Sample records for aboard container cargo

  1. 49 CFR 175.30 - Inspecting shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... part 172 of this subchapter; and (4) Labeled with a “CARGO AIRCRAFT ONLY” label (see § 172.448 of this... container, or overpack aboard an aircraft unless the package, outside container, or overpack is inspected by... carried aboard an aircraft only if, based on the inspection by the operator, the package, outside...

  2. 49 CFR 175.30 - Inspecting shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... part 172 of this subchapter; and (4) Labeled with a “CARGO AIRCRAFT ONLY” label (see § 172.448 of this... container, or overpack aboard an aircraft unless the package, outside container, or overpack is inspected by... carried aboard an aircraft only if, based on the inspection by the operator, the package, outside...

  3. 49 CFR 175.30 - Inspecting shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... part 172 of this subchapter; and (4) Labeled with a “CARGO AIRCRAFT ONLY” label (see § 172.448 of this... container, or overpack aboard an aircraft unless the package, outside container, or overpack is inspected by... carried aboard an aircraft only if, based on the inspection by the operator, the package, outside...

  4. 49 CFR 175.30 - Inspecting shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... part 172 of this subchapter; and (4) Labeled with a “CARGO AIRCRAFT ONLY” label (see § 172.448 of this... container, or overpack aboard an aircraft unless the package, outside container, or overpack is inspected by... carried aboard an aircraft only if, based on the inspection by the operator, the package, outside...

  5. Passengers in containers

    NASA Technical Reports Server (NTRS)

    Tarkhanovskiy, V.

    1977-01-01

    A futuristic vision of future passenger and cargo transport is presented. To speed up lengthy transit operations, passengers would be accomodated in comfortable, compartment-like containers. Several diagrams show how such containers can be accomodated aboard an aircraft or a helicopter, on a truck, or in a railroad car. A system would result in great economy in both cost and time. Of particular importance is such a system for cargo traffic.

  6. 33 CFR 402.3 - Interpretation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recycling, scrap material, refuse and waste. Cargo means all goods aboard a vessel whether carried as... or the tare weight of loaded containers; (2) Ships' fuel, ballast or stores; (3) The personal effects...

  7. 33 CFR 402.3 - Interpretation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recycling, scrap material, refuse and waste. Cargo means all goods aboard a vessel whether carried as... or the tare weight of loaded containers; (2) Ships' fuel, ballast or stores; (3) The personal effects...

  8. 33 CFR 402.3 - Interpretation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recycling, scrap material, refuse and waste. Cargo means all goods aboard a vessel whether carried as... or the tare weight of loaded containers; (2) Ships' fuel, ballast or stores; (3) The personal effects...

  9. 33 CFR 402.3 - Interpretation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recycling, scrap material, refuse and waste. Cargo means all goods aboard a vessel whether carried as... or the tare weight of loaded containers; (2) Ships' fuel, ballast or stores; (3) The personal effects...

  10. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lower cargo compartment in the aft-most location that is possible for cargo of its size and weight, and... aboard an aircraft carrying other cargo required to bear any of the following labels: Class 1 (all Divisions), Class 2 (all Divisions), Class 3, Class 4 (all Divisions), Class 5 (all Divisions), or Class 8...

  11. Systems Analysis and Structural Design of an Unpressurized Cargo Delivery Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Cruz, Jonathan N.; Antol, Jeffrey; Sasamoto, Washito A.

    2007-01-01

    The International Space Station will require a continuous supply of replacement parts for ongoing maintenance and repair after the planned retirement of the Space Shuttle in 2010. These parts are existing line-replaceable items collectively called Orbital Replacement Units, and include heavy and oversized items such as Control Moment Gyroscopes and stowed radiator arrays originally intended for delivery aboard the Space Shuttle. Current resupply spacecraft have limited to no capability to deliver these external logistics. In support of NASA's Exploration Systems Architecture Study, a team at Langley Research Center designed an Unpressurized Cargo Delivery Vehicle to deliver bulk cargo to the Space Station. The Unpressurized Cargo Delivery Vehicle was required to deliver at least 13,200 lbs of cargo mounted on at least 18 Flight Releasable Attachment Mechanisms. The Crew Launch Vehicle design recommended in the Exploration Systems Architecture Study would be used to launch one annual resupply flight to the International Space Station. The baseline vehicle design developed here has a cargo capacity of 16,000 lbs mounted on up to 20 Flight Releasable Attachment Mechanisms. Major vehicle components are a 5.5m-diameter cargo module containing two detachable cargo pallets with the payload, a Service Module to provide propulsion and power, and an aerodynamic nose cone. To reduce cost and risk, the Service Module is identical to the one used for the Crew Exploration Vehicle design.

  12. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  13. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  14. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  15. KSC-97PC1404

    NASA Image and Video Library

    1997-09-23

    Technicians at the SPACEHAB Payload Processing Facility in Cape Canaveral prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  16. Qualification Standards for Personnel Responsible for Hazardous or Noxious Chemicals in Bulk. Volume I.

    DTIC Science & Technology

    1976-05-01

    relate to qualifications and training of chemical handling personnel aboard tank - ships and tank barges for two cargo containment systems (i.e., ambient...Transportation b)j •Water; Human Factors; Functional Job ‘Analysis; Tank Ship; Tank Barge; Chemical Tankerman, Educational Cur- .riculum~ Personnel...for safe handling of hazard- ous chemicals transported In bulk by tankshlps and tank barges. One of the resul ts of this study is a data bank of tasks

  17. KSC-97PC1406

    NASA Image and Video Library

    1997-09-23

    Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob Ferraro prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  18. KSC-97PC1405

    NASA Image and Video Library

    1997-09-23

    Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  19. KSC-08pd2798

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted to the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  20. KSC-08pd2796

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  1. KSC-08pd2797

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is lifted toward the payload changeout room above. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  2. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Alan Lindenmoyer, program manager, NASA's Commercial Crew and Cargo Program, talks during a press conference held after the successful launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  3. Fire fighting aboard ships. Volume 1: Hazard analysis and behavior of combustible materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavitskiy, M.G.; Kortunov, M.F.; Sidoryuk, V.M.

    1983-01-01

    The volume zeros in on fire hazards on ships afloat or under construction/repair. It examines fire hazards peculiar to ships carrying particular cargoes, such as dry-cargo ships, tankers, and factory and fishing vessels. This volume examines specific features of fire-fighting equipment, along with the thermal behavior of materials used in shipbuilding.

  4. 75 FR 63192 - Intent To Request Renewal From OMB of One Current Public Collection of Information: Air Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... programs, security threat assessments (STA), known shipper data via the Known Shipper Management System... baggage, and other articles, that will be carried aboard a passenger aircraft; and (2) to establish a system to screen, inspect, report, or otherwise ensure the security of all cargo that is to be...

  5. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Alan Lindenmoyer, program manager, NASA's Commercial Crew and Cargo Program, left, and, Frank Culbertson, executive vice president, Orbital Sciences Corporation,are seen during a press conference held after the successful launch of the Orbital Sciences Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  6. External airlock assembly/Mir docking system being loaded

    NASA Image and Video Library

    1994-11-15

    S95-00057 (15 Nov 1994) --- In Rockwell's Building 290 at Downey, California, the external airlock assembly/Mir docking system is rotated into position for crating up for shipment to the Kennedy Space Center (KSC) in Florida. Jointly developed by Rockwell and RSC Energia, the external airlock assembly and Mir docking system will be mounted in the cargo bay of the Space Shuttle Atlantis to enable the shuttle to link up to Russia's Mir space station. The docking system contains hooks and latches compatible with the system currently housed on the Mir's Krystall module, to which Atlantis will attach for the first time next spring. STS-71 will carry two Russian cosmonauts, who will replace a three-man crew aboard Mir including Norman E. Thagard, a NASA astronaut. The combined 10-person crew will conduct almost five days of joint life sciences investigations both aboard Mir and in the Space Shuttle Atlantis's Spacelab module.

  7. Approach of SpaceX Dragon cargo craft

    NASA Image and Video Library

    2015-01-12

    ISS042E119867(01/12/2015)--- This image, photographed by one of the Expedition 42 crew members aboard the International Space Station, shows the SpaceX Dragon cargo craft approaching on Jan. 12 2015 for its grapple and berthing and the start of a month attached to the complex. Dragon carried more than 2 ½ tons of supplies and experiments to the station.

  8. KSC-08pd2799

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is in place at the payload changeout room on the rotating service structure. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At right is Atlantis, atop the mobile launcher platform. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  9. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-12

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  10. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Frank Culbertson, executive vice president, Orbital Sciences Corporation, talks during a press conference held after the successful launch of the Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  11. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Robert Lightfoot, associate administrator, NASA, talks during a press conference held after the successful launch of the Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  12. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    NASA Astrophysics Data System (ADS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  13. KSC-08pd2915

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  14. Antares Post Launch Press Conference

    NASA Image and Video Library

    2013-09-18

    Josh Byerly, public affairs officer, NASA, left, Robert Lightfoot, associate administrator, NASA, second from left, Alan Lindenmoyer, program manager, NASA's Commercial Crew and Cargo Program, and, Frank Culbertson, executive vice president, Orbital Sciences Corporation, right, are seen during a press conference held after the successful launch of the Antares rocket, with the Cygnus cargo spacecraft aboard, Wednesday, Sept. 18, 2013, NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station. The spacecraft will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew. Photo Credit: (NASA/Bill Ingalls)

  15. Hopkins during SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  16. KSC-2010-4397

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are ready for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  17. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. A technician uses a Hyster forklift to pick up the container and move it outside of the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  18. Prohibition of Oxidizers Aboard Aircraft

    DOT National Transportation Integrated Search

    1996-12-30

    RSPA proposes to amend the Hazardous Material Regulations to prohibit the carriage of oxidizers, including compressed oxygen, in passenger carrying aircraft and in Class D compartments on cargo aircraft. This proposal specifically analyzes the prohib...

  19. OA-7 Cargo Module Loading

    NASA Image and Video Library

    2017-02-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  20. Antares Orbital-2 Mission Launch

    NASA Image and Video Library

    2014-07-13

    NASA Administrator Charles Bolden (left), speaks with Gina Burgin, Deputy Secretary of Administration, Commonwealth of Virginia, prior to the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, Sunday, July 13, 2014, at NASA’s Wallops Flight Facility in Virginia. Cygnus will deliver over 3,000 pounds of cargo to the Expedition 40 crew at the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. Photo Credit: (NASA/Aubrey Gemignani)

  1. KSC-99pc0165

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  2. KSC-99pc0166

    NASA Image and Video Library

    1999-02-06

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  3. STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. SPACEHAB is lowered by crane in the SSPF into the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  6. KSC-2010-4399

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-4398

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are loaded into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-4400

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-4401

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  10. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  11. KSC-2010-4402

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a forklift moves shipping containers packed with tools and flight support equipment for orbital replacement units into a tractor-trailer for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  12. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  13. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  14. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  15. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  16. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  17. KSC-08pd2772

    NASA Image and Video Library

    2008-09-20

    CAPE CANAVERAL, Fla. - In the Canister Rotation Facility at NASA's Kennedy Space Center, workers check cable fittings that will lift the payload canister to a vertical position for the trip to Launch Pad 39A. The canister’s cargo consists of four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At the pad, the cargo will be moved into the Payload Changeout Room. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  18. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  19. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site watch as space shuttle Atlantis springs into action from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  20. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Like a phoenix rising from the flames, space shuttle Atlantis takes flight from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  1. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - An exhaust cloud begins to form around space shuttle Atlantis as it springs into action from Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit:Jim Grossmann

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  3. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis cuts its way through the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  4. 29 CFR 1918.85 - Containerized cargo operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...

