamic shaker; a second transfer function is measured using the same sensor locations with the aircraft engines operating. Attention is given to the case of a twin-turboprop OV-10A aircraft; the resulting transfer function values at the discrete frequencies corresponding to the propeller blade passage frequency and its first four harmonics are tabulated and illustrated.

  20. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  1. 14 CFR 93.153 - Communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... International Airport, unless that person has established two-way radio communications with the Ketchikan Flight... two-way radio communications failure occurs in flight, a person may operate an aircraft within the... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Communications. 93.153 Section...

  2. Aircraft Communication and Navigation Systems and Communication and Navigation Systems

    DTIC Science & Technology

    1994-01-01

    Specialty Training Standards) and to gain a better understanding of current utilization patterns. The above terminology will be used in the discussion...team member duties 82 C83 Evaluate subordina" e compliance with work standards 82 C82 Evaluate subordinates! compliance with perfomance standarts 82

  3. Measurements of Optical Turbulence Parameters Aboard the Aircraft Carrier USS LEXINGTON.

    DTIC Science & Technology

    1982-09-30

    EFFECTS ON SHIP-TO-SHIP TRACKER PERFORMANCE ...... 10 E. FREQUENCY SPECTRA OF MICROTHERMAL FLUCTUATIONS ............. 13 9. CONCLUSIONS...in Fig. 2. It consisted of a Contel model MT-2 microthermal unit with modified probe system as discussed below, a RMS log amplifier, a HP 59313A 2 oI...probe system provided with the Contel system(4 ) was replaced with the probe assembly built for use in the Harris microthermal probe system(5 ). The

  4. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  5. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  6. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  7. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  8. Predicting Aircraft Availability

    DTIC Science & Technology

    2013-06-01

    ENS- GRP -13-J-2 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY Mark A. Chapa

  9. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  10. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  11. ``Out To Sea: Life as a Crew Member Aboard a Geologic Research Ship'' - Production of a Video and Teachers Guide.

    NASA Astrophysics Data System (ADS)

    Rack, F. R.; Tauxe, K.

    2004-12-01

    In May 2002, Joint Oceanographic Institutions (JOI) received a proposal entitled "Motivating Middle School Students with the JOIDES Resolution", from a middle school teacher in New Mexico named Katie Tauxe. Katie was a former Marine Technician who has worked aboard the R/V JOIDES Resolution in the early years of the Ocean Drilling Program (ODP). She proposed to engage the interest of middle school students using the ODP drillship as the centerpiece of a presentation focused on the lives of the people who work aboard the ship and the excitement of science communicated through an active shipboard experience. The proposal asked for travel funds to and from the ship, the loan of video camera equipment from JOI, and a small amount of funding to cover expendable supplies, video editing, and production at the local Public Broadcasting Station in Los Alamos, NM. Katie sailed on the transit of the JOIDES Resolution through the Panama Canal, following the completion of ODP Leg 206 in late 2002. This presentation will focus on the outcome of this video production effort, which is a 19 minute-long video entitled "Out to Sea: Life as a Crew Member Aboard a Geologic Research Ship", and a teacher's guide that can be found online.

  12. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  13. Emergency communications via airborne communications node

    NASA Astrophysics Data System (ADS)

    Niessen, Charles W.

    1997-02-01

    Natural disasters such as floods, hurricanes, and earthquakes invariably result in disruption of the commercial communications infrastructure and can severely impede the delivery of emergency services by local and federal agencies. In addition, the public's inability to communicate with commercial service providers can substantially slow the recovery process. Since wide-spread destruction of communications plant and distribution systems takes a long time to rebuild, an attractive alternative would be to provide communications connectivity through an airborne platform configured as a communication node. From a high altitude, a single aircraft could provide line of sight connectivity between users that are not within line of sight of each other, and could relay communications through ground or satellite gateways to the national PSTN. This capability could be used to substitute for multiple base stations for fire and police as well as military relief workers using their normal mobile communications gear. The airborne platform could also serve as a wide area base station to replace cellular phone towers that have been destroyed; this would enable civilian access to communications services from existing cellular phones, but could also be used by relief workers carrying low-cost commercial handsets. This paper examines the technical methods for achieving these goals, identifies the equipment needed on the airborne platform, and discusses the performance that could be expected.

  14. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  15. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  16. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  17. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  18. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  19. Microwave imaging of aircraft

    NASA Astrophysics Data System (ADS)

    Steinberg, Bernard D.

    1988-12-01

    Three methods of imaging aircraft from the ground with microwave radar with quality suitable for aircraft target recognition are described. The imaging methods are based on a self-calibration procedure called adaptive beamforming that compensates for the severe geometric distortion inherent in any imaging system that is large enough to achieve the high angular resolution necessary for two-dimensional target imaging. The signal processing algorithm is described and X-band (3-cm)-wavelength experiments demonstrate its success on commercial aircraft flying into Philadelphia International Airport.

  20. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  1. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  2. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  3. The Communicative Relevancies of Instrument Flight; A Technologically Contingent World.

    ERIC Educational Resources Information Center

    McCoy, Claire Elaine

    The success and safety of flight in actual instrument conditions is dependent upon the communicative competency of the individuals involved. The more obvious elements of communication involved include crew coordination and communication both verbal and nonverbal, aircraft and ground communication links, pilot interpretation of verbally and…

  4. Camera aboard 'Friendship 7' photographs John Glenn during spaceflight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    A camera aboard the 'Friendship 7' Mercury spacecraft photographs Astronaut John H. Glenn Jr. during the Mercury-Atlas 6 spaceflight (00302-3); Photographs Glenn as he uses a photometer to view the sun during sunsent on the MA-6 space flight (00304).

  5. Environmental Factors in the Onset of Illness Aboard Navy Ships.

    DTIC Science & Technology

    1979-02-01

    this paper are those of the authors. No endorsement by the Department of the Navy has been given or should be inferred. •* Environmental & Social ... Medicine Department, Naval Health Research Center, P.O. Box 85122, San Diego, CA 92138-9174. Environmental Factors in the Onset of Illness Aboard Navy Ships

  6. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  8. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  9. Pollution reducing aircraft propulsion

    SciTech Connect

    Tamura, R. M.

    1985-05-28

    Aircraft engine exhaust is mixed with air and fuel and recombusted. Air is drawn into the secondary combustion chamber from suction surfaces on wings. Exhaust of the secondary combustion chamber is blown over wing and fuselage surfaces.

  10. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  11. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  12. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  13. Depreciation of aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  14. Aircraft Morphing program

    NASA Astrophysics Data System (ADS)

    Wlezien, Richard W.; Horner, Garnett C.; McGowan, Anna-Maria R.; Padula, Sharon L.; Scott, Michael A.; Silcox, Richard J.; Harrison, Joycelyn S.

    1998-06-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest-payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  15. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  16. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  17. Aircraft Survivability. Spring 2011

    DTIC Science & Technology

    2011-01-01

    advancing and applying technology to predict, evaluate , and improve combat survivability of US flight vehicles. John graduated from the University of...support for most of the aircraft and anti-aircraft programs conducted to date under LFT&E statutory requirements. A number of these test and evaluation ...initiatives to improve the state-of-the-art of LFT&E, to place greater emphasis on the evaluation of human casualties, to integrate Battle Damage

  18. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  19. A new device for communication systems

    NASA Technical Reports Server (NTRS)

    Beck, R. R.

    1972-01-01

    A communication device and modulation capability were developed for the transmission of digital data or voices from point to point. This device is a fast-switching phase coherent frequency synthesizer. When this synthesizer is appropriately incorporated in a communication system it can provide interference resistance, multiple-user capability, user identification, ranging, navigation, Doppler correction, and digitized communication (voice and data). The application of this device to aircraft/airport complex and law enforcement communications is discussed.

