Science.gov

Sample records for aboard columbia orbiter

  1. STS-65 Columbia, Orbiter Vehicle (OV) 102, crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Columbia, Orbiter Vehicle (OV) 102, crew insignia (logo), the Official insignia of the NASA STS-65 International Microgravity Laboratory 2 (IML-2) mission. Designed by the crewmembers, the STS-65 insignia features the IML-2 mission and its Spacelab module which will fly aboard the Space Shuttle Columbia. IML-2 is reflected in the emblem by two gold stars shooting toward the heavens behind the IML lettering. The Space Shuttle Columbia is depicted orbiting the logo and reaching off into space, with Spacelab on an international quest for a better understanding of the effects of space flight on materials processing and life sciences. The STS-65 flight crewmembers are Commander Robert D. Cabana, Pilot James D. Halsell, Jr, Mission Specialist (MS) and Payload Commander (PLC) Richard J. Hieb, MS Carl E. Walz, MS Leroy Chiao, MS Donald A. Thomas, and Japanese Payload Specialist Chiaki Mukai.

  2. STS-65 crew works inside the IML-2 spacelab module aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, four members of the STS-65 crew busy themselves with experiments in support of the second International Microgravity Laboratory (IML-2) mission. Mission Specialist (MS) Donald A. Thomas with his feet hooked on a center aisle stowage unit handrail talks with MS Leroy Chiao in the foreground while Payload Commander (PLC) Richard J. Hieb takes notes at Rack 5 Biorack (BR) glovebox. Japanese Payload Specialist Chiaki Mukai reviews her notes in the background. Mukai represents the National Space Development Agency (NASDA) of Japan.

  3. STS-65 Earth observation of Lake Chad, Africa, taken aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Lake Chad, Africa. This is another long term ecological monitoring site for NASA scientists. Lake Chad was first photographed from space in 1965. A 25-year length-of-record data set exists for this environmentally important area. A number of these scenes have been digitized, rectified, classified and results show that the lake area has been shrinking and only 15% to 20% of the surface water is visible on space images. NASA's objective in monitoring this lake is to document the intra- and interannual areal changes of the largest standing water body in the Sahelian biome of North Africa. These areal changes are an indicator of the presence or absence of drought across the arguably overpopulated, overgrazed, and over biological carrying capacity limits nations of the Sahel.

  4. New aspects of the RPW instrument antennas aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Kapper, Michael; Plettemeier, Dirk; Rucker, Helmut O.; Maksimovic, Milan

    2013-04-01

    The E-field sensors (boom antennas) of the RPW instrument aboard the Solar Orbiter spacecraft are subject to severe influence of the conducting spacecraft body and other large structures such as the solar panels in close vicinity of the antennas. In this contribution we outline our newest results in finding the true properties of the antennas with additional emphasis on the influence of the built-in heating circuit for deployment. Knowledge of the true properties of the connected antenna system and receiver hardware is an essential component in ensuring the overall performance of a scientific radio and plasma wave instrument. Compared to other spaceborne multiport scatterers, the ANT sensors aboard Solar Orbiter are more sophisticated in mechanical design with features including tubular shaped pipes with radiators along with several hinges. This combined with the challenging environment (closest proximity to Sun is about 0.29 AU) makes finding the true properties even more pressing than with previous spaceborne radio astronomy observatories. Our numerical investigations also provide an important benchmark against measured antenna characteristics using a scale model of the Solar Orbiter spacecraft in an anechoic chamber. The current calibration results are to provide useful input to goniopolarimetry techniques like polarization analysis, direction finding and ray tracing, all of which depend crucially on the effective axes, allowing for significant improvements to the corresponding scientific data analysis.

  5. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  6. Double Exposure Image of Spacelab-1 in Cargo Bay of Orbiter Columbia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  7. STS-87 concludes with landing of orbiter Columbia at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia makes a smooth touchdown on Runway 33 at KSC's Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5, completing the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  8. STS-55 Columbia, Orbiter Vehicle (OV) 102, Spacelab D2 Official crew portrait

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, crewmembers, wearing their launch and entry suits (LESs), pose for their Official crew portrait. Five NASA astronauts and two German payload specialists, assigned to fly aboard OV-102 in support of Spacelab Deutsche 2 (SL-D2), are pictured. On the front row (left to right) are Pilot Terence T. Henricks (holding launch and entry helmet (LEH)), Commander Steven R. Nagel (holding crew insignia), and Mission Specialist 2 (MS2) Charles J. Precourt (holding LEH). In the back are (left to right) MS3 Bernard A. Harris, Jr, Payload Specialist 2 Hans Schlegel, MS and Payload Commander (PLC) Jerry L. Ross, and Payload Specialist 1 Ulrich Walter. In the background are the United States and German flags. Portrait made by NASA JSC contract photographer Robert L. Walck.

  9. M.S. Coleman sits inside the orbiter Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Catherine G. Coleman (Ph.D.) sits inside the orbiter Columbia during Terminal Countdown Demonstration Test (TCDT) activities that include emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  10. EPD: the energetic particle instrumentation aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Rodriguez-Pacheco, Javier; Ho, George; Boettcher, Stephan; Martin, Cesar; Sánchez Prieto, Sebastián; Kulkarni, Shrinivasrao; Prieto, Manuel; Panitzsch, Lauri; Gomez-Herrero, Raul; Mason, Glenn M.; Wimmer-Schweingruber, Robert

    2016-07-01

    Solar Orbiter is the first mission of ESA's Cosmic Vision program. Its launch is scheduled for October 2018. After a cruise phase and once in its nominal orbit, it will approach the Sun as close as 0.28 AU. Solar Orbiter has a comprehensive scientific instrumentation that can be divided into two categories: remote sensing and in situ instruments. Within the latter category, the Energetic Particle Detector (EPD) will be responsible for providing data on solar energetic particles (SEP) including its suprathermal population with a temporal and spectral resolutions never achieved in previous missions focused in the inner Heliosphere. We will present the mission instrumentation; its scientific highlights and then describe EPD and its science.

  11. STS-52 Columbia, Orbiter Vehicle (OV) 102, crew insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, crew insignia (logo), the Official insignia of the NASA STS-52 mission, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements to be taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which is part of the United States Microgravity Payload (USMP-1). The LAGEOS II is a joint Italian United States (U.S.) satellite project intended to further our understanding of global plate tectonics. The USMP-1 is a microgravity facility which has French and U.S. experiments designed to test the theory of cooperative phase transitions and to study the solidliquid interface of a metallic alloy in the low gravity environment. The remote manipulator system (RMS) arm and maple leaf are emblematic of the Canadian payload speci

  12. Metis aboard the Solar Orbiter space mission: Doses from galactic cosmic rays and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Fabi, Michele; Grimani, Catia; Antonucci, Ester

    2016-03-01

    The aim of this work is to calculate the dose released by galactic cosmic rays (GCRs) and solar energetic particles (SEPs) in the polarimeter of the Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph [1] aboard the Solar Orbiter. This investigation is performed with a Monte Carlo method by considering the role of SEP events of proper intensity at a heliocentric distance from the Sun averaged along the spacecraft orbit. Our approach can be extended to other space missions reaching short distances from the Sun, such as Solar Probe Plus. This study indicates that the deposited dose on the whole set of polarimeter lenses and filters during ten years of the Solar Orbiter mission is of about 2000 Gy. For cerium treated lenses, a dose of 106 Gy of gamma radiation from a 60Co source causes a few percent transmittance loss.

  13. [Light microscopy of statocyst cell elements from Helix lucorum (space experiment aboard the orbital station "MIR")].

    PubMed

    Gorgiladze, G I; Bukiia, R D; Kalandarishvili, E L; Taktakishvili, A D; Davitashvili, M T; Gelashvili, N Sh; Madzhagaladze, N B; Galkin, V A

    2013-01-01

    Statocyst epithelial lining of terrestrial pulmonary snail Helix lucorum is a spatially arranged structure consisting of 13 cell ensembles. Each ensemble has a sensory cell surrounded by companion cells. The sensory cell on the anterior statocyst pole is star-shaped due to multiple protoplasmatic protrusions on its body. The remaining 12 polygon-shaped cells form 3 tires along the statocyst internal perimeter: anterior, middle or equatorial and posterior. There are 4 cells in each tire. Topography of every sensory cell on the statocyst internal surface was described as well as cell nuclei size and form, nucleoli number and patterns of cytoplasm vacuolization. Space free of sensory cells is occupied by supporting or intercalary cells. Exposure to space microgravity over 40, 43, 102 and 135 days aboard the orbital station MIR affected morphology of the sensory cells. Specifically, this appeared as reductions in cell height and, consequently, extension of the statocyst cavity internal diameter and volume in the space-flown snails.

  14. On-Orbit Spatial Characterization of MODIS with ASTER Aboard the Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Xie, Yong; Xiong, Xiaoxiong

    2011-01-01

    This letter presents a novel approach for on-orbit characterization of MODerate resolution Imaging Spectroradiometer (MODIS) band-to-band registration (BBR) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra spacecraft. The spatial resolution of ASTER spectral bands is much higher than that of MODIS, making it feasible to characterize MODIS on-orbit BBR using their simultaneous observations. The ground target selected for on-orbit MODIS BBR characterization in this letter is a water body, which is a uniform scene with high signal contrast relative to its neighbor areas. A key step of this approach is to accurately localize the measurements of each MODIS band in an ASTER measurement plane coordinate (AMPC). The ASTER measurements are first interpolated and aggregated to simulate the measurements of each MODIS band. The best measurement match between ASTER and each MODIS band is obtained when the measurement difference reaches its weighted minimum. The position of each MODIS band in the AMPC is then used to calculate the BBR. The results are compared with those derived from MODIS onboard Spectro-Radiometric Calibration Assembly. They are in good agreement, generally less than 0.1 MODIS pixel. This approach is useful for other sensors without onboard spatial characterization capability. Index Terms Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), band-to-band registration (BBR), MODerate resolution Imaging Spectroradiometer (MODIS), spatial characterization.

  15. DSMC simulations in support of the Columbia Shuttle Orbiter accident investigation.

    SciTech Connect

    Gallis, Michail A.; Boyles, Katie A.; LeBeau, Gerald J.

    2004-06-01

    Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied. The tragic loss of the Space Shuttle Columbia and her seven-member crew was followed by an investigation that lasted almost 7 months covering numerous failure scenarios. Due to the lack of physical data about flight STS-107 (especially in the high altitude part of it), numerical simulations were employed to help with the interpretation of the forensic evidence and the evaluation of the plausibility of the candidate scenarios. The conclusion of the investigation was that the physical cause of the loss of Columbia and its crew was a breach in the Thermal Protection System. To protect the aluminum structure of the Orbiter during re-entry, the Orbiter is covered with various materials collectively referred to as the Thermal Protection System. The three major components of the system are various types of heat-resistant tiles, blankets, and the Reinforced Carbon-Carbon (RCC) panels. The RCC panels are layers of graphite molded to the desired shape at very high temperatures. RCC is used for the Orbiter nose cap, chin panel, forward external tank attachment point, and wing leading edge panels and T-seals. RCC is a material capable of withstanding temperatures up to 2,000 K. Each wing leading edge consists of 22 RCC panels numbered from 1 to 22 moving outward on each wing. Because the shape of the wing changes from inboard to

  16. [Light microscopy of statocyst cell elements from Helix lucorum (space experiment aboard the orbital station "MIR")].

    PubMed

    Gorgiladze, G I; Bukiia, R D; Kalandarishvili, E L; Taktakishvili, A D; Davitashvili, M T; Gelashvili, N Sh; Madzhagaladze, N B; Galkin, V A

    2013-01-01

    Statocyst epithelial lining of terrestrial pulmonary snail Helix lucorum is a spatially arranged structure consisting of 13 cell ensembles. Each ensemble has a sensory cell surrounded by companion cells. The sensory cell on the anterior statocyst pole is star-shaped due to multiple protoplasmatic protrusions on its body. The remaining 12 polygon-shaped cells form 3 tires along the statocyst internal perimeter: anterior, middle or equatorial and posterior. There are 4 cells in each tire. Topography of every sensory cell on the statocyst internal surface was described as well as cell nuclei size and form, nucleoli number and patterns of cytoplasm vacuolization. Space free of sensory cells is occupied by supporting or intercalary cells. Exposure to space microgravity over 40, 43, 102 and 135 days aboard the orbital station MIR affected morphology of the sensory cells. Specifically, this appeared as reductions in cell height and, consequently, extension of the statocyst cavity internal diameter and volume in the space-flown snails. PMID:24490279

  17. [Hygienic control of contingencies associated with local fire events aboard piloted orbital stations].

    PubMed

    Baranov, V M; Mukhamedieva, L N; Aksel'-Rubinshteĭn, V Z; Mikos, K N; Nikitin, E I; Romanov, S Iu; Guzenberg, A S

    2001-01-01

    Based on the multiyear experience of hygienic control of the orbital stations, there are three causes of contingent air pollution: leakage of service system pipeline with chemical working bodies, spills of reagents used in biochemical and technological experiments, and air pollution by products of thermal oxidative degradation of nonmetallic materials. The authors describe their experience in successful elimination and prevention of hazardous consequences of fire aboard the space stations. Analysis of air pollution dynamics after actual fire events in the space station modules showed that it approximates a two-chamber air flow model with two phases of pollutant equilibration: first a rapid fall of concentration in the module on fire till air in the modules gets completely mixed, and then slow elimination of harmful pollutant from air. Identified were markers,--propylene and methylmetacrilate,--reacting to first signs of fire. Carbonic acid nitriles were recognized as toxic products of destruction. The positive effect of intermodular ventilation on dilution of toxic products of thermal oxidative destruction of materials was demonstrated. Satisfactory agreement of calculated and factual pollutant concentrations on board Mir permitted conclusion on applicability of the theoretical model to prediction of levels of air pollution due to contingency.

  18. STS-50 Columbia, Orbiter Vehicle (OV) 102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A at 12:12:23:0534 pm (Eastern Daylight Time (EDT)). In this distant view, a cactus (prickly pear), foliage, and a waterway are seen in the foreground as OV-102, in the distance, rockets toward the beginning of its scheduled record 13-day mission in Earth orbit. An exhaust cloud covers the launch pad area with only the sound supression water system tank visible (at right). OV-102, atop its external tank (ET) and flanked by two solid rocket boosters (SRBs), has cleared the launch tower and is moments away from its roll maneuver. OV-102 is NASA's first extended duration orbiter (EDO). The diamond shock effect is visible at OV-102's three space shuttle main engines (SSMEs).

  19. STS 87: Meal - Suit Up - Depart O&C - Launch Columbia On Orbit - Landing - Crew Egress

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 Space Shuttle Columbia mission begins with the introduction of the seven crew members. The seven crew members include: Commander Kevin R. Kregel, pilot Steven W. Lindsey, mission specialists: Winston E. Scott, Kalpana Chawla and Takao Doi and payload specialist Leonid K. Kadenyuk. The United States Microgravity Payload (USMP-4), Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05), Shuttle Ozone Limb Sending Experiment (SOLSE), Loop Heat Pump (LHP), and Sodium Sulfur Battery Experiment (NaSBE) were all shown during this video presentation. The launch of the STS-87 from different Kennedy Space Flight Center (KSFC) areas and Pre-flight training at the Johnson Space Center is presented. The retrieve and recovery spot satellite are also shown. Also, the landing of the Space Shuttle Columbia is presented from different areas at Kennedy Space Flight Center.

  20. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... Stations Aboard Aircraft. FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division,...

  1. STS-87 crew and VIPs inspect the orbiter Columbia after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 crew members regard the tiles underneath the orbiter Columbia shortly after its return to Runway 33 at Kennedy Space Center's Shuttle Landing Facility. Pointing to the tiles is the president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, who is standing next to NASA Administrator Daniel Goldin. STS-87 Commander Kevin Kregel, at right, looks on as Pilot Steve Lindsey follows behind him to continue inspecting the orbiter. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of NASDA; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  2. STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A at 10:50 am (Eastern Daylight Time (EDT)). OV-102, atop its external tank (ET) and flanked by two solid rocket boosters (SRBs), has only moments earlier begun its ascent. Leaving the mobile launcher platform below in a cloud of exhaust smoke, OV-102 rises along side the fixed service structure (FSS) tower into the sky. An exhaust cloud fills the surrounding area. The glow of the SRB and space shuttle main engine (SSME) firings is reflected in a waterway in the foreground.

  3. STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A at 10:50 am (Eastern Daylight Time (EDT)). Nearly clear of the fixed service structure (FSS) tower, OV-102, atop its external tank (ET) and flanked by two solid rocket boosters (SRBs), rises into the sky. The retracted rotating service structure (RSS) appears at the left. An exhaust cloud fills the launch pad area. The glow of the SRB and space shuttle main engine (SSME) firings is reflected in a waterway in the foreground.

  4. STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A at 10:50 am (Eastern Daylight Time (EDT)). This wide shot of the launch pad and surrounding area shows OV-102, atop its external tank (ET) and flanked by two solid rocket boosters (SRBs), as it rises into the sky. The fixed service structure (FSS) tower and retracted rotating service structure (RSS) appear at the left. An exhaust cloud fills the launch pad area. The glow of the SRB and space shuttle main engine (SSME) firings is reflected in a waterway in the foreground.

  5. The transportation of fine arts materials aboard the space shuttle Columbia. GAS payload No. 481: Vertical horizons

    NASA Technical Reports Server (NTRS)

    Kurtz, Ellery; Wishnow, Howard

    1988-01-01

    The Vertical Horizons experiment represents an initial investigation into the transportation of fine arts materials aboard a space shuttle. Within the confines of a GAS canister, artist quality fine arts materials were packaged and exposed to the rigors of space flight in an attempt to identify adverse effects.

  6. STS-55 MS2 Precourt changes LiOH canister in SL-D2 module aboard OV-102

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Mission Specialist 2 (MS2) Charles J. Precourt changes lithium hydroxide (LiOH) canister in the Spacelab Deutsche 2 (SL-D2) module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Precourt lifts one LiOH canister from its subfloor location while holding the replacement canister and the access panel open with his left hand.

  7. STS-87 crew pose in front of the orbiter Columbia after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 crew pose in front of the orbiter Columbia shortly after landing on Runway 33 at KSC's Shuttle Landing Facility. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. From left to right are Mission Specialists Winston Scott and Takao Doi, Ph.D., of the National Space Development Agency of Japan; Commander Kevin Kregel; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; and Pilot Steven Lindsey. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  8. In-situ observation of Martian neutral exosphere: Results from MENCA aboard Indian Mars Orbiter Mission (MOM)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pratim Das, Tirtha; Dhanya, M. B.; Thampi, Smitha V.

    2016-07-01

    Till very recently, the only in situ measurements of the Martian upper atmospheric composition was from the mass spectrometer experiments aboard the two Viking landers, which covered the altitude region from 120 to 200 km. Hence, the exploration by the Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Mars Orbiter Mission (MOM) spacecraft of ISRO and the Neutral Gas and Ion Mass Spectrometer (NGIMS) experiment aboard the Mars Atmosphere and Volatile ENvironment (MAVEN) mission of NASA are significant steps to further understand the Martian neutral exosphere and its variability. MENCA is a quadrupole based neutral mass spectrometer which observes the radial distribution of the Martian neutral exosphere. The analysis of the data from MENCA has revealed unambiguous detection of the three major constituents, which are amu 44 (CO2), amu 28 (contributions from CO and N2) and amu 16 (atomic O), as well as a few minor species. Since MOM is in a highly elliptical orbit, the MENCA observations pertain to different local times, in the low-latitude region. Examples of such observations would be presented, and compared with NGIMS results. Emphasis would be given to the observations pertaining to high solar zenith angles and close to perihelion period. During the evening hours, the transition from CO2 to O dominated region is observed near 270 km, which is significantly different from the previous observations corresponding to sub-solar point and SZA of ~45°. The mean evening time exospheric temperature derived using these observations is 271±5 K. These are the first observations corresponding to the Martian evening hours, which would help to provide constraints to the thermal escape models.

  9. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service.... FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division, International Bureau, FCC,...

  10. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  11. STS-93 Columbia rolls over to Vehicle Assemble Building (VAB)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Columbia, aboard its orbiter transporter system, makes the turn from the Orbiter Processing Facility (behind it, left) to the nearby Vehicle Assembly Building (VAB) for external tank mating operations. Columbia is scheduled for rollout to Launch Pad 39B on Monday, June 7, for mission STS-93. The primary mission objective will be the deployment of the Advanced X-ray Astrophysics Facility, recently renamed the Chandra X-Ray Observatory. Mission STS-93 will be the first Space Shuttle commanded by a woman, Commander Eileen M. Collins. It is scheduled to launch July 22 at 12:27 a.m. EDT although that date is currently under review.

  12. Results of the joint utilization of laser integrated experiments flown on payload GAS-449 aboard Columbia mission 61-C

    NASA Technical Reports Server (NTRS)

    Muckerheide, M. C.

    1987-01-01

    The high peak power neodymium YAG laser and the HeNe laser aboard GAS-449 have demonstrated the survivability of the devices in the micro-gravity, cosmic radiation, thermal, and shock environment of space. Some pharmaceuticals and other materials flown in both the active and passive status have demonstrated reduction in volume and unusual spectroscopic changes. X-ray detectors have shown cosmic particle hits with accompanying destruction at their interaction points. Some scattering in the plates is in evidence. Some results of both active and passive experiments on board the GAS-449 payload are evaluated.

  13. STS-62 Columbia/Breakfast, Suit-up, Depart O&C, Launch, On-Orbit, Landing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage of various stages of the STS-62 Columbia launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing medical experiments, such as using the Lower Body Negative Pressure unit, and during a demonstration of the effects of microgravity using M&Ms and marshmallows. The Gulf of Mexico and a hurricane are seen from the Orbiter.

  14. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  15. [Levels of radiation exposure and radiation risk in flights aboard the orbital complex "Mir" and the International space station].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V; Petrov, V M

    2001-01-01

    The paper presents results of calculating mean daily values of absorbed and equivalent doses from galactic cosmic rays (GCR) and Earth's radiation belts (ERB) to crew members on orbital missions aboard Mir and the International space station during solar minimum and maximum. Calculated doses were corrected in accordance with the dosimetric and spectrometric data from Mir missions 18 through to 23 that took place in the period of solar minimum. Contribution of local and albedo neutrons to equivalent dose was also taken into account. Presented are calculated total radiation risk and tumor risk over life time for Mir and ISS crews following missions of varying duration, and predictions for reduction in life span in view of recent dosimetric data. PMID:11840866

  16. Columbia Hills, Mars: Aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, R.; Whelley, P.L.; Neakrase, L.D.V.; Arvidson, R. E.; Bridges, N.T.; Cabrol, N.A.; Christensen, P.R.; Di, K.; Foley, D.J.; Golombek, M.P.; Herkenhoff, K.; Knudson, A.; Kuzmin, R.O.; Li, R.; Michaels, T.; Squyres, S. W.; Sullivan, R.; Thompson, S.D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places, into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim. Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts. Copyright 2008 by the American Geophysical Union.

  17. Columbia Hills, Mars: aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, Ronald; Whelley, Patrick L.; Neakrase, Lynn D.V.; Arvidson, Raymond E.; Bridges, Nathan T.; Cabrol, Nathalie A.; Christensen, Philip R.; Di, Kaichang; Foley, Daniel J.; Golombek, Matthew P.; Herkenhoff, Kenneth; Knudson, Amy; Kuzmin, Ruslan O.; Li, Ron; Michaels, Timothy; Squyres, Steven W.; Sullivan, Robert; Thompson, Shane D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts.

  18. STS-93 Columbia rolls over to Vehicle Assemble Building (VAB)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Columbia, aboard its orbiter transporter system, heads for the Vehicle Assembly Building to undergo external tank mating operations. Columbia is scheduled for rollout to Launch Pad 39B on Monday, June 7, for mission STS-93. The primary mission objective will be the deployment of the Advanced X-ray Astrophysics Facility, recently renamed the Chandra X-Ray Observatory. Mission STS-93 will be the first Space Shuttle commanded by a woman, Commander Eileen M. Collins. It is scheduled to launch July 22 at 12:27 a.m. EDT although that date is currently under review.

  19. STS-93 Columbia rolls over to Vehicle Assemble Building (VAB)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Columbia, aboard its orbiter transporter system, rolls toward the opening in the Vehicle Assembly Building where it will undergo external tank mating operations. Columbia is scheduled for rollout to Launch Pad 39B on Monday, June 7, for mission STS-93. The primary mission objective will be the deployment of the Advanced X-ray Astrophysics Facility, recently renamed the Chandra X-Ray Observatory. Mission STS-93 will be the first Space Shuttle commanded by a woman, Commander Eileen M. Collins. It is scheduled to launch July 22 at 12:27 a.m. EDT although that date is currently under review.

  20. Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107).

    PubMed

    Niihori, Maki; Mogami, Yoshihiro; Naruse, Kiyoshi; Baba, Shoji A

    2004-09-01

    A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by close-up CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry.

  1. Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107).

    PubMed

    Niihori, Maki; Mogami, Yoshihiro; Naruse, Kiyoshi; Baba, Shoji A

    2004-09-01

    A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by close-up CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry. PMID:15459450

  2. Low Earth Orbital Mission Aboard the Space Test Experiments Platform (STEP-3)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.