  5. 29 CFR 1918.85 - Containerized cargo operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...

  6. 29 CFR 1918.85 - Containerized cargo operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...

  7. 29 CFR 1918.85 - Containerized cargo operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...

  8. 29 CFR 1918.85 - Containerized cargo operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...

  9. Magnus Configures Raffaello for Ingress

    NASA Image and Video Library

    2011-07-11

    S135-E-007401 (11 July 2011) --- Toting a cargo transfer bag filled with supplies that was carried aboard Raffaello in Atlantis' cargo bay, NASA astronaut Sandy Magnus participates in a very busy move operation on the fourth day in space for the STS-135 crew. She is in Node 2 or Harmony, near the PMA-2 passageway, on the International Space Station. She is sporting the striped socks that she rediscovered on the station which had remained there since her long duration stay on the orbital outpost a few years ago. Photo credit: NASA

  10. Yurchikhin and Parmitano in U.S. Laboratory

    NASA Image and Video Library

    2013-09-18

    ISS037-E-001901 (18 Sept. 2013) --- In the International Space Station’s Destiny laboratory, Russian cosmonaut Fyodor Yurchikhin (right), Expedition 37 commander; and European Space Agency astronaut Luca Parmitano, flight engineer, watch the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station and will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew.

  11. Space Station Crew Bids Farewell to U.S. Commercial Cargo Spaceship

    NASA Image and Video Library

    2017-12-06

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA used the Canadian-built robotic arm to release the Orbital ATK Cygnus resupply spacecraft three weeks after its arrival to bring some three tons of supplies and experiments to the orbital complex. Dubbed the "SS Gene Cernan," the Cygnus cargo ship will remain in orbit for almost two weeks conducting engineering tests before it is deorbited on Dec. 18 to burn up harmlessly in the Earth's atmosphere over the Pacific Ocean.

  12. SPACEHAB is moved by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is moved by crane over the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  13. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container and loaded onto a truck outside the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  14. KSC-98pc542

    NASA Image and Video Library

    1998-04-28

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth

  15. 19 CFR 19.41 - Movement of containerized cargo to a container station.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Movement of containerized cargo to a container... THEREIN Container Stations § 19.41 Movement of containerized cargo to a container station. Containerized cargo may be moved from the place of unlading to a designated container station, or may be received...

  16. 19 CFR 19.41 - Movement of containerized cargo to a container station.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Movement of containerized cargo to a container... THEREIN Container Stations § 19.41 Movement of containerized cargo to a container station. Containerized cargo may be moved from the place of unlading to a designated container station, or may be received...

  17. 19 CFR 19.41 - Movement of containerized cargo to a container station.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Movement of containerized cargo to a container... THEREIN Container Stations § 19.41 Movement of containerized cargo to a container station. Containerized cargo may be moved from the place of unlading to a designated container station, or may be received...

  18. 19 CFR 19.41 - Movement of containerized cargo to a container station.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Movement of containerized cargo to a container... THEREIN Container Stations § 19.41 Movement of containerized cargo to a container station. Containerized cargo may be moved from the place of unlading to a designated container station, or may be received...

  19. 19 CFR 19.41 - Movement of containerized cargo to a container station.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Movement of containerized cargo to a container... THEREIN Container Stations § 19.41 Movement of containerized cargo to a container station. Containerized cargo may be moved from the place of unlading to a designated container station, or may be received...

  20. 33 CFR 160.204 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Definitions. 160.204 Section 160... Certain Dangerous Cargos § 160.204 Definitions. As used in this subpart: Agent means any person..., explosion, grounding, leaking, damage, injury or illness of a person aboard, or manning-shortage...

  1. ETTF - Extreme Temperature Translation Furnace experiment

    NASA Image and Video Library

    1996-09-23

    STS79-E-5275 (16 - 26 September 1996) --- Aboard the Spacehab double module in the Space Shuttle Atlantis' cargo bay, astronaut Jerome (Jay) Apt, mission specialist, checks a sample from the Extreme Temperature Translation Furnace (ETTF) experiment. The photograph was taken with the Electronic Still Camera (ESC).

  2. Major differences in rates of occupational accidents between different nationalities of seafarers.

    PubMed

    Hansen, Henrik L; Laursen, Lise Hedgaard; Frydberg, Morten; Kristensen, Soeren

    2008-01-01

    Earlier studies and statistics have shown that merchant seafarers from the South East Asia had considerable lower accident rates when compared with seafarers from Western Europe. The purposes of the study were to investigate whether the earlier observations were sustained if further sources on occurrence of accidents were used and to identify specific causes of excess accident rates among certain nationalities. Occupational accidents aboard Danish merchant ships during one year were identified from four different sources. These included accidents reported to the maritime authorities, accidents reported to a mutual insurance company, files on medical costs reimbursed by the government and finally, accidents in which there has been contact to the radio medical service. Time at risk aboard was obtained from a register on all employment periods aboard merchant ships. A total of 943 accidents causing personal injury to a seafarer directly caused by work aboard were identified. Among these accidents, 499 had taken place aboard cargo ships in international trade. Only these were used in the detailed analysis. The accident rate for all identified accidents aboard cargo ships were 84 accidents per 1,000 years aboard. The crude incidence rate ratio (IRR) for East European seafarers was 0.88 and for South East Asians 0.38 using West European seafarers as reference. In a Poisson regression analysis, the IRR for South East Asians was 0.29 (0.22-0.38). In an analysis including only more serious accidents, IRR for South East Asians rose to 0.36 (0.26-0.48). This study indicates that seafarers from South East Asia, mainly the Philippines, may have a genuine lower risk of occupational accidents in comparison with seafarers from Western and Eastern Europe. Differences in approach to safety and risk taking between South East Asian and European seafarers should be identified and positives attitudes included in accident preventing programmes. Main messages Seafarers from South East Asia, mainly the Philippines, seem to have a genuine lower risk of occupational accidents in comparison with seafarers from Western and Eastern Europe. Differences in approach to safety and risk taking between South East Asian and European seafarers should be identified and positives attitudes included in accident preventing programmes.

  3. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  4. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  5. 46 CFR 154.1828 - Spaces containing cargo vapor: Entry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Spaces containing cargo vapor: Entry. 154.1828 Section... Spaces containing cargo vapor: Entry. (a) No person may enter a cargo handling space without the... allowing anyone to enter a cargo handling space, the master shall ensure that: (1) The space is free of...

  6. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  7. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  8. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  9. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  10. 46 CFR 153.934 - Entry into spaces containing cargo vapor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Entry into spaces containing cargo vapor. 153.934... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety § 153.934 Entry into spaces containing cargo vapor. (a) No person may enter a cargo...

  11. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  12. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  13. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  14. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  15. 46 CFR 91.25-37 - Tanks containing dangerous cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Tanks containing dangerous cargoes. 91.25-37 Section 91... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-37 Tanks containing dangerous cargoes. (a) For inspection and tests of tanks containing certain dangerous cargoes in bulk, see part 98...

  16. 77 FR 21577 - Agency Information Collection Activities: Cargo Container and Road Vehicle Certification for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Activities: Cargo Container and Road Vehicle Certification for Transport Under Customs Seal AGENCY: U.S... agencies to comment on an information collection requirement concerning the Cargo Container and Road... concerning the following information collection: Title: Cargo Container and Road Vehicle for Transport under...

  17. 77 FR 35993 - Agency Information Collection Activities: Cargo Container and Road Vehicle Certification for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Activities: Cargo Container and Road Vehicle Certification for Transport Under Customs Seal AGENCY: U.S... Paperwork Reduction Act: Cargo Container and Road Vehicle for Transport under Customs Seal. This is a.... Title: Cargo Container and Road Vehicle for Transport under Customs Seal. OMB Number: 1651-0124. Form...

  18. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  19. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  20. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  1. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  2. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  3. 76 FR 72715 - Agency Information Collection Activities: Cargo Manifest/Declaration, Stow Plan, Container Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Activities: Cargo Manifest/ Declaration, Stow Plan, Container Status Messages and Importer Security Filing... concerning the following information collection. Title: Cargo Manifest/Declaration, Stow Plan, Container... and other Federal agencies to comment on an information collection requirement concerning the Cargo...

  4. 77 FR 6135 - Agency Information Collection Activities: Cargo Manifest/Declaration, Stow Plan, Container Status...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Activities: Cargo Manifest/ Declaration, Stow Plan, Container Status Messages and Importer Security Filing... the Paperwork Reduction Act: Cargo Manifest/Declaration, Stow Plan, Container Status Messages and..., mechanical, or other technological techniques or other forms of information. Title: Cargo Manifest...

  5. 77 FR 3487 - Agency Information Collection Activities: Transfer of Cargo to a Container Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Activities: Transfer of Cargo to a Container Station AGENCY: U.S. Customs and Border Protection (CBP... requirement concerning Transfer of Cargo to a Container Station. This request for comment is being made... cargo. In accordance with 19 CFR 19.42, the container station operator may make a request for the...

  6. Several specific and nonspecific responses of the human and animal body to ship noise

    NASA Technical Reports Server (NTRS)

    Markaryan, S. S.; Volkov, S. S.; Sysoyev, A. B.

    1983-01-01

    The effect of noise on cargo boats on a long voyage differs considerably from the effect of noise in factories and in service industries. The peculiarities of the effect of round-the-clock noises at sea at 55 to 85 decibels, typical for cargo boats, were studied in white rats in the laboratory and aboard ship (each of the experiments lasted three months) and in young naval cadets and experienced seamen on voyages lasting one, two, and three months. The findings helped to derive health standards for maximum admissible noise level at sea.

  7. 29 CFR Appendix I to Part 1917 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1917.50(c)(5)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...

  8. 29 CFR Appendix I to Part 1917 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1917.50(c)(5)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...

  9. 29 CFR Appendix I to Part 1917 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1917.50(c)(5)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...

  10. KSC-2009-1606

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. --The Encapsulated Cargo Element (ECE) containing NASA's Orbiting Carbon Observatory, or OCO, is lowered to a horizontal position after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  11. KSC-2009-1607

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. -- The Encapsulated Cargo Element (ECE) containing NASA's Orbiting Carbon Observatory, or OCO, is lowered to a horizontal position after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  12. SPACEHAB is raised by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  13. KSC-2009-1605

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. -- The Encapsulated Cargo Element containing NASA's Orbiting Carbon Observatory, or OCO, is lifted from its transporter on Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  14. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis zooms into the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  15. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With landing gear down, space shuttle Atlantis approaches landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  16. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site witness space shuttle Atlantis cut its way through the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  17. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis races to orbit over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  18. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With drag chute unfurled, space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  19. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site have front-row seats as space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods

  20. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Sandra Joseph

  1. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls as space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  2. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  3. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  4. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis kicks up dust as it touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  5. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Streams of smoke trail from the main landing gear tires as space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million-mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  6. 29 CFR Appendix IV to Part 1918 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1918.61 (f), (g...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...

  7. 29 CFR Appendix IV to Part 1918 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1918.61 (f), (g...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...

  8. 29 CFR Appendix IV to Part 1918 - Special Cargo Gear and Container Spreader Test Requirements (Mandatory) [see § 1918.61 (f), (g...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...

  9. 15 CFR Appendix F to Part 30 - FTR to FTSR Concordance

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., aircraft, cargo vans, and other carriers and containers 30.33 Vessels, planes, cargo vans, and other carriers and containers sold foreign. 30.27 Return of exported cargo to the United States prior to reaching... transactions. 30.26 Reporting of vessels, aircraft, cargo vans, and other carriers and containers 30.33 Vessels...