  20. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    its ability to operate beyond the 1-to-2-meter precisions associated with commercial runway width. A prototype ILS-type system operates at millimeter-wave frequencies to provide automatic and robust approach control for aerial refueling. The system allows for the coupling process to remain completely autonomous, as a boom operator is no longer required. Operating beyond 100 GHz provides enough resolution and a narrow enough beamwidth that an approach corridor of centimeter scales can be maintained. Two modules were used to accomplish this task. The first module is a localizer/glide-slope module that can be fitted on a refueling aircraft. This module provides the navigation beams for aligning the approaching aircraft. The second module is navigational receiver fitted onto the approaching aircraft to be re fueled that can detect the approach beams. Since unmanned aircraft have a limited payload size and limited electrical power, the receiver portion was implemented in CMOS (complementary metal oxide semiconductor) technology based on a super-regenerative receiver (SRR) architecture. The SRR achieves mW-level power consumption and chip sizes less than l mm2. While super-regenerative techniques have small bandwidths that limit use in communication systems, their advantages of high sensitivity, low complexity, and low power make them ideal in this situation where modulating tones of less than 1 kHz are used.

  1. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  2. Automatic aircraft recognition

    NASA Astrophysics Data System (ADS)

    Hmam, Hatem; Kim, Jijoong

    2002-08-01

    Automatic aircraft recognition is very complex because of clutter, shadows, clouds, self-occlusion and degraded imaging conditions. This paper presents an aircraft recognition system, which assumes from the start that the image is possibly degraded, and implements a number of strategies to overcome edge fragmentation and distortion. The current vision system employs a bottom up approach, where recognition begins by locating image primitives (e.g., lines and corners), which are then combined in an incremental fashion into larger sets of line groupings using knowledge about aircraft, as viewed from a generic viewpoint. Knowledge about aircraft is represented in the form of whole/part shape description and the connectedness property, and is embedded in production rules, which primarily aim at finding instances of the aircraft parts in the image and checking the connectedness property between the parts. Once a match is found, a confidence score is assigned and as evidence in support of an aircraft interpretation is accumulated, the score is increased proportionally. Finally a selection of the resulting image interpretations with the highest scores, is subjected to competition tests, and only non-ambiguous interpretations are allowed to survive. Experimental results demonstrating the effectiveness of the current recognition system are given.

  3. Second INTELSAT IV-A communications satellite set for launch

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The scheduled launching of INTELSAT 4-A is announced. It is a commercial communications satellite to be launched aboard an Atlas/Centaur Launch Vehicle from the Kennedy Space Center, Fla. The satellite has the capability of carrying approximately 6250 two-way telephone conversations.

  4. Reference earth orbital research and applications investigations (blue book). Volume 5: Communications/navigation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design and development of a communications/navigation facility for operation aboard space stations and space shuttles are discussed. The objectives of the facility are as follows: (1) to develop and demonstrate satellite and spacecraft technology applicable to space communications, navigation, and traffic control, (2) to optimize the use of the electromagnetic spectrum for communications and navigation satellite systems, and (3) to provide fundamental understanding of the space communications and navigation sciences to permit application of this discipline to government and industry.

  5. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  6. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  7. On comparison of modeled surface flux variations to aircraft observations.

    SciTech Connect

    Song, J.; Wesely, M. L.; Environmental Research; Northern Illinois Univ.

    2003-07-30

    Evaluation of models of air-surface exchange is facilitated by an accurate match of areas simulated with those seen by micrometeorological flux measurements. Here, spatial variations in fluxes estimated with the parameterized subgrid-scale surface (PASS) flux model were compared to flux variations seen aboard aircraft above the Walnut River Watershed (WRW) in Kansas. Despite interference by atmospheric eddies, the areas where the modeled sensible and latent heat fluxes were most highly correlated with the aircraft flux estimates were upwind of the flight segments. To assess whether applying a footprint function to the surface values would improve the model evaluation, a two-dimensional correlation distribution was used to identify the locations and relative importance of contributing modeled surface pixels upwind of each segment of the flight path. The agreement between modeled surface fluxes and aircraft measurements was improved when upwind fluxes were weighted with an optimized footprint parameter {var_phi}, which can be estimated from wind profiler data and surface eddy covariance. Variations of the flight-observed flux were consistently greater than those modeled at the surface, perhaps because of the smoothing effect of using 1 km pixels in the model. In addition, limited flight legs prevented sufficient filtering of the effects of atmospheric convection, possibly accounting for some of the more prominent changes in fluxes measured along the flight paths.

  8. Pathfinder aircraft returning from a flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71

  9. Commercial aircraft repatriation of patients with pneumothorax.

    PubMed

    Duchateau, Francois-Xavier; Legrand, Jean-Michel; Verner, Laurent; Brady, William J

    2013-01-01

    The transfer of patients with a pneumothorax via a commercial airline involves many medical, aeronautic, and regulatory considerations. In an attempt to further investigate these issues, we reviewed the medical records of 32 patient cases with a pneumothorax who were repatriated on commercial aircrafts. Sixteen patients were transferred with the thoracostomy tube in place and were escorted by medical personnel at an average of 5 days (interquartile range [IQR], 4-7 days) from diagnosis. Five patients without initial intercostal drainage (who either showed very limited air collection or underwent immediate surgical treatment) were all escorted by a physician at an average of 24 days (IQR, 18-25 days) of diagnosis. Eleven patients were transferred without medical escort aboard a commercial flight after removal of the chest tube at an average of 15 days (IQR, 9-17 days) of the diagnosis. This case review suggests that physicians recommend and follow markedly different management plans for the patient with a pneumothorax who is being transferred nonurgently by a commercial airliner. This differing practice management also is noted in the various existing specialty and industry guidelines, which are not evidence based; our review shows that poor agreement exists not only in these various guidelines but also among medical practitioners.

  10. Throughput and delay characteristics for a slow-frequency hopped aircraft-to-aircraft packet radio network

    NASA Astrophysics Data System (ADS)

    Harrison, Scott Russell

    1990-03-01

    Current lack of data transfer capability between tactical aircraft results in decreased mission effectiveness or the need to equip every aircraft with all the sensors and data processing equipment to perform each task expected of them. In the Air Force, these developments established the need for aircraft-to-aircraft data communications so that navigation, threat and targeting information could be shared within a flight and so that digital voice communications could also be maintained. Data rates within a flight of fighter aircraft to support these requirements will need to be between 100 and 250 kilobits/second (KBPS) and between 2.4 KBPS and 16 KBPS between the flight and a command and control aircraft. Other sources place the former figure as high as 512 KBPS. To increase the security of these radio channels, against both jamming and intrusion, anti-jam and low probability of interception (LPI) techniques must be used. One method of achieving these capabilities is to use spread spectrum techniques such as frequency hopping. The Air Force is currently concentrating its efforts around the Joint Tactical Information Distribution System (JTIDS).

  11. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  12. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  13. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  14. Aircraft noise synthesis system

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Grandle, Robert E.

    1987-02-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  15. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  16. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  17. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  18. NASA balloon: Aircraft ranging, data and voice experiment

    NASA Technical Reports Server (NTRS)

    Wishna, S.; Hamby, C.; Reed, D.

    1972-01-01

    A series of tests to evaluate, at L-band, the ranging, voice, and data communications concepts proposed for the air traffic control experiment of the Applications Technology Satellite-F are described. The ground station facilities, balloon platforms and the aircraft were supplied by the European Space Research Organization. One ground simulation and two aircraft flights at low elevation angles were conducted. Even under high interference conditions good performance was obtained for both voice communications and side tone ranging. High bit errors occurred in the data channels resulting in false commands. As a result of the experience gained in operating the equipment in an aircraft environment several recommendations were made for improving the equipment performance.

  19. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  20. First results from the GPS atmospheric remote sensing experiment TOR aboard TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Beyerle, G.; Grunwaldt, L.; Heise, S.; Köhler, W.; Schmidt, T.; Choi, K.-R.; Michalak, G.; König, R.; Rothacher, M.; Wickert, J.