    1992-01-01

    A discussion of the Space Active Modular Materials Experiments (SAMMES) is presented in vugraph form. The discussion is divided into three sections: (1) a description of SAMMES; (2) a SAMMES/STEP-3 mission overview; and (3) SAMMES follow on efforts. The SAMMES/STEP-3 mission objectives are as follows: assess LEO space environmental effects on SDIO materials; quantify orbital and local environments; and demonstrate the modular experiment concept.

  3. A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    1999-01-01

    The accurate prediction of ionizing radiation exposure in low-Earth orbit is necessary in order to minimize risks to astronauts, spacecraft and instrumentation. To this end, models of the radiation environment, the AP-8 trapped proton model and the AE-8 trapped electron model, have been developed for use by spacecraft designers and mission planners. It has been widely acknowledged for some time now by the space radiation community that these models possess some major shortcomings. Both models cover only a limited trapped particle energy region and predictions at low altitudes are extrapolated from higher altitude data. With the launch of the first components of the International Space Station with numerous constellations of low-Earth orbit communications satellites now being planned and deployed, the inadequacies of these trapped particle models need to be addressed. Efforts are now underway both in the U.S. and in Europe to refine the AP-8 and AE-8 trapped particle models. This report is an attempt to collect a significant fraction of data for use in validation of trapped radiation models at low altitudes.

  4. The Wisconsin Experiment Package (WEP) aboard the Orbiting Astronomical Observatory (OAO-2)

    NASA Astrophysics Data System (ADS)

    Marche, J. D.

    2005-12-01

    On 7 December 1968, NASA's Orbiting Astronomical Observatory (OAO-2) was launched into space. Roughly ten years in development, the OAO carried two sets of experiments, each designed to conduct the first extended observations of the sky at ultraviolet wavelengths. One experiment package was designed by the University of Wisconsin; the other by the Smithsonian Astrophysical Observatory. Remote operation of the OAO, especially the WEP's narrow-field photometric instruments, demanded a "complex stabilization and control system" that could point the spacecraft towards any desired object with an accuracy of better than one arc-minute. A host of other calculations were routinely performed to insure that the instruments were never pointed toward (or within) a fixed number of degrees of the Sun, Moon, or even the Earth. During its 50 months of operation, WEP successfully observed more than a thousand celestial objects. It was the first true stellar space observatory, whose operating system represented a greater technological leap forward in its day than the Hubble Space Telescope (HST), launched in 1990. At the same time, OAO-2 marked a significant turning point in the way astrophysical research was conducted. OAO scientists' dependence upon high-speed, digital techniques of data acquisition, storage, transmission, and reduction, not only presaged but also influenced the universal adoption of such techniques throughout the astronomical community. The OAO spacecraft was a significant bellwether of the transition to an era of digital data manipulation that occurred well before the impact of the personal computer and the charge-coupled device (CCD).

  5. Six years in orbit: the MCP detectors aboard the Extreme Ultraviolet Explorer Satellite

    NASA Astrophysics Data System (ADS)

    Vallerga, John V.; Roberts, Bryce; Dupuis, Jean; Jelinsky, Patrick N.

    1998-08-01

    The Extreme UV Explorer satellite (EUVE) was launched on June 7, 1992 with seven microchannel plate detectors behind four telescopes. All seven detectors have been operating continuously since then, cycling the high voltage bias to half voltage during the daylight portions of the orbit as well as during passage through the South Atlantic Anomaly. This paper will present the time history of the detector performance characteristics, including spatial and spectral response, gain, and flat fields. We will also discuss our experiences with the thin-film filters used to define the detector EUV bandpasses including spatial and spectral response, gain, and flat fields. We will also discuss our experiences with the thin-film filters used to define the detector EUV bandpasses including the development of 'micro' pinholes in the Al/Ti/C filters. We then illustrate specific examples of detector problems and their solutions, such as 'dithering' the spacecraft pointing to average out the small scale image distortions and off-axis pointing to avoid an on-axis 'deadspot'.

  6. Ground based impact testing of Orbiter thermal protection system materials in support of the Columbia accident investigation

    NASA Astrophysics Data System (ADS)

    Kerr, Justin Hamilton

    On January 16, 2003, the Space Shuttle Columbia (OV-102) was launched for a nominal 16-day mission of microgravity research. Fifteen days and 20 hours after launch, and just 16 minutes before its scheduled landing, the OV-102 vehicle disintegrated during its descent. The entire crew was lost. Film and video cameras located around the launch complex captured images of the vehicle during its ascent. Of note were data that showed a piece of debris strike the port wing at approximately 82 sec after lift-off (T+82). As resulting analysis would show, the source of the debris was the left bipod ramp of the Shuttle external tank. This foam debris struck the Orbiter leading edge at sufficient velocity to breech the thermal protection system (TPS). During reentry at the end of the mission, the hot plasma impinged inside the Orbiter wing and aerodynamic forces ultimately failed the wing structure. This thesis documents the activities conducted to evaluate the effects of foam impact on Orbiter TPS. These efforts were focused on, to the greatest extent practical, replicating the impact event during the STS-107 mission ascent. This thesis fully documents the test program development, methodology, results, analysis, and conclusions to the degree that future investigators can reproduce the tests and understand the basis for decisions made during the development of the tests.

  7. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  8. Columbia returns to Earth

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Columbia returns to Earth. Completing the first full test of the Space Transportation System (STS-1), the Orbiter Columbia is seen here on its final approach prior to landing on Rogers Drylake Runway 23 at NASA's Dryden Flight Research Center, Edwards AFB, Calif. For this first flight, the Columbia was flown by astronauts John Young, commander, and Robert Crippen, pilot.

  9. On Measurements of Buoyancy driven Convection and Low-Frequency Microaccelerations aboard orbital Station with the Use of Convection Sensor Dacon

    NASA Astrophysics Data System (ADS)

    Putin, G.; Babushkin, I.; Glukhov, A.; Ivanov, A.; Maksimova, M.; Bessonov, O.; Nikitin, S.; Polezhaev, V.; Sazonov, V.

    The principles of building a system for studying buoyancy driven convection, isothermal motions and low-frequency microaccelerations aboard spacecraft are proposed. The system consists of: 1) facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2) facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3) a system for computer simulations of convection processes in a fluid cell of a sensor using the data on linear and angular microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor and for modeling fluid motions under different microgravity environment regimes are described. The procedure and results of experiments carried out with the "DACON" apparatus aboard orbital station "MIR" during 25th - 28th expeditions in 1998 - 1999 are reported. The main results are: - estimation of random noise and systematic errors associated with the experimental techniques and procedure; - calibration of the amplitude-frequency dependence of the sensor using harmonic inertia field oscillations produced by cosmonauts or vibrating platform; - first direct observation of buoyancy driven convection onboard spacecraft; - measurement of buoyancy convection and low -frequency accelerations in different modules of the space station and for various regimes of crew and station activity; - registration of convection and accelerations during the docking of transport ships "Progress"; - evaluation of convection and long-periodic (46 minutes) microacceleration component caused by orbital movement of a station around the Earth; - comparison of convection and acceleration levels in the cases

  10. The role of weightlessness in the genetic damage from preflight gamma-irradiation of organisms in experiments aboard the Salyut 6 orbital station

    NASA Astrophysics Data System (ADS)

    Vaulina, E. N.; Anikeeva, I. D.; Kostina, L. N.; Kogan, I. G.; Palmbakh, L. R.; Mashinsky, A. L.

    The effect of weightlessness on chromosomal aberration frequency in preflight irradiated Crepis capillaris seeds, on the viability, fertility and mutation frequency in Arabidopsis thaliana, and on the frequency of nondisjunction and loss of X chromosomes in preflight irradiated Drosophila melanogaster gametes was studied aboard the Salyut 6 orbital station. The following effects were observed: a flight-time dependent amplification of the effects of preflight ?-irradiation in A. thaliana with respect to all the parameters studied; unequal effects in seeds and seedlings of Crepis capillaris; and a significant increase in the frequency of nondisjunction and loss of chromosomes during meiosis in Drosophila females. These observations are discussed in terms of the data of ground-based model experiments and flight experiments with a different time of exposure of objects to weightlessness. An attempt is made to elucidate the role of weightlessness in the modification of ionizing radiation effects.

  11. The development of the Space Environment Viability of Organics (SEVO) experiment aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite

    NASA Astrophysics Data System (ADS)

    Bramall, Nathan E.; Quinn, Richard; Mattioda, Andrew; Bryson, Kathryn; Chittenden, Julie D.; Cook, Amanda; Taylor, Cindy; Minelli, Giovanni; Ehrenfreund, Pascale; Ricco, Antonio J.; Squires, David; Santos, Orlando; Friedericks, Charles; Landis, David; Jones, Nykola C.; Salama, Farid; Allamandola, Louis J.; Hoffmann, Søren V.

    2012-01-01

    The Space Environment Viability of Organics (SEVO) experiment is one of two scientific payloads aboard the triple-cube satellite Organism/ORganic Exposure to Orbital Stresses (O/OREOS). O/OREOS is the first technology demonstration mission of the NASA Astrobiology Small Payloads Program. The 1-kg, 1000-cm3 SEVO cube is investigating the chemical evolution of organic materials in interstellar space and planetary environments by exposing organic molecules under controlled conditions directly to the low-Earth orbit (LEO) particle and electromagnetic radiation environment. O/OREOS was launched on November 19, 2010 into a 650-km, 72°-inclination orbit and has a nominal operational lifetime of six months. Four classes of organic compounds, namely an amino acid, a quinone, a polycyclic aromatic hydrocarbon (PAH), and a metallo-porphyrin are being studied. Initial reaction conditions were established by hermetically sealing the thin-film organic samples in self-contained micro-environments. Chemical changes in the samples caused by direct exposure to LEO radiation and by interactions with the irradiated microenvironments are monitored in situ by ultraviolet/visible/near-infrared (UV/VIS/NIR) absorption spectroscopy using a novel compact fixed-grating CCD spectrometer with the Sun as its light source. The goals of the O/OREOS mission include: (1) demonstrating key small satellite technologies that can enable future low-cost astrobiology experiments, (2) deploying a miniature UV/VIS/NIR spectrometer suitable for in-situ astrobiology and other scientific investigations, (3) testing the capability to establish a variety of experimental reaction conditions to enable the study of astrobiological processes on small satellites, and (4) measuring the chemical evolution of organic molecules in LEO under conditions that can be extrapolated to interstellar and planetary environments. In this paper, the science and technology development of the SEVO instrument payload and its

  12. [Biological effects of weightlessness at the cellular level. Comparative study of cultures of Paramecia aboard the orbital station Salyut-6 and a stratospheric balloon].

    PubMed

    Richoilley, G; Templier, J; Bes, J C; Gasset, G; Planel, H; Tixador, R

    1984-01-01

    In order to distinguish the effects of cosmic rays from those of weightlessness at the cellular level, we performed experiments aboard stratospheric balloon, where gravity is equal to 1 g and cosmic radiation roughly equal to that aboard Salyut-6. The results suggest that the stimulation of cell proliferation is probably due to cosmic rays, metabolic changes being related to microgravity.

  13. Main characteristics of biological components of developing life support system observed during the experiments aboard orbital complex MIR.

    PubMed

    Sychev, V N; Shepelev, E Y; Meleshko, G I; Gurieva, T S; Levinskikh, M A; Podolsky, I G; Dadasheva, O A; Popov, V V

    2001-01-01

    Since 1990, the orbital complex MIR has witnessed several incubator experiments for determination of spaceflight effects on embryogenesis of Japanese quail. First viable chicks who had completed the whole embryological cycle in MIR microgravity hatched out in 1990; it became clear that newborns would not be able to adapt to microgravity unaided. There were 8 successful incubations of chicks in the period from 1990 to 1999. In 1995-1997 the MIR-NASA space science program united Russian and US investigators. As a result, experiments Greenhouse-1 and 2 were performed with an effort to grow super dwarf wheat from seed to seed, and experiment Greenhouse-3 aimed at receiving two successive generations of Brassica rapa. But results of these experiments could not be used for definitive conclusions concerning effects of spaceflight on plant ontogenesis and, therefore, experiments Greenhouse-4 and 5 were staged within the framework of the Russian national space program. The experiments finally yielded wheat seeds. Some of the seeds was left on the space station and, being planted, gave viable seedlings which, in their turn, produced the second crop of space seeds.

  14. Main characteristics of biological components of developing life support system observed during the experiments aboard orbital complex MIR

    NASA Astrophysics Data System (ADS)

    Sychev, V. N.; Shepelev, E. Ya.; Meleshko, G. I.; Gurieva, T. S.; Levinskikh, M. A.; Podolsky, I. G.; Dadasheva, O. A.; Popov, V. V.

    Since 1990, the orbital complex MIR has witnessed several incubator experiments for determination of spaceflight effects on embryogenesis of Japanese quail. First viable chicks who had completed the whole embryological cycle in MIR microgravity hatched out in 1990; it became clear that newborns would not be able to adapt to microgravity unaided. There were 8 successful incubations of chicks in the period from 1990 to 1999. In 1995-1997 the MIR-NASA space science program united Russian and US investigators. As a result, experiments Greenhouse-1 and 2 were performed with an effort to grow super dwarf wheat from seed to seed, and experiment Greenhouse-3 aimed at receiving two successive generations of Brassica rapa. But results of these experiments could not be used for definitive conclusions concerning effects of spaceflight on plant ontogenesis and, therefore, experiments Greenhouse-4 and 5 were staged within the framework of the Russian national space program. The experiments finally yielded wheat seeds. Some of the seeds was left on the space station and, being planted, gave viable seedlings which, in their turn, produced the second crop of space seeds.

  15. Characterization of Deposits on Glass Substrate as a Tool in Failure Analysis: The Orbiter Vehicle Columbia Case Study

    NASA Technical Reports Server (NTRS)

    Olivas, J. D.; Melroy, P.; McDanels, S.; Wallace, T.; Zapata, M. C.

    2006-01-01

    In connection with the accident investigation of the space shuttle Columbia, an analysis methodology utilizing well established microscopic and spectroscopic techniques was implemented for evaluating the environment to which the exterior fused silica glass was exposed. Through the implementation of optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and electron diffraction, details emerged regarding the manner in which a charred metallic deposited layer formed on top of the exposed glass. Due to nature of the substrate and the materials deposited, the methodology proved to allow for a more detailed analysis of the vehicle breakup. By contrast, similar analytical methodologies on metallic substrates have proven to be challenging due to strong potential for error resulting from substrate contamination. This information proved to be valuable to not only those involved in investigating the break up of Columbia, but also provides a potential guide for investigating future high altitude and high energy accidents.

  16. STS-109/Columbia/HST Pre-Launch Activities/Launch On Orbit-Landing-Crew Egress

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-109 Space Shuttle Mission begins with introduction of the seven crew members: Commander Scott D. Altman, pilot Duane G. Carey, payload commander John M. Grunsfeld, mission specialists: Nancy J. Currie, James H. Newman, Richard M. Linnehan, and Michael J. Massimino. Spacewalking NASA astronauts revive the Hubble Space Telescope's (HST) sightless infrared eyes, outfitting the observatory with an experimental refrigerator designed to resuscitate a comatose camera. During this video presentation John Grunsfeld and Rick Linnehan bolt the new cryogenic cooler inside HST and hung a huge radiator outside the observatory and replaces the telescope power switching station. In the video we can see how the shuttle robot arm operator, Nancy Currie, releases the 13-ton HST. Also, the landing of the Space Shuttle Columbia is presented.

  17. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  19. STS-65 Columbia, OV-102, rises above KSC LC Pad 39A during liftoff

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Columbia, Orbiter Vehicle (OV) 102, rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A after liftoff at 12:43 pm Eastern Daylight Time (EDT). An exhaust cloud covers the launch pad area and the glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in a nearby marsh as OV-102 atop its external tank (ET) heads toward Earth orbit. A small flock of birds is visible at the right. Once in Earth's orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2) mission.

  20. Columbia's first shakedown flight

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The space shuttle orbiter Columbia, first of the planned fleet of spacecraft in the nation's space transportation system, will liftoff on its first orbital shakedown flight on or about the 10th of April 1981. Launch will be from the NASA Kennedy Space Center Launch Complex 39A, no earlier than 45 minutes after sunrise. Crew for the first orbital flight will be John W. Young, commander, veteran of two Gemini and two Apollo space flights, and U.S. Navy Capt. Robert L. Crippen, pilot. Crippen has not flown in space.

  1. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  2. STS-65 Columbia, OV-102, clears launch tower after liftoff from KSC LC 39A

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Columbia, Orbiter Vehicle (OV) 102, heads skyward after clearing the fixed service structure (FSS) tower at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. Florida plant life appears in the foreground. The exhaust cloud produced by OV-102's solid rocket boosters (SRBs) covers the launch pad area with the exception of the sound suppression water system tower. OV-102's starboard side and the right SRB are visible from this angle. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).

  3. STS-65 Columbia, OV-102, lifts off from KSC LC Pad 39A

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Columbia, Orbiter Vehicle (OV) 102, begins its roll maneuver after clearing the fixed service structure (FSS) tower as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. In the foreground of this horizontal scene is Florida brush and a waterway. Beyond the brush, the shuttle's exhaust cloud envelops the immediate launch pad area. Launch occurred at 12:43 pm Eastern Daylight Time (EDT). The glow of the space shuttle main engine (SSME) and solid rocket booster (SRB) firings is reflected in the nearby waterway. Once in Earth orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist aboard OV-102 will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2).

  4. [Columbia Sensor Diagrams]. Revised

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A two dimensional graphical event sequence of the time history of relevant sensor information located in the left wing and wheel well areas of the Space Shuttle Columbia Orbiter is presented. Information contained in this graphical event sequence include: 1) Sensor location on orbiter and its associated wire bindle in X-Y plane; 2) Wire bundle routing; 3) Description of each anomalous sensor event; 4) Time annotation by (a) GMT, (b) time relative to LOS, (c) time history bar, and (d) ground track; and 5) Graphical display of temperature rise (based on delta temperature from point it is determined to be anomalous).

  5. British Columbia

    ERIC Educational Resources Information Center

    Walton, Gerald

    2006-01-01

    The province of British Columbia has a dubious history where support for lesbian, gay, bisexual, and transgendered (LGBT) issues in education is concerned. Most notable is the Surrey School Board's decision in 1997 to ban three picture books for children that depict families with two moms or two dads. The North Vancouver School Board has also…

  6. Active Measurement of Mercury's Plasma experiment: a part of the Plasma Wave Investigation consortium aboard the BepiColombo Mercury Magnetospheric Orbiter

    NASA Astrophysics Data System (ADS)

    Trotignon, Jean Gabriel; Trotignon, Jean Gabriel; Lagoutte, Dominique; Kasaba, Yasumasa; Kojima, Hiro; Blomberg, Lars; Lebreton, Jean-Pierre

    The Active Measurement of Mercury's Plasma experiment, AM2 P, is designed to measure the thermal electron density and temperature in the environment of planet Mercury from the solar wind down to the inner magnetosphere. Detailed analyses of the returned data should also give more information on the electron distribution function itself. AM2 P as part of the Plasma Wave Investigation consortium, PWI, shall then contribute to the study of the intricate and poorly known interaction between the solar wind and the Mercury's magnetosphere, exosphere, and surface. AM2 P shall indeed give another insight into the thermal coupling between neutral and charged particles, the characterization of the spectral distribution of natural waves, the detection of plasma boundaries, and the identification of the plasma regimes inside the Hermean magnetosphere. The AM2 P basic mode is to measure the self-impedance of the MEFISTO (Mercury Electric Field In Situ TOol) double-sphere antenna in a frequency range comprising the plasma frequency which is expected to lie in the various regions encountered by the Mercury Magnetospheric Orbiter, MMO. In this mode, different operations are possible, giving complementary plasma parameter information, mainly in the vicinity of the plasma resonance: normal dipole, monopole, and mutual impedance, according to the antenna elements that are used for the transmitting and receiving functions. In the secondary MEFISTO double-wire antenna mode, the external shield of the wire-boom is used as a 2 x 15 m long dipole antenna. As the dependence upon plasma parameters of the double-wire antenna impedance differs significantly from the double-sphere one, both modes may be of great benefit for achieving reliable and complementary plasma diagnoses. This is actually very useful in the Mercury's dilute media. As a bonus, AM2 P will contribute to the onboard calibrations of the WPT wire electric-antenna and the SC-DB and SC-LF search coils (calibration signal

  7. Chandra X-Ray Observatory Pointing Control System Performance During Transfer Orbit and Initial On-Orbit Operations

    NASA Technical Reports Server (NTRS)

    Quast, Peter; Tung, Frank; West, Mark; Wider, John

    2000-01-01

    The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.

  8. STS-65 Columbia, OV-102, IML-2 crew during egress training in MAIL Bldg 9NE

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 crewmembers, wearing launch and entry suits (LESs) and seated in front of the side hatch crew escape system (CES) pole trainer, listen as crew training staffer describes the sky genie. From left are Commander Robert D. Cabana, Pilot James D. Halsell, Jr, Mission Specialist (MS) and Payload Commander (PLC) Richard J. Hieb, MS Carl E. Walz, MS Leroy Chiao, MS Donald A. Thomas, and Japanese Payload Specialist Chiaki Mukai. Mukai represents the National Space Development Agency (NASDA) of Japan. The STS-65 crew was in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE for crew egress training. The seven-member crew will support the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  9. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the

  10. Spacelab Module for USML-1 Mission in Orbiter Cargo Bay

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  11. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  12. Launch of STS-9 Space Shuttle Columbia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Columbia lifts off from launch pad 39A at the Kennedy Space Center to being the STS-9 mission. This view show the Columbia from the side as it just clears the launch pad (44997); This is a front view of Columbia's liftoff, showing the external fuel tank and both the orbital manuevering system (OMS) pods. The pad is obscured by clouds of smoke (44998); This is a side view of the liftoff as seen across a pond of water. The glow from the engines is reflected in the pond below (44999).

  13. 'Columbia Hills' Color Elevation Map

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Spirit's Long Journey, Sol 450

    This elevation map shows the region of the 'Columbia Hills' where NASA's Mars Exploration Rover Spirit has been working since mid-2004. Areas colored blue are lower in elevation and areas colored yellow are higher in elevation. The map imagery is from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter.

    Spirit's Long Journey, Sol 450 More than 15 months after landing on Mars, NASA's Spirit rover is still going strong, having traveled a total of 4,276 meters (2.66 miles) as of martian day, or sol, 450 (April 8, 2005). This elevation map shows the traverse followed by Spirit since arriving at the 'Columbia Hills' in June, 2004. The areas colored blue are low in elevation and areas colored yellow are high in elevation. The blue area at the foot of the 'Columbia Hills' is approximately 20 meters (66 feet) higher in elevation than the site where Spirit landed in Gusev Crater. The highest peak is on the order of 80 meters (262 feet) higher still. In other words, the hills Spirit is exploring are more than 250 feet high. The map imagery is from the Mars Orbiter Camera on NASA's Mars Global Surveyor.

  14. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  15. NASA's Space Shuttle Columbia: Synopsis of the Report of the Columbia Accident Investigation Board

    NASA Technical Reports Server (NTRS)

    Smith, Marcia S.

    2003-01-01

    NASA's space shuttle Columbia broke apart on February 1, 2003 as it returned to Earth from a 16-day science mission. All seven astronauts aboard were killed. NASA created the Columbia Accident Investigation Board (CAIB), chaired by Adm. (Ret.) Harold Gehman, to investigate the accident. The Board released its report (available at [http://www.caib.us]) on August 26, 2003, concluding that the tragedy was caused by technical and organizational failures. The CAIB report included 29 recommendations, 15 of which the Board specified must be completed before the shuttle returns to flight status. This report provides a brief synopsis of the Board's conclusions, recommendations, and observations. Further information on Columbia and issues for Congress are available in CRS Report RS21408. This report will not be updated.

  16. Shuttle Columbia Mated to 747 SCA with Crew

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the

  17. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. STS-90 Columbia RSS rollback

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  19. Cytopathologic observations of the lung of adult newts (Cynops pyrrhogaster) on-board the space shuttle, Columbia, during the Second International Microgravity Laboratory experiments.

    PubMed

    Pfeiffer, C J; Yamashita, M; Izumi-Kurotani, A; Koike, H; Asashima, M

    1995-10-01

    Four adult female Japanese newts, Cynops pyrrhogaster, were carried for 15 days aboard the orbiting space shuttle, Columbia, in July of 1994, as part of the Second International Microgravity Laboratory, IML-2 aquatic animal experiments. These previously fertilized newts, after stimulation with chorionic gonadotropin by a spaceflight adapted injection procedure, deposited numerous eggs for study of early development during weightlessness. The primitive saccular lungs of the two newts which survived the spaceflight revealed by TEM marked pulmonary cytopathologic changes including basal laminar separation, microvillar degeneration, and cytoplasmic granular changes in the primary granulated pneumocytes. Also, intracellular edema in the pulmonary collagenous matrix and vacuolar changes in the ciliated pulmonary lining cell type and in vascular endothelial cells were observed. These changes, triggered by the spaceflight, and not seen in controls also relying on respiration via the skin, may reflect a chronic mild hypoxia as it is known that newts undergoing oviposition are subject to increased oxygen demand.