  10. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  11. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  12. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  13. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  14. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  15. KSC-08pd2916

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  16. KSC-08pd2914

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-2511

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-2513

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  19. KSC-2012-2512

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2510

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, preparations are under way to load cargo into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-2514

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians stow cargo in the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-2516

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag slides through the docking ring into the Space Exploration Technologies Dragon capsule for stowage for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container

    NASA Astrophysics Data System (ADS)

    Xu, Shibo; Zhang, Shuhui; Cao, Wensheng

    2017-10-01

    In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.

  4. Cosmic-Ray Energetics and Mass Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  5. System for inspection of stacked cargo containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. Themore » invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.« less

  6. SpaceX leading investigation of mishap on This Week @NASA – July 3, 2015

    NASA Image and Video Library

    2015-07-03

    SpaceX, with Federal Aviation Administration oversight, is leading the investigation of what caused the June 28 mishap shortly after the company’s Falcon 9 rocket and Dragon cargo spacecraft launched from Cape Canaveral Air Force Station in Florida. The flight was SpaceX’s seventh contracted resupply mission to the International Space Station. Although important supplies and cargo were lost aboard the Dragon, the station crew has sufficient supplies into the Fall. Also, Progress on crew access tower at Cape, New Horizons’ final flight path, Forever Remembered exhibit, Health and Safety Fair and NASA Week and the Essence Festival!

  7. STS-117 S3 and S4 Trusses in the Space Shuttle Atlantis Cargo Bay

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This nadir view of the STS-117 mission Space Shuttle Atlantis, taken by the Expedition 15 crew aboard the International Space Station (ISS), occurred just before the two spacecraft linked up in Earth orbit. Berthed in the cargo bay are the 17.8 ton second and third (S3 and S4) truss segments ready for installment. STS-117 mission objectives included the addition of S3 and S4 with Photovoltaic Radiator (PVR), the deployment of the third set of solar arrays, and the retraction of the P4 starboard solar array wing and one radiator.

  8. Project Exodus

    NASA Technical Reports Server (NTRS)

    Bryant, Rodney (Compiler); Dillon, Jennifer (Compiler); Grewe, George (Compiler); Mcmorrow, Jim (Compiler); Melton, Craig (Compiler); Rainey, Gerald (Compiler); Rinko, John (Compiler); Singh, David (Compiler); Yen, Tzu-Liang (Compiler)

    1990-01-01

    A design for a manned Mars mission, PROJECT EXODUS is presented. PROJECT EXODUS incorporates the design of a hypersonic waverider, cargo ship and NIMF (nuclear rocket using indigenous Martian fuel) shuttle lander to safely carry out a three to five month mission on the surface of Mars. The cargo ship transports return fuel, return engine, surface life support, NIMF shuttle, and the Mars base to low Mars orbit (LMO). The cargo ship is powered by a nuclear electric propulsion (NEP) system which allows the cargo ship to execute a spiral trajectory to Mars. The waverider transports ten astronauts to Mars and back. It is launched from the Space Station with propulsion provided by a chemical engine and a delta velocity of 9 km/sec. The waverider performs an aero-gravity assist maneuver through the atmosphere of Venus to obtain a deflection angle and increase in delta velocity. Once the waverider and cargo ship have docked the astronauts will detach the landing cargo capsules and nuclear electric power plant and remotely pilot them to the surface. They will then descend to the surface aboard the NIMF shuttle. A dome base will be quickly constructed on the surface and the astronauts will conduct an exploratory mission for three to five months. They will return to Earth and dock with the Space Station using the waverider.

  9. 29 CFR 1917.71 - Terminals handling intermodal containers or roll-on roll-off operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pounds; (2) The maximum cargo weight the container is designed to carry, in pounds; and (3) The sum of the weight of the container and the cargo, in pounds. (b) No container shall be hoisted by any crane... any, that such container is empty. Methods of identification may include cargo plans, manifests or...

  10. 29 CFR 1917.71 - Terminals handling intermodal containers or roll-on roll-off operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pounds; (2) The maximum cargo weight the container is designed to carry, in pounds; and (3) The sum of the weight of the container and the cargo, in pounds. (b) No container shall be hoisted by any crane... any, that such container is empty. Methods of identification may include cargo plans, manifests or...

  11. 29 CFR 1917.71 - Terminals handling intermodal containers or roll-on roll-off operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pounds; (2) The maximum cargo weight the container is designed to carry, in pounds; and (3) The sum of the weight of the container and the cargo, in pounds. (b) No container shall be hoisted by any crane... any, that such container is empty. Methods of identification may include cargo plans, manifests or...

  12. 29 CFR 1917.71 - Terminals handling intermodal containers or roll-on roll-off operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pounds; (2) The maximum cargo weight the container is designed to carry, in pounds; and (3) The sum of the weight of the container and the cargo, in pounds. (b) No container shall be hoisted by any crane... any, that such container is empty. Methods of identification may include cargo plans, manifests or...

  13. 29 CFR 1917.71 - Terminals handling intermodal containers or roll-on roll-off operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pounds; (2) The maximum cargo weight the container is designed to carry, in pounds; and (3) The sum of the weight of the container and the cargo, in pounds. (b) No container shall be hoisted by any crane... any, that such container is empty. Methods of identification may include cargo plans, manifests or...

  14. STS-114 Discovery's approach for docking

    NASA Image and Video Library

    2005-07-28

    ISS011-E-11233 (28 July 2005) --- One of a series of photographs showing the Space Shuttle Discovery as taken from aboard the International Space Station during rendezvous and docking operations. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is in the Shuttle’;s cargo bay. Earth, dotted with popcorn-like clouds, provides the backdrop for this image.

  15. Activity during first EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-15

    STS072-305-034 (15 Jan. 1996) --- Astronaut Daniel T. Barry, mission specialist, works in the cargo bay of the Space Shuttle Endeavour during the first of two extravehicular activities (EVA). Barry was joined by astronaut Leroy Chiao for the EVA. The two joined four other NASA astronauts for a week and a half aboard Endeavour.

  16. 33 CFR 104.275 - Security measures for handling cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... documentation, or that cargo markings or container numbers match the information provided with shipping..., container, or other cargo transport units are loaded; (3) Intensifying screening of vehicles to be loaded on... cargo. 104.275 Section 104.275 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  17. 33 CFR 104.275 - Security measures for handling cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... documentation, or that cargo markings or container numbers match the information provided with shipping..., container, or other cargo transport units are loaded; (3) Intensifying screening of vehicles to be loaded on... cargo. 104.275 Section 104.275 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  18. 33 CFR 104.275 - Security measures for handling cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... documentation, or that cargo markings or container numbers match the information provided with shipping..., container, or other cargo transport units are loaded; (3) Intensifying screening of vehicles to be loaded on... cargo. 104.275 Section 104.275 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  19. 33 CFR 104.275 - Security measures for handling cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... documentation, or that cargo markings or container numbers match the information provided with shipping..., container, or other cargo transport units are loaded; (3) Intensifying screening of vehicles to be loaded on... cargo. 104.275 Section 104.275 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  20. 76 FR 44977 - Shipping Coordinating Committee; Notice of Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... packing of cargo transport units. --Consideration for the efficacy of Container Inspection Programme... Dangerous Goods, Solid Cargoes and Containers (DSC 16) to be held at IMO Headquarters, London, United... Solid Bulk Cargoes Code (IMSBC Code) including evaluation of properties of solid bulk cargos. --Casualty...

  1. 33 CFR 104.275 - Security measures for handling cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... documentation, or that cargo markings or container numbers match the information provided with shipping..., container, or other cargo transport units are loaded; (3) Intensifying screening of vehicles to be loaded on... cargo. 104.275 Section 104.275 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  2. NASDA technicians test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians from the National Space Development Agency of Japan (NASDA) test the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  3. KSC-97PC1594

    NASA Image and Video Library

    1997-11-03

    KENNEDY SPACE CENTER, FLA. -- A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A

  4. KSC-97PC1595

    NASA Image and Video Library

    1997-11-03

    KENNEDY SPACE CENTER, FLA. -- Technicians from the National Space Development Agency of Japan (NASDA) test the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A

  5. KSC-97PC1593

    NASA Image and Video Library

    1997-11-03

    KENNEDY SPACE CENTER, FLA. -- A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A

  6. KSC-97PC1592

    NASA Image and Video Library

    1997-11-03

    KENNEDY SPACE CENTER, FLA. -- Technicians from the National Space Development Agency of Japan (NASDA) test the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A

  7. KSC-08pd1080

    NASA Image and Video Library

    2008-04-29

    VANDENBERG AIR FORCE BASE, Calif. – After being offloaded from the cargo plane, the shipping container holding the OSTM/Jason-2 satellite is moved away from the plane. The satellite will be taken to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL

  8. KSC-08pd1079

    NASA Image and Video Library

    2008-04-29

    VANDENBERG AIR FORCE BASE, Calif. – After arrival of the cargo plane, the shipping container holding the OSTM/Jason-2 satellite is offloaded at Vandenberg Air Force Base. The satellite will be taken to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL

  9. KSC-2009-1608

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. --The Encapsulated Cargo Element containing NASA's Orbiting Carbon Observatory, or OCO, lowered to a horizontal position on a transporter, is moved under a protective tent after arrival at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  10. KSC-07pd0349

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- The payload canister on its transporter sits beneath the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A. The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0348

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- The payload canister on its transporter arrives on Launch Pad 39A, stopping beneath the payload changeout room on the rotating service structure (RSS). The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay.The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett

  12. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  13. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1992-01-01

    ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.

  14. KSC-2012-3710

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. - The SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  15. KSC-2012-2520

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-3713

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  17. KSC-2012-3715

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  18. KSC-2012-3720

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  19. KSC-2012-2850

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket makes its way to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2521

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, the hatch of the Space Exploration Technologies Dragon capsule has been closed following stowage of cargo in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-3714

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – Under the watchful eye of technicians, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  2. KSC-2012-2519

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians prepare to close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-3722

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  4. KSC-2012-3721

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  5. KSC-2012-3711

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – In this nose-on view, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  6. KSC-2012-2517

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a Space Exploration Technologies technician attaches a cargo bag to the crane that will lift it toward the Dragon capsule where it will be stowed in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2515

    NASA Image and Video Library

    2012-04-04

    CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag is lowered into the hands of a Space Exploration Technologies technician who will load it into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. View of ASTRO-2 payload in cargo bay of STS-67 Endeavour

    NASA Image and Video Library

    1995-03-17

    STS067-713-072 (2-18 March 1995) --- This 70mm cargo bay scene, backdropped against a desert area of Namibia, typifies the view that daily greeted the Astro-2 crew members during their almost 17-days aboard the Space Shuttle Endeavour. Positioned on the Spacelab pallet amidst other hardware, the Astro-2 payload is in its operational mode. Visible here are the Instrument Pointing System (IPS), Hopkins Ultraviolet Telescope (HUT), Star Tracker (ST), Ultraviolet Imaging Telescope (UIT), Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and Integrated Radiator System (IRS). At this angle, the Optical Sensor Package (OPS) is not seen. The Igloo, which supports the package of experiments, is in center foreground. Two Get-Away Special (GAS) canisters are in lower left foreground. The Extended Duration Orbiter (EDO) pallet, located aft of the cargo bay, is obscured by the Astro-2 payload. The Endeavour was 190 nautical miles above Earth.