    2009-04-01

    The TerraSAR-X satellite was launched on 15 June 2007 into a sun-synchronous orbit at an altitude of about 514 km and about 98 ° orbit inclination. In addition to synthetic aperture radar and laser communication payloads, TerraSAR-X accommodates the Tracking, Occultation and Ranging (TOR) experiment. TOR's hardware consists of the Integrated Geodetic and Occultation Receiver (IGOR) and a laser retro-reflector for Satellite Laser Ranging (SLR). IGOR, a dual frequency, geodetic-grade GPS receiver instrument, provides signal-to-noise ratios, pseudorange and carrier phase observations of an occulting and a reference satellite at sampling rates of up to 50 Hz for remote sensing of atmospheric refractivity using the radio occultation (RO) technique. For precise orbit determination pseudorange and carrier phase data from all satellites in view are sampled at 0.1 Hz. Three brief RO tests were conducted with TOR in 2007; a 32-day campaign was performed in January/February 2008 and from 25 July to 17 November 2008 occultation events were recorded continuously for 117 days. We describe first results from an analysis of about 19.000 setting radio occultation events observed during that last campaign. Atmospheric refractivity profiles derived from TOR data are intercompared with ECMWF analyses; ECMWF analysis data are interpolated to the time and location of the RO measurement. At altitudes of about 2-25 km the mean fractional refractivity bias with respect to ECMWF is less than ±0.5%, its standard deviation varies between 0.5% and 1% in the altitude range 5-20 km increasing to about 2% at altitudes below 5 km and above 20 km. Unlike the RO receivers aboard the CHAMP and GRACE satellites the IGOR aboard TerraSAR-X employs an open-loop tracking technique to improve L1 carrier phase tracking at altitudes below 5 to 6 km. Consistent with earlier findings from the COSMIC constellation, open-loop tracking significantly reduces the 50%-altitude, the tangent point altitude which is

  1. Inflatable Reflector For Solar Power And Radio Communication

    NASA Technical Reports Server (NTRS)

    Sercel, Joel; Gilchriest, Carl; Ewell, Rich; Herman, Martin; Rascoe, Daniel L.; Nesmith, Bill J.

    1995-01-01

    Report proposes installation of lightweight inflatable reflector structure aboard spacecraft required to both derive power from sunlight and communicate with Earth by radio when apparent position of Earth is at manageably small angle from line of sight to Sun. Structure contains large-aperture paraboloidal reflector aimed toward Sun and concentrates sunlight onto photovoltaic power converter and acts as main reflector of spacecraft radio-communication system.

  2. Commercial aircraft noise

    NASA Astrophysics Data System (ADS)

    Smith, M. J.

    The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.

  3. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  4. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  5. Aircraft Design Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The helicopter pictured is the twin-turbine S-76, produced by Sikorsky Aircraft division of United Technologies, Stratford, Connecticut. It is the first transport helicopter ever dey n e d purely as a commercial vehicle rather than an adaptation of a military design. Being built in large numbers for customers in 16 countries, the S-76 is intended for offshore oil rig support, executive transportation and general utility service. The craft carries 12 passengers plus a crew of two and has a range of more than 450 miles-yet it weighs less than 10,000 pounds. Significant weight reduction was achieved by use of composite materials, which are generally lighter but stronger than conventional aircraft materials. NASA composite technology played a part in development of the S-76. Under contract with NASA's Langley Research Center, Sikorsky Aircraft designed and flight-tested a helicopter airframe of advanced composite materials.

  6. Shigellosis at sea: an outbreak aboard a passenger cruise ship.

    PubMed

    Merson, M H; Tenney, J H; Meyers, J D; Wood, B T; Wells, J G; Rymzo, W; Cline, B; DeWitt, W E; Skaliy, P; Mallison, F

    1975-02-01

    Between June 23 and June 30, 1973, 90% of 650 passengers and at least 35% of 299 crew members experienced a diarrheal illness during a 7-day Caribbean cruise aboard a passenger cruise liner. Symptoms were consistent with shigellosis, and Shigella flexneri 6, Boyd 88 biotype, was isolated from rectal swabs taken from 8 to 35 ill passengers and 33 of 294 crew members. Epidemiologic evidence incriminated the ship's water, including ice, as the probable vehicle of transmission, and elevated coliform counts were found in potable water samples obtained aboard the vessel at the peak of the outbreak. Potential sources of contamination of the vessel's potable water supply were investigated, and improvements in the loading and chlorination of potable water were recommended.

  7. Atmospheric Electricity - Aircraft Interaction

    DTIC Science & Technology

    1980-05-01

    flux may leak inside the aircraft through apertures such as windows , radomes. canopies, seams, and joints. Other fields may arise inside the aircraft...fields of other origins are considered. The third type of c-"pling involves electric fields passing directly through aper- tures, such as windows or...Transistors Microwave Diodes Low Power Transistors 0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100 Damage Constant. K Damage Constant. K Figure 29 - Ranges

  8. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  9. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  10. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  11. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  12. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  13. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  14. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  15. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  16. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  17. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  18. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  19. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  20. Aircraft Data of the Rodeo/Chediski Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New images of Arizona's Rodeo-Chediski wildfire, which according to news reports is the largest in the state's history, have been acquired by NASA's MODIS Airborne Simulator flying aboard the space agency's ER-2 aircraft. The images show the extent of the burn area-now more than 450,000 acres-and pinpoint areas of active burning as of the morning of July 1. The images below include both true-color images and false-color images designed to highlight the burned areas. They were acquired during a transit of the ER-2 aircraft from NASA's Dryden Flight Research Center, Edwards, Calif. to Key West Naval Air Facility, Fla. in preparation for an upcoming field experiment. The newly acquired wildfire images will be used to validate rapid response wildfire maps produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft. They will also be provided to the U.S. Forest Service for potential use in post-fire damage assessments. The false-color image (top) shows the southern portion of the fire, and reveals that not all the terrain within the fire's perimeter burned to the same degree. Burned areas are red and remaining vegetation is green. In the center of the image, the bright orange pixels are actively burning fire, and the smoke drifting southward from the blaze appears blue. Burned area at the top of the true-color image (bottom) appears charcoal, and a smoke plume drifting southwest from the center of the image reveals the location of actively burning fire. See more images at MODIS Airborne Simulator Images of the Rodeo/Chediski Fire, Arizona and the Earth Observatory's Natural Hazards section. Images courtesy of MODIS Airborne Simulator ER-2 team, NASA GSFC and NASA Dryden Flight Research Center

  1. Aircraft Fuel Systems Career Ladder.

    DTIC Science & Technology

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  2. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  3. An Investigation of Nonlinear Controller for Propulsion Controlled Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    Aircraft control systems are usually very reliable because of redundancy and multiple control surfaces. However, there are rare occasions when potentially disastrous flight control system failures do occur. At such times, the use of appropriate modulation of engine thrust to stabilize the aircraft may be the only chance of survival for the people aboard. In several cases where complete loss of control systems has occurred in multi-engine aircraft, pilots used the propulsion system to regain limited control of the aircraft with various degrees of success. In order to evaluate the feasibility of using only engine thrust modulation for emergency backup flight control, the NASA Dryden Flight Research Center has been conducting a series of analytical studies and flight tests on several different types of aircraft in a propulsion controlled aircraft (PCA) program. Simulation studies have included B-720, B-727, MD-11, C-402, C-17, F-18, and F-15, and flight tests have included B-747, B-777, MD-11, T-39, Lear 24, F-18, F-15, T-38, and PA-30. One objective was to determine the degree of control available with manual manipulation (open-loop) of the engine throttles. Flight tests and simulations soon showed that a closed loop controller could improve the chances of making a safe runway landing. The major work to date has concentrated on three aircraft (F-15, F-18, and the MD-11). Successful landings using PCA controllers were performed on the F-15 and MD-11 without the use of control surfaces. During the course of the research, some unique challenges have been identified. Compared to the conventional flight control surfaces, the engines are slow and have limited control effectiveness. Hence the ability of the system to promptly respond to aerodynamic changes is limited. Consequently, many nonlinear effects, which are easily accommodated by a conventional flight control system, become significant issues in the design of an effective controller when the engines are used as the

  4. Robustness of mission plans for unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  5. Multimission Aircraft Design Study, Payload

    DTIC Science & Technology

    2003-03-01

    number MC2A Multisensor Command and Control Aircraft MC2A-X Multisensor Command and Control Aircraft Experiment MIDS Multifunctional Information and...reconnaissance (ISR) fleet. The MMA is alternately designated as the Multisensor Command and Control Aircraft (MC2A) as indicated in this text. Figure

  6. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  7. Aircraft family design using enhanced collaborative optimization

    NASA Astrophysics Data System (ADS)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  8. Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.