  20. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the

  1. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  2. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  3. Low energy neutron measurements aboard encounter missions

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Maksimovic, M.; Trottet, G.

    Neutrons in the MeV to GeV range are produced by interaction of flare accelerated ions with the solar atmosphere. Because of their lifetime, only high energy neutrons (> 100 MeV) have a high probability to be detected at earth's orbit. So far, around fifteen solar neutron events have been observed either by high energy detectors aboard spacecrafts at 1 AU or by ground based neutron monitors. Neutrons between 10 and 100 MeV have also been detected for a few events through their proton decay. Measurements of solar neutrons closer to the Sun aboard encounter missions will allow to probe for the first time the MeV neutrons which are produced by the nuclear reactions of energetic ions with thresholds around 1 MeV/nuc and will provide information on the accelerated ion spectrum in the energy range between ˜ 1 MeV and 100 MeV/nuc in complementarity with what can be deduced from γ -ray line emission. The close proximity of the Sun would allow to measure neutron events for many more flares opening a new field of solar physics. Combined with near in-situ ion measurements and γ -ray observations, neutrons will bring information on the link between interacting and escaping ions while getting rid of most of the transport effects.

  4. STS-87 Columbia Landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia touches its main gear down on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5 to complete the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  5. STS-87 Columbia landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia makes a smooth touchdown on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5, completing the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  6. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  7. Understanding the Columbia Space Shuttle Accident

    SciTech Connect

    Osheroff, Doug

    2004-06-16

    On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

  8. Columbia returns to Earth

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The touchdown. After a successful 54-1/2-hour mission in space, Columbia and her crew, astronauts John Young, commander, and Robert Crippen, pilot, gently touch the Earth on runway 23 at Edwards Air Force Base.

  9. New Columbia Admission Act

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-01-12

    02/08/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. STS-93 Columbia rolls over to Vehicle Assemble Building (VAB)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Columbia is rolled out from the Orbiter Processing Facility (background) on its transporter. It is being moved to the nearby Vehicle Assembly Building (VAB) for external tank mating operations. Columbia is scheduled for rollout to Launch Pad 39B on Monday, June 7, for mission STS-93. The primary mission objective will be the deployment of the Advanced X-ray Astrophysics Facility, recently renamed the Chandra X-Ray Observatory. Mission STS-93 will be the first Space Shuttle commanded by a woman, Commander Eileen M. Collins. It is scheduled to launch July 22 at 12:27 a.m. EDT although that date is currently under review.

  11. Apollo 15 orbital science summary.

    NASA Technical Reports Server (NTRS)

    Esenwein, G. F.; Roberson, F. I.

    1972-01-01

    In this paper, summary results of the Apollo 15 orbital science payload are given, and some quick-look results of Apollo 16 are discussed. Geochemical instruments, consisting of gamma-ray, X-ray, and alpha particle spectrometers, have provided a chemical map of the lunar surface flown over by Apollo 15. The Laser Altimeter and frontside gravity data have shown some unexpected results with regard to the lunar shape, and provided new basis for understanding lunar mascons. A magnetometer, aboard the small subsatellite, has located magnetic anomalies principally on the lunar farside, and has shown that the small lunar magnetic field is smoother on the frontside than on the back. The mass spectrometer, in orbit aboard the Command and Service Modules, has measured unexpectedly large populations of molecules at orbital altitude (110 km), mostly due to spacecraft contamination. Two major camera systems have provided the first systematic metric quality photography and concurrent high resolution stereo coverage of the lunar surface.

  12. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  13. A new chapter in precise orbit determination

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.

    1992-01-01

    A report is presented on the use of GPS receivers on board orbiting spacecraft to determine their orbits with unprecedented accuracy. By placing a GPS receiver aboard a satellite one can observe its true motion and reconstruct its trajectory in great detail without knowledge of the forces acting on it. Only the accuracy of the GPS carrier-phase observable, which can be better than 1 cm for a 1 sec duration observation, ultimately limits 'user orbit' accuracy.

  14. Post-landing processing of the Space Shuttle Columbia after STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Post-landing processing of the Space Shuttle Columbia after the STS-5 mission at the Dryden Flight Research Facility (DFRF) in southern California. Uncommon rainwater has given a mirror effect to the normally dry lakebed, reflecting the Columbia's image. Trucks and personnel are seen gathering for the post flight analysis of the orbiter's condition.

  15. Landing of the STS-62 Space Shuttle Columbia at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia is about to touch down on the Shuttle Landing Facility following almost 14 days in Earth orbit. The giant Vehicle Assembly Building (VAB) where Columbia had been mated to its external tank and two solid rockets, is in the background. Touchdown occurred at 8:09 a.m. (EST), March 18, 1994.

  16. A Case for Hypogravity Studies Aboard ISS

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2014-01-01

    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent

  17. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  18. STS-80 Columbia after wheel stop on SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Recovery convoy equipment greets the orbiter Columbia following main gear touchdown at 6:49:05 a.m. EST, Dec. 7, on Runway 33 of KSC's Shuttle Landing Facility. The return to Earth of NASA's oldest spaceplane occurred just moments before sunrise. This was the 33rd landing at KSC in Shuttle program history.

  19. Branding time at Columbia.

    PubMed

    Jaklevic, M C

    1996-08-19

    This week Columbia/HCA Healthcare Corp. introduces a national advertising blitz believed to be the largest ever by a healthcare provider. The hospital giant wants to instill its brand name in the American lexicon, and it's willing to spend millions to do so. PMID:10159472

  20. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  1. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  2. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  3. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  4. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  5. Oblique View of Columbia Hills

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This perspective view looking toward the northeast shows part of the Columbia Hills range inside Gusev Crater. At the center is the winter campaign site of NASA's Mars Exploration Rover Spirit.

    On its 805th Martian day, or sol, (April 8, 2006), Spirit was parked on a slope tilting 11 degrees to the north to maximize sunlight on the solar panels during the southern winter season. Science observations were formulated to take advantage of the long time during which the rover was parked. The plan focused on two tasks: tracking atmospheric and surface dynamics by periodically surveying the surface and atmosphere; and extensively examining surrounding terrains, rocks and soils using the panoramic camera and the miniature thermal emission spectrometer, coupled with long duration measurements using the alpha particle X-ray and Moessbauer spectrometers of rock and soil targets. For reference, the feature known as 'Home Plate' is approximately 90 meters (295 feet) wide.

    An image from Mars Global Surveyor's Mars Orbital Camera, catalogued as E03_00012 and courtesy Malin Space Science Systems, was used as the base image for this figure. The perspective was generated using elevation data generated from analyses of the camera's stereo images by the U.S. Geological Survey, Flagstaff, Ariz.

  6. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  7. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Maule, Alec

    2005-01-01

    The U.S. Geological Survey's Columbia River Research Laboratory (CRRL) was established in 1978 at Cook, Washington, in the Columbia River Gorge east of Portland, Oregon. The CRRL, as part of the Western Fisheries Research Center, conducts research on fishery issues in the Columbia River Basin. Our mission is to: 'Serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources...by conducting objective, relevant research'.

  8. STS-40 Columbia, OV-102, payload bay aft firewall and thermal insulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia, Orbiter Vehicle (OV) 102, payload bay (PLB) aft firewall is documented to show a loose piece of thermal insulation. The crew discovered the loose blanket soon after opening the PLB doors on 06-05-91. The vertical tail and the left orbital maneuvering system (OMS) pod are visible above the bulkhead.

  9. STS-1: Columbia Briefings

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A video presentation on an update of the STS-1 Columbia Shuttle is shown. Hugh Harris is the moderator. He introduces Don Phillips, Chief STS Test OPS, who presents the status of the vehicle. Terry William, Chief of Mechanical Systems, discusses the debonding of the panels. A question and answer period from the news media is shown. The various topics of discussion from the news media include: 1) Repair of thermal tiles; 2) Launch dates; and 3) Landing and launch sites and 4) Low pressure/high pressure tanking tests. An audio presentation is given of questions from NASA Marshall Space Flight Center and NASA Washington. On March 12, 1981, another STS-1 Columbia update is shown. Bob Schick, Shuttle Test Director, and Bob Sieck, Flight Project Engineer answers questions about the actual repair time of the panels and a very detailed description of the three areas of debonding is presented. A brief launch date statement from Dr. Allen Lovelace, Acting NASA Administrator is given and John Lardley, Shuttle Associate Director, discusses the flight readiness review.

  10. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Waste, Steve; Reagan, Rachel

    2012-01-01

    The mission of the Columbia River Research Laboratory is to serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources, with emphasis on the Columbia River basin. As a part of the U.S. Geological Survey (USGS) Western Fisheries Research Center, we conduct objective, relevant research and seek partnerships to help fulfill this mission.

  11. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the

  12. STS-87 Columbia landing at KSC (Drag Chute Deployed)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia touches its main gear down on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5 to complete the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  13. STS-87 Columbia rolls out to LC 39B in preparation for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The orbiter Columbia, mated to its external tank and two solid rocket boosters, rolls out to Kennedy Space Centers (KSCs) Pad 39-B. Columbia is scheduled to launch on Nov. 19 for STS-87 on a 16-day flight of the United States Microgravity Payload (USMP)-4 mission. This mission also features the deployment and retrieval of the Spartan-201 satellite and a spacewalk to demonstrate assembly and maintenance operations for future use on the International Space Station.

  14. STS-87 Columbia Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.

  15. Columbia Accident Investigation Board. Volume One

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Columbia Accident Investigation Board's independent investigation into the February 1, 2003, loss of the Space Shuttle Columbia and its seven-member crew lasted nearly seven months. A staff of more than 120, along with some 400 NASA engineers, supported the Board's 13 members. Investigators examined more than 30,000 documents, conducted more than 200 formal interviews, heard testimony from dozens of expert witnesses, and reviewed more than 3,000 inputs from the general public. In addition, more than 25,000 searchers combed vast stretches of the Western United States to retrieve the spacecraft's debris. In the process, Columbia's tragedy was compounded when two debris searchers with the U.S. Forest Service perished in a helicopter accident. This report concludes with recommendations, some of which are specifically identified and prefaced as 'before return to flight.' These recommendations are largely related to the physical cause of the accident, and include preventing the loss of foam, improved imaging of the Space Shuttle stack from liftoff through separation of the External Tank, and on-orbit inspection and repair of the Thermal Protection System. The remaining recommendations, for the most part, stem from the Board's findings on organizational cause factors. While they are not 'before return to flight' recommendations, they can be viewed as 'continuing to fly' recommendations, as they capture the Board's thinking on what changes are necessary to operate the Shuttle and future spacecraft safely in the mid- to long-term. These recommendations reflect both the Board's strong support for return to flight at the earliest date consistent with the overriding objective of safety, and the Board's conviction that operation of the Space Shuttle, and all human space-flight, is a developmental activity with high inherent risks.

  16. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  17. 78 FR 37222 - Columbia Organic Chemical Company Site, Columbia, Richland County, South Carolina; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... AGENCY Columbia Organic Chemical Company Site, Columbia, Richland County, South Carolina; Notice of... Columbia Organic Chemical Company Superfund Site located in Columbia, Richland County, South Carolina. The.... Submit your comments by site name Columbia Organic Chemical Company by one of the following methods:...

  18. STS-94 Columbia Landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.

  19. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired. PMID:24483559

  20. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  1. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  2. The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Visible at left is the White Room on the orbiter access arm through which the flight crew had entered the orbiter. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  3. Orbit to orbit transportation

    NASA Astrophysics Data System (ADS)

    Bergeron, R. P.

    1980-07-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  4. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  5. Spirit's Express Route to 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map illustrates the Mars Exploration Rover Spirit's position as of sol 112 (April 26, 2004), near the crater called 'Missoula.' Like a train on a tight schedule, Spirit will make regular stops along the way to its ultimate destination, the 'Columbia Hills.' At each stop, or 'station,' the rover will briefly analyze the area's rocks and soils. Each tick mark on the rover's route represents one sol's worth of travel, or about 60 to 70 meters (200 to 230 feet). Rover planners estimate that Spirit will reach the hills around mid-June. Presently, the rover is stopped at a site called 'Plains Station.'

    The color thermal data show how well different surface features hold onto heat. Red indicates warmth; blue indicates coolness. Areas with higher temperatures are more likely to be rocky, as rocks absorb heat. Lower temperatures denote small particles and fewer rocks. During its traverse, Spirit will document the causes of these temperature variations.

    The map comprises data from the camera on NASA's Mars Global Surveyor orbiter and the thermal emission imaging system on NASA's Mars Odyssey orbiter.

  6. Spirit's Express Route to 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map illustrates the Mars Exploration Rover Spirit's position as of sol 112 (April 26, 2004), near the crater called 'Missoula.' Like a train on a tight schedule, Spirit will make regular stops along the way to its ultimate destination, the 'Columbia Hills.' At each stop, or 'station,' the rover will briefly analyze the area's rocks and soils. Each tick mark on the rover's route represents one sol's worth of travel, or about 60 to 70 meters (200 to 230 feet). Rover planners estimate that Spirit will reach the hills around mid-June. Presently, the rover is stopped at a site called 'Plains Station.'

    The color thermal data show how well different surface features hold onto heat. Red indicates a higher thermal inertia associated with rocky terrain (cooler in the day, warmer at night); blue indicates a lower thermal inertia associated with smaller particles and fewer rocks (warmer at night, cooler in the day). During its traverse, Spirit will document the causes of these thermal variations.

    The map comprises data from the camera on NASA's Mars Global Surveyor orbiter and the thermal emission imaging system on NASA's Mars Odyssey orbiter.

  7. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  8. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  9. Radiation Measurements aboard Spacelab 1

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.

    1984-07-01

    The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low-LET (linear energy transfer) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low-LET dose rate of 11.2 millirads per day inside the module, about twice the low-LET dose rate measured on previous flights of the space shuttle. Because of the higher inclination of the orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles (high charge and energy galactic cosmic rays) were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher that measured on previous shuttle missions.

  10. Radiation measurements aboard Spacelab 1

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.

    1984-01-01

    The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.

  11. Columbia River Impact Evaluation Plan

    SciTech Connect

    Weiss, S.G.

    1994-03-01

    A preliminary impact evaluation was conducted to assess the adequacy of existing data and proposed data collection programs for evaluating cumulative health and environmental impacts to the Columbia River due to past practices at the Hanford Site. The results of this evaluation were used to develop this plan to ensure collection of sufficient data for adequate characterization of the Columbia River along the 100 Area for CERCLA purposes. The evaluation used to develop the plan is not a risk assessment; the plan presented here is only a mechanism to collect additional data to support a future risk assessment.

  12. NASA Educational Briefs for the Classroom. Orbits of Bodies in Space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The difference between an orbit and a revolution is explained and it is shown why space shuttle Columbia's period of revolution was longer than its orbital period. Parameters of orbits examined include apoapsis, periapsis, apogee, perigee, aphelion, perihelion, orbital plane, and inclination. Orbit velocity and duration, Newton's law of gravitation, and Kepler's three laws of motion are considered. The principles involved in geostationary satellites are also explored.

  13. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  14. STS-52 Columbia, OV-102, rises above KSC LC Pad 39B after liftoff

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, leaves Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B on its way toward a ten-day Earth-orbital mission. OV-102 is barely visible at the top of the exhaust cloud which covers the launch pad. The Atlantic Ocean creates the background. The photograph was taken from the Shuttle Training Aircraft (STA) piloted by astronaut Steven R. Nagel. Liftoff occurred at 1:09:39 pm (Eastern Daylight Time (EDT)).

  15. Columbia undergoes final shakedown during seven-day STS-4 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The launch preparations for the Space Transportation System 4 flight of the space shuttle Columbia are described. The details of the spacecraft's mission profile are given. Several experiments and payloads are described. An account of the remote manipulator system is given. Studies of long-term thermal extremes on the orbiter subsystems and a survey of orbiter induced contamination of the payload bay are identified as mission priorities.

  16. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  17. Skylab 3 crewmen shown eating in Orbital Workshop wardroom

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three Skylab 3 crewmen are shown eating in the Orbital Workshop (OWS) wardroom of the Skylab space station in Earth orbit, in this photographic reproduction taken from a television transmission made by a color TV camera aboard the OWS. Astronaut Alan L. Bean (right), commander, illustrates eating under zero gravity conditions upsidedown. The two other crewmen are Scientist-Astronaut Owen K. Garriott (left), science pilot; and Astronaut Jack R. Lousma, pilot.

  18. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from an upper level in the Vehicle Assembly Building (VAB), the orbiter Atlantis waits in the transfer aisle after its move from the Orbiter Processing Facility. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  19. STS-28 Columbia, OV-102, MS Adamson prepares meal on middeck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On middeck of Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) James C. Adamson watches as open jars of peanut butter and jelly and a jar lid freefloat in front of middeck lockers. Adamson holds a tortilla covered with the two ingredients. Behind Adamson is the galley.

  20. STS-28 Columbia, OV-102, MS Brown dons LES in JSC Mockup and Integration Lab

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-28 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Mark N. Brown, wearing communications carrier assembly (CCA) and launch and entry suit (LES), prepares to don launch and entry helmet (LEH). Brown suits up for shuttle emergency egress (bailout) procedures in JSC Mockup and Integration Laboratory Bldg 9A.

  1. STS-28 Columbia, OV-102, terminal countdown demonstration test (TCDT) at KSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-28 Columbia, Orbiter Vehicle (OV) 102, crewmembers participate in the terminal countdown demonstration test (TCDT) at the Kennedy Space Center (KSC). Before TCDT, crewmembers eat breakfast. Sitting around the table (left to right) are Mission Specialist (MS) James C. Adamson, Pilot Richard N. Richards, Commander Brewster H. Shaw, Jr, MS David C. Leestma, and MS Mark N. Brown.

  2. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's port side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  3. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's starboard side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  4. A LIBRARY PROGRAM FOR COLUMBIA.

    ERIC Educational Resources Information Center

    STONE, C. WALTER; AND OTHERS

    PART OF THE PLANNING NECESSARY FOR THE NEW CITY OF COLUMBIA, MARYLAND (PROJECTED POPULATION OF 125,000) HAS BEEN THE ORGANIZATION OF AN OPTIMUM PROGRAM OF INFORMATION SERVICES FOR ALL AREAS OF ITS LIFE--BOTH FOR THE COMMUNITY IN GENERAL AND FOR ITS SCHOOLS, INDUSTRIES, AND BUSINESSES. COMMUNICATIONS, TECHNOLOGY AND RELATED SYSTEMS HAVE BEEN…

  5. STS-1: Columbia Complete Mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A video presentation of the STS-1 Columbia Mission is shown. The video begins with footage of the STS-1 Columbia arriving at Kennedy Space Center on March 24, 1979. The various milestones that were shown include: 1) STS-1 Columbia Shuttle Rocket Booster (SRB) stacking; 2) External Tank (ET) lift and mating; 3) Move to VAB and Mating; 4) Rollout to pad 39A; 5) Flight Readiness Firing (FRF) on February 19, 1981; 6) Launch day; and 7) Return to Kennedy Space Center. John W. Young, Commander and Robert L. Crippen, Pilot are shown having a traditional breakfast before the suit up and drive out to the launch pad. Footage of the lift-off along with Shuttle Rocket Booster (SRB) separation is shown. After lift-off, there is a shot of the crew in the mid-deck and also a view of thunderstorms over the Amazon Basin. The video ends with a view of Columbia returning to Kennedy Space Center on April 25, 1981.

  6. STS-65 Mission Specialist Thomas with newt in IML-2 module aboard OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Donald A. Thomas is seen in the spacelab science module at the Rack 1 Workbench making an observation of one of the newts. Smaller organisms, such as the newts, are able to develop from embryos and hatch during the mission as part of an overall program to determine if development occurs normally in the space environment. Temporary home for the newts, the Aquatic Animal Experiment Unit (AAEU) (out of frame) also contained Medaka and goldfish. Thomas joined five other NASA astronauts and a Japanese payload specialist for two weeks of experimenting onboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in Earth orbit.

  7. STS-65 Mission Specialist Chiao in front of IML-2 Rack 3 aboard OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao is seen in the International Microgravity Laboratory 2 (IML-2) spacelab science module in front of Rack 3 and above center aisle equipment. Chiao has just made an observation of the goldfish container (silver apparatus on left between his right hand and knee). The Rack 3 Aquatic Animal Experiment Unit (AAEU) also contains Medaka and newts. Chiao joined five other NASA astronauts and a Japanese payload specialist for two weeks of experimenting onboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in Earth orbit.

  8. Possible Ni-Rich Mafic-Ultramafic Magmatic Sequence in the Columbia Hills: Evidence from the Spirit Rover

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Gellert, R.; McCoy, T.; McSween, H. Y., Jr.; Li, R.

    2006-01-01

    The Spirit rover landed on geologic units of Hesperian age in Gusev Crater. The Columbia Hills rise above the surrounding plains materials, but orbital images show that the Columbia Hills are older [1, 2]. Spirit has recently descended the southeast slope of the Columbia Hills doing detailed measurements of a series of outcrops. The mineralogical and compositional data on these rocks are consistent with an interpretation as a magmatic sequence becoming increasingly olivine-rich down slope. The outcrop sequence is Larry s Bench, Seminole, Algonquin and Comanche. The "teeth" on the Rock Abrasion Tool (RAT) wore away prior to arrival at Larry s Bench; the data discussed are for RAT brushed surfaces.

  9. Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos I and Cytos M experiments.

    PubMed

    Panel, H; Tixador, R; Nefedov, Y u; Gretchko, G; Richoilley, G; Bassler, R; Monrozies, E

    1981-01-01

    Results of the Cytos M experiment and complementary results of the Cytos I experiment flown aboard the Soviet orbital station Salyut 6 are shown. Space flight of Paramecia cultures resulted in a stimulating effect on cell proliferation, in a larger cell volume, in changes in cell dry weight, cell total protein and the electrolyte content of the culture media in which the organisms were grown. The assumption of a possible effect of weightlessness on membrane permeability is discussed.

  10. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  11. Skylab 3 crewmen aboard prime recovery ship, U.S.S. New Orleans

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three crewmen of the Skylab 3 mission are seen aboard the prime recovery ship, U.S.S. New Orleans, following their successful 59-day visit to the Skylab space station in Earth orbit. They are, left to right, Astronaut Jack R. Lousma, pilot; Scientist-Astronaut Owen K. Garriott, science pilot; and Astronaut Alan L. Bean, commander. They are seated atop a platform of a fork-lift dolly. Recovery support personnel are wearing face masks to prevent exposing the crewmen to disease.

  12. Parallel Performance Characterization of Columbia

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2004-01-01

    Using a collection of benchmark problems of increasing levels of realism and computational effort, we will characterize the strengths and limitations of the 10,240 processor Columbia system to deliver supercomputing value to application scientists. Scientists need to be able to determine if and how they can utilize Columbia to carry extreme workloads, either in terms of ultra-large applications that cannot be run otherwise (capability), or in terms of very large ensembles of medium-scale applications to populate response matrices (capacity). We select existing application benchmarks that scale from a small number of processors to the entire machine, and that highlight different issues in running supercomputing-calss applicaions, such as the various types of memory access, file I/O, inter- and intra-node communications and parallelization paradigms. http://www.nas.nasa.gov/Software/NPB/

  13. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    NASA Astrophysics Data System (ADS)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  14. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  15. STS-87 Columbia rolls out to LC 39B in preparation for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The orbiter Columbia, mated to its external tank and two solid rocket boosters, is prepared to roll out of Kennedy Space Centers (KSCs) Vehicle Assembly Building (VAB) to Pad 39-B. Columbia is scheduled to launch on Nov. 19 for STS-87 on a 16-day flight of the United States Microgravity Payload (USMP)-4 mission. This mission also features the deployment and retrieval of the Spartan-201 satellite and a spacewalk to demonstrate assembly and maintenance operations for future use on the International Space Station.

  16. The SAGE III's mission aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Pitts, Michael; Thomason, Larry; Zawodny, Joseph; Flittner, David; Hill, Charles; Roell, Marilee; Vernier, Jean-Paul

    2014-05-01

    The Stratospheric Aerosol and Gas Experiment (SAGE III) is being prepared for deployment on the International Space Station (ISS) in 2015. Constructed in the early 2000s, the instrument is undergoing extensive testing and refurbishment prior to delivery to ISS. In addition, ESA is refurbishing their Hexapod which is a high-accuracy pointing system developed to support ISS external payloads, particularly SAGE III. The SAGE III instrument refurbishment also includes the replacement of the neutral density filter that has been associated with some instrument performance degradation during the SAGE III mission aboard METEOR/3M mission (2002-2005). We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss SAGE III-ISS refurbishment including results from Sun-look testing. We also will discuss potential revisions to the science measurements and the expected measurement accuracies determined in part through examination of the SAGE III-METEOR/3M measurement data quality. In addition, we will discuss potential mission science goals enabled by the mid-inclination ISS orbit. No dedicated field campaign for SAGE III validation is anticipated. Instead, validation will primarily rely on a collaborative effort with international groups making in situ and ground-based measurements of aerosol, ozone, and other SAGE III data products. A limited balloon-based effort with a yet-to-be-determined validation partner is also in the planning stages.