  9. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gas-safe space in the cargo area. (4) Each space that contains inert gas generators, except main...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... following must have a supply-type mechanical ventilation system: (1) Each space that contains electric...

  10. Cosmic-Ray Energetics and Mass Processing - Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  11. MS Lucid places samples in the TEHOF aboard the Spektr module

    NASA Image and Video Library

    1997-03-26

    STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  12. Boeing Unveils New Suit for Commercial Crew Astronauts

    NASA Image and Video Library

    2017-01-23

    Boeing unveiled its spacesuit design Wednesday as the company continues to move toward flight tests and crew rotation missions of its Starliner spacecraft and launch systems that will fly astronauts to the International Space Station. Astronauts heading into orbit for the station aboard the Starliner will wear Boeing’s new spacesuits. The suits are custom-designed to fit each astronaut, lighter and more comfortable than earlier versions and meet NASA requirements for safety and functionality. NASA's commercial crew astronauts Eric Boe and Suni Williams tried on the suits at Boeing’s Commercial Crew and Cargo Facility at NASA’s Kennedy Space Center. Boe, Williams, Bob Behnken, and Doug Hurley were selected by NASA in July 2015 to train for commercial crew test flights aboard the Starliner and SpaceX’s Crew Dragon spacecraft. The flight assignments have not been set, so all four of the astronauts are rehearsingheavily for flights aboard both vehicles.

  13. 76 FR 22717 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Permit to Handle Hazardous Materials, 1625-0024, Safety Approval of Cargo Containers, 1625-0036, Plan.... 2. Title: Safety Approval of Cargo Containers. OMB Control Number: 1625-0024. Type of Request... collection is associated with requirements for owners and manufacturers of cargo containers to submit...

  14. sts132-s-006

    NASA Image and Video Library

    2010-05-14

    STS132-S-006 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  15. sts132-s-009

    NASA Image and Video Library

    2010-05-14

    STS132-S-009 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  16. sts132-s-008

    NASA Image and Video Library

    2010-05-14

    STS132-S-008 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  17. sts132-s-007

    NASA Image and Video Library

    2010-05-14

    STS132-S-007 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  18. Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed

    NASA Astrophysics Data System (ADS)

    Volberding, Roy W.; Khan, Siraj M.

    1994-10-01

    An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.

  19. Software For Nearly Optimal Packing Of Cargo

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Daughtrey, Rodney S.; Schwaab, Doug G.

    1994-01-01

    PACKMAN computer program used to find nearly optimal arrangements of cargo items in storage containers, subject to such multiple packing objectives as utilization of volumes of containers, utilization of containers up to limits on weights, and other considerations. Automatic packing algorithm employed attempts to find best positioning of cargo items in container, such that volume and weight capacity of container both utilized to maximum extent possible. Written in Common LISP.

  20. Improved Procedure for Loading the M198 Towed Howitzer Aboard a C130 Cargo Plane.

    DTIC Science & Technology

    1986-04-01

    anl latr roln:.-;ill the large nmber of bolts which secure the rails to the airplane. Sinc, the Air Force posit ion was considered to have a...198-044, APG Report No. APG-MT- 6034 , June 1984. 10. "Customer Test of the M198 Howitzer Air Transportability Kit (TRADOC Trms No. 4000544, ISAABNBD

  1. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - A fire and rescue truck is in place beside Runway 33 if needed to support the landing of space shuttle Atlantis at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. After 11 days in space, Atlantis completed the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-6402

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - A post-launch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. From left are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  3. New Crew Journeys to the Space Station on This Week @NASA – October 21, 2016

    NASA Image and Video Library

    2016-10-21

    On Oct. 19, NASA astronaut Shane Kimbrough and his Expedition 49-50 crewmates, Sergey Ryzhikov and Andrey Borisenko, of the Russian Space Agency Roscosmos, launched aboard a Soyuz spacecraft to the International Space Station from the Baikonur Cosmodrome in Kazakhstan. Two days later, when the trio arrived at the orbiting laboratory, they were welcomed aboard by station Commander Anatoly Ivanishin of Roscosmos, Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency – bringing the space station back to its full complement of six crew members. Also, ISS Cargo Mission Launches from Wallops, Juno Mission and Science Update, and Drone Air Traffic Management Test!

  4. Medical operations in Spacelab

    NASA Image and Video Library

    1995-07-17

    STS071-102-027 (27 June - 7 July 1995) --- Onboard the Spacelab Science Module in the Space Shuttle Atlantis' cargo bay, four astronauts and a cosmonaut team up to collect data from Mir-18 crew members who have been aboard Russia's Mir Space Station for four months. Astronauts Ellen S. Baker (left), Gregory J. Harbaugh (top center) and Bonnie J. Dunbar, STS-71 mission specialists, are joined by astronaut Norman E. Thagard (right) and Vladimir N. Dezhurov (on bicycle ergometer) in the module. Dezhurov was Mir-18 commander and Thagard served as a cosmonaut researcher on the Mir-18 mission. The three STS-71 mission specialists lifted off aboard Atlantis on June 27, 1995, to participate in the historic link-up.

  5. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  6. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  7. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  8. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  9. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  10. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Reporting of vessels, aircraft, cargo vans, and other carriers and containers. 30.26 Section 30.26 Commerce and Foreign Trade Regulations...

  11. 77 FR 21579 - Agency Information Collection Activities: Transfer of Cargo to a Container Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Activities: Transfer of Cargo to a Container Station AGENCY: U.S. Customs and Border Protection, Department... Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act: Transfer of Cargo to a Container Station. This is a proposed extension of an information collection that was previously...

  12. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Reporting of vessels, aircraft, cargo vans, and other carriers and containers. 30.26 Section 30.26 Commerce and Foreign Trade Regulations...

  13. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Reporting of vessels, aircraft, cargo vans, and other carriers and containers. 30.26 Section 30.26 Commerce and Foreign Trade Regulations...

  14. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Reporting of vessels, aircraft, cargo vans, and other carriers and containers. 30.26 Section 30.26 Commerce and Foreign Trade Regulations...

  15. 15 CFR 30.26 - Reporting of vessels, aircraft, cargo vans, and other carriers and containers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicles, trailers, pallets, cargo vans, lift vans, or similar shipping containers are not considered... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Reporting of vessels, aircraft, cargo vans, and other carriers and containers. 30.26 Section 30.26 Commerce and Foreign Trade Regulations...

  16. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  17. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  18. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  19. KSC-99pp1186

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- Escort vehicles prepare to leave the Shuttle Landing Facility with the S1 truss (at right) on its trek to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, seen in the background. The aircraft is uniquely built with a 25-foot diameter fuselage designed to handle oversized loads and a "fold-away" nose that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  20. Estimating the risk of communicable diseases aboard cargo ships.

    PubMed

    Schlaich, Clara C; Oldenburg, Marcus; Lamshöft, Maike M

    2009-01-01

    International travel and trade are known to be associated with the risk of spreading communicable diseases across borders. No international surveillance system for infectious diseases on ships exists. Outbreak reports and systematic studies mainly focus on disease activity on cruise ships. The study aims to assess the relevance of communicable disease occurrence on cargo ships. Retrospective analysis of all documented entries to 49 medical log books from seagoing cargo ships under German flag between 2000 and 2008. Incidence rates were calculated per 100 person-years at sea. Case series of acute respiratory illness, influenza-like illness, and infectious gastrointestinal illness affecting more than two persons within 1 successive week were classified as an outbreak. Attack rates were calculated based on number of entries to the medical log book in comparison to the average shipboard population during outbreak periods. During more than 1.5 million person-days of observation, 21% of the visits to the ship's infirmary were due to presumably communicable diseases (45.8 consultations per 100 person-years). As many as 33.9 patients per 100 person-years sought medical attention for acute respiratory symptoms. Of the 68 outbreaks that met predefined criteria, 66 were caused by acute respiratory illness with a subset of 12 outbreaks caused by influenza-like illness. Attack rates ranged between 3 and 10 affected seafarers per ship (12.5&-41.6% of the crew). Two outbreaks of gastrointestinal illness were detected. Respiratory illness is the most common cause of presumably communicable diseases aboard cargo ships and may cause outbreaks of considerable morbidity. Although the validity of the data is limited due to the use of nonprofessional diagnoses, missing or illegible entries, and restriction of the study population to German ships, the results provide guidance to ship owners and to Port Health Authorities to allocate resources and build capacities under International Health Regulations 2005.

  1. A technician from NASDA test the real-time radiation monitoring device on SPACEHAB in preparation fo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  2. KSC-07pd0351

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd0352

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0350

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett

  5. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-19

    ISS040-E-102490 (19 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  6. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102420 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  7. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102425 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  8. MS Lonchakov and MS Phillips work with an IMAX film magazine bag in Zarya

    NASA Image and Video Library

    2001-04-23

    S100-E-5345 (23 April 2001) --- Cosmonaut Yuri V. Lonchakov, STS-100 mission specialist representing Rosaviakosmos, changes out a film magazine on an IMAX camera in the Functional Cargo Block (FGB) or Zarya aboard the International Space Station (ISS). Astronaut John L. Phillips, mission specialist, is in the background. The scene was recorded with a digital still camera.

  9. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    A truck with a specialized transporter drives out of the cargo hold of an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  10. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  11. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  12. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  13. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  14. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  15. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  16. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  17. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  18. 33 CFR 126.15 - What conditions must a designated waterfront facility meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NFPA 307, chapter 5. (2) Containers. Containers packed with dangerous cargo that are vertically stacked... HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES... facility transfers dangerous cargo between sunset and sunrise, it must have outdoor lighting that...

  19. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter touches down at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  20. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter lands in the rain at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  1. KSC-2012-2854

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – Umbilical lines connect the strongback to the SpaceX Falcon 9 rocket which has just arrived on the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-2852

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – A strongback lifts the SpaceX Falcon 9 rocket into a vertical position on the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-2847

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – Preparations are under way to roll the SpaceX Falcon 9 rocket out of the processing facility to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-3718

    NASA Image and Video Library

    2012-04-29

    CAPE CANAVERAL, Fla. – Partially hidden behind a flame and exhaust deflector, the SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann

  5. KSC-2012-2849

    NASA Image and Video Library

    2012-05-17

    CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket rolls between the lightning protection system towers surrounding the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-074 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-080 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-076 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-072 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-075 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-077 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-081 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-073 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-078 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-079 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-071 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  17. 33 CFR 126.27 - General permit for handling dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) in bulk, portable tanks, containers, or packagings, at designated waterfront facilities, conditioned... bulk packaging; or Division 2.3 (Poison Gas) materials in excess of 72,800 kg (80 net tons) at any one... cargo in limited-quantity packaging. (e) Transport units and portable tanks containing dangerous cargo...

  18. 15 CFR Appendix F to Part 30 - FTR to FTSR Concordance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., aircraft, cargo vans, and other carriers and containers 30.33 Vessels, planes, cargo vans, and other carriers and containers sold foreign. 30.27 Return of exported cargo to the United States prior to reaching...(d) Electronic Export Information filing standards. 30.5(e) Monitoring the filing of Electronic...

  19. 15 CFR Appendix F to Part 30 - FTR to FTSR Concordance

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., aircraft, cargo vans, and other carriers and containers 30.33 Vessels, planes, cargo vans, and other carriers and containers sold foreign. 30.27 Return of exported cargo to the United States prior to reaching...(d) Electronic Export Information filing standards. 30.5(e) Monitoring the filing of Electronic...