    1996-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.

  9. Comparison of ozone measurement techniques using aircraft, balloon, and ground-based measurements

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Reck, G. M.

    1977-01-01

    In order to verify the ultraviolet absorption technique used in the Global Atmospheric Sampling Program, two flight experiments were conducted employing several techniques, both in situ and remote, for measuring atmospheric ozone. The first experiment used the NASA CV-990 equipped with an ultraviolet absorption ozone monitor and an ultraviolet spectrophotometer, a balloon ozonesonde, and a Dobson station for determining and comparing the ozone concentration data. A second experiment compared ozone data from an automated sampling system aboard a B-747 with data from a manned system installed on the NASA CV-990 during a cross-country flight with both aircraft following the same flight path separated by 32 kilometers.

  10. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  11. Aircraft to Medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video discusses how the technology of computer modeling can improve the design and durability of artificial joints for human joint replacement surgery. Also, ultrasound, originally used to detect structural flaws in aircraft, can also be used to quickly assess the severity of a burn patient's injuries, thus aiding the healing process.

  12. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1993-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  13. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1988-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  14. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  15. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  16. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  17. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  18. Aircraft Wheel Life Assessment

    DTIC Science & Technology

    1993-07-01

    responsible for a significant amount of aircraft dam - age. Many such wheel failures have been catastrophic, resulting in a sudden loss of tire inflation...Fatigue Crack Growth," Fatigue and Fracture in Engineering Materials and Structures, Vol. 10, 419-428, 1987. Cox, B. N., Pardee , W., and Morris, W. L

  19. A small terminal for satellite communication systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Wu, Dong; Jin, Min

    1994-01-01

    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization.

  20. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  1. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  2. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  3. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by

  4. Onboard connectivity network for command-and-control aircraft

    NASA Astrophysics Data System (ADS)

    Artz, Timothy J.

    1993-02-01

    Command and control (C2) aircraft are host to an array of communications, information processing, and electronic control systems. The previous method of interconnecting this equipment involves point-to-point wiring harnesses between devices. A fiber optic broadband bus can be used to improve this situation by consolidating equipment connections on a shared medium. This network, known as the Onboard Connectivity Network (OCN), is being prototypes for application on the U.S. Government's Special Air Mission aircraft. Significant weight reduction and simplified future systems integration are the primary benefits of the OCN. The OCN design integrates voice, data, control, and video communications on a 3GHZ single mode fiber backbone. Communications within the aircraft use 500 MHz coaxial cable subnetworks connected to the backbone. The entire network is a dual redundant system for enhanced reliability. Node topologies are based on VMEbus to encourage use of commercial products and facilitate future evolution of the backbone topology. Network encryption technologies are being developed for OCN communications security. Automated workstations will be implemented to control and switch communications assets and to provide a technical control, test, and monitoring function.

  5. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  6. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  7. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  8. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  9. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  10. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States Coast Guard, aircraft, aircraft engines, and ground flight simulators, including...

  11. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  12. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  13. Transracial Communication.

    ERIC Educational Resources Information Center

    Smith, Arthur L.

    This book explores and explains communication among different racial groups within the scope of existing communication theory. Following a brief introduction, chapters cover "Directions in Transracial Communication" (definitions, process, structurization, and purpose); "Culture and Transracial Communication" (a viewpoint on…

  14. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  15. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  16. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  17. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  18. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  19. Aircraft Survivability. Fall 2011

    DTIC Science & Technology

    2011-01-01

    Aircraft Survivability Program (JASP) Short Course was held 17-20 May at the Naval Postgraduate School (NPS) in Monterey, CA. 52 students attended the...Postgraduate School where he earned his MBA in Financial Management. Jimmy earned his BS in General Science from the United States Naval Academy...Answering these questions requires credible threat models supported by high -fidelity test characterizations of the MANPADS missile threat. Based on

  20. X-29: Research Aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A preliminary look at the Ames Dryden Flight Research Center in the context of the X-29 aircraft is provided. The uses of the X-29's 30 deg forward swept wing are examined. The video highlights the historical development of the forward swept wing, and its unique blend of speed, agility, and slow flight potential. The central optimization of the wing, the forward canard, and the rear flaps by an onboard flight computer is also described.

  1. Aircraft Survivability. Summer 2011

    DTIC Science & Technology

    2011-01-01

    Survivability Program Office SUMMER 2011 craShworthineSS & personnel casualties Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Aircraft Survivability is published three times a year by the Joint...and stroking seats. The knowledge gained from studying Vietnam crash data was consolidated into the Crash Survival Design Guide (CSDG), which

  2. Electrical Thermometers for Aircraft

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Womack, S H J

    1937-01-01

    Electrical thermometers commonly used on aircraft are the thermoelectric type for measuring engine-cylinder temperatures, the resistance type for measuring air temperatures, and the superheat meters of thermoelectric and resistance types for use on airships. These instruments are described and their advantages and disadvantages enumerated. Methods of testing these instruments and the performance to be expected from each are discussed. The field testing of engine-cylinder thermometers is treated in detail.

  3. Aircraft EMP Isolation Study.

    DTIC Science & Technology

    1980-07-01

    also influence the formation of streamers. If electrons are swept away from the electrode surface , additional electrons must leave the surface , if...presented. The dielectric materials to be used in the proposed solutions are discussed. In order to simulate the electromagnetic pulse (EMP) of a nuclear...structure. Therefore, the flashover to ground of the aircraft structure (at the point of the sharp projection) depends on the amplitude and pulse shape of the

  4. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  5. Autonomic function testing aboard the ISS using “PNEUMOCARD”

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Funtova, I. I.; Diedrich, A.; Chernikova, A. G.; Drescher, J.; Baranov, V. M.; Tank, J.

    2009-10-01

    Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the "ISS" have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device "Pneumocard" was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex "Pneumocard" was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates. HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight. Our results demonstrate that autonomic function testing aboard the ISS using "Pneumocard" is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut. Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant

  6. Photolysis frequency measurements aboard Zeppelin NT during PEGASOS 2012/13

    NASA Astrophysics Data System (ADS)

    Lohse, Insa; Bohn, Birger; Bachner, Mathias; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Airborne measurements of the solar spectral actinic flux densities for the determination of photolysis frequencies in the atmosphere were performed as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). We present the instrumentation and characterisation of the spectroradiometer systems operated aboard the Zeppelin NT airship and photolysis frequency data obtained in field campaigns in 2012 and 2013. Separate measurements of the upwelling and downwelling components of the actinic flux densities were performed with two instruments covering together a 4π-sr field of view. Since deviations from the ideal 2π-sr angular response of each actinic flux receiver can lead to over- or underestimations of the measured photolysis frequencies, detailed angular sensitivities of the two optical receivers were determined in the laboratory. The influence of the non-ideal behaviour on the photolysis frequency measurements was investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factor were derived. This method is also applicable for other research aircraft operating at higher altitudes. Measurements of the solar actinic flux densities were performed in the wavelength range from 280 - 650 nm with a spectral resolution of about 2 nm and averaged over 3 s. An overview is shown of photolysis frequency data (O3, HNO3, HCHO, H2O2, HNO2, NO2 and NO3) obtained in the atmospheric boundary layer during the PEGASOS campaigns in the Netherlands, Italy 2012 and Finland 2013. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated as well as their influence on the photochemical processing of trace gases. Moreover the instrumentation allows for estimations of height depending spectral albedos. Acknowledgement: Funding by the Deutsche Forschungsgemeinschaft within the

  7. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  8. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days.