  17. The solid surface combustion experiment aboard the USML-1 mission

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine

    1994-01-01

    AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.

  18. STS-90 Columbia landing at KSC's runway 33

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A flock of birds takes flight as the orbiter Columbia, with its drag chute deployed, touches down on Runway 33 of KSC's Shuttle Landing Facility to complete the nearly 16-day STS-90 mission. Main gear touchdown was at 12:08:59 p.m. EDT on May 3, 1998, landing on orbit 256 of the mission. The wheels stopped at 12:09:58 EDT, completing a total mission time of 15 days, 21 hours, 50 minutes and 58 seconds. The 90th Shuttle mission was Columbia's 13th landing at the space center and the 43rd KSC landing in the history of the Space Shuttle program. During the mission, the crew conducted research to contribute to a better understanding of the human nervous system. The crew of the STS-90 Neurolab mission include Commander Richard Searfoss; Pilot Scott Altman; Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire; and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  19. Physiology of chimpanzees in orbit. Part 2: Interface document

    NASA Technical Reports Server (NTRS)

    Firstenberg, A.

    1972-01-01

    Interface requirements are presented for the design and development of an earth orbiting experiment to be known as POCO, Physiology of Chimpanzees in Orbit. The POCO experiment may be designed to operate within an orbiting space station (provided artificial gravity measures are not employed), a Saturn 4-B workshop, an Apollo command module or service module, a Saturn-1B spacecraft LM adapter, or aboard one of the presently conceived appendages connected by an umbilical to a space station. This document sets forth the experiment definition and requirements and describes the hardware under development to accomplish these objectives.

  20. Satellite-to-satellite system and orbital error estimates

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Argentiero, P. D.; Vonbun, F. O.

    1976-01-01

    Satellite-to-satellite tracking and orbit computation accuracy is evaluated on the basis of data obtained from near earth spacecraft via the geostationary ATS-6. The near earth spacecraft involved are Apollo-Soyuz, GEOS-3, and NIMBUS-6. In addition ATS-6 is being tracked by a new scheme wherein a single ground transmitter interrogates several ground based transponders via ATS-6 to achieve the precision geostationary orbits essential in satellite-to-satellite orbit computation. Also one way Doppler data is being recorded aboard NIMBUS-6 to determine the position of meteorological platforms. Accuracy assessments associated with the foregoing mission related experiments are discussed.

  1. Columbia River Component Data Evaluation Summary Report

    SciTech Connect

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  2. The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit

    NASA Technical Reports Server (NTRS)

    Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.

  3. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  4. Portland, Mount Hood, & Columbia River Gorge, Oregon, Perspective View

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Portland, the largest city in Oregon, is located on the Columbia River at the northern end of the Willamette Valley. On clear days, Mount Hood highlights the Cascade Mountains backdrop to the east. The Columbia is the largest river in the American Northwest and is navigable up to and well beyond Portland. It is also the only river to fully cross the Cascade Range, and has carved the Columbia River Gorge, which is seen in the left-central part of this view. A series of dams along the river, at topographically favorable sites, provide substantial hydroelectric power to the region.

    This perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat satellite image, and a false sky. Topographic expression is vertically exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data substantially help in analyzing Landsat images by revealing the third dimension of Earth's surface, topographic height. The Landsat archive is managed by the U.S. Geological Survey's Eros Data Center (USGS EDC).

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet

  5. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if... produce, potable water. (b) The Commissioner of Food and Drugs may base his approval or disapproval of...

  6. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... health authorities of contiguous foreign nations. (c) Overboard water treated on vessels shall be from... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs...

  7. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  8. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  9. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  10. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  11. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  12. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  13. Immunization delivery in British Columbia

    PubMed Central

    Omura, John; Buxton, Jane; Kaczorowski, Janusz; Catterson, Jason; Li, Jane; Derban, Andrea; Hasselback, Paul; Machin, Shelagh; Linekin, Michelle; Morgana, Tamsin; O’Briain, Barra; Scheifele, David; Dawar, Meena

    2014-01-01

    Abstract Objective To explore the experiences of family physicians and pediatricians delivering immunizations, including perceived barriers and supports. Design Qualitative study using focus groups. Setting Ten cities throughout British Columbia. Participants A total of 46 family physicians or general practitioners, 10 pediatricians, and 2 residents. Methods A semistructured dialogue guide was used by a trained facilitator to explore participants’ experiences and views related to immunization delivery in British Columbia. Verbatim transcriptions were independently coded by 2 researchers. Key themes were analyzed and identified in an iterative manner using interpretive description. Main findings Physicians highly valued vaccine delivery. Factors facilitating physician-delivered immunizations included strong beliefs in the value of vaccines and having adequate information. Identified barriers included the large time commitment and insufficient communication about program changes, new vaccines, and the adult immunization program in general. Some physicians reported good relationships with local public health, while others reported the opposite experience, and this varied by geographic location. Conclusion These findings suggest that physicians are supportive of delivering vaccines. However, there are opportunities to improve the sustainability of physician-delivered immunizations. While compensation schemes remain under the purview of the provincial governments, local public health authorities can address the information needs of physicians. PMID:24627403

  14. Integrated Curriculum Programs in British Columbia

    ERIC Educational Resources Information Center

    Johnston, Julie

    2011-01-01

    In this article, the author discusses British Columbia's integrated curriculum programs (ICPs). In this province of sea and mountains, outdoor adventures figure prominently in its ICPs--with a healthy dose of environmental and sustainability education mixed in. The author presents five examples from British Columbia's ICPs: (1) Earthquest Outdoor…

  15. Orbiter Return-To-Flight Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Anderson, Brian; Bourland, Gary; Bouslog, Stan; Cassady, Amy; Horvath, Tom; Berry, Scott A.; Gnoffo, Peter; Wood, Bill; Reuther, James; Driver, Dave; Chao, Dennis

    2006-01-01

    The Columbia accident on February 1, 2003 began an unprecedented level of effort within the hypersonic aerothermodynamic community to support the Space Shuttle Program. During the approximately six month time frame of the primary Columbia Accident Investigation Board activity, many technical disciplines were involved in a concerted effort to reconstruct the last moments of the Columbia and her crew, and understand the critical events that led to that loss. Significant contributions to the CAIB activity were made by the hypersonic aerothermodynamic community(REF CAIB) in understanding the re-entry environments that led to the propagation of an ascent foam induced wing leading edge damage to a subsequent breech of the wing spar of Columbia, and the subsequent breakup of the vehicle. A core of the NASA hypersonic aerothermodynamics team that was involved in the CAIB investigation has been combined with the United Space Alliance and Boeing Orbiter engineering team in order to position the Space Shuttle Program with a process to perform in-flight Thermal Protection System damage assessments. This damage assessment process is now part of the baselined plan for Shuttle support, and is a direct out-growth of the Columbia accident and NASAs response. Multiple re-entry aeroheating tools are involved in this damage assessment process, many of which have been developed during the Return To Flight activity. In addition, because these aeroheating tools are part of an overall damage assessment process that also involves the thermal and stress analyses community, in addition to a much broader mission support team, an integrated process for performing the damage assessment activities has been developed by the Space Shuttle Program and the Orbiter engineering community. Several subsets of activity in the Orbiter aeroheating communities support to the Return To Flight effort have been described in previous publications (CFD?, Cavity Heating? Any BLT? Grid Generation?). This work will

  16. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  17. On-orbit structural health monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1990-01-01

    On-orbit structural health monitoring aboard space platforms requires the development of sensor systems for assessing impact damage from particles and debris, the effects of atomic oxygen erosion, and the integrity of power systems, storage tanks, pressure vessels, and major structural elements. The task of implementing such a smart structure diagnostic system during the initial phase of the NASA Space Station Freedom is evaluated, with a view to more complete smart structures implementation in the course of station evolution. The data processing/cataloguing task may ultimately require AI and neural networks.

  18. STS-90 Columbia is transferred from OPF bay 3 to the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle orbiter Columbia was transferred from Orbiter Processing Facility Bay 3 today to the Vehicle Assembly Building, where it will be mated to its external tank and solid rocket boosters. Here it is shown backing out of the bay, with first motion occurring at 10:48 a.m. Columbia is being prepared for the STS-90 mission, carrying the Neurolab payload. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The mission is a joint venture of six space agencies and seven U.S. research agencies. Investigator teams from nine countries will conduct 31 studies in the microgravity environment of space. The launch is targeted for April 16 at 2:19 p.m. EDT.

  19. Mortality among British Columbia pilots.

    PubMed

    Salisbury, D A; Band, P R; Threlfall, W J; Gallagher, R P

    1991-04-01

    We studied the mortality experience of all pilots who died in the province of British Columbia between 1950 and 1984, using proportional mortality ratios (PMR) and proportional cancer mortality ratios (PCMR). There were 341 deaths during that time in males whose usual occupation was listed as pilot. The PMR for aircraft accidents was significantly elevated (PMR = 3196, 95% C.I. 2810, 3634), and the PMR for atherosclerotic heart disease was significantly depressed (PMR = 47, 95% C.I. 30, 70). Although based on small numbers of deaths, and not statistically significant, elevated PCMRs were seen for cancers of the colon, brain, and nervous system, as well as for Hodgkin's disease. These findings suggest the need for further epidemiologic studies of commercial airline pilots. PMID:2031640

  20. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  1. STS-32 Pilot Wetherbee prepares meal on middeck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Pilot James D. Wetherbee having run out of shelf space, uses his mouth to temporarily 'park' a spoon during meal time preparations on the middeck of Columbia, Orbiter Vehicle (OV) 102. He prepares to open a can while a packet of whole wheat tortillas floats in front of him. Attached to the forward middeck lockers are the Shuttle Particle Monitor 2, Inflight Maintenance (INFLT MAINT) Checklist, a beverage container with drinking water, an air sampler, and American Flight Echocardiograph (AFE) supplies.

  2. STS-35 crewmembers eat meal on the middeck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Enjoying a meal on the middeck of Columbia, Orbiter Vehicle (OV) 102, are STS-35 Mission Specialist (MS) Robert A.R. Parker (foreground), Payload Specialist Ronald A. Parise (center), and Commander Vance D. Brand. Parker spoons up bite from his food container as Parise lets a spoonful freefloat into his open mouth and Brand balances his meal tray assembly. The forward lockers, the shuttle treadmill, and the starboard side sleep station are seen in the view.

  3. STS-28 Columbia, OV-102, crew eats preflight breakfast at KSC O and C Bldg

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-28 crewmembers eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Columbia, Orbiter Vehicle (OV) 102. Sitting around table (left to right) are Mission Specialist (MS) David C. Leestma, Pilot Richard N. Richards, Commander Brewster H. Shaw, MS James C. Adamson, and MS Mark N. Brown. A cake decorated with the STS-28 mission insignia is in the center of the table.

  4. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  5. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  6. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, Stephen P. )

    1997-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  7. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  8. LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.

    2004-01-01

    Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.

  9. STS-65 Pilot Halsell cleans window on the aft flight deck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the aft flight deck of Columbia, Orbiter Vehicle (OV) 102, STS-65 Pilot James D. Halsell, Jr cleans off overhead window W8. Mission Specialist (MS) Carl E. Walz looks on (photo's edge). A plastic toy dinosaur, velcroed in front of W9, also appears to be watching the housekeeping activity. A variety of onboard equipment including procedural checklists, a spotmeter, a handheld microphone, and charts are seen in the view. The two shared over fourteen days in Earth orbit with four other NASA astronauts and a Japanese payload specialist in support of the second International Microgravity Laboratory (IML-2) mission.

  10. [Orbital varices].

    PubMed

    Seceleanu, Andreea; Szabo, I; Călugăru, M; Dudea, S M; Preda, D

    2004-01-01

    The purpose of this study was to point out a case with orbital venous abnormalities at the left eye, associated with varices of the legs. The clinical picture of this case was: intermittent exophthalmos, venous malformations at the level of the lids and episclera, elevated ocular pressure. All this signs reveal an abnormality at the level of venous wall, indicating a constitutional weakness of the venous system. The case was investigated by imagistic methods: ultrasound examination, Doppler -ultrasound and magnetic resonance imaging. According to the facts offered by clinical and imagistic investigation this case can be included into the first type of orbital varices, associated with secondary glaucoma provoked by an elevated episcleral venous pressure. PMID:15598045

  11. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  12. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  13. Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.

    2011-01-01

    The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.

  14. STS-94 Columbia Landing at KSC (side view with sunrise)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  15. The STS-93 crew pose in front of Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 crew pose in front of the Space Shuttle orbiter Columbia following their landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. From left to right, they are Mission Specialists Catherine G. Coleman (Ph.D.) and Stephen A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Commander Eileen Collins, and Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  16. STS-94 Columbia Landing at KSC (drag chute deployed)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With its drag chute deployed, the Space Shuttle Orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. Mission elapsed time for STS-94 was 15 days,16 hours, 44 seconds. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  17. STS-93 Commander Collins poses in front of Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history.

  18. STS-94 Columbia Landing at KSC (South Runway)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  19. 76 FR 36526 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on May 20, 2011, Columbia Gas Transmission, LLC (Columbia), filed an application pursuant to section 7(c..., Columbia Gas Transmission, LLC, P.O. Box 1273, Charleston, West Virginia 25325-1273; telephone...

  20. 76 FR 28967 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on May 11, 2011, Columbia Gas Transmission, LLC (Columbia), 5151 San Felipe, Suite 2500, Houston, Texas..., Columbia Gas Transmission Corporation, PO Box 1273, Charleston, West Virginia 25325 at (304) 357- 2359...

  1. 75 FR 51030 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application August 12, 2010. Take notice that on August 5, 2010, Columbia Gas Transmission Corporation (Columbia), 5151 San Felipe, Suite... Transmission, L.P. (Texas Eastern), approximately 2 miles of 16-inch pipeline on Columbia's Line 1528...

  2. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  3. STS-65 Columbia, OV-102, IML-2 Official crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Columbia, Orbiter Vehicle (OV) 102, International Microgravity Laboratory 2 (IML-2) Official crew portrait shows its seven crewmembers wearing launch and entry suits (LESs). The six NASA astronauts and a Japanese payload specialist take a break from STS-65 training to pose for their portrait. Left to right are Mission Specialist (MS) and Payload Commander (PLC) Richard J. Hieb, holding mission insignia, MS Leroy Chiao, Pilot James D. Halsell, Jr, Commander Robert D. Cabana, Payload Specialist Chiaki Mukai, MS Donald A. Thomas, holding launch and entry helmet (LEH), and Carl E. Walz. Mukai represents the National Space Development Agency (NASDA) of Japan.Portrait made by NASA JSC contract photographer Scott A. Wickes.

  4. STS-94 Columbia Landing at KSC (before main gear touchdown)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.

  5. The CYTOS biological experiments carried out on the Soviet orbital station Salyut 6.

    PubMed

    Tixador, R; Richoilley, G; Raffin, J; Bost, R; Kojarinov, V; Lepskye, A

    1981-08-01

    Two biological experiments (CYTOS programme) were performed aboard the Soviet orbital Station Salyut 6. For these experiments we have developed several original devices. In this paper we give the technical characteristics of this specialized hardware and the experimental methods used to carry out these experiments.

  6. Libraries in British Columbia: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/britishcolumbia.html Libraries in British Columbia To use the sharing features ... George University Hospital of Northern BC Northern Health Library Services / ILL Learning & Development Centre 1475 Edmonton Street ...

  7. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  8. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  9. Columbia River Component Data Gap Analysis

    SciTech Connect

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  10. STS-80 Mission Specialist Story Musgrave inspects orbiter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    His last spaceflight behind him, STS-80 Mission Specialist Story Musgrave takes one last look at the orbiter Columbia on Runway 33 of KSC's Shuttle Landing Facility. Musgrave became at age 61 the oldest human being to fly into space and in completing his sixth spaceflight ties astronaut John Young's record for most human spaceflight, while also setting a new record for most Shuttle flights. Columbia touched down at 6:49:05 a.m. EST, Dec. 7, wrapping up Mission STS-80 and the final Shuttle flight of 1996.

  11. The Reconstruction and Failure Analysis of the Space Shuttle Columbia

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Mayeaux, Brian; McDanels, Steven; Piascik, Robert; Sjaj. Samdee[; Jerman, Greg; Collins, Thomas; Woodworth, Warren

    2009-01-01

    Several days following the Columbia accident a team formed and began planning for the reconstruction of Columbia. A hangar at the Kennedy Space Center was selected for this effort due to it's size, available technical workforce and materials science laboratories and access to the vehicle ground processing infrastructure. The Reconstruction team established processes for receiving, handling, decontamination, tracking, identifying, cleaning and assessment of the debris. Initially, a 2-dimensional reconstruction of the Orbiter outer mold line was developed. As the investigation progressed fixtures which allowed a 3-dimensional reconstruction of the forward portions of the left wing's leading edge was developed. To support the reconstructions and forensic analyses a Materials and Processes (M&P) 'team was formed. This M&P team established processes for recording factual observations, debris cleaning, and engineering analysis. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The Team also assessed left hand airframe components that were believed to be associated with a structural breach of Columbia. A major portion of this analysis was evaluation of metallic deposits were prevalent on left wing leading edge components. Extensive evaluation of the visual, metallurgical and chemical nature of the deposits provided conclusions that were consistent with the visual assessments and interpretations of the NASA lead teams and the findings of the Columbia Accident Investigation Board. Analytical data collected by the M&P Team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH RCC Panels 8-9, and a correlation was formed between the deposits and overheating in these areas to the wing leading edge components. The analysis of deposits also showed exposure to temperatures in excess of 1649 C

  12. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  13. Stellarator Research at Columbia University

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Caliri, C.; Clark, A. W.; Febre, A.; Hammond, K. C.; Massidda, S. D.; Sweeney, R. M.; Pedersen, T. S.; Sarasola, X.; Spong, D. A.; Kornbluth, Y.

    2013-10-01

    Neutral plasmas were formed and heated by Electron Cyclotron and Electron Bernstein Waves at 2.45 GHz in the Columbia Nonneutral Torus (CNT) and were characterized with Langmuir probe and fast camera measurements. Future research will take advantage of the low aspect ratio (A = 2.3-2.7), high fraction of trapped particles and large vessel of CNT. The first plasma was obtained in a prototype circular coil tokamak-stellarator hybrid (Proto-CIRCUS). As a result of the toroidal-field coils being tilted and interlinked with each other, the device can be operated at lower plasma-current than a tokamak of comparable size and field, with implications for disruptions and steady state. Additionally, the toroidal magnetic ripple is less pronounced. Comparisons between field-line calculations and experimental mapping is expected to confirm the generation of rotational transform and its dependence on the radial location and tilt of the coils, both of which can be varied. Finally we propose a small EC-heated classical stellarator to improve the production-rate and charge-state of ions in EC-resonant ion sources (ECRIS) over the conventional magnetic-mirror design, and discuss how ions would be extracted, for injection in research and medical accelerators.

  14. Changes in developmental capacity of artemia cyst and chromosomal aberrations in lettuce seeds flown aboard Salyut-7 (Biobloc III experiment)

    NASA Astrophysics Data System (ADS)

    Nevzgodina, V.; Kovalev, E. E.; Maximova, E. N.; Gaubin, Y.; Planel, H.; Gasset, G.; Pianezzi, B.; Clegg, J.

    This paper gives the results of investigations performed on the first container (A) of the Biobloc III experiment, flown aboard the orbital station Salyut 7 for 40 days. The space flight resulted in a decreased developmental capacity of Artemia cysts, hit or not hit by the HZE particles. No effect was observed in cysts in bulk. A synergetic effect of microgravity and gamma pre irradiation is described. The germination of in-flight lettuce seeds was decreased. The space flight resulted also in a higher percentage of cells with chromosomal aberrations. Relations between biological response, TEL and location of HZE particles are discussed.

  15. Improved data analysis for EPHIN aboard SOHO

    NASA Astrophysics Data System (ADS)

    Terasa, Christoph; Gómez-Herrero, Raúl; Klassen, Andreas; Müller-Mellin, Reinhold; Heber, Bernd

    2010-05-01

    The COSTEP instrument aboard the Solar and Heliospheric Observatory (SOHO) spacecraft consists of two separate energetic particle detectors, the Low Energy Ion and Electron Instrument (LION) and the Electron Proton Helium Instrument (EPHIN). These detectors allow measurement of electrons, protons and helium of solar, interplanetary or galactic origin in the energy range of 44 keV per particle up to several tens of MeV per nucleon. The objectives of these instruments are the study of particle emissions from the Sun, the galaxy and the heliosphere. EPHIN is collecting data since the launch of the mission in December 1995 covering more than a full 11-year solar cycle. Late in 1996 one of the semiconductor detectors became noisy, affecting the quality of the data in the upper energy range. We used the energy-range empiric relation by Goulding et al. to resconstruct the energy loss of nuclei in the affected detector. New dynamic spectra and long-term quiet time spectra using these techniques are presented.

  16. Mercury exposure aboard an ore boat.

    PubMed Central

    Roach, Richard R; Busch, Stephanie

    2004-01-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  17. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  18. Occupational lead exposure aboard a tall ship

    SciTech Connect

    Landrigan, P.J.; Straub, W.E.

    1985-01-01

    To evaluate occupational exposures to lead in shipfitters cutting and riveting lead-painted iron plates aboard an iron-hulled sailing vessel, the authors conducted an environmental and medical survey. Lead exposures in seven personal (breathing zone) air samples ranged from 108 to 500 micrograms/mT (mean 257 micrograms/mT); all were above the Occupational Safety and Health Administration (OSHA) standard of 50 micrograms/mT. In two short-term air samples obtained while exhaust ventilation was temporarily disconnected, mean lead exposure rose to 547 micrograms/mT. Blood lead levels in ten shipfitters ranged from 25 to 53 micrograms/dl. Blood lead levels in shipfitters were significantly higher than in other shipyard workers. Smoking shipfitters had significantly higher lead levels than nonsmokers. Lead levels in shipfitters who wore respirators were not lower than in those who wore no protective gear. Four shipfitters had erythrocyte protoporphyrin (EP) concentrations above the adult upper normal limit of 50 micrograms/dl. A close correlation was found between blood lead and EP levels. Prevalence of lead-related symptoms was no higher in shipfitters than in other workers. These data indicate that serious occupational exposure to lead can occur in a relatively small boatyard.

  19. Mercury exposure aboard an ore boat.

    PubMed

    Roach, Richard R; Busch, Stephanie

    2004-06-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  20. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  1. Pharmaceutical experiment aboard STS-67 mission

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, pilot, works with a pharmaceutical experiment on the middeck of the Earth-orbiting Space Shuttle Endeavour during the STS-67 mission. Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiments (CMIX-03) includes not only pharmaceutical, but also biotechnology, cell biology, fluids, and crystal growth investigation

  2. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  3. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  4. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers get ready to remove the last piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  5. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, the Mars Climate Orbiter is free of the protective canister that surrounded it during the move to the pad. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  6. 77 FR 74781 - Safety Zones; Columbia Grain and United Grain Corporation Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Columbia Grain and United Grain.... SUMMARY: The Coast Guard is establishing temporary safety zones around the Columbia Grain facility on...

  7. Flexible Metallic Overwrap Concept Developed for On-Orbit Repair of Space Shuttle Orbiter Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank J.; Nesbitt, James A.

    2005-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for leading edges in the event that damage is incurred during space shuttle orbiter flight. Damage that is considered as potentially catastrophic for orbiter leading edges ranges from simple cracks to holes as large as 16 in. in diameter. NASA is particularly interested in examining potential solutions for areas of larger damage since such a problem was identified as the cause for the Columbia disaster. One possible idea for the on-orbit repair of the reinforced carbon/carbon (RCC) leading edges is an overwrap concept that would use a metallic sheet flexible enough to conform to the contours of the orbiter and robust enough to protect any problem area from catastrophic failure during reentry. The simplified view of the application of a refractory metal sheet over a mockup of shuttle orbiter panel 9, which experiences the highest temperatures on the shuttle during reentry is shown. The metallic overwrap concept is attractive because of its versatility as well as the ease with which it can be included in an onboard repair kit. Reentry of the orbiter into Earth's atmosphere imposes extreme requirements on repair materials. Temperatures can exceed 1650 C for up to 15 min in the presence of an extremely oxidizing plasma environment. Several other factors are critical, including catalysity, emissivity, and vibrational and aerodynamic loads. Materials chosen for this application will need to be evaluated with respect to high-temperature capability, resistance to oxidation, strength, coefficient of thermal expansion, and thermal conductivity. The temperature profile across panel 9 during reentry as well as a schematic of the overwrap concept itself is shown.

  8. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Serova, L. V.; Cummins, J.; Landaw, S. A.

    1978-01-01

    Rats were subjected to 19.5 days of weightless space flight aboard the Soviet biosatellite, Cosmos 782. Based on the output of CO-14, survival parameters of a cohort of erythrocytes labeled 15.5 days preflight were evaluated upon return from orbit. These were compared to vivarium control rats injected at the same time. Statistical evaluation indicates that all survival factors were altered by the space flight. The mean potential lifespan, which was 63.0 days in the control rats, was decreased to 59.0 days in the flight rats, and random hemolysis was increased three-fold in the flight rats. The measured size of the cohort was decreased, lending further support to the idea that hemolysis was accelerated during some portion of the flight. A number of factors that might be contributory to these changes are discussed, including forces associated with launch and reentry, atmospheric and environmental parameters, dietary factors, radiation, and weightlessness.