  20. 15 CFR Appendix F to Part 30 - FTR to FTSR Concordance

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., aircraft, cargo vans, and other carriers and containers 30.33 Vessels, planes, cargo vans, and other carriers and containers sold foreign. 30.27 Return of exported cargo to the United States prior to reaching...(d) Electronic Export Information filing standards. 30.5(e) Monitoring the filing of Electronic...

  1. 15 CFR Appendix F to Part 30 - FTR to FTSR Concordance

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., aircraft, cargo vans, and other carriers and containers 30.33 Vessels, planes, cargo vans, and other carriers and containers sold foreign. 30.27 Return of exported cargo to the United States prior to reaching...(d) Electronic Export Information filing standards. 30.5(e) Monitoring the filing of Electronic...

  2. 46 CFR 520.13 - Exemptions and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...

  3. 29 CFR 1917.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...

  4. 29 CFR 1917.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...

  5. 29 CFR 1917.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...

  6. 46 CFR 520.13 - Exemptions and exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...

  7. 46 CFR 520.13 - Exemptions and exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...

  8. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle...

  9. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...

  10. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...

  11. 46 CFR 520.13 - Exemptions and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Pacific Slope states barging containers and containerized cargo by barge between points in the United... common carrier by water transporting the containers or containerized cargo under a through bill of lading...) The cargo is moving between a point in a foreign country or a non-contiguous State, territory, or...

  12. 29 CFR 1917.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...

  13. 29 CFR 1917.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...

  14. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...

  15. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...

  16. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  17. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102410 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer is about to release a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  18. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft,backdropped against the Earth,following its unberthing and release from the orbital outpost. HTV-4,after backing away from the flying complex,headed for re-entry into Earth's atmosphere,burning upon re-entry. Per Twitter message: And, shortly after release of #HTV4, flying over Africa (The storm clouds were amazing).

  19. KSC-06pd0733

    NASA Image and Video Library

    2006-04-25

    KENNEDY SPACE CENTER, FLA. - Mission STS-121 Pilot Mark Kelly (left) and Mission Specialist Piers Sellers (kneeling) get a close look at the Integrated Cargo Carrier at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett

  20. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  1. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  2. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  3. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  4. IP-1 Certification of Cargo Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagler, Lisle

    The purpose and scope of this engineering note is to demonstrate that the structural design of the cargo container complies with the IP-1 container requirements of 49 CFR 173.410 as required by CFR 173.411.

  5. KSC-99pp1181

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  6. KSC-99pp1180

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building

  7. KSC-99pp1185

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, workers attach cranes to the S1 truss, a segment of the International Space Station, to lift the truss to a payload transporter for its transfer to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, with a 25-foot diameter fuselage designed to handle oversized loads. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  8. 46 CFR 151.15-1 - Tank types.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank types. 151.15-1 Section 151.15-1 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Tanks § 151.15-1 Tank types. This section lists the definitions of the various tank types required for cargo containment by Table 151.05. (a) Integral. A cargo containment...

  9. 46 CFR 151.15-1 - Tank types.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank types. 151.15-1 Section 151.15-1 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Tanks § 151.15-1 Tank types. This section lists the definitions of the various tank types required for cargo containment by Table 151.05. (a) Integral. A cargo containment...

  10. 7 CFR 354.3 - User fees for certain international services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vessel that transports cargo that is not contained in shipping containers. This does not include... Canada that do not carry cargo originating from countries other than the United States or Canada and do... railroad car, and no cargo is loaded or unloaded from the commercial railroad car, while the train is...

  11. 7 CFR 354.3 - User fees for certain international services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vessel that transports cargo that is not contained in shipping containers. This does not include... Canada that do not carry cargo originating from countries other than the United States or Canada and do... railroad car, and no cargo is loaded or unloaded from the commercial railroad car, while the train is...

  12. 7 CFR 354.3 - User fees for certain international services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vessel that transports cargo that is not contained in shipping containers. This does not include... Canada that do not carry cargo originating from countries other than the United States or Canada and do... railroad car, and no cargo is loaded or unloaded from the commercial railroad car, while the train is...

  13. 7 CFR 354.3 - User fees for certain international services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vessel that transports cargo that is not contained in shipping containers. This does not include... Canada that do not carry cargo originating from countries other than the United States or Canada and do... railroad car, and no cargo is loaded or unloaded from the commercial railroad car, while the train is...

  14. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with § 172.542(c). (3) On cargo tanks They contain only fuel oil The cargo tank is marked “Fuel... petroleum distillate fuel The identification number for the liquid petroleum distillate fuel having the lowest flash point is displayed. If the cargo tank also contains gasoline and alcohol fuel blends...

  15. 7 CFR 1499.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal... either FAS or the participant engages the services of an independent cargo surveyor, the surveyor will...

  16. 7 CFR 1599.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal...: (1) And either FAS or the participant engages the services of an independent cargo surveyor, the...

  17. 7 CFR 1599.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal...: (1) And either FAS or the participant engages the services of an independent cargo surveyor, the...

  18. 7 CFR 1499.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the cargo; and (6) And the damage or loss occurred with respect to a container shipment, if the... engage the services of an independent cargo surveyor to list the container numbers and seal numbers shown... or the participant engages the services of an independent cargo surveyor, the surveyor will provide...

  19. 7 CFR 1599.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal...: (1) And either FAS or the participant engages the services of an independent cargo surveyor, the...

  20. 7 CFR 1599.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal...: (1) And either FAS or the participant engages the services of an independent cargo surveyor, the...

  1. 7 CFR 1499.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the cargo; and (6) And the damage or loss occurred with respect to a container shipment, if the... engage the services of an independent cargo surveyor to list the container numbers and seal numbers shown... or the participant engages the services of an independent cargo surveyor, the surveyor will provide...

  2. 7 CFR 1499.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal... either FAS or the participant engages the services of an independent cargo surveyor, the surveyor will...

  3. 7 CFR 1499.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the cargo; and (6) And the damage or loss occurred with respect to a container shipment, if the... engage the services of an independent cargo surveyor to list the container numbers and seal numbers shown... or the participant engages the services of an independent cargo surveyor, the surveyor will provide...

  4. 7 CFR 1599.9 - Damage to or loss of commodities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... necessary to protect the cargo; and (6) And the damage or loss occurred with respect to a container shipment... participant shall engage the services of an independent cargo surveyor to list the container numbers and seal...: (1) And either FAS or the participant engages the services of an independent cargo surveyor, the...

  5. KSC-2009-6403

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Media representatives and Twitter followers participate in a post-launch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. On the dais, from left, are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  6. Detection of shielded nuclear material in a cargo container

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.

    2006-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.

  7. Photonuclear-based, nuclear material detection system for cargo containers

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Yoon, W. Y.; Norman, D. R.; Haskell, K. J.; Zabriskie, J. M.; Watson, S. M.; Sterbentz, J. W.

    2005-12-01

    The Idaho National Laboratory (INL) has been developing electron accelerator-based, photonuclear inspection technologies for over a decade. A current need, having important national implications, has been with the detection of smuggled nuclear material within air- and, especially, sea-cargo transportation containers. This paper describes the latest pulsed, photonuclear inspection system for nuclear material detection and identification in cargo configurations, the numerical responses of 5 kg of a nuclear material placed within selected cargo configurations, and the technology's potential role in addressing future inspection needs.

  8. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  9. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  10. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  11. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  12. 46 CFR 154.901 - Atmospheric control within cargo tanks and cargo piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Atmospheric control within cargo tanks and cargo piping systems. 154.901 Section 154.901 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN..., Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.901 Atmospheric control...

  13. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  14. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  15. MS Wisoff and Linenger perform Lioh changeout

    NASA Image and Video Library

    1997-01-12

    STS081-E-5007 (12 Jan. 1997) --- Astronauts Peter J. K. (Jeff) Wisoff (left) and Jerry M. Linenger begin early housekeeping by putting in fresh lithium hydroxide canisters beneath the Space Shuttle Atlantis' middeck. Not far away in Atlantis' cargo bay, the two mission specialists and their four crew mates are flying the Spacehab Double Module (DM), replete with supplies for the three-man crew aboard Russia's Mir Space Station with which Atlantis will be docking later in the week. Linenger will trade places with John E. Blaha, marking the second such exchange of American astronaut - cosmonaut guest researcher's aboard Mir. Blaha had replaced Shannon W. Lucid in September of 1996. The scene was recorded with an Electronic Still Camera (ESC) and later downlinked to flight controllers in Houston, Texas.

  16. KSC-06pd0732

    NASA Image and Video Library

    2006-04-25

    KENNEDY SPACE CENTER, FLA. - Mission STS-121 Pilot Mark Kelly, and Mission Specialist Piers Sellers (kneeling) and Commander Steven Lindsey (right) get a close look at the Integrated Cargo Carrier at the SPACEHAB facility in Cape Canaveral during a Crew Equipment Interface Test. This test allows the astronauts to become familiar with equipment they will be using on their upcoming mission. STS-121 is scheduled to launch in July aboard Space Shuttle Discovery. Photo credit: NASA/Kim Shiflett

  17. Stowage bags in FGB/Zarya module

    NASA Image and Video Library

    2005-07-31

    S114-E-5945 (31 July 2005) --- This scene in Zarya, the functional cargo block for the International Space Station, serves witness to the primary current emphasis onboard the orbital outpost. Transfers of additional water and supplies to the International Space Station continues on this Sunday as the crew aboard Space Shuttle Discovery begins Flight Day 6. Cosmonaut Sergei Krikalev of Russia's Federal Space Agency can be seen at the far end of the cluttered hallway.

  18. STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-103-015 (20 October-5 November 1995) --- Payload specialist Fred W. Leslie works with the Surface Tension Driven Convection Experiment (STDCE) aboard the science module in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Leslie joined another guest researcher and five NASA astronauts for 16 full days of in-space research in support of the United States Microgravity Laboratory (USML-2) mission.

  19. Cargo Container Imaging with Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Forest, Tony

    2006-10-01

    The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.

  20. 49 CFR 450.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF CARGO CONTAINERS GENERAL General Provisions § 450.1 Purpose. This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act. [45 FR 37213, June 2, 1980] ...

  1. 49 CFR 450.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF CARGO CONTAINERS GENERAL General Provisions § 450.1 Purpose. This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act. [45 FR 37213, June 2, 1980] ...

  2. 49 CFR 450.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF CARGO CONTAINERS GENERAL General Provisions § 450.1 Purpose. This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act. [45 FR 37213, June 2, 1980] ...

  3. 49 CFR 450.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF CARGO CONTAINERS GENERAL General Provisions § 450.1 Purpose. This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act. [45 FR 37213, June 2, 1980] ...

  4. 49 CFR 450.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF CARGO CONTAINERS GENERAL General Provisions § 450.1 Purpose. This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act. [45 FR 37213, June 2, 1980] ...

  5. 46 CFR 298.13 - Financial requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information in the format given in the Title XI application procedures. (5) Shore facilities, cargo containers, etc. A detailed statement showing the actual cost of any shore facilities, cargo containers, etc...

  6. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is governed by regulations in 49 CFR part 175; (iv) The security of valuable or confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo...

  7. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... is governed by regulations in 49 CFR part 175; (iv) The security of valuable or confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo...

  8. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... is governed by regulations in 49 CFR part 175; (iv) The security of valuable or confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo...

  9. Indirect Estimation of Radioactivity in Containerized Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kenneth D.; Scherrer, Chad; Smith, Eric L.