  9. Application of SSNTDs in radiobiological investigations aboard recoverable satellites.

    PubMed

    Huang, R Q; Gu, R Q; Li, Q

    1997-01-01

    In recent years some Biostack experiments including a wide spectrum of biological objects have been devoted to study of the radiobiological effects on dry seeds aboard recoverable satellites. Some impressive phenomena have been observed. Clearly, the large amount of energy deposited by the highly ionizing heavy nuclei of cosmic rays is the principal reason for the induced aberrations of the chromosomes of wheat root tip cells. A methodical description of the experimental arrangement and procedure of handling and evaluation of given. The preliminary physical and biological results from the experimental "wheat seeds" are presented.

  10. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  11. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA s Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing an aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in realtime in a sequence similar to what would occur in the NAS. The ATC applications that can be studied are the Aeronautical Telecommunications Network s (ATN) Context Management (CM) and Controller Pilot Data Link Communications (CPDLC). The Surveillance applications are Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B).

  12. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  13. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  14. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  15. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  16. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  17. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety....

  18. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  19. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety....

  20. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  1. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  2. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  3. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  4. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  5. Radar Detectability of Light Aircraft

    DTIC Science & Technology

    1976-04-01

    the aircraft is mounted on a structure that enables the viewing angle (aspect) presented to the radar to be varied. For each aircraft type, the RCS...environment; there are no spurious reflections from the ground or from the supporting structure ; and the effects of propeller rotation, small aircraft...motions due to c-ntrol action or atmospheric turbulence, and structural deflections due to inertial and aerodynamic loading, are properly represented

  6. Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2005-01-01

    Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.

  7. An efficient navigation-control system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  8. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  9. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  10. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  11. New aspects of the RPW instrument antennas aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Kapper, Michael; Plettemeier, Dirk; Rucker, Helmut O.; Maksimovic, Milan

    2013-04-01

    The E-field sensors (boom antennas) of the RPW instrument aboard the Solar Orbiter spacecraft are subject to severe influence of the conducting spacecraft body and other large structures such as the solar panels in close vicinity of the antennas. In this contribution we outline our newest results in finding the true properties of the antennas with additional emphasis on the influence of the built-in heating circuit for deployment. Knowledge of the true properties of the connected antenna system and receiver hardware is an essential component in ensuring the overall performance of a scientific radio and plasma wave instrument. Compared to other spaceborne multiport scatterers, the ANT sensors aboard Solar Orbiter are more sophisticated in mechanical design with features including tubular shaped pipes with radiators along with several hinges. This combined with the challenging environment (closest proximity to Sun is about 0.29 AU) makes finding the true properties even more pressing than with previous spaceborne radio astronomy observatories. Our numerical investigations also provide an important benchmark against measured antenna characteristics using a scale model of the Solar Orbiter spacecraft in an anechoic chamber. The current calibration results are to provide useful input to goniopolarimetry techniques like polarization analysis, direction finding and ray tracing, all of which depend crucially on the effective axes, allowing for significant improvements to the corresponding scientific data analysis.

  12. An apparatus for preparing benthic samples aboard ship

    USGS Publications Warehouse

    Pepper, Phillip N.; Girard, Thomas L.; Stapanian, Martin A.

    2001-01-01

    We describe a safe and effective apparatus for washing and reducing the volume of benthic samples collected by grab samplers aboard ship. The sample is transferred directly from the dredge to the apparatus and then washed with water pumped through pipes in the apparatus and from onboard hoses. Wastewater and materials smaller than 0.541 mm in diameter are washed overboard. Larger materials, including benthic organisms, collect on an upper 0.64-cm screen and on a lower 30-mm-mesh stainless steel bolt cloth. A collection jar is screwed into the bottom of the apparatus. Therefore, transfer of sample material from the apparatus to the jar is quick and easy. This apparatus has several advantages for use aboard ship over others described in the literature, especially in rough seas, in cold weather, and at night. The apparatus provides a safe and convenient platform for washing and reducing samples, and samples can be prepared while the vessel is traveling at full speed.

  13. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  14. 77 FR 27855 - Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard America! Holdings, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Surface Transportation Board Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard...., d/b/a All Aboard America AGENCY: Surface Transportation Board. ACTION: Notice Tentatively Approving and Authorizing Transaction. SUMMARY: All Aboard America! Holdings, Inc. (AHI), Celerity AHI...

  15. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  16. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  17. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  18. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    subsystems (fig ire 1. 1-4). If uncontrolled, it appears as radio tones, static, or 400-Hz hum on the passenger entertainment systems. It can show up as...lavatories; galleys; and video entertainment : These are the well-known hallmarks of a commercial transport aircraft (figure 2.1-1). The necessary control of...19 ligh nt o Maagm ete CRuotrotl Reore rv Engines ComputeSystemo IRU EICAS -9 ~Contro R~ Airplane Fiur 2.t 1-1 ElcroiiEgne C nto Om~uLOW _W IndRANGEn

  19. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A series of studies in which films and liquid spray-on materials were evaluated in the laboratory for transport aircraft external surface coatings are summarized. Elastomeric polyurethanes were found to best meet requirements. Two commercially available products, CAAPCO B-274 and Chemglaze M313, were subjected to further laboratory testing, airline service evaluations, and drag-measurement flight tests. It was found that these coatings were compatible with the severe operating environment of airlines and that coatings reduced airplane drag. An economic analysis indicated significant dollar benefits to airlines from application of the coatings.

  20. Aircraft propeller control

    NASA Technical Reports Server (NTRS)

    Day, Stanley G. (Inventor)

    1990-01-01

    In the invention, the speeds of both propellers in a counterrotating aircraft propeller pair are measured. Each speed is compared, using a feedback loop, with a demanded speed and, if actual speed does not equal demanded speed for either propeller, pitch of the proper propeller is changed in order to attain the demanded speed. A proportional/integral controller is used in the feedback loop. Further, phase of the propellers is measured and, if the phase does not equal a demanded phase, the speed of one propeller is changed, by changing pitch, until the proper phase is attained.

  1. Commercial Aircraft Protection

    SciTech Connect

    Ehst, David A.

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  2. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Vassberg, John C. (Inventor); Gea, Lie-Mine (Inventor); McLean, James D. (Inventor); Witowski, David P. (Inventor); Krist, Steven E. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  3. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  4. Automated Inspection of Aircraft

    DTIC Science & Technology

    1998-04-01

    Phase/Quadrature Versus Time Display 52 55 Alarm Region on an Impedance-Plane Display 53 56 Video Subsystem 55 57 Video-Processing Computer 56 58...The robot was demonstrated on a DC-9 nose section during the 1994 Air Transport Association (ATA) NDT Forum hosted by the FAA’s Aging Aircraft NDI...The stabilizer bridge can travel a maximum distance of 15 inches (38 cm) along the spine assembly, and the stroke of the bridge’s lead screw assembly

  5. X-29 aircraft takeoff

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two X-29 aircraft, featuring one of the most unusual designs in aviation history, were flown at the NASA Dryden Flight Research Center, Edwards, Calif., as technology demonstrators to investigate a host of advanced concepts and technologies. This movie clip runs 26 seconds and begins with a rear view of the X-29 in full afterburner at brake release, then a chase plane shot as it rotates off the runway beginning a rapid climb and finally an air-to-air view of the tail as the chase plane with the camera moves from right to left.