  9. STS-103 MS Nicollier arrives at SLF aboard a T-38 jet for TCDT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist Claude Nicollier of Switzerland, with the European Space Agency, smiles after landing at Kennedy Space Center's Shuttle Landing Facility to begin Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Also participating are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean-Frangois Clervoy of France, also with the European Space Agency. The mission, to service the Hubble Space Telescope, is targeted for launch Dec. 6 at 2:37 a.m. EST aboard Space Shuttle Discovery.

  10. STS-49 onorbit payload bay (PLB) configuration aboard OV-105 taken by ESC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 onorbit payload bay (PLB) configuration aboard Endeavour, Orbiter Vehicle (OV) 105, is documented by the Electronic Still Camera (ESC) as part of Development Test Objective (DTO) 648, Electronic Still Photography Test (With Downlink). Various elements in the PLB foretell of a busy week ahead for OV-105's crew. In the foreground is the hardware for the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM), which is a demonstration of extravehicular procedures required for the construction of Space Station Freedom (SSF). Backdropped against the aft firewall is the vertical perigee stage which EVA crewmembers will attach to the International Telcommunications Organization Satellite (INTELSAT) VI F-3 on 05-10-92. Running along the port side sill longern is the stowed remote manipulator system (RMS) arm. Electronic still photography is a new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approach

  11. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  12. Columbia River impact evaluation plan

    SciTech Connect

    Not Available

    1993-06-01

    As a result of past practices, four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. To accomplish the timely cleanup of the past-practice units, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), was signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE). To support the Tri-Party Agreement, milestones were adopted. These milestones represent the actions needed to ensure acceptable progress toward Hanford Site compliance with CERCLA, RCRA, and the Washington State Hazardous Waste Management Act of 1976. This report was prepared to fulfill the requirement of Tri-Party Agreement Milestone M-30-02, which requires a plan to determine cumulative health and environmental impacts to the Columbia River. This plan supplements the CERCLA remedial investigations/feasibility studies (RI/FS) and RCRA facility investigations/corrective measures studies (RFI/CMSs) that will be undertaken in the 100 Area. To support the plan development process, existing information was reviewed and a preliminary impact evaluation based on this information was performed. The purpose of the preliminary impact evaluation was to assess the adequacy of existing data and proposed data collection activities. Based on the results of the evaluation, a plan is proposed to collect additional data or make changes to existing or proposed data collection activities.

  13. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    SciTech Connect

    Spady, B.R.; Synowicki, R.A.; Hale, J.S.; Devries, M.J.; Woollam, J.A.; Moore, A.W.; Lake, M. |

    1995-02-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  14. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    NASA Technical Reports Server (NTRS)

    Spady, Blaine R.; Synowicki, R. A.; Hale, Jeffrey S.; Devries, M. J.; Woollam, John A.; Moore, Arthur W.; Lake, Max

    1995-01-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  15. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  16. Network Signal Processor No. 2 after removal from Columbia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two USA employees, Tim Seymour (at left) and Danny Brown (at right), look at the network signal processor (NSP) that was responsible for postponement of the launch of STS-90 on Apr. 16. The Space Shuttle Columbia's liftoff from Launch Pad 39B was postponed 24 hours due to difficulty with NSP No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, was removed and replaced on Apr. 16. Mission managers first noticed the problem at about 3 a.m. during normal communications systems activation prior to tanking operations. As a result, work to load the external tank with the cryogenic propellants did not begin and launch postponement was made official at about 8:15 a.m. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  17. Surface Tension Demonstration Aboard the ISS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, photographed this view of a surface tension demonstration using water that is held in place by a metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS). The Expedition Six crew was delivered to the station via the Space Shuttle Orbiter Endeavor STS-113 mission which was launched on November 23, 2002.

  18. Commentary on Columbia River instream flows

    SciTech Connect

    Coop, H.D.

    1983-08-01

    The Washington State Department of Ecology in 1980 adopted the Columbia River Instream Resource Protection Plan (CRIRPP). This plan requires that flowrates in the river be at least at minimum specified levels (or higher) at all times. Columbia River flowrates are highly regulated by storage and hydropower plants. Plant discharge fluctuates accordingly to fairly-well established power demands, particularly in low water years. CRIRPP requires that streamflow regulation would need to be modified so that outflows from plants are higher than at present. In turn, this means that power demand patterns would have to be modified, significant spill would be necessary, or some of both. There appears to be sufficient runoff, even in low runoff years, specifically, to meet CRIRPP requirements at Columbia River locations upstream from the Snake River confluence.

  19. The Columbia River System : the Inside Story.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  20. Development of Columbia Leading Edge Reconstruction System

    NASA Technical Reports Server (NTRS)

    Trautwein, John; Wegerif, Dan

    2004-01-01

    After the loss of Columbia in 2003, the Columbia Accident Investigation Board and NASA KSC directed personnel at the Launch Equipment Test Facility (LETF) to design and build high fidelity mock-ups of Columbia's left wing leading edges. These leading edge segments, constructed of reinforced carbon-carbon, were a major point of inquiry by the investigation team. The LETF engineers developed a concept of building a clear Lexan panel with an aluminum support structure ten percent larger than the original panel. The leading edge debris are attached to the Lexan panels and both the front and back side of each panel are visible for inspection. The entire assembly can be rotated, to provide visual access to the entire panel. Six carts were fabricated to support the thirteen panels. These carts could be set up in order, next to each other, to provide the desired inspection access. The carts and attached debris are currently located in the Vehicle Assembly Building at KSC.

  1. Decline of radionuclides in Columbia River biota

    SciTech Connect

    Cushing, C.E.; Watson, D.G.; Scott, A.J.; Gurtisen, J.M.

    1980-03-01

    In January 1971, the last of nine plutonium production reactors using direct discharge of once-through cooling waters into the Columbia River was closed. Sampling was initiated at three stations on the Columbia River to document the decline of the radionuclide body burdens in the biota of the Columbia River ecosystem. The data show that in a river-reservoir complex, the measurable body burden of fission-produced radionuclides decreased to essentially undetectable levels within 18 to 24 mo after cessation of discharge of once-through cooling water into the river. On the basis of data from the free-flowing station, we believe that this decrease would be even more rapid in an unimpounded river.

  2. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  3. Modeling of atmospherically induced gas phase optical contamination from orbiting spacecraft

    NASA Astrophysics Data System (ADS)

    Elgin, J. B.; Cooke, D. C.; Tautz, M. F.; Murad, Edmond

    1990-08-01

    We present in this paper results of a predictive code (SOCRATES: spacecraft/orbiter contamination representation accounting for transiently emitted species) which has been developed to assess the effects of contamination on measurements aboard spacecraft in low Earth orbit. SOCRATES is a Monte Carlo code which includes in its present version scattering, collisions leading to kinetic-to-vibrational energy transfer, and reactive collisions. The application of this code to actual measurements aboard spacecraft in low Earth orbit makes it possible to evaluate data obtained on these platforms with a view toward extracting the data of interest from contaminated signals. Molecules considered in the present study include CO2, H2O, OH, H2, and CO.

  4. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    SciTech Connect

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  5. The Columbia River System Inside Story

    SciTech Connect

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  6. 2. Historic American Buildings Survey District of Columbia Fire Department ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey District of Columbia Fire Department Photo DOOR DETAIL, PRIOR TO 1960 - Truck Company Number Four, Firehouse, 219 M Street Northwest, Washington, District of Columbia, DC

  7. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  8. Gemini 4 astronauts relax aboard Navy helicopter after recovery

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 astronauts, James A. McDivitt (right), command pilot, and Edward H. White II, (left), pilot, relax aboard a U.S. Navy helicopter on their way to the aircraft carrier U.S.S. Wasp after recovery from the Gemini 4 spacecraft. They had been picked up out of the Atlantic Ocean following a successful splashdown (33532); White (left) and McDivitt listen to the voice of President Lyndon B. Johnson as he congratulated them by telephone on the successful mission. They are shown aboard the carrier U.S.S. Wasp just after their recovery (33533).

  9. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  10. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. PMID:11863032

  11. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)

    1999-01-01

    Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.

  12. 78 FR 15293 - Drawbridge Operation Regulations; Columbia River, Vancouver, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Columbia River, Vancouver, WA AGENCY... (BNSF) Railway Bridge across the Columbia River, mile 105.6, at Vancouver, WA. This deviation is...: BNSF has requested that the BNSF Swing Bridge across the Columbia River, mile 105.6, remain closed...

  13. 77 FR 38004 - Drawbridge Operation Regulation; Columbia River, Vancouver, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Columbia River, Vancouver, WA AGENCY... across the Columbia River, mile 106.5, between Portland, Oregon and Vancouver, Washington. This deviation... Columbia River remain closed to vessel traffic to facilitate heavier than normal roadway traffic...

  14. 77 FR 33307 - Columbia Unlimited Hydroplane Races; Kennewick, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Columbia Unlimited Hydroplane Races; Kennewick, WA... enforce the Special Local Regulation for the Columbia Unlimited Hydroplane Races from Tuesday, July 24th... involved in the Annual Kennewick, Washington, Columbia Unlimited Hydroplane Races (Water Follies)....

  15. 75 FR 33296 - Columbia Gulf Transmission Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Energy Regulatory Commission Columbia Gulf Transmission Company; Notice of Filing June 2, 2010. Take notice that on May 20, 2010, Columbia Gulf Transmission Company (Columbia Gulf), 5151 San Felipe, Suite... operate minor facilities required to isolate a portion of its existing transmission system to...

  16. 78 FR 69845 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on November 1, 2013, Columbia Gas Transmission, LLC (Columbia), 1700 MacCorkle Avenue SE., Charleston, West Virginia 25314, filed an application under sections 7(b) and 7(c) of the Natural Gas Act for the East...

  17. 75 FR 57012 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application September 9, 2010. Take notice that on August 26, 2010, Columbia Gas Transmission, LLC (Columbia), 1700 MacCorkle Avenue... sections 7(b) and 7(c) of the Natural Gas Act and Part 157 of the Commission's Regulations, for...

  18. 75 FR 6371 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application February 2, 2010. Take notice that on January 20, 2010, Columbia Gas Transmission, LLC (Columbia), 5151 San Felipe, Suite 2500, Houston, TX 77056, filed with the Commission an application under section 7(b) of the Natural Gas Act...

  19. 78 FR 25068 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on April 5, 2013, Columbia Gas Transmission, LLC (Columbia), 5151 San Felipe, Suite 2500, Houston, Texas 77056, filed an application pursuant to section 7(c) of the Natural Gas Act to construct...

  20. 77 FR 66825 - Columbia Gas Transmission, LLC.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC.; Notice of Application Take notice that on October 22, 2012, Columbia Gas Transmission, LLC. (Columbia) filed with the Federal Energy Regulatory Commission an application under section 7 of the Natural Gas Act to construct, and operate approximately...

  1. 75 FR 33289 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application June 4, 2010. Take notice that on May 28, 2010, Columbia Gas Transmission, LLC (Columbia) 5151 San Felipe, Suite 2500... section 7(c) of the Natural Gas Act, as amended, for a certificate of public convenience and...

  2. 78 FR 33400 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on May 10, 2013, Columbia Gas Transmission, LLC (Columbia) filed with the Federal Energy Regulatory Commission an application under section 7 of the Natural Gas Act to construct, and operate a new...

  3. 78 FR 33399 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Energy Regulatory Commission Columbia Gas Transmission, LLC; Notice of Application Take notice that on May 10, 2013, Columbia Gas Transmission, LLC. (Columbia) filed with the Federal Energy Regulatory Commission an application under section 7 of the Natural Gas Act for a certificate authorizing...

  4. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  5. Columbia University Affirmative Action Program (Condensed Version).

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY.

    Columbia University's equal employment opportunity policy is reviewed in relation to officers of instruction and research, officers of administration and support staff, and procedures and programs. Part I reaffirms the policy, indicates dissemination of the policy and reviews the responsibility for implementation of the policy. The officers of…

  6. 27 CFR 9.74 - Columbia Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... boundary; (38) Then south following the Washington-Idaho State boundary to the Snake River and continuing along the Snake River to the confluence with Asotin Creek; (39) Then west following Asotin Creek and... beginning point is found on “The Dalles” U.S.G.S. map at the confluence of the Klickitat and Columbia...

  7. Indians of British Columbia (An Historical Review).

    ERIC Educational Resources Information Center

    Department of Indian Affairs and Northern Development, Ottawa (Ontario).

    An historical review is presented of the 6 major groups of Indians of the coastal region of British Columbia: the Coast Salish, Nootka, Kwakiutl, Bella Coola, Tsimshian, and Haida. Characteristics of each tribe are contrasted in the following 7 sections of the review: (1) Introduction--the life style, sociocultural factors, and unique…

  8. Columbia Star’ thornless trailing blackberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columbia Star’ is a new thornless, trailing blackberry (Rubus subg. Rubus Watson) cultivar from the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) breeding program in Corvallis, OR, released in cooperation with the Oregon State University’s Agricultural Experiment Station. ...

  9. Columbia's Grand Narrative of Contemporary Civilization.

    ERIC Educational Resources Information Center

    Howley, Aimee; Hartnett, Richard

    1997-01-01

    Discusses Lyotard's view of the narrative as a story through which meanings are legitimated. Reviews the development of the core curriculum of New York's Columbia College, arguing that it represents a "grand narrative" of the college. Discusses the effect of this narrative on students and faculty. (26 citations) (AJL)

  10. British Columbia water quality guidelines, criteria

    SciTech Connect

    1998-12-31

    This publication contains tables summarizing approved water quality guidelines for various contaminants that may be present in British Columbia water supplies. It begins with a section in question and answer format that explains certain aspects of the guidelines. Contaminants covered by the guidelines include particulate matter, nutrients and algae, aluminium, lead, mercury, nitrogen, dissolved oxygen, copper, chlorine, fluoride, hydrocarbons, pH, and silver.

  11. Considerations for Education Reform in British Columbia

    ERIC Educational Resources Information Center

    Santos, Ana

    2012-01-01

    Countries around the world refer to twenty-first century education as essential to maintaining personal and national economic advantage and draw on this discourse to advocate for and embark on educational reform. This paper examines issues around education reform, particularly in British Columbia. It argues that reformers should give careful…

  12. 27 CFR 9.74 - Columbia Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... northeast of Goldendale; (2) Then north following U.S. Highway 97 to the 1,000′ contour line southwest of... of the Columbia River) to the 2,000′ contour line immediately west of Squilchuck Creek; (13) Then north and west following the 2,000′ contour line to the township line between R. 18 E. and R. 19 E....

  13. Columbia Basin College Facts & Impacts, 2002.

    ERIC Educational Resources Information Center

    Columbia Basin Coll., Pasco, WA.

    This fact book for Columbia Basin College (CBC) (Washington) offers statistics on staff and faculty, students, degrees awarded, hot programs, enrollment; student services, financial aid, economic impact, educational partnerships, and governance. CBC serves more than 13,000 students annually and offers associate degrees in arts, science, and…

  14. British Columbia. Reference Series No. 25.

    ERIC Educational Resources Information Center

    Department of External Affairs, Ottawa (Ontario).

    This booklet, one of a series featuring the Canadian provinces, presents a brief overview of British Columbia and is suitable for teacher reference or student reading. A discussion of the province's history includes the early European explorers, Indian natives, and later fur traders and settlers. The building of the transcontinental railway, entry…

  15. 33 CFR 117.1035 - Columbia River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1035 Columbia River. (a) The term... the center of the drawspan. The RACON operates only when the drawspan is fully open, by responding... the remote control stations located at the ends of the bridge. Operation of the bridge shall be...

  16. 33 CFR 117.1035 - Columbia River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1035 Columbia River. (a) The term... the center of the drawspan. The RACON operates only when the drawspan is fully open, by responding... the remote control stations located at the ends of the bridge. Operation of the bridge shall be...

  17. Detection, identification, and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting satellites*

    PubMed Central

    Hayes, Richard O.; Maxwell, Eugene L.; Mitchell, Carl J.; Woodzick, Thomas L.

    1985-01-01

    A method of identifying mosquito larval habitats associated with fresh-water plant communities, wetlands, and other aquatic locations at Lewis and Clark Lake in the states of Nebraska and South Dakota, USA, using remote sensing imagery obtained by multispectral scanners aboard earth-orbiting satellites (Landsat 1 and 2) is described. The advantages and limitations of this method are discussed. PMID:2861917

  18. 29 CFR 783.35 - Employees serving as “watchmen” aboard vessels in port.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 783.35 Employees serving as “watchmen” aboard vessels in port. Various situations are presented with respect to employees rendering watchman or similar service aboard a vessel in port. Members of the crew... crew rendering watchman or similar services aboard the vessel during this period would not appear to...

  19. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Notice of Proposed Rulemaking in IB Docket No. 05-20 (Order) (70 FR 20508-01), recognizing the emergence... of the radio astronomy stations specified in 47 CFR 25.226(d)(2) are subject to coordination with...

  20. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  1. Preliminary results of study of infrared spectra of Venus from the orbital spacecraft Venera-9 and Venera-10

    NASA Technical Reports Server (NTRS)

    Gnedykh, V.; Zhegulev, V.; Zasova, L.; Moroz, V. I.; Parfentyev, N.; Tomashova, G.

    1978-01-01

    The infrared spectrum of Venus in the spectral range 1.6 to 2.8 was measured by means of the spectrometers aboard 'Venera-9' and 'Venera-10' orbital spacecrafts. Approximately 20 series of measurements were made near the pericenter of the orbit, each of which contains 150 spectra for each path intersecting the planet from the terminator to the limb. Phase angles lie within the limits from 60 to 120 deg.

  2. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  3. Pioneer Venus Orbiter neutral gas mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Booth, J. R.; Cooley, J. E.; Hartle, R. E.; Kasprzak, W. T.; Spencer, N. W.; Way, S. H.; Hunten, D. M.; Carignan, G. R.

    1980-01-01

    The Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) is designed to measure the vertical and horizontal density variations of the major neutral constituents in the upper atmosphere of Venus. The mass spectrometer sensor includes a retarding potential ion source, hyperbolic quadrupole rod analyzer, and electron multiplier detector. The supporting electronic system consists of hybrid integrated circuits to reduce weight and power. The ONMS instrument was launched aboard the Pioneer Venus Orbiter on May 20, 1978, and turned on in orbit around Venus on December 4, 1978. It has operated flawlessly for over a Venus year (243 earth days) and has returned data of the composition of the major constituents in the Venus atmosphere between the altitudes of 150 and 350 km.

  4. Gemini 12 crew arrives aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    A happy Gemini 12 prime crew arrives aboard the aircraft carrier, U.S.S. Wasp. Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, had just been picked up from the splashdown area by helicopter.

  5. Apollo 9 crewmen arrive aboard U.S.S. Guadelcanal

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 9 crewmen arrive aboard the U.S.S. Guadelcanal as they step from a helicopter to receive a red-carpet welcome. Two of the crewmen salute the crowd of newsmen, Navy and NASA personnel gathered to greet them. Left to right are Astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt.

  6. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  7. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  8. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  9. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  10. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  11. Predicting Airborne Particle Levels Aboard Washington State School Buses.

    PubMed

    Adar, Sara D; Davey, Mark; Sullivan, James R; Compher, Michael; Szpiro, Adam; Liu, L-J Sally

    2008-10-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  12. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  13. Orbital surveys of solar stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  14. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith A.; Quaid, Thomas

    1991-01-01

    The Rendezvous Radar Set (RRS) was designed at Motorola's Strategic Electronics Division in Chandler, Arizona, to be a key subsystem aboard NASA's Orbital Maneuvering Vehicle (OMV). The unmanned OMV, which was under development at TRW's Federal Systems Division in Redondo Beach, California, was designed to supplement the Shuttle's satellite delivery, retrieval, and maneuvering activities. The RRS was to be used to locate and then provide the OMV with vectoring information to the target satellite (or Shuttle or Space Station) to aid the OMV in making a minimum fuel consumption approach and rendezvous. The OMV development program was halted by NASA in 1990 just as parts were being ordered for the RRS engineering model. The paper presented describes the RRS design and then discusses new technologies, either under development or planned for development at Motorola, that can be applied to radar or alternative sensor solutions for the Automated Rendezvous and Capture problem.

  15. STS-55 Columbia, OV-102, crew poses for onboard portrait in SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, crewmembers pose for their traditional onboard (inflight) portrait in the Spacelab Deutsche 2 (SL-D2) science module. Front (left to right) are Pilot Terence T. Henricks, Commander Steven R. Nagel, German Payload Specialist 1 Ulrich Walter, and Mission Specialist 2 (MS2) Charles J. Precourt. In the rear (left to right) are MS3 Bernard A. Harris, Jr, German Payload Specialist 2 Hans Schlegel, and MS1 and Payload Commander (PLC) Jerry L. Ross. Walter and Schlegel represent the German Aerospace Research Establishment (DLR).

  16. STS-83 Columbia Rollout to PAD-39A (fish eye view in VAB)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Orbiter Columbia begins its rollout from the Vehicle Assembly Building (VAB) to Launch Pad 39A in preparation for the STS-83 mission. The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is the primary payload on this 16-day space flight. The MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the seven-member flight crew conducts combustion, protein crystal growth and materials processing experiments.

  17. STS-50 Columbia, OV-102, crew during JSC launch emergency egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Mission Specialist (MS) and Payload Commander (PLC) Bonnie J. Dunbar (partially visible at left center) and MS Ellen S. Baker, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), participate in launch emergency egress exercises at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE. Seated in their ascent seating positions on the aft flight deck of the crew compartment trainer (CCT), a shuttle mockup, Dunbar and Baker listen commands coming from the forward flight deck.

  18. STS-65 Columbia, OV-102, with drag chute deployed lands at KSC SLF

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, Orbiter Vehicle (OV) 102, its drag chute fully deployed, completes a record duration mission as it lands on Runway 33 at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). A helicopter flying overhead observes as OV-102's nose landing gear (NLG) and main landing gear (MLG) roll along the runway. Landing occurred at 6:38 am (Eastern Daylight Time (EDT)). STS-65 mission duration was 14 days 17 hours and 56 minutes. Onboard were six NASA astronauts and a Japanese payload specialist who conducted experiments in support of the International Microgravity Laboratory 2 (IML-2) during the mission.

  19. STS-35 Columbia, OV-102, crew eats preflight breakfast at KSC O and C Bldg

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 crewmembers eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Columbia, Orbiter Vehicle (OV) 102. Sitting around table (left to right) are Mission Specialist (MS) Robert A.R. Parker, Payload Specialist Ronald A. Parise, Pilot Guy S. Gardner, Commander Vance D. Brand, Payload Specialist Sameul T. Durrance, MS Jeffrey A. Hoffman, and MS John M. Lounge. A cake decorated with the STS-35 mission insignia and silk flowers arranged in a shuttle model's payload bay (PLB) are in the center of the table.

  20. STS-32 Columbia, OV-102, crew eats preflight breakfast at KSC O and C Bldg

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 crewmembers eat preflight breakfast at Kennedy Space Center (KSC) Operations and Checkout (O and C) Building before boarding Columbia, Orbiter Vehicle (OV) 102. Sitting around table (left to right) are Mission Specialist (MS) Marsha S. Ivins, MS Bonnie J. Dunbar, Commander Daniel C. Brandenstein, Pilot James D. Wetherbee, and MS G. David Low. A cake decorated with the STS-32 mission insignia is in the center of the table. Crewmembers are wearing red, white, and blue mission polo shirts and have displayed their sunglasses with neckbands on the table in front of them.

  1. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation

  2. Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Makaske, Bart; Smith, Derald G.; Berendsen, Henk J. A.; de Boer, Arjan G.; van Nielen-Kiezebrink, Marinka F.; Locking, Tracey

    2009-10-01

    The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology — multiple interconnected channels that enclose floodbasins — and lateral channel stability. We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper Columbia River is caused by sediment (bedload) transport inefficiency, in combination with very limited potential for lateral bank erosion because of very low specific stream power (≤ 2.3 W/m 2) and cohesive silty banks. In a diagram of channel type in relation to flow energy and median grain size of the bed material, data points for the straight upper Columbia River channels cluster separately from the data points for braided and meandering channels. Measurements and calculations indicate that bedload transport in the anastomosing reach of the upper Columbia River decreases downstream. Because of lateral channel stability no lateral storage capacity for bedload is created. Therefore, the surplus of bedload leads to channel bed aggradation, which outpaces levee accretion and causes avulsions because of loss of channel flow capacity. This avulsion mechanism applies only to the main channel of the system, which transports 87% of the water and > 90% of the sediment in the cross-valley transect studied. Because of very low sediment transport capacity, the morphological evolution of most secondary channels is slow. Measurements and calculations indicate that much more bedload is sequestered in the relatively steep upper anastomosing reach of the upper Columbia River than in the relatively gentle lower anastomosing reach. With anastomosing morphology and related processes (e.g., crevassing) being best developed in the upper reach, this confirms the notion of upstream rather than downstream control of upper Columbia River anastomosis.