    Detecting illicit nuclear and radiological material in containerized cargo challenges the state of the art in detection systems. Current systems are being evaluated and new systems envisioned to address the need for the high probability of detection and extremely low false alarm rates necessary to thwart potential threats and extremely low nuisance and false alarm rates while maintaining necessary to maintain the flow of commerce impacted by the enormous volume of commodities imported in shipping containers. Maintaining flow of commerce also means that primary inspection must be rapid, requiring relatively indirect measurements of cargo from outside the containers. With increasingmore » information content in such indirect measurements, it is natural to ask how the information might be combined to improved detection. Toward this end, we present an approach to estimating isotopic activity of naturally occurring radioactive material in cargo grouped by commodity type, combining container manifest data with radiography and gamma spectroscopy aligned to location along the container. The heart of this approach is our statistical model of gamma counts within peak regions of interest, which captures the effects of background suppression, counting noise, convolution of neighboring cargo contributions, and down-scattered photons to provide physically constrained estimates of counts due to decay of specific radioisotopes in cargo alone. Coupled to that model, we use a mechanistic model of self-attenuated radiation flux to estimate the isotopic activity within cargo, segmented by location within each container, that produces those counts. We demonstrate our approach by applying it to a set of measurements taken at the Port of Seattle in 2006. This approach to synthesizing disparate available data streams and extraction of cargo characteristics holds the potential to improve primary inspection using current detection capabilities and to enable simulation-based evaluation of new candidate detection systems.« less

  10. STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  11. sts132-s-005

    NASA Image and Video Library

    2010-05-14

    STS132-S-005 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  12. KSC-2012-2528

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – The van transporting the cargo bag packed with NanoRacks-CubeLabs Module-9 experiments, arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida for cold stowage. The bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  14. sts132-s-011

    NASA Image and Video Library

    2010-05-14

    STS132-S-011 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  15. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-015 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  16. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-016 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  17. sts132-s-010

    NASA Image and Video Library

    2010-05-14

    STS132-S-010 (14 May 2010) --- Witnessed by news media representatives and STS-132 Tweet-up participants on hand by the countdown clock at the Press Site, Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis.

  18. STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-017 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Jack Pfaller

  19. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.

  20. Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  2. KSC-99pc0163

    NASA Image and Video Library

    1999-02-06

    KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (right) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  3. KSC-99pc0164

    NASA Image and Video Library

    1999-02-06

    KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (left) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe

  4. Effects of shuttle bay environment on UV sensitive photographic film results of measurements aboard STS-7 and STS-8

    NASA Technical Reports Server (NTRS)

    Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.

    1984-01-01

    Schumann emulsions, having low gelatin content and no protective gelatin overcoating, are extremely sensitive to environmental conditions and handling. Experiments using this emulsion are to be flown on the space shuttle within the cargo-bay. Because the environment of the cargo-bay is unknown, a Get-Away-Special payload was designed to expose Kodak-type SO 652 Schumann emulsion to the residual atmosphere of the cargo-bay. The experiment was programmed to make exposures for various time periods to determine the maximum length of time the film could be exposed in making a measurement and what precautions would be required to preserve the film during ascent into orbit and reentry. The results of the STS-7 and STS-8 flights indicated that long exposures in the shuttle bay do not produce high fog levels in orbit. Observations of severe bleaching of the latent image makes protection of the emulsion during reentry manditory and increase of fog levels with time set a limit of four weeks (preferably less than three) between installation and recovery of the emulsion for processing.

  5. Detection of Shielded Nuclear Material in a Cargo Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Jones; D. R. Norman; K. J. Haskell

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less

  6. Holding Cargo in Place With Foam

    NASA Technical Reports Server (NTRS)

    Fisher, T. T.

    1985-01-01

    Foam fills entire container to protect cargo from shock and vibration. Originally developed for stowing space debris and spent satellites in Space Shuttle for return to Earth, encapsulation concept suitable for preparing shipments carried by truck, boat, or airplane. Equipment automatically injects polyurethane foam into its interior to hold cargo securely in place. Container of rectangular or other cross section built to match shape of vehicle used.

  7. STS-112 S1 Truss Payload arrives at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the I SS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communicatio ns systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique 'fold-away' nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an elec tric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  8. HTV-4 undocking

    NASA Image and Video Library

    2013-09-04

    One of the Expedition 36 crew members aboard the International Space Station took this picture of the Japanese HTV-4 unmanned cargo spacecraft,backdropped against a land mass on Earth,following its unberthing but just prior to its release from the orbital outpost's Canadarm2. HTV-4,after backing away from the flying complex,headed for re-entry into Earth's atmosphere,burning upon re-entry. Per Twitter message: Flying over southwestern US, not long before release of #HTV4 by #Canadarm2.

  9. Raffaello Multi-Purpose Logistics Module (MPLM) in the Endeavour payload bay prior to docking

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5815 (21 April 2001) --- The Raffaello Multi-Purpose Logistics Module (MPLM), built by the Italian Space Agency (ASI), sits in its berthed position in the cargo bay of the Space Shuttle Endeavour as the STS-100 crew eases the vehicle close to the International Space Station (ISS) for docking. The image was recorded with a digital still camera by one of the Expedition Two crew members aboard the Station.

  10. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  11. 49 CFR 176.39 - Inspection of cargo.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the vessel or its cargo since loading and stowage. However, freight containers or individual barges... 49 Transportation 2 2010-10-01 2010-10-01 false Inspection of cargo. 176.39 Section 176.39... Requirements § 176.39 Inspection of cargo. (a) Manned vessels. The carrier, its agents, and any person...

  12. 49 CFR 176.39 - Inspection of cargo.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the vessel or its cargo since loading and stowage. However, freight containers or individual barges... 49 Transportation 2 2012-10-01 2012-10-01 false Inspection of cargo. 176.39 Section 176.39... Requirements § 176.39 Inspection of cargo. (a) Manned vessels. The carrier, its agents, and any person...

  13. 49 CFR 176.39 - Inspection of cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the vessel or its cargo since loading and stowage. However, freight containers or individual barges... 49 Transportation 2 2011-10-01 2011-10-01 false Inspection of cargo. 176.39 Section 176.39... Requirements § 176.39 Inspection of cargo. (a) Manned vessels. The carrier, its agents, and any person...

  14. 49 CFR 176.39 - Inspection of cargo.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the vessel or its cargo since loading and stowage. However, freight containers or individual barges... 49 Transportation 2 2013-10-01 2013-10-01 false Inspection of cargo. 176.39 Section 176.39... Requirements § 176.39 Inspection of cargo. (a) Manned vessels. The carrier, its agents, and any person...

  15. 49 CFR 176.39 - Inspection of cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the vessel or its cargo since loading and stowage. However, freight containers or individual barges... 49 Transportation 2 2014-10-01 2014-10-01 false Inspection of cargo. 176.39 Section 176.39... Requirements § 176.39 Inspection of cargo. (a) Manned vessels. The carrier, its agents, and any person...

  16. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-13 Supporting and anchoring. (a) A cargo... inspection and maintenance. (b) On a cargo tank motor vehicle designed and constructed so that the cargo tank... of restraining devices designed to prevent relative motion between the cargo tank and the vehicle...

  17. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-13 Supporting and anchoring. (a) A cargo... inspection and maintenance. (b) On a cargo tank motor vehicle designed and constructed so that the cargo tank... of restraining devices designed to prevent relative motion between the cargo tank and the vehicle...

  18. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-13 Supporting and anchoring. (a) A cargo... inspection and maintenance. (b) On a cargo tank motor vehicle designed and constructed so that the cargo tank... of restraining devices designed to prevent relative motion between the cargo tank and the vehicle...

  19. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-13 Supporting and anchoring. (a) A cargo... inspection and maintenance. (b) On a cargo tank motor vehicle designed and constructed so that the cargo tank... of restraining devices designed to prevent relative motion between the cargo tank and the vehicle...

  20. KSC-97PC1723

    NASA Image and Video Library

    1997-10-27

    KENNEDY SPACE CENTER, FLA. -- STS-89 Mission Specialist Bonnie Dunbar, Ph.D., participates in the Crew Equipment Interface Test (CEIT) in front of the Real-time Radiation Monitoring Device (RRMD) at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nineday flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its sevenmember crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A

  1. STS-89 Mission Specialist Dunbar participates in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 Mission Specialist Bonnie Dunbar, Ph.D., participates in the Crew Equipment Interface Test (CEIT) in front of the Real- time Radiation Monitoring Device (RRMD) at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine- day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  2. STS-89 crew and technicians participate in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 crew members and technicians participate in the Crew Equipment Interface Test (CEIT) in front of the back cap of the SPACEHAB module at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on- orbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  3. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    PubMed

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 76 FR 38155 - California State Nonroad Engine Pollution Control Standards; Ocean-Going Vessels At-Berth in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... composed solely of container or refrigerated cargo vessels making fewer than twenty-five (25) visits to the.... \\7\\ ``Fleet'' means ``all container, passenger, and refrigerated cargo vessels, visiting a specific... of nitrogen and particulate matter from auxiliary diesel engines on container vessels, passenger...

  5. 76 FR 77515 - California State Nonroad Engine Pollution Control Standards; Ocean-Going Vessels At-Berth in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ..., rents or leases any container vessel, passenger vessel, or refrigerated cargo vessel that visits any of...-Berth Regulation requires fleets of container vessels, passenger vessels and refrigerated cargo vessels... and particulate matter from auxiliary diesel engines on container vessels, passenger vessels and...

  6. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  7. 46 CFR 153.515 - Special requirements for extremely flammable cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...

  8. 46 CFR 153.515 - Special requirements for extremely flammable cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...

  9. 46 CFR 153.515 - Special requirements for extremely flammable cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...

  10. 46 CFR 153.515 - Special requirements for extremely flammable cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...

  11. Monte Carlo Simulation of a 12 MeV Cargo Container Inspection System

    NASA Astrophysics Data System (ADS)

    Ozcan, Ibrahim; Chandler, Katherine; Spaulding, Randy; Farfan, Eduardo

    2007-05-01

    After the terrorist events of 9/11, border security has become one of the most important issues in national security due to the large number of cargo containers entering the country. Screening of all cargo containers for nuclear materials should be performed during border inspections. The technical aspects of inspecting cargo containers using electron accelerators have been studied previously. However, the radiological protection aspects involved in these studies have not been fully considered. This screening process may accidentally harm operators, workers, and bystanders; as well as stowaways hiding inside the containers. In this research project, external doses were estimated at various locations near the inspection system. A 12-MeV linear accelerator (LINAC) was used in the experiment. The relationship between the various locations and doses were determined in this simulation. The simulation was performed using MCNPX. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B2.8

  12. 75 FR 1070 - Cargo Securing Methods for Packages in Transport Vehicles or Freight Containers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2009-1079] Cargo Securing Methods for... for comments. SUMMARY: The Coast Guard seeks comments from the public on methods for securing cargo in... proper condition for transportation. Currently, the specific method for securing cargo is left to the...

  13. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-ENG). (b) If the sloshing loads affect the cargo tank...

  14. 46 CFR 154.410 - Cargo tank sloshing loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank sloshing loads. 154.410 Section 154.410... Containment Systems § 154.410 Cargo tank sloshing loads. (a) For the calculation required under § 154.406 (a... be specially approved by the Commandant (CG-522). (b) If the sloshing loads affect the cargo tank...

  15. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  16. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  17. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design loads for cargo tanks and fixtures: General. 154.406 Section 154.406 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment...

  18. 46 CFR 154.1850 - Entering cargo handling spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Entering cargo handling spaces. 154.1850 Section 154... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in operation for 30 minutes before a person enters one of the following: (1) Spaces containing cargo pumps...

  19. 46 CFR 154.1850 - Entering cargo handling spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Entering cargo handling spaces. 154.1850 Section 154... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in operation for 30 minutes before a person enters one of the following: (1) Spaces containing cargo pumps...