  6. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  7. First SNPP Cal/Val Campaign: Satellite and Aircraft Sounding Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Tian, Jialin; Smith, William L.; Wu, Wan; Kizer, Susan; Goldberg, Mitch; Liu, Q.

    2015-01-01

    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (SNPP) satellite Environmental Data Record (EDR) is retrieved from calibrated ultraspectral radiance so called Sensor Data Record (SDR). It is critical to understand the accuracy of retrieved EDRs, which mainly depends on SDR accuracy (e.g., instrument random noise and absolute accuracy), an ill-posed retrieval system, and radiative transfer model errors. There are few approaches to validate EDR products, e.g., some common methods are to rely on radiosonde measurements, ground-based measurements, and dedicated aircraft campaign providing in-situ measurements of atmosphere and/or employing similar ultraspectral interferometer sounders. Ultraspectral interferometer sounder aboard aircraft measures SDR to retrieve EDR, which is often used to validate satellite measurements of SDR and EDR. The SNPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude aircraft ER-2 that carried ultraspectral interferometer sounders such as the NASA Atmospheric Sounder Testbed-Interferometer (NAST-I) flew under the SNPP satellite that carries the Cross-track Infrared Sounder (CrIS). Here we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured by the sensors from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis were also used to draw the conclusion from this experiment.

  8. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  9. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Timothy A.; Stapleton, Brian P.

    1990-01-01

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  10. The Ultra Light Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Smith, Howard W.

    1993-01-01

    The final report for grant NAG1-345 is presented. Recently, the bulk of the work that the grant has supported has been in the areas of ride quality and the structural analysis and testing of ultralight aircraft. The ride quality work ended in May 1989. Hence, the papers presented in this final report are concerned with ultralight aircraft.

  11. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  12. Aircraft wiring program status report

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  13. Aircraft wiring program status report

    NASA Astrophysics Data System (ADS)

    Beach, Rex

    1995-11-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  14. Aircraft roll steering command system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    Aircraft roll command signals are generated as a function of the Microwave Landing System based azimuth, groundtrack, groundspeed and azimuth rate or range distance input parameters. On initial approach, roll command signals are inhibited until a minimum roll command requirement is met. As the aircraft approaches the centerline of the runway, the system reverts to a linear track control.

  15. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  16. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  17. Hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A hypersonic transport aircraft design project was selected as a result of interactions with NASA Lewis Research Center personnel and fits the Presidential concept of the Orient Express. The Graduate Teaching Assistant (GTA) and an undergraduate student worked at the NASA Lewis Research Center during the 1986 summer conducting a literature survey, and relevant literature and useful software were collected. The computer software was implemented in the Computer Aided Design Laboratory of the Mechanical and Aerospace Engineering Department. In addition to the lectures by the three instructors, a series of guest lectures was conducted. The first of these lectures 'Anywhere in the World in Two Hours' was delivered by R. Luidens of NASA Lewis Center. In addition, videotaped copies of relevant seminars obtained from NASA Lewis were also featured. The first assignment was to individually research and develop the mission requirements and to discuss the findings with the class. The class in consultation with the instructors then developed a set of unified mission requirements. Then the class was divided into three design groups (1) Aerodynamics Group, (2) Propulsion Group, and (3) Structures and Thermal Analyses Group. The groups worked on their respective design areas and interacted with each other to finally come up with an integrated conceptual design. The three faculty members and the GTA acted as the resource persons for the three groups and aided in the integration of the individual group designs into the final design of a hypersonic aircraft.

  18. Dumbo heavy lifter aircraft

    NASA Technical Reports Server (NTRS)

    Riester, Peter; Ellis, Colleen; Wagner, Michael; Orren, Scott; Smith, Byron; Skelly, Michael; Zgraggen, Craig; Webber, Matt

    1992-01-01

    The world is rapidly changing from one with two military superpowers, with which most countries were aligned, to one with many smaller military powers. In this environment, the United States cannot depend on the availability of operating bases from which to respond to crises requiring military intervention. Several studies (e.g. the SAB Global Reach, Global Power Study) have indicated an increased need to be able to rapidly transport large numbers of troops and equipment from the continental United States to potential trouble spots throughout the world. To this end, a request for proposals (RFP) for the concept design of a large aircraft capable of 'projecting' a significant military force without reliance on surface transportation was developed. These design requirements are: minimum payload of 400,000 pounds at 2.5 g maneuver load factor; minimum unfueled range of 6,000 nautical miles; and aircraft must operate from existing domestic air bases and use existing airbases or sites of opportunity at the destination.

  19. The Association of Schools of Journalism and mass communication journalist-in-space project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    During the summer of 1985, NASA asked the Association of Schools of Journalism and Mass Communication (ASJMC) to select a U. S. journalist who could ride aboard the space shuttle and report the experience to the American public. Eligibility critieria and selection procedures are discussed. The forty semifinalists are listed.

  20. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    NASA Technical Reports Server (NTRS)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  1. Future Aeronautical Communication System (FACS): Report

    NASA Astrophysics Data System (ADS)

    Hof, H. J.

    1985-06-01

    The feasibility of a FACS design, particularly with regard to application possibilities of satellites, was investigated. It was assumed that communication between airborne stations and air traffic control centers is exclusively possible via satellites using mainly voice communication (possibly completed by data communication). It is concluded that integration possibilities of satellites are mainly limited by the airborne antenna chosen. As a solution, phase steered microstrip antenna arrays are presented. However, the use of these antennas is limited to large (long-distance) aircraft. For operational feasibility, it is concluded that communication should take place in the high frequency band.

  2. Impact of Acoustic Loads on Aircraft Structures (Impact des Solicitations Acoustiques sur les Structures d’Aeronefs)

    DTIC Science & Technology

    1994-09-01

    iir A N sial csplaiiatioi ot’ j.11k.j \\ I f A the calculation ptocedle is gwile Ill I igurec 201 ~Q~Il ~ Icai NOtttsis~’i. i Mi.3 sa AIAW kwvbIIqjKtId... India disaster Tm.mlieod which occurred in 1985. However the aircraft’stIlight _FIG. Ia: Voltage -Time record of event 1 recorders are relatively...34 Event Description 1. Air India Boeing 747 fit. 183 lost west of Ireland June 3, 1985 - bomb. 2. Briefcase bomb aboard a Boeing 727-200 on flight iRome

  3. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  4. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  5. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  6. In-orbit performance of SXT aboard AstroSat

    NASA Astrophysics Data System (ADS)

    Singh, Kulinder Pal; Stewart, Gordon C.; Chandra, Sunil; Mukerjee, Kallol; Kotak, Sanket; Beardmore, Andy P.; Chitnis, Varsha; Dewangan, Gulab C.; Bhattacharyya, Sudip; Mirza, Irfan; Kamble, Nilima; Navalkar, Vinita; Shah, Harshit; Vishwakarma, S.; Koyande, J.

    2016-07-01

    A soft X-ray focusing Telescope (SXT) was launched in a near Earth, near equatorial orbit aboard the AstroSat on September 28th, 2015. The SXT electronics was switched on within 3 days of the launch and the first light was seen on October 26th, 2015 after a sequence of operations involving venting of the camera, cooling of the CCD, opening of the telescope door followed by the opening of the camera door. Several cosmic X-ray sources have been observed since then during the Performance Verification phase. A few near-simultaneous observations have also been carried out with the Swift observatory. The in-orbit performance of the SXT based on these observations is presented here.