  3. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    SciTech Connect

    Neitzel, D.A.; Frest, T.J.

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species` historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river`s major tributaries.

  4. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    SciTech Connect

    Neitzel, D.A. ); Frest, T.J. )

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries.

  5. Theory of satellite orbit-orbit resonance

    NASA Technical Reports Server (NTRS)

    Blitzer, L.; Anderson, J. D.

    1981-01-01

    On the basis of the strong mathematical and physical parallels between orbit-orbit and spin-orbit resonances, the dynamics of mutual orbit perturbations between two satellites about a massive planet are examined, exploiting an approach previously adopted in the study of spin-orbit coupling. Resonances are found to exist when the mean orbital periods are commensurable with respect to some rotating axis, which condition also involves the apsidal and nodal motions of both satellites. In any resonant state the satellites are effectively trapped in separate potential wells, and a single variable is found to describe the simultaneous librations of both satellites. The librations in longitude are 180 deg out-of-phase, with fixed amplitude ratio that depends only on their relative masses and semimajor axes. The theory is applicable to Saturn's resonant pairs Titan-Hyperion and Mimas-Tethys, and in these cases the calculated libration periods are in reasonably good agreement with the observed periods.

  6. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  7. Columbia Accident Investigation Board Report. Volume 3

    NASA Technical Reports Server (NTRS)

    White, Donald J. (Editor); Goodman, Patrick A. (Editor); Reingold, Lester A. (Editor); Kirchhoff, Christopher M. (Editor); Simon, Ariel H. (Editor)

    2003-01-01

    This report describes the results of an investigative analysis performed by the Air Force Research Laboratory Sensors Directorate at th the specific request of the Defense Columbia Investigation Support Team (DCIST) who was supporting the Columbia Accident Investigation Board (CAIB). The work was performed during the period February 20, 2003 through 20 July 2003. An interim release of measurement findings was provided the CAIB on 24 April 2003, and the information was released in public testimony to the CAIB on May 6, 2003 at the Hilton Hotel, Houston, Texas. The overall assessment and conclusions of this report are consistent with the CAIB 6 May 2003 testimony, with one notable exception discussed in Section VI. This report has been reviewed by the AFRL/SN Flight Day Two DCIST appointed assessment team, and is hereby released to the CAIB and DCIST for final disposition.

  8. Columbia Accident Investigation Board Report. Volume Six

    NASA Technical Reports Server (NTRS)

    Gehmann, H. W.; Barry, J. L.; Deal, D. W.; Hallock, J. N.; Hess, K. W.

    2003-01-01

    In the course of its inquiry into the February 1, 2003 destruction of the Space Shuttle Columbia, the Columbia Accident Investigation Board conducted a series of public hearings at Houston, Texas; Cape Canaveral, Florida; and Washington, DC. Testimony from these hearings was recorded and then transcribed. This appendix, Volume VI of the Report, is a compilation of those transcripts. Contents: Transcripts of Board Public Hearings; Appendix H.1 March 6, 2003 Houston, Texas; Appendix H.2 March 17, 2003 Houston, Texas; Appendix H.3 March 18, 2003 Houston, Texas; Appendix H. 4 March 25, 2003 Cape Canaveral, Florida; Appendix H.5 March 26, 2003 Cape Canaveral, Florida; Appendix H.6 April 7, 2003 Houston, Texas; Appendix H.7 April 8, 2003 Houston, Texas; Appendix H.8 April 23, 2003 Houston, Texas; Appendix H.9 May 6, 2003 Houston, Texas; Appendix H.10 June 12, 2003 Washington, DC.

  9. Launch and Early Orbit Operations for CryoSat-2

    NASA Astrophysics Data System (ADS)

    Mardel, Nic; Marchese, Franco

    2010-12-01

    CryoSat-2 was launched from Baikonur on 8th of April 2010 aboard a modified Dnepr ICBM, the so-called SS18 Satan. Following the ascent and separation from the launch vehicle the Flight Operations Segment (FOS) in ESOC, Darmstadt started the operations to configure the satellite into the correct mode to acquire science; switching on units, configuring software and ensuring that the satellite health and performance was as expected. This paper will describe the operations performed by the FOS during the first weeks in orbit, including the unexpected problems encountered, their implications and solutions.

  10. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  11. Coast and river mouths, Columbia, South America

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Numerous rivers in Ecuador and Columbia stand out in this South American Pacific coastal scene (1.5N, 79.0W). This region has one of the highest rainfalls in the world with the consequent heavy cloud cover and it is rare to be able to photograph the surface. The Pacific mountain drainage area is small but produces a large volume of runoff and sediment flow into the ocean.

  12. American shad in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Hinrichsen, R.A.; Gadomski, D.M.; Feil, D.H.; Rondorf, D.W.

    2003-01-01

    American shad Alosa sapidissima from the Hudson River, New York, were introduced into the Sacramento River, California, in 1871 and were first observed in the Columbia River in 1876. American shad returns to the Columbia River increased greatly between 1960 and 1990, and recently 2-4 million adults have been counted per year at Bonneville Dam, Oregon and Washington State (river kilometer 235). The total return of American shad is likely much higher than this dam count. Returning adults migrate as far as 600 km up the Columbia and Snake rivers, passing as many as eight large hydroelectric dams. Spawning occurs primarily in the lower river and in several large reservoirs. A small sample found returning adults were 2-6 years old and about one-third of adults were repeat spawners. Larval American shad are abundant in plankton and in the nearshore zone. Juvenile American shad occur throughout the water column during night, but school near the bottom or inshore during day. Juveniles consume a variety of zooplankton, but cyclopoid copepods were 86% of the diet by mass. Juveniles emigrate from the river from August through December. Annual exploitation of American shad by commercial and recreational fisheries combined is near 9% of the total count at Bonneville Dam. The success of American shad in the Columbia River is likely related to successful passage at dams, good spawning and rearing habitats, and low exploitation. The role of American shad within the aquatic community is poorly understood. We speculate that juveniles could alter the zooplankton community and may supplement the diet of resident predators. Data, however, are lacking or sparse in some areas, and more information is needed on the role of larval and juvenile American shad in the food web, factors limiting adult returns, ocean distribution of adults, and interactions between American shad and endangered or threatened salmonids throughout the river. ?? 2003 by the American Fisheries Society.

  13. Astronaut David Wolf draws blood from Martin Fettman for SLS-2 investigations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Inside the science module aboard the Earth-orbiting Space Shuttle Columbia, Astronaut David A. Wolf draws blood from payload specialists Martin J. Fettman, DVM. Blood samples from crew members are critical to several Spacelab Life Sciences (SLS-2) investigations.

  14. STS-93 Commander Collins on the flight deck in Columbia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen M. Collins sits on the flight deck of the orbiter Columbia during Terminal Countdown Demonstration Test (TCDT) activities that include emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Pilot Jeffrey S. Ashby, and Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  15. Hydrocarbon potential of Columbia plateau - an overview

    SciTech Connect

    Campbell, N.P.

    1987-08-01

    The Columbia basin, one of the largest frontier provinces in the US, encompasses approximately 160,000 km/sup 2/ in Washington, Oregon, and Idaho. Sedimentary rocks of the basin are overlain by approx. 4500 m of the Miocene Columbia River basalt. Five distinct areas of layered pre-basalt rocks, ranging in age from Precambrian to Miocene, crop out along the margin and probably extend under the basalt. Tertiary fluvial and volcaniclastic sediments are arranged in fault-bounded basins along the northwestern margin. The northern margin exposes Paleozoic marine sedimentary and metamorphic rocks associated with the Kootenay arc, whereas Precambrian Belt metasediments belonging to the Belt basin occur on the eastern margin. Mesozoic oceanic and volcanic arc rocks, overlain by Tertiary volcaniclastics, dominate the southern margin, and the southwestern margin is composed of Tertiary volcaniclastics and lavas. Both southern and southwestern margins are associated with the northeast-trending Columbia (Blue Mountain) arc. Adequate hydrocarbon source rocks exist in at least three areas but good reservoir rocks are less abundant. Recent basin exploration has focused on the Yakima foldbelt subprovince where coal from fluvial-deltaic rocks accounts for all discovered gas to date. Sedimentary rocks from the northwest margin can be correlated with sub-basalt rocks in four new exploration wells. The distribution of these sedimentary rocks is apparently controlled by two major structures - the Hog Ranch axis and the White-Naches fault zone.

  16. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; McSween, Harry Y.; Ming, Douglas W.; Morris, Richard V.; Ruff, Steven W.; Wang, Alian; Yen, Albert

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  17. Important developments in northeast British Columbia

    SciTech Connect

    Kedgley, G.H.

    1981-07-01

    Provincial leaders in British Columbia wished to expand the natural resource base in British Columbia's economy. With this in mind, the development of the Peace River coalfield was carefully planned. Planners had to consider infrastructure needs in a virgin area, manpower requirements, and environmental effects. A computer model was developed to estimate the production costs of the various coal projects using different mining technologies. Alternatives for accommodating the increased population and services of the areas were also considered. The impacts of coal dust were investigated, alternative rail routes were identified and studied, and a comprehensive analysis of the supply and demand for manpower, both during construction and operation, was undertaken. Some 87 volumes of reports were prepared. The outcome of all this activity was a decision to build a rail spur line, a town at Tumbler Ridge, a new road south from Chetwynd, power lines, and a port at Prince Rupert. British Columbia had identified Japan as the only market that could accept such a large tonnage in a single purchase. After negotiations, it was agreed that the Japanese would buy 5,000,000 tons of metallurgical coal per year for a minimum 15 years on the understanding that the necessary infrastructure would be set up to ensure that the coal reached the marketplace at competitive prices.

  18. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Washington Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  19. Columbia, OV-102, forward middeck locker experiments and meal tray assemblies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Overall view of forward middeck locker shows Continuous Flow Electrophoresis System (CFES) experiment control and monitoring module and sample storage module (on port side) and Monodisperse Latex Reactor (MLR) (on starboard side). Water Dispenser Kit water gun (above CFES module) and meal tray assemblies covered with snack food packages and beverage containers appear around the two experiments. Thanks to a variety of juices and other food items, this array in the middeck probably represents the most colorful area onboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Most of the meal items have been carefully fastened to meal tray assemblies (foodtrays) and locker doors (or both). What has not been attached by conventional methods has been safely 'tucked' under something heavy (note jacket shoved into space occupied MLR). MLR is making its second flight and is designed to test the flexibility of making large-size, monodisperse (same size), polystyrene latex micro-spheres using

  20. STS-65 Columbia, OV-102, lifts off from KSC Launch Complex (LC) Pad 39A

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Columbia, Orbiter Vehicle (OV) 102, atop its external tank (ET) rises above the Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A after liftoff at 12:43 pm Eastern Daylight Time (EDT). OV-102 starboard side and one of the two solid rocket boosters (SRBs) are visible in this launch view. The retracted rotating service structure (RSS) is nearly covered in the shuttle's exhaust at the left as OV-102 clears the fixed service structure (FSS) tower. The space shuttle main engines produce a diamond shock effect. Once in orbit, STS-65's six NASA astronauts and a Japanese Payload Specialist will begin two weeks of experimentation in support of the second International Microgravity Laboratory (IML-2) mission.

  1. STS-50 Columbia, OV-102, landing with drag chute deploy at KSC SLF runway 33

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, completes its landing sequence on runway 33 at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). At this point in OV-102's landing, the main landing gear (MLG) and nose landing gear (NLG) ride along the runway surface with the drag chute deployed and at full inflation behind the vehicle. This head-on view looks directly at the crew compartment, includes the full wing span, and shows the vertical tail with deployed rudder/speedbrake system and drag chute. Runway lights appear in the foreground and a flock of birds is barely visible in the distant background. This landing at 7:42 am (Eastern Daylight Time (EDT) included Development Test Objective (DTO) 521, Orbiter drag chute system. It marked the first time for the usage of the parachute system for a KSC landing and the second occurrence in the program.

  2. The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2007-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and

  3. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    Recently we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π, π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Expecially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  4. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  5. Columbia River Estuary Ecosystem Classification Geomorphic Catena

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  6. Columbia River Estuary Ecosystem Classification Hydrogeomorphic Reach

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  7. Survey of Columbia River Basin Streams for Giant Columbia River Spire Snail Fluminicola columbiana and Great Columbia River limpet Fisherola nuttalli

    SciTech Connect

    Neitzel, D.A.; Frest, T.J.; Washington Univ., Seattle, WA )

    1989-10-01

    Surveys have confirmed the survival of both the giant Columbia River spire snail Fluminicola columbiana and the great Columbia River limpet Fisherola nuttalli in the Hanford Reach of the Columbia River, Washington State, as well as other sites in Washington, Oregon, and Idaho. A review of historical collection records suggests that both species exist in still other sites of the Columbia River Basin. At present, there is insufficient information to allow adequate appraisal of either species relative to possible federal or state listing as endangered or threatened species. The results of our studies suggest that additional undiscovered populations of both species exist. There is a relatively good chance that pristine habitat required by spire snails and limpets remains in 37 streams or portions of streams in Washington, Oregon, Idaho, and Montana (British Columbia was considered outside the project scope). For a thorough survey, visits to more than 600 sites will be required. 20 refs., 5 figs., 7 tabs.

  8. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  9. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  10. Crewmen of the Gemini 7 spacecraft arrive aboard aircraft carrier

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts James A. Lovell Jr., (left), pilot, and Frank Borman, command pilot, are shown just after they arrived aboard the aircraft carrier U.S.S. Wasp. Greeting the astronauts are Donald Stullken (at Lovell's right), Recovery Operations Branch, Landing and Recovery Division; Dr. Howard Minners (standing beside Borman), Flight Medicine Branch, Cneter Medical Office, Manned Spacecraft Center, and Bennett James (standing behind Borman), a NASA Public Affairs Officer.

  11. Study of balloon and thermal control material degradation aboard LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas

    1991-01-01

    The initial results of analysis performed on a number of polymeric materials which were exposed aboard the Long Duration Exposure Facility (LDEF) are discussed. These materials include two typical high altitude balloon films (a polyester and a polyethylene) and silver-backed Teflon from thermal control blanket samples. The techniques used for characterizing changes in mechanical properties, chemical structure and surface morphology include Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy, and dynamic mechanical analysis.

  12. Apollo 10 crewmembers arrive aboard U.S.S. Princeton

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 10 crewmembers arrive aboard the U.S.S. Princeton as they step from a helicopter to receive a red carpet welcome. Left to right, are Astronauts Eugene A. Cernan, lunar module pilot; Thomas P. Stafford, commander; and John W. Young, command module pilot. Standing in left foreground is Dr. Donald E. Stullken, Chief, Recovery Operations Branch, Landing and Recovery Division, Manned Spacecraft Center.

  13. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  14. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a Roman candle, the exhaust from the Boeing Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  15. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  16. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  17. 78 FR 23487 - Drawbridge Operation Regulation; Columbia River, Vancouver, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... across the Columbia River, mile 106.5, between Portland, Oregon and Vancouver, Washington. This deviation..., Docket Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The Oregon Department...

  18. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  19. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  20. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  1. Orbiter Window Hypervelocity Impact Strength Evaluation

    NASA Technical Reports Server (NTRS)

    Estes, Lynda R.

    2011-01-01

    When the Space Shuttle Orbiter incurs damage on its windowpane during flight from particles traveling at hypervelocity speeds, it produces a distinctive damage that reduces the overall strength of the pane. This damage has the potential to increase the risk associated with a safe return to Earth. Engineers at Boeing and NASA/JSC are called to Mission Control to evaluate the damage and provide an assessment on the risk to the crew. Historically, damages like these were categorized as "accepted risk" associated with manned spaceflight, and as long as the glass was intact, engineers gave a "go ahead" for entry for the Orbiter. Since the Columbia accident, managers have given more scrutiny to these assessments, and this has caused the Orbiter window engineers to capitalize on new methods of assessments for these damages. This presentation will describe the original methodology that was used to asses the damages, and introduce a philosophy new to the Shuttle program for assessing structural damage, reliability/risk-based engineering. The presentation will also present a new, recently adopted method for assessing the damage and providing management with a reasonable assessment on the realities of the risk to the crew and vehicle for return.

  2. The Evolving Landscape of the Columbia River Gorge: Lewis and Clark and Cataclysms on the Columbia

    USGS Publications Warehouse

    O'Connor, James E.

    2004-01-01

    Travelers reacting Lewis and Clark's journey to the Pacific over the past two hundred years have witnessed tremendous change to the Columbia River Gorge and its primary feature, the Columbia River. Dams, reservoirs, timer harvest, altered fisheries, transportation infrastructure, and growth and shrinkage of communities have transformed the river and valley. This radically different geography of human use and habitation is  commonly contrasted with the sometimes romantic view of a prior time provided both by early nineteenth-century chronicle and present day critics of the modern condition - an ectopia of plentiful and perpetual resources sustaining a stable culture from time immemorial. Reality is more complicated. Certainly the human-caused changes to the Columbia River and the gorge since Lewis and Clark have been profound; by the geologic history of immense floods, landslides, and volcanic eruptions that occurred before the journey had equally, if not more, acute effects on landscapes and societies of the gorge. In many ways, the Lewis and Clark Expidition can be viewed as a hinge point for the Columbia River, the changes engineered to the river and its valley in the two hundred years since their visit mirrored by tremendous cchanges geologically engendered in the thousands of years before. 

  3. The Evolving Landscape of the Columbia River Gorge: Lewis and Clark and Cataclysms on the Columbia

    USGS Publications Warehouse

    O'Connor, James E.

    2004-01-01

    TAVELERS RETRACING LEWIS AND CLARKE JOURNEY to the Pacific over the past two hundred years have witnessed tre mendous change to the Columbia River Gorge and its pri mary feature, the Columbia River. Dams, reservoirs, timber harvest, altered fisheries, transportation infrastructure, and growth and shrinkage of communities have transformed the river and valley.1 This radically different geography of human use and habitation is commonly contrasted with the sometimes romantic view of a prior time provided both by early nineteenth-century chroniclers and present-day critics of the modern condition ? an ecotopia of plentiful and perpetual resources sustaining a stable culture from time immemorial. Reality is more com plicated. Certainly the human-caused changes to the Columbia River and the gorge since Lewis and Clark have been profound; but the geologic his tory of immense floods, landslides, and volcanic eruptions that occurred before their journey had equally, if not more, acute effects on landscapes and societies of the gorge. In many ways, the Lewis and Clark Expedi tion can be viewed as a hinge point for the Columbia River, the changes engineered to the river and its valley in the two hundred years since their visit mirrored by tremendous changes geologically engendered in the thousands of years before. 

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  5. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  6. Space Shuttle STS-87 Columbia launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia (STS-87) soared from Launch Pad 39B on the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite which were managed by scientists and engineers from the Marshall Space Flight Center. During the 16-day mission, the crew oversaw experiments in microgravity; deployed and retrieved a solar satellite; and tested a new experimental camera, the AERCam Sprint. Two crew members, Dr. Takao Doi and Winston Scott also performed a spacewalk to practice International Space Station maneuvers.

  7. Columbia Glacier in 1986; 800 meters retreat

    USGS Publications Warehouse

    Krimmel, R.M.

    1987-01-01

    Columbia Glacier, in Prince William Sound, Alaska, continued its rapid retreat in 1986, with a retreat of 800 m. Average velocity of the lower portion of the glacier, 10 September 1986 to 26 January 1987, was three km/yr, or about one-half of the velocity during similar periods for the previous three years. This reduced velocity is a new development in the progression of the retreat, and if the calving rate follows the pattern of previous years, will result in continued retreat. (Author 's abstract)

  8. Spirit's View of 'Columbia Hills' (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    NASA's Mars Exploration Rover Spirit looked up at the 'Columbia Hills' from its location on the 265th martian day, or sol, of its mission (Sept. 30, 2004) and captured this 3-D view. This cropped mosaic image, presented here in a cylindrical-perspective projection with geometric seam correction, was taken by the rover's navigation camera.

    Figure 1 is the left-eye view of a stereo pair and Figure 2 is the right-eye view of a stereo pair.

  9. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  10. Participation in the Mars Orbiting Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengil, Gordon H.; Ford, Peter

    2004-01-01

    The Mars Orbiting Laser Altimeter (MOLA) instrument [1,2] carried aboard the Mars Global Surveyor (MGS) spacecraft, has observed strong echoes from cloud tops at 1.064 microns on 61% of its orbital passes over the winter north pole (235deg L(sub S), < 315deg) and on 58% of the passes over the winter south pole (45deg < L(sub S), < 135deg). The clouds are unlikely to be composed of water ice since the vapor pressure of H2O is very low at the Martian nighttime polar temperatures measured by the Thermal Emission Spectrometer (TES) [3], and by an analysis of MGS radio occultations [4]. Dust clouds can also be ruled out since no correlation is seen between clouds and global dust storms. The virtually certain composition for the winter polar clouds is CO2 ice.

  11. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  12. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2005-09-01

    Triggered by the desire to investigate numerically the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π,π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Especially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  13. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  14. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Aircraft Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The... Aircraft Company (type certificate previously held by Columbia Aircraft Manufacturing (previously...

  15. 75 FR 66009 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... directive (AD): Cessna Aircraft Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing... Company (type certificate previously held by Columbia Aircraft Manufacturing (previously The...

  16. Orbit Determination Support for the Microwave Anisotropy Probe (MAP)

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Truong, Son H.; Cuevas, Osvaldo O.; Slojkowski, Steven

    2003-01-01

    NASA's Microwave Anisotropy Probe (MAP) was launched from the Cape Canaveral Air Force Station Complex 17 aboard a Delta II 7425-10 expendable launch vehicle on June 30, 2001. The spacecraft received a nominal direct insertion by the Delta expendable launch vehicle into a 185-km circular orbit with a 28.7deg inclination. MAP was then maneuvered into a sequence of phasing loops designed to set up a lunar swingby (gravity-assisted acceleration) of the spacecraft onto a transfer trajectory to a lissajous orbit about the Earth-Sun L2 Lagrange point, about 1.5 million km from Earth. Because of its complex orbital characteristics, the mission provided a unique challenge for orbit determination (OD) support in many orbital regimes. This paper summarizes the premission trajectory covariance error analysis, as well as actual OD results. The use and impact of the various tracking stations, systems, and measurements will be also discussed. Important lessons learned from the MAP OD support team will be presented. There will be a discussion of the challenges presented to OD support including the effects of delta-Vs at apogee as well as perigee, and the impact of the spacecraft attitude mode on the OD accuracy and covariance analysis.

  17. Numerical simulation of iodine speciation in relation to water disinfection aboard manned spacecraft I. Equilibria

    NASA Technical Reports Server (NTRS)

    Atwater, J. E.; Sauer, R. L.; Schultz, J. R.

    1996-01-01

    Elemental iodine (I2) is currently used as the drinking water disinfectant aboard the Shuttle Orbiter and will also be incorporated into the water recovery and distribution system for the International Space Station Alpha. Controlled release of I2 is achieved using the Microbial Check Valve (MCV), a flow-through device containing an iodinated polymer which imparts a bacteriostatic residual concentration of approximately 2mg/L to the aqueous stream. During regeneration of MCV canisters, I2 concentrations of approximately 300 mg/L are used. Dissolved iodine undergoes a series of hydrolytic disproportionation and related reactions which result in the formation of an array of inorganic species including: I-, I3-, HOI, OI-, IO3-, HIO3, I2OH-, I2O(-2), and H2OI+. Numerical estimation of the steady-state distribution of inorganic iodine containing species in pure water at 25 degrees C has been achieved by simultaneous solution of the multiple equilibrium expressions as a function of pH. The results are reported herein.

  18. Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'

    1991-01-01

    Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.

  19. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  20. The point spread function of the soft X-ray telescope aboard Yohkoh

    NASA Technical Reports Server (NTRS)

    Martens, Petrus C.; Acton, Loren W.; Lemen, James R.

    1995-01-01

    The point spread function of the SXT telescope aboard Yohkoh has been measured in flight configuration in three different X-ray lines at White Sands Missile Range. We have fitted these data with an elliptical generalization of the Moffat function. Our fitting method consists of chi squared minimization in Fourier space, especially designed for matching of sharply peaked functions. We find excellent fits with a reduced chi squared of order unity or less for single exposure point spread functions over most of the CCD. Near the edges of the CCD the fits are less accurate due to vignetting. From fitting results with summation of multiple exposures we find a systematic error in the fitting function of the order of 3% near the peak of the point spread function, which is close to the photon noise for typical SXT images in orbit. We find that the full width to half maximum and fitting parameters vary significantly with CCD location. However, we also find that point spread functions measured at the same location are consistent to one another within the limit determined by photon noise. A 'best' analytical fit to the PSF as function of position on the CCD is derived for use in SXT image enhancemnent routines. As an aside result we have found that SXT can determine the location of point sources to about a quarter of a 2.54 arc sec pixel.

  1. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station

    NASA Astrophysics Data System (ADS)

    Inatani, Junji; Ozeki, Hiroyuki; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2000-12-01

    A submillimeter limb-emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as KIBO) at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb-emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gases by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, Hcl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32-626.32 GHz and 649.12-650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing the latitudes form 38 S to 65 N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid- latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weak emission lines attributing to less-abundant species.