  20. 46 CFR 154.1850 - Entering cargo handling spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Entering cargo handling spaces. 154.1850 Section 154... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in operation for 30 minutes before a person enters one of the following: (1) Spaces containing cargo pumps...

  1. 46 CFR 154.1850 - Entering cargo handling spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Entering cargo handling spaces. 154.1850 Section 154... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in operation for 30 minutes before a person enters one of the following: (1) Spaces containing cargo pumps...

  2. 46 CFR 154.1850 - Entering cargo handling spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Entering cargo handling spaces. 154.1850 Section 154... cargo handling spaces. (a) The master shall ensure that the ventilation system under § 154.1200 is in operation for 30 minutes before a person enters one of the following: (1) Spaces containing cargo pumps...

  3. 46 CFR 32.60-15 - Segregation of cargo; Grade E-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... spaces, general cargo spaces, boilerrooms, and enclosed spaces containing machinery, where sources of... intervening spaces are not required. (b) Cargo tank spaces. Cargo tank spaces can be terminated at any deck with hatches on the same deck, but the vent lines shall be extended to the weather deck. Butterworth...

  4. 46 CFR 32.60-15 - Segregation of cargo; Grade E-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... spaces, general cargo spaces, boilerrooms, and enclosed spaces containing machinery, where sources of... intervening spaces are not required. (b) Cargo tank spaces. Cargo tank spaces can be terminated at any deck with hatches on the same deck, but the vent lines shall be extended to the weather deck. Butterworth...

  5. 46 CFR 32.60-15 - Segregation of cargo; Grade E-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... spaces, general cargo spaces, boilerrooms, and enclosed spaces containing machinery, where sources of... intervening spaces are not required. (b) Cargo tank spaces. Cargo tank spaces can be terminated at any deck with hatches on the same deck, but the vent lines shall be extended to the weather deck. Butterworth...

  6. 75 FR 10634 - Agricultural Inspection and AQI User Fees Along the U.S./Canada Border

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...-propelled vessel that transports cargo that is not contained in shipping containers. This definition does... of these ports. Empty Containers and Movement of Nonagricultural Goods Many of the commenters stated... or unload cargo in Canada or that originates and terminates in Canada and that does not load or...

  7. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  8. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  9. 49 CFR 172.336 - Identification numbers; special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fuels together with a gasoline and alcohol fuel blend containing more than ten percent ethanol, the... gasoline and alcohol fuel blend containing more than ten percent ethanol, the identification number “3475...). (3) On a cargo tank containing only fuel oil, if the cargo tank is marked “Fuel Oil” on each side and...

  10. Aerodynamic Simulation of A Containership to Evaluate Cargo Configuration Effect on Frontal Wind Loads

    NASA Astrophysics Data System (ADS)

    Majidian, Hamed; Azarsina, Farhood

    2018-04-01

    Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration at a constant front wind speed. The paper presents the simulation results by using ANSYS CFX for a 1:4 scale Post- Panamax 9000 TEU containership. The ship is modelled in a cubic domain that contains unstructured mesh with details, in such a way that can demonstrate the influence of the container configuration on wind force. Also the numerical results are verified versus wind tunnel test data. An optimal stack configuration led to about 25% reduction in air resistance. It is proposed that in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions, empty spaces between the cargo containers and unbalanced cargo distribution over the deck should be inhibited. Also, it is advised to make the cargo distribution on the most forward and aftward deck areas more streamlined.

  11. FE Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013708 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  12. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013710 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  13. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013714 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  14. Mastracchio prepares Robonaut for Taskboard Operations

    NASA Image and Video Library

    2013-12-09

    ISS038-E-013712 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.

  15. SS AMERICAN EAGLE, O.N. 278327; Explosion in the Gulf of Mexico on 26 February 1984 and Subsequent Sinking on 27 February 1984 with Multiple Loss of Life

    DTIC Science & Technology

    1985-02-06

    systems, tank washing machines, through the National Technical Information steam, venturi -type blowers, butterworth Service, Springfield, Virginia...serve aboard tank vessels of the need to ground cargo tank venti- lating blowers. This is particularly important with respect to portable venturi air...Guard issued a service-wide warning regarding the use of portable venturi a’r mover blowers or exhaust units in nongas free’atmospheres. Specifically

  16. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-19

    ISS040-E-103506 (19 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer is about to release a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. The station?s Kibo laboratory is at top right. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  17. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096126 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  18. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-20

    ISS040-E-103340 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer (upper right) releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at center. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  19. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096122 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  20. STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)

    NASA Image and Video Library

    1991-06-14

    STS040-610-010 (5-14 June 1991) --- The blue and white Earth forms the backdrop for this scene of the Spacelab Life Sciences (SLS-1) module in the cargo bay of the Earth-orbiting Columbia. The view was photographed through Columbia's aft flight deck windows with a handheld Rolleiflex camera. Seven crewmembers spent nine days in space aboard Columbia. Part of the tunnel/airlock system that linked them to the SLS-1 module is seen in center foreground.

  1. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  2. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  3. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  4. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  5. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  6. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  7. 46 CFR 97.12-1 - Definition of a bulk solid cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Definition of a bulk solid cargo. 97.12-1 Section 97.12... OPERATIONS Bulk Solid Cargoes § 97.12-1 Definition of a bulk solid cargo. (a) A bulk solid cargo— (1.... (b) Additional requirements for bulk solid materials needing special handling are contained in Part...

  8. Analysis of the photoneutron activation effects generated by 9 MeV X-ray in a container cargo inspection facility.

    PubMed

    Cho, Young Ho; Kang, Bo Sun

    2010-06-01

    The X-ray container cargo inspection facility is extensively implemented with the key objective to counter international terrorism and illicit smuggling of the contraband items via the ports. However, activation products are generated from photoneutron capture reactions in the high-energy X-ray container cargo inspection facility. The activation products release inherent delayed radiations which occupational workers are exposed to. In this study, the activation products are estimated using Monte Carlo method and radiation safety of the facility in terms of occupational dose is reviewed.

  9. Aircraft Cargo Compartment Fire Test Simulation Program

    NASA Technical Reports Server (NTRS)

    Blumke, R. E.

    1977-01-01

    The objective of the test was to assess fire containment and fire extinguishment in the cargo by reducing the ventilation through the cargo compartment. Parameters which were measured included ignition time, burnthrough time, and physical damage to the cargo liner, composition of selected combustible gases, temperature-time histories, heat flux, and detector response. The ignitor load was made of a typical cargo consisting of filled cardboard cartons occupying 50% of the compartment volume.

  10. Tackling the x-ray cargo inspection challenge using machine learning

    NASA Astrophysics Data System (ADS)

    Jaccard, Nicolas; Rogers, Thomas W.; Morton, Edward J.; Griffin, Lewis D.

    2016-05-01

    The current infrastructure for non-intrusive inspection of cargo containers cannot accommodate exploding com-merce volumes and increasingly stringent regulations. There is a pressing need to develop methods to automate parts of the inspection workflow, enabling expert operators to focus on a manageable number of high-risk images. To tackle this challenge, we developed a modular framework for automated X-ray cargo image inspection. Employing state-of-the-art machine learning approaches, including deep learning, we demonstrate high performance for empty container verification and specific threat detection. This work constitutes a significant step towards the partial automation of X-ray cargo image inspection.

  11. The Effect of the Three-Dimensional Geometry of Cargo on the Detection of Radioactive Sources in Cargo Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweppe, John E.; Ely, James H.; McConn, Ronald J.

    Pacific Northwest National Laboratory has developed computer models to simulate the screening of vehicles and cargo with radiation portal monitors for the presence of illegitimate radioactive material. In addition, selected measurements have been conducted to validate the models. An important consideration in the modeling of realistic scenarios is the influence of the three-dimensional geometry of the cargo on the measured signature. This is particularly important for scenarios where the source and detector move with respect to each other. Two cases of the influence of the three-dimensional geometry of the cargo on the measured radiation signature are analyzed. In the first,more » measurements show that spectral data collected from moving sources so as to maximize the gross-counting signal-to-noise ratio has minimal spectral distortion, so that the spectral data can be summed over this time interval. In the second, modeling demonstrates that the ability to detect radioactive sources at all locations in a container full of cargo scales approximately linearly with the vertical height of the detector, suggesting that detectors should be approximately the same height as the container they scan.« less

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-035 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-051 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-053 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-061 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-036 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  17. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-013 (14 May 2010) --- As visitors watch, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-060 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-039 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-040 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  1. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-056 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-044 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-063 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-062 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-050 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-064 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  7. KSC-2012-2525

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a cargo bag packed with NanoRacks-CubeLabs Module-9 experiments is weighed before it is transported to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station for cold stowage. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-2526

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – A cargo bag designed to keep its contents cool, packed with NanoRacks-CubeLabs Module-9 experiments, departs the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida for its trip to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-2527

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – A cargo bag designed to keep its contents cool, packed with NanoRacks-CubeLabs Module-9 experiments, is loaded into a van at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida for its trip to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-2524

    NASA Image and Video Library

    2012-04-20

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, a cargo bag designed to keep its contents cool is packed with NanoRacks-CubeLabs Module-9 experiments in preparation to transport it to Space Launch Complex-40 on nearby Cape Canaveral Air Force Station. There, the bag will be loaded into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. NanoRacks-CubeLabs Module-9 uses a two-cube unit box for student competition investigations using 15 liquid mixing tube assemblies that function similar to commercial glow sticks. The investigations range from microbial growth to water purification in microgravity. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the module and other cargo will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-058 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-052 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-038 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-042 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-055 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-065 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  17. Visitors during STS-132 Space Shuttle Atlantis Launch

    NASA Image and Video Library

    2010-05-14

    STS132-S-014 (14 May 2010) --- With visitors looking on, the space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Ben Cooper

  18. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-037 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  19. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-057 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  20. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-059 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  1. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-033 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell..

  2. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-066 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  3. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-054 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Rusty Backer and Michael Gayle

  4. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-067 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo Credit: NASA/Tony Gray and Tom Farrar

  5. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-047 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  6. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-030 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  7. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-048 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  8. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-045 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  9. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-041 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  10. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-049 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  11. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-043 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  12. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-068 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  13. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-034 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  14. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-069 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Rusty Backer and Michael Gayle

  15. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-046 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Tony Gray and Tom Farrar

  16. Launch of Space Shuttle Atlantis STS-132

    NASA Image and Video Library

    2010-05-14

    STS132-S-031 (14 May 2010) --- Space shuttle Atlantis and its six-member STS-132 crew head toward Earth orbit and rendezvous with the International Space Station. Liftoff was at 2:20 p.m. (EDT) on May 14, 2010, from launch pad 39A at NASA's Kennedy Space Center. Onboard are NASA astronauts Ken Ham, commander; Tony Antonelli, pilot; Garrett Reisman, Michael Good, Steve Bowen and Piers Sellers, all mission specialists. The crew will deliver the Russian-built Mini-Research Module 1 (MRM-1) to the International Space Station. Named Rassvet, Russian for "dawn," the module is the second in a series of new pressurized components for Russia and will be permanently attached to the Earth-facing port of the Zarya Functional Cargo Block (FGB). Rassvet will be used for cargo storage and will provide an additional docking port to the station. Also aboard Atlantis is an Integrated Cargo Carrier, or ICC, an unpressurized flat bed pallet and keel yoke assembly used to support the transfer of exterior cargo from the shuttle to the station. STS-132 is the 34th mission to the station and the last scheduled flight for Atlantis. For more information on the STS-132 mission objectives, payload and crew, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts132/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  17. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 412; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...