  7. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  8. Aerospace Communications Security Technologies Demonstrated

    NASA Technical Reports Server (NTRS)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  9. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  10. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  11. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  12. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  13. Emulating an optical planetary access link with an aircraft

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph; Regehr, Martin W.; Wright, Malcolm

    2010-02-01

    Video imagery was streamed from the ground to an aircraft using a free-space laser communication link. The link operated at 270 Mb/s over slant ranges of 5-9 km in day and night time background conditions. The experiment was designed to demonstrate autonomous link acquisition and served as a first proof-of-concept for a planetary access link between a surface asset and an orbiter at Mars. System parameters monitored during the link demonstration including acquisition and tracking and communication performance are discussed.

  14. Science and Technology for Communication and Persuasion Aboard: Gap Analysis and Survey. Revision

    DTIC Science & Technology

    2012-03-01

    TASK NUMBER A42100 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Center for Naval Analyses 4825 Mark Center Drive ...paxsims.wordpress.com) and Michael Peck, "Confessions of an Xbox General," Foreign Policy, Sep. 28, 2011 (http://www.foreignpolicy.com/articles/201 l/09/28...ability to track peaking religious, political, socioeconomic markers driving Muslim social movements, their

  15. Assessment of the suitability of public mobile data networks for aircraft telemetry and control purposes

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Walker, R.; Rutherford, N.; Turner, C.

    2011-04-01

    This paper provides a review of the state of the art of relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70 km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.

  16. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  17. Optimum Aircraft Rescue Tool

    DTIC Science & Technology

    1983-08-01

    10 x 106 17 - 4PH -1075 Ftu = 165,000 F = 150,000ty Fsy 90,000 Fbry = 150,000 E = 29 x 106 K 52F.,:: . * .:.:., . . .,.:. .°F2 . 2 3 3.2.5 3 X{ Body...lbs/in2 s A 2 x (.52-.252) 7 M.S. =100,000 (.5 _ 1 =+2.0 (high) 17 - 4PH ; F = 100,000 lbs/in 2 25,000s Bearing Stress -- Both Pieces fb *7363~ 19,634... SHEET Test 8 Date: 16 November 1983 Start Time: 10: 17 End Time: Test Engineer: Ed LeMaster Test Description Aircraft: Router Testing on Canopy Material

  18. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  19. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  20. Aircraft agility maneuvers

    NASA Technical Reports Server (NTRS)

    Cliff, Eugene M.; Thompson, Brian G.

    1992-01-01

    A new dynamic model for aircraft motions is presented. This model can be viewed as intermediate between a point-mass model, in which the body attitude angles are control-like, and a rigid-body model, in which the body-attitude angles evolve according to Newton's Laws. Specifically, consideration is given to the case of symmetric flight, and a model is constructed in which the body roll-rate and the body pitch-rate are the controls. In terms of this body-rate model a minimum-time heading change maneuver is formulated. When the bounds on the body-rates are large the results are similar to the point-mass model in that the model can very quickly change the applied forces and produce an acceleration to turn the vehicle. With finite bounds on these rates, the forces change in a smooth way. This leads to a measurable effect of agility.

  1. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  2. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  3. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  4. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  5. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  6. Human Factors of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan Neville

    2014-01-01

    The civilian use of remotely piloted, or unmanned aircraft is expected to increase rapidly in the years ahead. Despite being referred to as unmanned some of the major challenges confronting this emerging sector relate to human factors. As unmanned aircraft systems (UAS) are introduced into civil airspace, a failure to adequately consider human factors could result in preventable accidents that may not only result in loss of life, but may also undermine public confidence in remotely piloted operations. Key issues include pilot situational awareness, collision avoidance in the absence of an out-the-window view, the effects of time delays in communication and control systems, control handovers, the challenges of very long duration flights, and the design of the control station. Problems have included poor physical layout of controls, non-intuitive automation interfaces, an over-reliance on text displays, and complicated sequences of menu selection to perform routine tasks. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material.

  7. Speech Communication.

    ERIC Educational Resources Information Center

    Brooks, William D.

    Presented in this book is a view of speech communication which enables an individual to become fully aware of his or her role as both initiator and recipient of messages. Communication is treated broadly with emphasis on the understanding and skills relating to various types of speech communication across the broad spectrum of human communication.…

  8. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  9. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  10. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  11. 14 CFR 63.33 - Aircraft ratings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft ratings. 63.33 Section 63.33... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft...) Turbopropeller powered; and (3) Turbojet powered. (b) To be eligible for an additional aircraft class...

  12. 14 CFR 63.33 - Aircraft ratings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft ratings. 63.33 Section 63.33... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft...) Turbopropeller powered; and (3) Turbojet powered. (b) To be eligible for an additional aircraft class...

  13. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  14. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  15. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  16. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  17. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  18. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engaged on official business of Federal, state or local governments or law enforcement agencies, aircraft... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes,...

  19. 36 CFR 331.14 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  20. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  1. 36 CFR 331.14 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  2. 36 CFR 331.14 - Aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  3. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  4. 14 CFR 63.33 - Aircraft ratings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft ratings. 63.33 Section 63.33... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft...) Turbopropeller powered; and (3) Turbojet powered. (b) To be eligible for an additional aircraft class...

  5. 14 CFR 63.33 - Aircraft ratings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft ratings. 63.33 Section 63.33... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft...) Turbopropeller powered; and (3) Turbojet powered. (b) To be eligible for an additional aircraft class...

  6. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  7. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  8. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  9. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  10. 14 CFR 137.31 - Aircraft requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft requirements. 137.31 Section 137... AIRCRAFT OPERATIONS Operating Rules § 137.31 Aircraft requirements. No person may operate an aircraft unless that aircraft— (a) Meets the requirements of § 137.19(d); and (b) Is equipped with a suitable...

  11. 14 CFR 63.33 - Aircraft ratings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft ratings. 63.33 Section 63.33... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft...) Turbopropeller powered; and (3) Turbojet powered. (b) To be eligible for an additional aircraft class...

  12. 36 CFR 331.14 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  13. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engaged on official business of Federal, state or local governments or law enforcement agencies, aircraft... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes,...

  14. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engaged on official business of Federal, state or local governments or law enforcement agencies, aircraft... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes,...

  15. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  16. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  17. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Manufacture of new aircraft, aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.6 Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b)...

  18. 14 CFR 91.183 - IFR communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false IFR communications. 91.183 Section 91.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... aircraft is under radar control, only the passing of those reporting points specifically requested by...

  19. 14 CFR 91.183 - IFR communications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false IFR communications. 91.183 Section 91.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... aircraft is under radar control, only the passing of those reporting points specifically requested by...

  20. 14 CFR 91.183 - IFR communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false IFR communications. 91.183 Section 91.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... aircraft is under radar control, only the passing of those reporting points specifically requested by...

  1. 14 CFR 91.183 - IFR communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false IFR communications. 91.183 Section 91.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... aircraft is under radar control, only the passing of those reporting points specifically requested by...

  2. 14 CFR 91.183 - IFR communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false IFR communications. 91.183 Section 91.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC... aircraft is under radar control, only the passing of those reporting points specifically requested by...

  3. ISS Update: Launching Aboard the Soyuz to Live on the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Mike Fossum, astronaut and Commander of Expedition 29, about his Soyuz launch experience and his insight into life aboard the station. Question...

  4. Apollo 11 spacecraft Command Module hoisted aboard U.S.S. Hornet

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 spacecraft Command Module is photographed being hoisted aboard the U.S.S. Hornet, prime recovery ship for the historic lunar landing mission. Note the flotation ring attached by Navy divers is still attached to the capsule.

  5. Apollo 11 Command Module and Mobile Quarantine Facility aboard U.S.S. Hornet

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 Spacecraft Command Module (foreground) and the Mobile Quarantine Facility (MQF) (background) are photographed aboard the U.S.S. Hornet, prime recovery ship for the historic lunar landing mission. The three crewmen are already in the MQF.