  2. Lead poisoning of swans in British Columbia

    SciTech Connect

    Wilson, L.K.; Elliott, J.E.; Langelier, K.M.; Scheuhammer, A.M.; Bowes, V.

    1994-12-31

    Between February 29 and March 15, 1992, 30 trumpeter swans (Cygnus buccinator) were found dead or debilitated at Judson Lake in the lower Fraser valley of southwestern British Columbia. Autopsies of 17 swans revealed the cause of death as lead poisoning from ingestion of lead shot. Lead shot was present in the gizzards of 20 of the swans examined; average number of pellets was nine. Lead was detected in all liver and kidney samples tested. Liver lead concentrations ranged from 21 to 166 ug/g dry wt., with a mean of 64 ug/g d.w. Lead levels in kidneys ranged from 212 to 303 ug/g d.w., with a mean of 120 ug/g d.w. The amount of lead shot in the gizzard was not well correlated with lead levels in the liver and kidney; correlation coefficients of 0.20 and 0.54 were attained, respectively. High iron levels were noted in livers. Other elements (Se, Co, Zn, Mn, Cd, Ca, Mg) were not elevated in either the liver or kidney. The incident prompted the authors to review lead poisoning of swans in British Columbia; data from published and unpublished sources are analyzed, presented and discussed.

  3. Malignant mesothelioma in British Columbia in 1982.

    PubMed

    Churg, A

    1985-02-01

    All cases newly diagnosed by a pathologist in 1982 in British Columbia as a malignant mesothelioma of the pleura or peritoneum were reviewed. In men there were 17 cases (incidence rate, 17.0/million/year), and in women 2 cases (1.9/million/year). A history of asbestos exposure (largely in shipyards, construction, or insulation work) was obtained for 14 of 15 men, and 0 of 1 woman. Mineralogic analysis of lung on 6 of the men confirmed that the tumor was associated in every instance with exposure to amosite and crocidolite asbestos; some patients also had elevated levels of tremolite asbestos, presumably reflecting exposure to a chrysotile asbestos product. No unusual levels of asbestos were found in the lungs of the one woman studied. These data show that the incidence rate of mesothelioma in British Columbia has increased nearly six times for men compared to the period 1969 to 1975, but has remained roughly unchanged for women. Almost all of the cases in men in this series could be linked to asbestos exposure.

  4. BCASP and the Evolution of School Psychology in British Columbia

    ERIC Educational Resources Information Center

    Agar, Douglas J.

    2016-01-01

    Since 1992, the British Columbia Association of School Psychologists (BCASP) has been the professional body for school psychologists in British Columbia. In the intervening 24 years, BCASP has been very successful in performing the dual roles of a certifying body and a professional development organization for school psychologists in British…

  5. 76 FR 42549 - Columbia Unlimited Hydroplane Races; Kennewick, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... SECURITY Coast Guard 33 CFR Part 165 Columbia Unlimited Hydroplane Races; Kennewick, WA AGENCY: Coast Guard... Local Regulation for the Columbia Unlimited Hydroplane Races. This regulation which restricts navigation... Hydroplane Races (Water Follies). During the enforcement period, no person or vessel may operate...

  6. 76 FR 60852 - District of Columbia; Emergency and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... SECURITY Federal Emergency Management Agency District of Columbia; Emergency and Related Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: This is a notice of the Presidential declaration of an emergency for the District of Columbia (FEMA-3337-EM), dated August 28,...

  7. 77 FR 45346 - Mid-Columbia Coho Restoration Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Bonneville Power Administration Mid-Columbia Coho Restoration Program AGENCY: Bonneville Power Administration...: This notice announces the availability of the ROD for the Mid- Columbia Coho restoration program... Restoration Program EIS (DOE/EIS-0425, March 2012). The purpose of the program is to re-establish...

  8. 78 FR 782 - Energy Northwest; Columbia Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Energy Northwest; Columbia Generating Station; Exemption 1.0 Background Energy Northwest (the licensee) is the holder of Renewed Facility Operating License No. NPF-21, which authorizes operation of the Columbia Generating Station. The...

  9. Contagious ecthyma in mountain goat of coastal British Columbia.

    PubMed

    Hebert, D M; Samuel, W M; Smith, G W

    1977-04-01

    Contagious ecthyma has been reported previously from mountain goat (Oreamnos americanus) in one restricted area of eastern British Columbia. A second focus of infection is reported for mountain goat from western British Columbia. Diagnosis was based on appearance of lesions at necropsy, histopathology and demonstration of poxvirus with the electron microscope. The epizootiology of this infection in mountain goat is discussed briefly.

  10. Managing the Columbia Basin for Sustainable Economy, Society, Environment

    EPA Science Inventory

    The Columbia River Basin (CRB) is a vast region of the Pacific Northwest covering parts of the United States, Canada and Tribal lands. As the Columbia River winds its way from Canada into the US, the river passes through numerous multi-purpose reservoirs and hydroelectric genera...

  11. Closely Watched Tenure Case at Columbia University Is Still Unsettled

    ERIC Educational Resources Information Center

    Wilson, Robin; Byrne, Richard

    2008-01-01

    This article reports on an unsettled tenure case at Columbia University. The high-profile and controversial tenure bid of Joseph A. Massad, a Palestinian-American professor of Arab politics, was turned down by Columbia University's provost, Alan Brinkley. Mr. Massad's case follows closely on two other high-profile tenure bids affected by the…

  12. A Summary of the Space Shuttle Columbia Tragedy and the Use of LS Dyna in the Accident Investigation and Return to Flight Efforts

    NASA Technical Reports Server (NTRS)

    Melis, Matthew; Carney, Kelly; Gabrys, Jonathan; Fasanella, Edwin L.; Lyle, Karen H.

    2004-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry resulting in loss of 7 crewmembers and craft. For the next several months an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA concluded in August, 2003 that the cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the missions launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing which ultimately led to the breakup of the orbiter. In order to gain a better understanding the foam impact on the orbiters RCC wing leading edge, a multi-center team of NASA and Boeing impact experts was formed to characterize the foam and RCC materials for impact analysis using LS Dyna. Dyna predictions were validated with sub-component and full scale tests. LS Dyna proved to be a valuable asset in supporting both the Columbia Accident Investigation and NASA s return to flight efforts. This paper summarizes Columbia Accident and the nearly seven month long investigation that followed. The use of LS-DYNA in this effort is highlighted. Contributions to the investigation and return to flight efforts of the multicenter team consisting of members from NASA Glenn, NASA Langley, and Boeing Philadelphia are introduced and covered in detail in papers to follow in these proceedings.

  13. The Role of Materials Degradation and Analysis in the Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    McDanels, Steven J.

    2006-01-01

    The efforts following the loss of the Space Shuttle Columbia included debris recovery, reconstruction, and analysis. The debris was subjected to myriad quantitative and semiquantitative chemical analysis techniques, ranging from examination via the scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) to X-Ray diffraction (XRD) and electron probe micro-analysis (EPMA). The results from the work with the debris helped the investigators determine the location where a breach likely occurred in the leading edge of the left wing during lift off of the Orbiter from the Kennedy Space Center. Likewise, the information evidenced by the debris was also crucial in ascertaining the path of impinging plasma flow once it had breached the wing. After the Columbia Accident Investigation Board (CAIB) issued its findings, the major portion of the investigation was concluded. However, additional work remained to be done on many pieces of debris from portions of the Orbiter which were not directly related to the initial impact during ascent. This subsequent work was not only performed in the laboratory, but was also performed with portable equipment, including examination via portable X-Ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR). Likewise, acetate and silicon-rubber replicas of various fracture surfaces were obtained for later macroscopic and fractographic examination. This paper will detail the efforts and findings from the initial investigation, as well as present results obtained by the later examination and analysis of debris from the Orbiter including its windows, bulkhead structures, and other components which had not been examined during the primary investigation.

  14. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-05-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  15. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Technical Reports Server (NTRS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-01-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  16. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities was flown aboard Shuttle on STS-40. The instrument is designed to measure and record the Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarefied flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the Shuttle while in low-earth orbit. A 2-h orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low-frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight liner corrections for drift.

  17. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  18. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  19. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  20. Orbital inflammation: Corticosteroids first.

    PubMed

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  1. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  2. Transmission windows in Titan's lower troposphere: Implications for IR spectrometers aboard future aerial and surface missions

    NASA Astrophysics Data System (ADS)

    McDonald, George D.; Corlies, Paul M.; Wray, James J.; Hofgartner, Jason D.; Hörst, Sarah M.; Hayes, Alexander G.; Liuzzo, Lucas R.; Buffo, Jacob J.

    2015-11-01

    Titan's thick atmosphere contains a 1.5 - 5.7% methane mole fraction. Methane's possession of fundamental, overtone, and combination bands across much of the near and mid IR results in significant absorption in the atmosphere across this spectral region. The consequence is spectral windowing, such that Titan's surface can only be observed at a handful of methane transmission windows. The narrow width of these windows for observations from the top of the atmosphere (ToA) make only multispectral imaging of the surface possible. This limits the information that can be gleaned about the surface composition, which remains largely unknown. From ToA, there is effectively zero transmission at most wavelengths between the windows, so that improvements to the detectors or telescopes of IR spectrometers aboard orbital or flyby missions would not result in any appreciable widening of the windows. Only decreasing the methane column through which observations are made, with a future mission operating near or on the surface, would result in any widening of the windows. We present a new line-by-line radiative transfer model to quantify the window widths for an IR spectrometer aboard an aerial or surface mission to Titan. We take spectral line parameters from the HITRAN database (Rothmann et al. 2013) for methane and six trace gases, include N2-N2 and N2-H2 collision-induced absorptions as measured by McKellar 1989, and the haze extinction measured in situ by Huygens DISR. The number of vertical layers in the model is chosen to correspond with the high cadence of measurements of the physical conditions of Titan's atmosphere by Huygens HASI. We find that the transmission windows do not widen appreciably for an aerial mission operating at altitudes on the order of kilometers above the surface. For surface missions observing at distances of order 10 m, the windows widen considerably to encompass regions where absorptions from hydrated minerals, sulfates, and pentane and higher order

  3. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  4. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  5. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  6. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  7. Columbia River monitoring: Distribution of tritium in Columbia River water at the Richland Pumphouse

    SciTech Connect

    Dirkes, R.L.

    1993-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This report presents the results of a special study conducted as part of the SESP to supplement the routine Columbia River monitoring program and provide information relative to the dispersion and distribution of Hanford origin contaminants entering the river through the seepage of ground water along the Hanford Site. Sampling was conducted along cross sections to determine the distribution of tritium within the Columbia River at Richland, Washington. The investigation was also designed to evaluate the relationship between the average tritium concentrations in the river water at this location and in water collected from the routine SESP river monitoring system located at the city of Richland drinking water intake (Richland Pumphouse). This study was conducted during the summers of 1987 and 1988. Water samples were collected along cross sections located at or near the Richland Pumphouse monitoring station.

  8. Environmental noise assessment STS-1 Columbia launch

    NASA Technical Reports Server (NTRS)

    Putnicki, G. J.

    1982-01-01

    An environmental noise assessement of the initial launch of the Space Transportation System, STS-1 Columbia was conducted. The principal objective of the environmental noise assessment was to measure the noise generated during the initial launch of the space shuttle to ascertain the validity of the levels predicted in the 1979 environmental impact statement. In the 1979 study information obtained for expendable launch vehicles, Titan, Saturn and Atlas was used to predict the noise levels that would be generated by the simultaneous firing of the two solid rocket boosters and the three space shuttle main engines. Fifteen monitoring sites were established in accessable areas located from 4,953 to 23,640 meters from the launch pad. Precision sound level meters were used to capture the peak level during the launch. Data obtained was compared to the predicted levels and were also compared to the identified levels, standards and criteria established by the federal agencies with noise abatement and control responsibilities.

  9. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  10. New Storke-Doherty lectureship at Columbia

    NASA Astrophysics Data System (ADS)

    The founding of the Storke-Doherty Lectureship has been jointly announced by the Department of Geological Sciences and the Lamont-Doherty Earth Observatory of Columbia University.Funds permitting, a Storke-Doherty Lectureship will be awarded annually to a junior scientist at the observatory who is in no more than his or her second year of residence. The lectureship lasts 4 years and is accompanied by 24 months of department and observatory salary support. The recipient is responsible for teaching a topical seminar.The award is intended to recognize the potential for scholarly excellence and encourage outstanding young scientists to pursue careers in the basic research environment. The name of the recipient will be announced in January or February of each year.

  11. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. )

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  12. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  13. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  14. Biomedical results of the Space Shuttle orbital flight test program

    NASA Technical Reports Server (NTRS)

    Pool, S. L.; Nicogossian, A.

    1983-01-01

    On July 4, 1982, the Space Shuttle Columbia landed at Edwards Air Force Base, CA, thus successfully completing the fourth and last in a series of Orbital Flight Tests (OFT) of the Space Transportation System (STS). The primary goal of medical operations support for the OFT was to assure the health and well-being of flight personnel during all phases of the mission. To this end, crew health status was evaluated preflight, inflight, and postflight. Biomedical flight test requirements were completed in the following areas: physiological adaptation to microgravity, cabin acoustical noise, cabin atmospheric evaluation, radiation dosimetry, crew exercise equipment evaluation, and a cardiovascular deconditioning countermeasure assessment.

  15. [Biomedical results of the Space Shuttle Orbital Flight Test Program].

    PubMed

    Pool, S L; Nicogossian, A

    1984-01-01

    On July 4, 1982 the Space Shuttle Columbia landed at Edwards Air Force Base, California, thus successfully completing the fourth and last in a series of Orbital Flight Tests (OFT) of the Space Transportation System (STS). The primary goal of medical operation support for the OFT was to assure the health and well-being of flight personnel during all phases of the mission. To this end, the crew health status was evaluated preflight, inflight and postflight. Biomedical flight test requirements were completed in the following areas: physiological adaptation to microgravity, cabin acoustical noise, cabin atmospheric evaluation, radiation dosimetry, crew exercise equipment evaluation and a cardiovascular deconditioning countermeasure assessment.

  16. Detailed geologic mapping of the Columbia Hills, Mars: West Spur to Cumberland Ridge

    NASA Astrophysics Data System (ADS)

    Cole, S. B.; Watters, W. A.; Rice, M. S.; Squyres, S. W.

    2010-12-01

    The Columbia Hills in Gusev Crater is one of the most intensively studied regions on Mars. The Mars Exploration Rover (MER) Spirit has been investigating the Columbia Hills for over 5 years. During this time, Spirit has acquired thousands of images and spectroscopic observations from several outcrops and many soil samples and float rocks. The Hills exhibit a remarkable variety of textures and compositions, as indicated by diverse rock and soil types. Many studies of local regions within the Columbia Hills have been published from MER data, as have high-resolution Digital Elevation Models (DEMs) from the High Resolution Imaging Science Experiment (HiRISE) instrument on board the Mars Reconnaissance Orbiter (MRO). Additionally, the MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument has acquired 13 hyperspectral observations of the Columbia Hills at 18m/pixel resolution. Previous work has had a spectroscopic and mineralogical focus, with sparsely-sampled structural measurements. To date, these data sets have not been integrated into a single detailed and comprehensive geologic map. We present a preliminary geologic map of the Columbia Hills. Our goal is to integrate observations from multiple instruments and spacecraft into a single map, illuminating the geographic context of geologic observations. Our study is unique in that we incorporate detailed structural measurements, localized stratigraphic sequences, and the footprints of remote sensing and in-situ observations. We also map the distribution of textures, such as vesicular vs. nodular rocks; small impact craters; probable flow margins; boundaries marking textural and color changes relating to differences in process and mineralogy; and the rover’s traverse path. We measure the strike and dip of planar features such as foliations and bedding planes from stereo-derived topography and provide estimates of the uncertainty in these measurements. We place the measurements in a regional

  17. An apparatus for preparing benthic samples aboard ship

    USGS Publications Warehouse

    Pepper, Phillip N.; Girard, Thomas L.; Stapanian, Martin A.

    2001-01-01

    We describe a safe and effective apparatus for washing and reducing the volume of benthic samples collected by grab samplers aboard ship. The sample is transferred directly from the dredge to the apparatus and then washed with water pumped through pipes in the apparatus and from onboard hoses. Wastewater and materials smaller than 0.541 mm in diameter are washed overboard. Larger materials, including benthic organisms, collect on an upper 0.64-cm screen and on a lower 30-mm-mesh stainless steel bolt cloth. A collection jar is screwed into the bottom of the apparatus. Therefore, transfer of sample material from the apparatus to the jar is quick and easy. This apparatus has several advantages for use aboard ship over others described in the literature, especially in rough seas, in cold weather, and at night. The apparatus provides a safe and convenient platform for washing and reducing samples, and samples can be prepared while the vessel is traveling at full speed.

  18. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect

    None, None

    2009-02-01

    The Columbia River, the fourth largest river on the continent as measured by average annual flow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak flood waters, that flow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, officials from the United States and Canada began a long process to seek a joint solution to the flooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  19. Species for the screening assessment. Columbia River Comprehensive Impact Assessment

    SciTech Connect

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

  20. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  1. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  2. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  3. 77 FR 27855 - Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard America! Holdings, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Surface Transportation Board Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard...., d/b/a All Aboard America AGENCY: Surface Transportation Board. ACTION: Notice Tentatively Approving and Authorizing Transaction. SUMMARY: All Aboard America! Holdings, Inc. (AHI), Celerity AHI...

  4. STS-35 Columbia, OV-102, lifts off from KSC LC Pad 39B at 1:49 am (EST)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Columbia, Orbiter Vehicle (OV) 102, atop its external tank (ET) and flanked by two solid rocket boosters (SRBs) clears the launch tower during its liftoff from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B at 1:49 am (Eastern Standard Time (EST)). OV-102 rises above the mobile launcher pad covered with an exhaust cloud which is illuminated by the glow of the SRB and space shuttle main engine (SSME) firings. The launch tower's fixed service structure (FSS) and retracted rotating service structure (RSS) are highlighted against the early morning darkness by SRB/SSME glow as the shadowy shuttle climbs into the sky.

  5. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  6. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  7. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Mai, N.; McIntyre, M.; Yost, B.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  8. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Ruff, S. W.; Morris, R. V.; Ming, D. W.; Crumpler, L. S.; Yen, A. S.; Squyres, S. W.; Sullivan, R. J.; Bell, J. F.; Cabrol, N. A.; Clark, B. C.; Farrand, W. H.; Gellert, R.; Greenberger, R.; Grant, J. A.; Guinness, E. A.; Herkenhoff, K. E.; Hurowitz, J. A.; Johnson, J. R.; Klingelhöfer, G.; Lewis, K. W.; Li, R.; McCoy, T. J.; Moersch, J.; McSween, H. Y.; Murchie, S. L.; Schmidt, M.; Schröder, C.; Wang, A.; Wiseman, S.; Madsen, M. B.; Goetz, W.; McLennan, S. M.

    2008-11-01

    This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirit's data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiter's Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4-4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirit's data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirit's data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.

  9. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  10. STS-87 Columbia rolls out to LC 39B in preparation for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The orbiter Columbia, mated to its external tank and two solid rocket boosters, rolls out to Kennedy Space Centers (KSCs) Pad 39-B atop a mobile launcher platform (MLP). The entire complement of crawler transporter, MLP and Shuttle weigh in excess of 18 million pounds. The transporter moves at an average rate of less than one mile-per-hour with the Shuttle on top and uses a laser docking system to precisely position the MLP on the pad surface. A leveling system on the crawler transporter keeps the Shuttle perfectly stable during the roll out and during the climb up the 5 percent grade to the launch pad surface. Columbia is scheduled to launch on Nov. 19 for STS-87 on a 16-day flight of the United States Microgravity Payload (USMP)-4 mission. This mission also features the deployment and retrieval of the Spartan-201 satellite and a spacewalk to demonstrate assembly and maintenance operations for future use on the International Space Station.

  11. 77 FR 69511 - Columbia ETF Trust, et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ...: Columbia Management Investment Advisers, LLC (``CMIA'') and Columbia Wanger Asset Management, LLC (``CWAM... registration. 4. On April 30, 2010, BANA sold a portion of the asset management business of its wholly owned... management of some of the Funds. The Columbia Sale also included CMG's own subsidiary, Columbia Wanger...

  12. 77 FR 48149 - Columbia Gas Transmission, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Energy Regulatory Commission Columbia Gas Transmission, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on July 24, 2012 Columbia Gas Transmission, L.L.C. (Columbia), P.O. Box 1273... directed to Fredric J. George, Senior Counsel, Columbia Gas Transmission, L.L.C., P.O. Box 1273,...

  13. Simultaneous Measurements of Electrons, Protons and Alpha particles by the Electron Proton Helium Instrument aboard SOHO and Chandra

    NASA Astrophysics Data System (ADS)

    Terasa, Christoph; Gomez-Herrero, Raul; Heber, Bernd; Klassen, Andreas; Müller-Mellin, Reinhold

    The flight spare instrument of the Electron Proton Helium Instrument (EPHIN) aboard SOHO was mounted on the X-Ray observatory Chandra. Both instruments measure electrons in the energy range of 150 keV to above 10 MeV, protons and alpha-particles from 4 MeV/nucleon to above 51 MeV/nucleon in different energy channels. While SOHO is located at the Lagrangian L1-point, Chandra is on an elliptical orbit around the Earth crossing the radiation belts with an orbit period of 64 hours. Simultaneous measurements outside of the Earth's magnetosphere are available for both instruments from the launch of Chandra in 1999 to the end of 2008. This period covers half a solar cycle from maximum to the recent solar minimum period. In this presentation different particle components, like Jovian electrons, solar energetic particles and particles coming from interplanetary shock waves will be investigated. We combine SOHO and Chandra observations outside the radiation belts to compare the particle distribution at L1 and at the Earth.

  14. Crystallographic oxide phase identification of char deposits obtained from space shuttle Columbia window debris

    NASA Astrophysics Data System (ADS)

    Olivas, J. D.; Wright, M. C.; Christoffersen, R.; Cone, D. M.; McDanels, S. J.

    2010-09-01

    Char deposits on recovered fragments of space shuttle Columbia windowpanes were analyzed to further understand the events that occurred during orbiter reentry and breakup. The TEM analysis demonstrated that oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicated that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reactions, expectedly metal combustion of a Ti-6Al-4V structure, had to occur for oxide formation. Results are significant for aerospace vehicles, where thermal protection system (TPS) breaches could cause material originally designed for substructural applications to be in direct path with reentry plasma.

  15. The Space Shuttle Columbia rolls out to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle Columbia continues up the ramp to Launch Pad 39B in its morning rollout prior to STS-90. Leveling systems within the crawler-transporter underneath the Shuttle keep the platform level while negotiating the five percent ramp leading up to the pad surface. The top of the orbiter is kept vertical within plus or minus 10 minutes of arc, about the diameter of a basketball during the journey. The Neurolab experiments are the primary payload on this nearly 17-day space flight. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS- 90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  16. Historical changes in the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Jay, David A.; Bradford Harvey, R.; Hamilton, Peter; Simenstad, Charles A.

    Historical changes in the hydrology, sedimentology, and physical oceanography of the Columbia River Estuary have been evaluated with a combination of statistical, cartographic, and numerical-modelling techniques. Comparison of data digitized from US Coast and Geodetic Survey bathymetric surveys conducted in the periods 1867-1875, 1926-1937, and 1949-1958 reveals that large changes in the morphology of the estuary have been caused by navigational improvements (jetties, dredged channels, and pile dikes) and by the diking and filling of much of the wetland area. Lesser changes are attributable to natural shoaling and erosion. There has been roughly a 15% decrease in tidal prism and a net accumulation of about 68 × 10 6m 3 of sediment in the estuary. Large volumes of sediment have been eroded from the entrance region and deposited on the continental shelf and in the balance of the estuary, contributing to formation of new land. The bathymetric data indicate that, ignoring erosion at the entrance, 370 to 485 × 10 6m 3 of sediment has been deposited in the estuary since 1868 at an average rate of about 0.5 cm y -1, roughly 5 times the rate at which sea level has fallen locally since the turn of the century. Riverflow data indicate that the seasonal flow cycle of the Columbia River has been significantly altered by regulation and diversion of water for irrigation. The greatest changes have occurred in the last thirty years. Flow variability over periods greater than a month has been significantly damped and the net discharge has been slightly reduced. These changes in riverflow are too recent to be reflected in the available in the available bathymetric data. Results from a laterally averaged, multiple-channel, two-dimensional numerical flow model (described in HAMILTON, 1990) suggest that the changes in morphology and riverflow have reduced mixing, increased stratification, altered the response to fortnightly (neap-spring) changes in tidal forcing, and decreased the

  17. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.

  18. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  19. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  20. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  1. STS-40 orbital acceleration research experiment flight results during a typical sleep period

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.

    1992-01-01

    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.

  2. Libraries in District of Columbia: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/districtofcolumbia.html Libraries in District of Columbia To use the sharing ... 476-3195 http://www.childrensnational.org Find another library If you need help finding a consumer health ...