  18. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 406; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...

  19. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 407; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...

  20. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 412; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...

  1. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 406; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...

  2. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification DOT 407; cargo tank motor vehicle...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...

  3. 46 CFR 197.505 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...

  4. 46 CFR 197.505 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...

  5. 46 CFR 197.505 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...

  6. 46 CFR 197.505 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...

  7. 46 CFR 197.505 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vessel. Emergency means an occurrence, such as an equipment failure, a container rupture, or a control... cargo transfer operations involving connecting or disconnecting liquid or vapor hoses; cargo tank gauging and sampling; and cargo tank gas freeing, venting, and cleaning. Performance standard means the...

  8. 46 CFR 153.1010 - Alkylene oxides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...

  9. 46 CFR 153.1010 - Alkylene oxides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...

  10. 46 CFR 153.1010 - Alkylene oxides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...

  11. 46 CFR 153.1010 - Alkylene oxides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures... another containment system; (3) Alkylene oxide is discharged only by an intank cargo pump or inert gas...

  12. STS-88 Onboard Photograph - Unity and Zarya Modules

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph, taken during the STS-88 mission, shows the cornected Unity Module or Node 1 and Zarya or the Functional Cargo Block (FGB) after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach. It was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity Module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-13

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. The 4.5 ton satellite was successfully snared by three astronauts on a third EVA. The three hand-grabbed the errant satellite, pulled it into the cargo bay, and attached a boost-given perigee stage before its release. In this photo, the satellite spins slowly out of cargo bay to begin its “new lift”.

  14. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    At Buckley Air Force Base in Aurora, Colorado, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being loaded into the cargo hold of a U.S. Air Force C-5M super Galaxy cargo aircraft. GOES-S will be flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  15. 46 CFR 35.01-50 - Special operating requirements for tank barges carrying certain dangerous bulk cargoes-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certain dangerous bulk cargoes-B/ALL. 35.01-50 Section 35.01-50 Shipping COAST GUARD, DEPARTMENT OF... requirements for tank barges carrying certain dangerous bulk cargoes—B/ALL. (a) The requirements of this... times. (f) During the time the cargo tanks contain dangerous cargoes described in paragraph (a) of this...

  16. 46 CFR 35.01-50 - Special operating requirements for tank barges carrying certain dangerous bulk cargoes-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... certain dangerous bulk cargoes-B/ALL. 35.01-50 Section 35.01-50 Shipping COAST GUARD, DEPARTMENT OF... requirements for tank barges carrying certain dangerous bulk cargoes—B/ALL. (a) The requirements of this... times. (f) During the time the cargo tanks contain dangerous cargoes described in paragraph (a) of this...

  17. 46 CFR 35.01-50 - Special operating requirements for tank barges carrying certain dangerous bulk cargoes-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... certain dangerous bulk cargoes-B/ALL. 35.01-50 Section 35.01-50 Shipping COAST GUARD, DEPARTMENT OF... Special operating requirements for tank barges carrying certain dangerous bulk cargoes—B/ALL. (a) The... closed and secured at all times. (f) During the time the cargo tanks contain dangerous cargoes described...

  18. 46 CFR 35.01-50 - Special operating requirements for tank barges carrying certain dangerous bulk cargoes-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... certain dangerous bulk cargoes-B/ALL. 35.01-50 Section 35.01-50 Shipping COAST GUARD, DEPARTMENT OF... Special operating requirements for tank barges carrying certain dangerous bulk cargoes—B/ALL. (a) The... closed and secured at all times. (f) During the time the cargo tanks contain dangerous cargoes described...

  19. 46 CFR 35.01-50 - Special operating requirements for tank barges carrying certain dangerous bulk cargoes-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... certain dangerous bulk cargoes-B/ALL. 35.01-50 Section 35.01-50 Shipping COAST GUARD, DEPARTMENT OF... Special operating requirements for tank barges carrying certain dangerous bulk cargoes—B/ALL. (a) The... closed and secured at all times. (f) During the time the cargo tanks contain dangerous cargoes described...

  20. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  1. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  2. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  3. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  4. 46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...

  5. 76 FR 69271 - Notice of Inquiry; U.S. Inland Containerized Cargo Moving Through Canadian and Mexican Seaports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... incentivize container cargo to shift from U.S. West Coast ports to those located in Canada and Mexico. These... FEDERAL MARITIME COMMISSION [Docket No. 11-19] Notice of Inquiry; U.S. Inland Containerized Cargo... containerized cargo destined for U.S. inland points from U.S. to Canadian and Mexican seaports. DATES: Comments...

  6. Rollout - Shuttle Discovery - STS 41D Launch - KSC

    NASA Image and Video Library

    1986-11-26

    S86-41700 (19 May 1984) --- The Space Shuttle Discovery moves towards Pad A on the crawler transporter for its maiden flight. Discovery will be launched on its first mission no earlier than June 19, 1984. Flight 41-D will carry a crew of six; Commander Henry Hartsfield, Pilot Mike Coats, Mission Specialists Dr. Judith Resnik, Dr. Steven Hawley and Richard Mullane and Payload Specialist Charles Walker. Walker is the first payload specialist to fly aboard a space shuttle. He will be running the materials processing device developed by McDonnell Douglas as part of its Electrophoresis Operations in Space project. Mission 41-D is scheduled to be a seven-day flight and to land at Edwards Air Force Base in California. The Syncom IV-1 (LEASAT) will be deployed from Discovery's cargo bay and the OAST-1, Large Format Camera, IMAX and Cinema 360 cameras will be aboard.

  7. KSC-98pc1196

    NASA Image and Video Library

    1998-10-01

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The lander is being transported to the Spacecraft Assembly and Encapsulation Facility-2(SAEF-2) in the KSC Industrial Area for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars Polar Lander spacecraft is planned for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999

  8. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering analysis. During the International Space Station's (ISS's) on-orbit assembly and outfitting, a series of engineering analyses were conducted to evaluate how effective the passive TCC methods were relative to providing adequate operational margin for the active TCC equipment's capabilities aboard the ISS. These analyses were based on habitable module and cargo vehicle offgassing test results. The offgassing test for a fully assembled module or cargo vehicle is an important preflight spacecraft evaluation method that has been used successfully during all crewed spacecraft programs to provide insight into how effectively the passive contamination control methods limit the equipment offgassing component of the overall trace contaminant generation load. The progression of TCC assessments beginning in 1998 with the ISS's first habitable element launch and continuing through the final pressurized element's arrival in 2010 are presented. Early cargo vehicle flight assessments between 2008 and 2011 are also presented as well as a discussion on predictive methods for assessing cargo via a purely analytical technique. The technical approach for TCC employed during this 13-year period successfully maintained the cabin atmospheric quality within specified parameters during the technically challenging ISS assembly and outfitting stages. The following narrative provides details on the important role of spacecraft offgassing testing, trace contaminant performance requirements, and flight rules for achieving the ultimate result-a cabin environment that enables people to live and work safely in space.

  9. A Neutron Based Interrogation System For SNM In Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Steven Z.; Koltick, David S.

    A complete system has been simulated using experimentally obtained input parameters for the detection of special nuclear materials (SNM). A variation of the associated particle imaging (API) technique, referred to as reverse associated particle imaging detection (RAPID), has been developed in the context of detecting 5-kg spherical samples of U-235 in cargo. The RAPID technique allows for the interrogation of containers at neutron production rates between {approx}1x10{sup 8} neutrons/s and {approx}3x10{sup 8} neutrons/s. The merit of performance for the system is the time to detect the threat material with 95% probability of detection and 10{sup -4} false positive rate permore » interrogated voxel of cargo. Detection times of 5 minutes were found for a maximally loaded cargo container uniformly filled with iron and as low as 1 second in containers loaded to 1/4 of full capacity with either iron or wood. The worse case system performance, 30 minutes interrogation time, occurs for a maximally loaded container containing wood at 0.4 g/cm{sup 3}.« less

  10. Human occupancy detection

    NASA Astrophysics Data System (ADS)

    Brown, David A.

    1994-10-01

    In the area of security and surveillance technologies, the problem of the arrival in Canada of illegal and undesirable ship and truck cargo loads is steadily increasing. As the volumes of cargo arrivals increase so do the Immigration and Customs problems related to the determination of the validity of those cargo contents. Of special concern to Immigration Control Authorities around the world is the emerging and increasing trend of illegal smuggling of human beings hidden inside of shipping containers. Beginning in 1992, Immigration Control Authorities in Canada observed an escalation of alien people smuggling through the use of cargo shipping containers arriving in the Port of Montreal. This paper will present to the audience the recently completed Immigration Canada Human Occupancy Detection project by explaining the design, development and testing of human occupancy detectors. The devices are designed to electronically detect the presence of persons hiding inside of shipping containers, without the requirement of opening the container doors. The human occupancy detection concepts are based upon the presence of carbon dioxide or other human waste characteristics commonly found inside of shipping containers.

  11. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The Smithsonian Astrophysical Observatory will manage the Chandra science mission for NASA from the Chandra X-ray Observatory Center in Cambridge, Mass. TRW has been developing scientific, communications and environmental satellite systems for NASA since 1958. In addition to building the Chandra X-ray Observatory, the company is currently developing the architectures and technologies needed to implement several of NASA's future space science missions, including the Next Generation Space Telescope, the Space Inteferometry Mission, both part of NASA's Origins program, and Constellation-X, the next major NASA X-ray mission after Chandra. Article courtesy of TRW. TRW news releases are available on the corporate Web site: http://www.trw.com.

  12. 9 CFR 94.1 - Regions where rinderpest or foot-and-mouth disease exists; importations prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., handling of the meat after the hold, compartment, or container is sealed, and the loading of any cargo into and the removal of any cargo from the sealed hold, compartment, or container en route to the United... seals used to seal the hold, compartment, or container are recorded on the foreign meat inspection...

  13. Improvement of Efficiency of Transportation in Harbor Physical Distribution Considering Inland Carriage

    NASA Astrophysics Data System (ADS)

    Hino, Hisato; Hoshino, Satoshi; Fujisawa, Tomoharu; Maruyama, Shigehisa; Ota, Jun

    Currently, container ships move cargo with minimal participation from external trucks. However, there is slack time between the departure of container ships and the completion of cargo handling by container ships without the participation of external trucks; therefore, external trucks can be used to move cargo without delaying the departure time. In this paper, we propose a solution involving the control algorithms of transfer cranes (TCs) because the efficiency of yard operations depends largely on the productivity of TCs. TCs work according to heuristic rules using the forecasted arrival times of internal and external trucks. Simulation results show that the proposed method can reduce the waiting time of external trucks and meet the departure time of container ships.

  14. 40 CFR 442.40 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRANSPORTATION EQUIPMENT CLEANING POINT SOURCE CATEGORY Tanks Transporting Food Grade Cargos § 442.40... containers, rail tank cars, tank barges and ocean/sea tankers which have been used to transport food grade cargos. If wastewater generated from cleaning tanks used to transport food grade cargos is mixed with...

  15. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  16. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  17. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  18. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  19. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  20. 77 FR 16838 - Notice of Agreements Filed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...; China Shipping Container Lines Co. Ltd.; CMA CGM A.A.; Companhia Libra De Navegacao; Compania Sud American De Vapores, S.A.; COSCO Container Lines Co., Limited; Dole Ocean Cargo Express; Hamburg.... Agreement No.: 011730-004. Title: GWF/Dole Space Charter and Sailing Agreement. Parties: Dole Ocean Cargo...

Top