  6. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  7. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  8. Frequency Spectrum for Integration of Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2013-01-01

    The goal of enabling the integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS) in terms of UAS achieving routine access to the NAS has been established as a national goal in the United States. Among a number of technical barriers that must be overcome to meet this goal is the absence of standard, certifiable communications links supplying the control and non-payload communications (CNPC) function, essentially providing the link over which a pilot on the ground can control the unmanned aircraft (UA). The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation spectrum. Therefore protected aviation spectrum must be allocated for this function, approved through the processes of the International Telecommunications Union Radiocommunication Sector (ITU-R). Work has progressed in the definition of spectrum requirements for CNPC, and a portion of these requirements has been satisfied through new allocations approved at the ITU-R 2012 World Radiocommunication Conference (WRC-12). Additional work is ongoing or planned to satisfy the remaining spectrum requirements and define the specifications for the usage of CNPC spectrum allocations and develop supporting standards. This paper provides an overview of the status of RF spectrum for UAS CNPC. Issues that have been identified and ongoing analysis and research that will be necessary to fulfill spectrum requirements for UAS CNPC will be discussed. The results of this work will provide for the safe integration of UA into the NAS in both the LOS (Line of Sight) and BLOS (Beyond Line of Sight) realms.

  9. Archive and Analysis of Data Collected Aboard the University of Washington's Convair-580 Research Aircraft in CLAMS

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2004-01-01

    Work under this grant has been concerned with: (a) quality-assurance (QA) checking of the data collected on the University of Washington s (UW) Convair- 580 in the Chesapeake Lighthouse and Measurements for Satellites (CLAMS) field study in the Summer of 2001, (b) providing these data to the Langley DAAC, (c) providing specific data to users as requested, (d) analysis of portions of the data and publication of results, and (e) presentation of CLAMS results at workshop and conferences.

  10. Tissue Equivalent Proportional Counter Microdosimetry Measurements Utilized Aboard Aircraft and in Accelerator Based Space Radiation Shielding Studies

    NASA Technical Reports Server (NTRS)

    Gersey, Brad B.; Wilkins, Richard T.

    2010-01-01

    This slide presentation reviews the Tissue Equivalent Proportional Counter (TEPC), a description of the spatially restricted LET Model, high energy proton TEPC and the results of modeling, the study of shielding and the results from the flight exposures with the TEPC.

  11. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Heitman, K.; Bernhard, R. J.

    1983-01-01

    The plausibility of using the two microphone sound intensity technique to study noise transmission into light aircraft was investigated. In addition, a simple model to predict the interior sound pressure level of the cabin was constructed.

  12. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  13. Energy Index For Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R. (Inventor); Lynch, Robert E. (Inventor); Lawrence, Robert E. (Inventor); Amidan, Brett G. (Inventor); Ferryman, Thomas A. (Inventor); Drew, Douglas A. (Inventor); Ainsworth, Robert J. (Inventor); Prothero, Gary L. (Inventor); Romanowski, Tomothy P. (Inventor); Bloch, Laurent (Inventor)

    2006-01-01

    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.

  14. Fire resistant aircraft seat program

    NASA Technical Reports Server (NTRS)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  15. Propulsion integration for military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1989-01-01

    The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.

  16. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  17. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  18. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  19. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  20. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  1. Future Civil Aircraft and Technologies

    NASA Technical Reports Server (NTRS)

    Albers, J.; Zuk, J.

    1989-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities while also providing greater levels of safety and environmental compatibility. These new capabilities will result from current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers and will cover the complete spectrum of current aircraft and new vehicle concepts including rotorcraft (helicopters and tilt rotors), vertical and short takeoff and landing (V/STOL), and short takeoff and landing (STOL) aircraft, subsonic transports, high-speed transports, and hypersonic/transatmospheric vehicles. New technologies will improve efficiency, affordability, safety, and environmental compatibility of current aircraft and will enable the development of new transportation system. The new capabilities of vehicles could lead to substantial market opportunities and economic growth and could improve the competitive position of the U.S. aerospace industry.

  2. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  3. Identification and Analysis of Future Aeronautical Communications Candidates: A Study of Concepts and Technologies to Support the Aeronautical Communications Needs in the NextGen and Beyond National Airspace System

    NASA Technical Reports Server (NTRS)

    Wichgers, Joel M.; Mitchell, James P.

    2015-01-01

    This report describes the results of future aeronautical communications research conducted by Rockwell Collins employees under NRA contract to NASA. The overall goal of this research was to identify and begin to evaluate communication technology candidates expected to meet the long-term aircraft-to-aircraft and aircraft-to-ground data communications needs of Air Traffic Management in the NextGen and beyond National Airspace System (NAS), considering how the NAS and communications technologies will evolve during a 50-year modernization time horizon.

  4. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  5. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  6. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  7. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  8. Commercial transport aircraft composite structures

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  9. Advanced supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Driver, C.

    1977-01-01

    A multidiscipline approach is taken to the application of the latest technology to supersonic cruise aircraft concept definition, and current problem areas are identified. Particular attention is given to the performance of the AST-100 advanced supersonic cruise vehicle with emphasis on aerodynamic characteristics, noise and chemical emission, and mission analysis. A recently developed aircraft sizing and performance computer program was used to determine allowable wing loading and takeoff gross weight sensitivity to structural weight reduction.

  10. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  11. X-29 - views of aircraft

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two X-29 aircraft, featuring one of the most unusual designs in aviation history, were flown at the NASA Dryden Flight Research Center, Edwards, Calif., as technology demonstrators to investigate a host of advanced concepts and technologies. In this 29-second film clip the camera pans along the aircraft from nose to tail and then air-to-air as the shot sweeps from beside the X-29 around to the front.

  12. AD-1 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Ames-Dryden (AD)-1 was a research aircraft designed to investigate the concept of an oblique (or pivoting) wing. The movie clip runs about 17 seconds and has two air-to-air views of the AD-1. The first shot is from slightly above as the wing pivots to 60 degrees. The other angle is almost directly below the aircraft when the wing is fully pivoted.

  13. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  14. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  15. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  16. Optimization in fractional aircraft ownership

    NASA Astrophysics Data System (ADS)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  17. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  18. 75 FR 35329 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... From the Federal Register Online via the Government Publishing Office NATIONAL TRANSPORTATION SAFETY BOARD 49 CFR Part 830 Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records AGENCY: National...

  19. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  20. Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    Since 2006, NASA fs Dryden Flight Research Center (DFRC) and Ames Research Center have been perfecting and demonstrating a new capability for geolocation of wildfires and the real-time delivery of data to firefighters. Managed for the Western States Fire Mission, the Ames-developed Autonomous Modular Scanner (AMS), mounted beneath a wing of DFRC fs MQ-9 Ikhana remotely piloted aircraft, contains an infrared sensor capable of discriminating temperatures within 0.5 F (approx. = 0.3 C), up to 1,000 F (approx. = 540 C). The AMS operates like a digital camera with specialized filters to detect light energy at visible, infrared, and thermal wavelengths. By placing the AMS aboard unmanned aircraft, one can gather information and imaging for thousands of square miles, and provide critical information about the location, size, and terrain around fires to commanders in the field. In the hands of operational agencies, the benefits of this NASA research and development effort can support nationwide wildfire fighting efforts. The sensor also provides data for post-burn and vegetation regrowth analyses. The MQ-9 Unmanned Aircraft System (UAS), a version of the Predator-B, can operate over long distances, staying aloft for over 24 hours, and controlled via a satellite-linked command and control system. This same link is used to deliver the fire location data directly to fire incident commanders, in less than 10 minutes from the time of overflight. In the current method, similarly equipped short-duration manned aircraft, with limited endurance and range, must land, hand-carry, and process data, and then deliver information to the firefighters, sometimes taking several hours in the process. Meanwhile, many fires would have moved over great distances and changed direction. Speed is critical. The fire incident commanders must assess a very dynamic situation, and task resources such as people, ground equipment, and retardant-dropping aircraft, often in mountainous terrain obscured by