  3. 65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT COMPANY'S NEISSON CREEK SAWMILL. Print No. 177, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  4. SPECIES RICHNESS AND BIODIVERSITY CONSERVATION PRIORITIES IN BRITISH COLUMBIA

    EPA Science Inventory

    Patterns in the geographic distribution of seven species groups were used to identify important areas for conservation in British Columbia, Canada. Potential priority sites for conservation were determined using an integer programming algorithm that maximized the number of speci...

  5. TYPICAL VIEW OF WEST BRANCH COLUMBIA SOUTHERN CANAL OPEN CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TYPICAL VIEW OF WEST BRANCH COLUMBIA SOUTHERN CANAL OPEN CHANNEL BETWEEN WEST BRANCH DROP AND GERKING FLUME. LOOKING SOUTH/SOUTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  6. District of Columbia Equal Representation Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-01-12

    02/08/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. District of Columbia Budget Autonomy Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-01-19

    02/08/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Towards Diversification of Secondary Special Education in British Columbia

    ERIC Educational Resources Information Center

    Csapo, Marg

    1978-01-01

    Discussed is the trend in British Columbia, Canada, towards diversification of secondary special education programs, which in the past were restricted to occupational programs that became "dumping grounds" for all types of problem students. (DLS)

  9. 1. Historic American Buildings Survey, Original from Butler Library, Columbia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, Original from Butler Library, Columbia University, See Catalog of Graphic Material #14, PHOTOCOPY OF PLAN, 1777. - Fort Mifflin, Mud Island, Marine & Penrose Ferry Roads, Philadelphia, Philadelphia County, PA

  10. District of Columbia Legislative Autonomy Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-01-26

    02/08/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. The Volcanic Story of the Columbia River Gorge.

    ERIC Educational Resources Information Center

    Allen, John Eliot

    1982-01-01

    Uses maps, diagrams, and geological accounts to describe the Columbia River Gorge which separates Oregon from Washington and exposes an unexcelled record of Cenozoic volcanic stratigraphy, sedimentation, flooding, and landsliding for the visiting tourists, geologists, or students. (Author/DC)

  12. 29 CFR 4.108 - District of Columbia contracts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... United States within the meaning of section 2(b), section 5, and the other provisions of the Act. The legislative history indicates no intent to distinguish District of Columbia contracts from the other contracts... of the United States....

  13. 29 CFR 4.108 - District of Columbia contracts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... United States within the meaning of section 2(b), section 5, and the other provisions of the Act. The legislative history indicates no intent to distinguish District of Columbia contracts from the other contracts... of the United States....

  14. 29 CFR 4.108 - District of Columbia contracts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... United States within the meaning of section 2(b), section 5, and the other provisions of the Act. The legislative history indicates no intent to distinguish District of Columbia contracts from the other contracts... of the United States....

  15. 29 CFR 4.108 - District of Columbia contracts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... United States within the meaning of section 2(b), section 5, and the other provisions of the Act. The legislative history indicates no intent to distinguish District of Columbia contracts from the other contracts... of the United States....

  16. District of Columbia Employee Suitability Act of 2011

    THOMAS, 112th Congress

    Rep. Issa, Darrell E. [R-CA-49

    2011-10-31

    11/02/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. District of Columbia House Voting Rights Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-01-12

    02/08/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. District of Columbia Fiscal Year 2012 Local Funds Continuation Act

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-09-21

    10/03/2011 Referred to the Subcommittee on Health Care, District of Columbia, Census and the National Archives . (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. 27 CFR 9.227 - Ancient Lakes of Columbia Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... County, 1965; (10) Vantage, Washington, 1965, photorevised 1978; (11) Ginkgo, Washington, 1953... meandering Columbia River for approximately 23.3 miles, crossing over the Ginkgo and Cape Horn SE maps,...

  20. 27 CFR 9.227 - Ancient Lakes of Columbia Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... County, 1965; (10) Vantage, Washington, 1965, photorevised 1978; (11) Ginkgo, Washington, 1953... meandering Columbia River for approximately 23.3 miles, crossing over the Ginkgo and Cape Horn SE maps,...

  1. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  2. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  3. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  4. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  5. Degradation of electro-optic components aboard LDEF

    NASA Astrophysics Data System (ADS)

    Blue, M. D.

    1993-04-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  6. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  7. USGS Activities at Lake Roosevelt and the Upper Columbia River

    USGS Publications Warehouse

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  8. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  9. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  10. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  11. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  12. Crab allergen exposures aboard five crab-processing vessels.

    PubMed

    Beaudet, Nancy; Brodkin, C Andrew; Stover, Bert; Daroowalla, Feroza; Flack, Joy; Doherty, Dan

    2002-01-01

    Aerosolized crab allergens are suspected etiologic agents for asthma among crab-processing workers. The objectives of this study were to characterize crab allergen concentrations and respiratory symptom prevalence among processing workers aboard crab-processing vessels. A cross-sectional survey of five crab-processing vessels was conducted near Dutch Harbor, Alaska. Crab allergen concentrations were quantified during specific work activities with 25 personal air samples collected on polytetrafluoroethylene filters and analyzed by a competitive IgE immunoassay technique. Two standardized respiratory questionnaires were used to assess respiratory symptoms suggestive of bronchitis or asthma in 82 workers. Aerosolized crab allergen concentrations ranged from 79 ng/m3 to 21,093 ng/m3 (mean = 2797 ng/m3, SD = 4576 ng/m3). The highest concentrations were measured at butchering/degilling work stations, which were combined on the smallest vessel. A significant percentage of workers reported development of respiratory symptoms during the crab-processing season. Cough developed in 28% of workers, phlegm in 11% of workers, and wheeze and other asthma-like symptoms developed in 4% of workers. Despite variations in crab allergen levels, respiratory symptom prevalence was similar across all job categories. Substantial concentrations of crab allergen exposure were measured, as well as the potential for wide variability in exposure during crab processing aboard vessels. The high prevalence of reported respiratory symptoms across all job categories suggests potential adverse respiratory effects that should be further characterized by prospective studies using pulmonary function and serology testing, and rigorous exposure characterization.

  13. Structural Analysis of the QCM Aboard the ER-2

    NASA Technical Reports Server (NTRS)

    Jones, Phyllis D.; Bainum, Peter M.; Xing, Guangqian

    1997-01-01

    As a result of recent supersonic transport (SST) studies on the effect they may have on the atmosphere, several experiments have been proposed to capture and evaluate samples of the stratosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000 - 70,000 feet. The ER-2 is primarily used by NASA for Earth resources to test new sensor systems before they are placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. Some of the experiments are designed to extract data from the atmosphere around the ER-2. For the current flight experiment, the QCM is housed in a frame that is connected to an outer pod that is attached to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM is a frequency induced instrument. Therefore, a structural analysis of the instrument within the frame is imperative to determine if resonance and/or undesirable deformations occur.

  14. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  15. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  16. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  17. Atmospheric and precipitation sounding with polarimetric radio-occultations aboard PAZ LEO

    NASA Astrophysics Data System (ADS)

    Padulles, Ramon; Cardellach, Estel; Tomás, Sergio; Oliveras, Santi; Rius, Antonio; de la Torre, Manuel; Turk, Joseph; Ao, Chi; Kursinski, Robert; Shreiner, Bill; Ector, Dave; Cucurull, Lidia; Wickert, Jens

    2015-04-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of the precipitation through simultaneous thermodynamic and vertical rain profiles. The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric antennas, although here we will use the forward scattering geometry instead of the backscattering.The depolarization effect increases as the propagation line aligns with the plane of the drops' flattening (nominally perpendicular to the local gravity, i.e., parallel to the local horizon). The RO signals cross the lower troposphere tangentially, i.e., along the local horizon, which should maximize the depolarization effect. The satellite launch is scheduled for March 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years. A sensitivity analysis have been performed, showing that we should be able to detect the 90% of all the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. Results from the campaign also show a good correlation between phase shifts increases and heavy rain events. We will present here the status of the mission, which will have been launched few weeks before the EGU, together with some preliminary data analysis from both the actual satellite data and the prior-to-launch work.

  18. Columbia Glacier in 1984: disintegration underway

    SciTech Connect

    Meier, M.F.; Rasmussen, L.A.; Miller, D.S.

    1985-01-01

    Columbia Glacier is a large, iceberg-calving glacier near Valdez, Alaska. The terminus of this glacier was relatively stable from the time of the first scientific studies in 1899 until 1978. During this period the glacier terminated partly on Heather Island and partly on a submerged moraine shoal. In December, 1978, the glacier terminus retreated from Heather Island, and retreat has accelerated each year since then, except during a period of anomalously low calving in 1980. Although the glacier has not terminated on Heather Island since 1978, a portion of the terminus remained on the crest of the moraine shoal until the fall of 1983. By December 8, 1983, that feature had receded more than 300 m from the crest of the shoal, and by December 14, 1984, had disappeared completely, leaving most of the terminus more than 2000 meters behind the crest of the shoal. Recession of the glacier from the shoal has placed the terminus in deeper water, although the glacier does not float. The active calving face of the glacier now terminates in seawater that is about 300 meters deep at the glacier centerline. Rapid calving appears to be associated with buoyancy effects due to deep water at the terminus and subglacial runoff. 12 refs., 10 figs.

  19. Magnetotactic bacteria from Pavilion Lake, British Columbia

    PubMed Central

    Oestreicher, Zachery; Lower, Steven K.; Rees, Eric; Bazylinski, Dennis A.; Lower, Brian H.

    2013-01-01

    Pavilion Lake is a slightly alkaline, freshwater lake located in British Columbia, Canada (50°51'N, 121°44'W). It is known for unusual organosedimentary structures, called microbialites that are found along the lake basin. These deposits are complex associations of fossilized microbial communities and detrital- or chemical-sedimentary rocks. During the summer, a sediment sample was collected from near the lake's shore, approximately 25–50 cm below the water surface. Magnetotactic bacteria (MTB) were isolated from this sample using a simple magnetic enrichment protocol. The MTB isolated from Pavilion Lake belonged to the Alphaproteobacteria class as determined by nucleotide sequences of 16S rRNA genes. Transmission electron microscopy (TEM) revealed that the bacteria were spirillum-shaped and contained a single chain of cuboctahedral-shaped magnetite (Fe3O4) crystals that were approximately 40 nm in diameter. This discovery of MTB in Pavilion Lake offers an opportunity to better understand the diversity of MTB habitats, the geobiological function of MTB in unique freshwater ecosystems, and search for magnetofossils contained within the lake's microbialites. PMID:24391636

  20. Magnetotactic bacteria from Pavilion Lake, British Columbia.

    PubMed

    Oestreicher, Zachery; Lower, Steven K; Rees, Eric; Bazylinski, Dennis A; Lower, Brian H

    2013-01-01

    Pavilion Lake is a slightly alkaline, freshwater lake located in British Columbia, Canada (50°51'N, 121°44'W). It is known for unusual organosedimentary structures, called microbialites that are found along the lake basin. These deposits are complex associations of fossilized microbial communities and detrital- or chemical-sedimentary rocks. During the summer, a sediment sample was collected from near the lake's shore, approximately 25-50 cm below the water surface. Magnetotactic bacteria (MTB) were isolated from this sample using a simple magnetic enrichment protocol. The MTB isolated from Pavilion Lake belonged to the Alphaproteobacteria class as determined by nucleotide sequences of 16S rRNA genes. Transmission electron microscopy (TEM) revealed that the bacteria were spirillum-shaped and contained a single chain of cuboctahedral-shaped magnetite (Fe3O4) crystals that were approximately 40 nm in diameter. This discovery of MTB in Pavilion Lake offers an opportunity to better understand the diversity of MTB habitats, the geobiological function of MTB in unique freshwater ecosystems, and search for magnetofossils contained within the lake's microbialites. PMID:24391636

  1. Seismic excitation by the space shuttle Columbia

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Anderson, D.L.; Heaton, T.H.

    1991-01-01

    SEISMIC stations in southern California recorded the atmospheric shock waves generated by the space shuttle Columbia on its return to the Edwards Air Force base on 13 August 1989 (Fig. 1). In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of ???2-3 seconds, which arrived 12.5 seconds before the shock wave (Fig. 2). This pulse was also recorded at the University of Southern California, near downtown Los Angeles, where it arrived 3 seconds after the shock wave. The origin of this pulse could not be readily identified. We show here that it was a seismic P wave excited by the motion of high-rise buildings in downtown Los Angeles, which were hit by the shock wave. The proximity of the natural period of the high-rise buildings to that of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave.

  2. Magnetotactic bacteria from Pavilion Lake, British Columbia.

    PubMed

    Oestreicher, Zachery; Lower, Steven K; Rees, Eric; Bazylinski, Dennis A; Lower, Brian H

    2013-01-01

    Pavilion Lake is a slightly alkaline, freshwater lake located in British Columbia, Canada (50°51'N, 121°44'W). It is known for unusual organosedimentary structures, called microbialites that are found along the lake basin. These deposits are complex associations of fossilized microbial communities and detrital- or chemical-sedimentary rocks. During the summer, a sediment sample was collected from near the lake's shore, approximately 25-50 cm below the water surface. Magnetotactic bacteria (MTB) were isolated from this sample using a simple magnetic enrichment protocol. The MTB isolated from Pavilion Lake belonged to the Alphaproteobacteria class as determined by nucleotide sequences of 16S rRNA genes. Transmission electron microscopy (TEM) revealed that the bacteria were spirillum-shaped and contained a single chain of cuboctahedral-shaped magnetite (Fe3O4) crystals that were approximately 40 nm in diameter. This discovery of MTB in Pavilion Lake offers an opportunity to better understand the diversity of MTB habitats, the geobiological function of MTB in unique freshwater ecosystems, and search for magnetofossils contained within the lake's microbialites.

  3. Ionospheric and Thermospheric Imaging from Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.; Wood, K.; Dymond, K. F.; Thonnard, S. E.; Cannon, K.; Makela, J.

    2001-12-01

    The Office of Naval Research is sponsoring the development of an ultraviolet imaging system to test the concept of real-time synoptic observations of the ionosphere and thermosphere from geosynchronous orbit. The observational hardware consists of two ultraviolet telescopes mounted to a two-axis gimbal to measure airglow radiances on the disk and limb of the Earth. A far-ultraviolet telescope will use a filter wheel with filters to image atomic oxygen emission at 130.4 nm, 135.6 nm, and molecular nitrogen emission at 143.0 nm. An extreme-ultraviolet telescope will image the oxygen ion airglow at 83.4 nm. The oxygen emission measurements will be used to infer nightside ionospheric total electron content (TEC) on the disk and electron density profiles on the limb. On the dayside the oxygen ion measurements will be used to determine electron density profiles, and the oxygen and nitrogen measurements will be used to infer thermospheric neutral density profiles on the limb and O/N2 ratios on the disk. The telescope fields of view cover a 1000 km x 1000 km region with 10 km x 10 km resolution. A goal for nightside TEC measurements is to obtain images with 100 second integrations and to be able to track ionospheric irregularities in real time as "weather systems". Ratios of oxygen nightglow measurements will be used to explore the possibility of providing three dimensional measurements of the ionosphere. These telescopes will be mounted aboard an Air Force Space Test Program satellite which will be launched into geosynchronous orbit over the continental U. S. for about year and then moved over the Indian Ocean for an additional seven years.

  4. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  5. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  6. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  7. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  8. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  9. STS-93: Columbia Flight Crew Arrival on FSS 195' Level, Walk Across OAA and Ingress into White Room

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape opens with a view of the shuttle on the launch pad. It then shows the flight crew arrival on the 195 foot level of the fixed service structure (FSS), walks across the orbiter access arm (OAA) into the white room, where the crew is assisted in putting on the final stages of their spacesuits, and then their crawl into the orbiter.

  10. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  11. Orbits of 6 Binaries

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.

  12. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  13. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  14. PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID

    NASA Technical Reports Server (NTRS)

    1980-01-01

    PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.

  15. Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.

  16. Building ISOC Status Displays for the Large AreaTelescope aboard the Gamma Ray Large Area Space Telescope (GLAST) Observatory

    SciTech Connect

    Ketchum, Christina; /SLAC

    2006-09-01

    In September 2007 the Gamma Ray Large Area Space Telescope (GLAST) is scheduled to launch aboard a Delta II rocket in order to put two high-energy gamma-ray detectors, the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM) into low earth orbit. The Instrument Science Operations Center (ISOC) at SLAC is responsible for the LAT operations for the duration of the mission, and will therefore build an operations center including a monitoring station at SLAC to inform operations staff and visitors of the status of the LAT instrument and GLAST. This monitoring station is to include sky maps showing the location of GLAST in its orbit as well as the LAT's projected field of view on the sky containing known gamma-ray sources. The display also requires a world map showing the locations of GLAST and three Tracking and Data Relay Satellites (TDRS) relative to the ground, their trail lines, and ''footprint'' circles indicating the range of communications for each satellite. The final display will also include a space view showing the orbiting and pointing information of GLAST and the TDRS satellites. In order to build the displays the astronomy programs Xephem, DS9, SatTrack, and STK were employed to model the position of GLAST and pointing information of the LAT instrument, and the programming utilities Python and Cron were used in Unix to obtain updated information from database and load them into the programs at regular intervals. Through these methods the indicated displays were created and combined to produce a monitoring display for the LAT and GLAST.

  17. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  18. Orbit design for solar and dual satellite occultation measurements of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.; Harrison, E. F.

    1979-01-01

    Two types of satellite based occultation missions are considered for measuring atmospheric constituents. Nominal cases for each type are presented to demonstrate representative solutions to orbit design problems. For the solar occultation mode, large areas of the globe can be covered during a one year mission, but the measurements are limited to local dawn or dusk. For the dual satellite mode, with a laser aboard a second satellite to act as a source, diurnal coverage can be obtained at the expense of more complex systems and mission scenarios. In this mode, orbit pairs are selected which maintain their relative orbit plane geometry while their differing periods drive cyclic patterns of latitude coverage. A simulated one year solar occultation mission is used to illustrate one way of analyzing occultation data by averaging measurements within bands of constant latitude.

  19. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  20. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), a worker maneuvers the Mars Climate Orbiter, suspended by an overhead crane, to the spin test equipment at lower right. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  1. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  2. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  3. A technician works on the Mars Climate Orbiter in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  4. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers lower the Mars Climate Orbiter into place on the spin test equipment. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  5. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  6. A comparison of low-gravity measurements on-board Columbia during STS-40

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; Durgin, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.

    1993-01-01

    The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 Jun. to 14 Jun. 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low-gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). A brief introduction to seven STS-40 accelerometer systems are presented and the resulting data are discussed and compared. During crew sleep periods, acceleration magnitudes in the 10(exp -6) to 10(exp -5) g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10(exp -4) g level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10(exp -4) g and primary thruster firings caused accelerations as great as 10(exp -2) g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz.

  7. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. [Orbital complications of sinusitis].

    PubMed

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  9. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  10. COLD-SAT orbital experiment configured for Altas launch

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1990-01-01

    A study was done of the feasibility of conducting liquid hydrogen orbital storage, acquisition, and transfer experiments aboard a spacecraft launched by a commercial Atlas launch vehicle. Three hydrogen tanks are mated to a spacecraft bus that is similar to that used for three-axis-controlled satellites. The bus provides power, communications, and attitude control along with acceleration levels ranging from 10 exp -6 to 10 exp -4 g. At launch, all the liquid hydrogen is contained in the largest tank, which has an insulation system designed for both space operation and the short-term launch pad and ascent environment. This tank is much lighter and lower in cost than a vacuum-jacketed design, and is made possible by the experiment tanking options available due to the hydrogen-fueled Centaur upper stage of the Atlas I.

  11. Precision positioning of earth orbiting remote sensing systems

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Yunck, T. P.; Wu, S. C.

    1987-01-01

    Decimeter tracking accuracy is sought for a number of precise earth sensing satellites to be flown in the 1990's. This accuracy can be achieved with techniques which use the Global Positioning System (GPS) in a differential mode. A precisely located global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite states. Three basic navigation approaches include classical dynamic, wholly nondynamic, and reduced dynamic or hybrid formulations. The first two are simply special cases of the third, which promises to deliver subdecimeter accuracy for dynamically unpredictable vehicles down to the lowest orbit altitudes. The potential of these techniques for tracking and gravity field recovery will be demonstrated on NASA's Topex satellite beginning in 1991. Applications to the Shuttle, Space Station, and dedicated remote sensing platforms are being pursued.

  12. Columbia-Suicide Severity Rating Scale

    PubMed Central

    Gipson, Polly Y.; Agarwala, Prachi; Opperman, Kiel J.; Horwitz, Adam; King, Cheryl A.

    2016-01-01

    Objective Despite the high prevalence of psychiatric emergency (PE) visits for attempted suicide and nonsuicidal self-injury (NSSI) among adolescents, we have limited information about assessment tools that are helpful in predicting subsequent risk for suicide attempts among adolescents in PE settings. This study examined the predictive validity of a highly promising instrument, the Columbia-Suicide Severity Rating Scale (C-SSRS). Method Participants were 178 adolescents (44.4% male; ages 13–17 years) seeking PE services. The C-SSRS interview and selected medical chart data were collected for the index visit and subsequent visits during a 1-year follow-up. Results A suicide risk concern was the most common chief complaint (50.6%) in this sample, and nearly one third of the adolescents (30.4%) reported a lifetime history of suicide attempt at index visit. Sixty-two adolescents (34.8%) had at least one return PE visit during follow-up. Lifetime history of NSSI predicted both return PE visits and a suicide attempt at return visit. The C-SSRS intensity scale score was a significant predictor of a suicide attempt at return visit for both the full sample of adolescents and the subsample who reported suicidal ideation at their index visit. In this subsample, one specific item on the intensity scale, duration, was also a significant predictor of both a return PE visit and a suicide attempt at return visit. Conclusions The C-SSRS intensity scale and NSSI had predictive validity for suicide attempts at return visit. Results also suggest that duration of adolescents’ suicidal thoughts may be particularly important to risk for suicidal behavior, warranting further study. PMID:25285389

  13. Nontronite Mineralization in Columbia River Basalts

    NASA Astrophysics Data System (ADS)

    Baker, L.

    2015-12-01

    The ferric smectite nontronite is one of the first minerals formed by secondary weathering of Columbia River Basalts (CRB). Although nontronite is a common weathering product of CRB, it is not ubiquitous; field relations in near-surface flows suggest it only forms where sufficient water is available. In near-surface flows that are above the water table, nontronite is found filling cracks or vesicles, or in association with paleosols now preserved between flows in many localities. Field relations strongly suggest that porosity and permeability at the millimeter to meter scale control the supply of water for weathering and are key to the chemical composition of secondary clays and to the overall abundance of individual secondary weathering minerals. Weathering in the basalts initiates in void spaces that hold water, where high-Fe nontronite forms radiating acicular sprays. Small void spaces fill completely with nontronite of uniform composition, which penetrates the walls and replaces surrounding glass and ferromagnesian minerals. This process produces a relatively limited quantity of high-purity ferric nontronite. In large void spaces where water is limiting, nontronite lines the interior of vesicles but does not fill them; vermicular clay strands grow into the space from nucleation sites at the vesicle wall. Nontronitic cores are coated by layers of Mg- and Al-rich clays, and Mn oxides coat the exteriors. Thus, weathering under water-limited conditions appears to produce more compositionally complex mineral assemblages. In more extensively weathered basalts, nontronite is not present except in isolated, enclosed spaces. Results of this study may be useful in interpreting remotely sensed mineralogical data on Mars. The compositions of ferromagnesian smectites and spatial relationships between different clays on Mars may hold clues to the original conditions of water-rock interaction.

  14. Gemini 12 crew receive Official welcome aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, receive Official welcome as they arrive aboard the aircraft carrier U.S.S. Wasp after their splashdown at the end of the Gemini 12 mission.

  15. ISS Update: Launching Aboard the Soyuz to Live on the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Mike Fossum, astronaut and Commander of Expedition 29, about his Soyuz launch experience and his insight into life aboard the station. Question...

  16. Early orbit operations performance of the Suomi NPP OMPS instrument

    NASA Astrophysics Data System (ADS)

    Kowalewski, Matthew; Pan, Chunhui; Janz, Scott

    2012-09-01

    The Ozone Mapping Profiler Suite (OMPS) was launched aboard the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft on October 28, 2011. OMPS is meant to continue NOAA/NASA's long-term ozone data record and bridge the gap to the Joint Polar Satellite System (JPSS) missions later this decade. We present results from the OMPS Nadir and Limb sensors' early orbit checkout (EOC) operations with comparisons to pre-launch thermal vacuum tests. Characterization measurements of detector performance show that offset, gain, and read noise trends remain within 0.2% of the pre-launch values with significant margin below sensor requirements. Nadir Total Column detector dark generation rate trends show a slow growth in both halves of the focal plane as compared to initial on-orbit measurements. Nadir solar calibration measurements remain within 2% of the initial in-flight observation and indicate no spatially dependent change to within 1%. Limb Profiler solar calibration trending indicate a potential goniometry correction error as high as 5%. Spectral registration changes based on solar observations are determined to be less than one pixel for the Nadir Total Column and Limb sensors but approximately one pixel for Nadir Profiler. Preliminary comparisons to Thullier reference solar spectral irradiances show wavelength dependent differences greater than 5%.

  17. The orbits in cancer imaging

    PubMed Central

    Chong, V F H

    2006-01-01

    Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076

  18. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  19. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  20. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.