Science.gov

Sample records for aboard nasas specially

  1. NASA's Getaway Special.

    ERIC Educational Resources Information Center

    Randal, Judith

    1978-01-01

    The "Getaway Special" is NASA's semiofficial program for low-budget researchers, who can arrange bookings for their own space experiments on regular flights of the space shuttle. Information about arranging for NASA to take individual experiment packages is presented. (LBH)

  2. A catalog of NASA special publications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A list of all of the special publications released by NASA are presented. The list includes scientific and technical books covering a wide variety of topics, including much of the agencies research and development work, its full range of space exploration programs, its work in advancing aeronautics technology, and many associated historical and managerial efforts. A total of 1200 titles are presented.

  3. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s)...

  4. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s)...

  5. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s)...

  6. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  7. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by...

  8. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by...

  9. Intensified array camera imaging of solid surface combustion aboard the NASA Learjet

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    1992-01-01

    An intensified array camera was used to image weakly luminous flames spreading over thermally thin paper samples in a low gravity environment aboard the NASA-Lewis Learjet. The aircraft offers 10 to 20 sec of reduced gravity during execution of a Keplerian trajectory and allows the use of instrumentation that is delicate or requires higher electrical power than is available in drop towers. The intensified array camera is a charge intensified device type that responds to light between 400 and 900 nm and has a minimum sensitivity of 10(exp 6) footcandles. The paper sample, either ashless filter paper or a lab wiper, burns inside a sealed chamber which is filled with 21, 18, or 15 pct. oxygen in nitrogen at one atmosphere. The camera views the edge of the paper and its output is recorded on videotape. Flame positions are measured every 0.1 sec to calculate flame spread rates. Comparisons with drop tower data indicate that the flame shapes and spread rates are affected by the residual g level in the aircraft.

  10. NASA NASA CONNECT: Special World Space Congress. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. This video presents the World Space Congress 2002, the meeting of the decade for space professionals. Topics discussed range from the discovery of distant planets to medical advancements,…

  11. NASA Headquarters photographic tribute to Special Spacesuit

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA Headquarters photographic tribute to modified USAF-type altitude pressure garments used by Shuttle astronuats was arranged by NASA-artist Chet Jezierski. It includes STS-4's suits, press clippings from the test mission series, insignia and other memorabilia from the era.

  12. Records of Achievement. NASA Special Publications.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    When Congress created the National Aeronautics and Space Administration (NASA) 25 years ago, it directed that information derived from the agency's pursuit of knowledge through space exploration and aeronautical research be made available to all Americans. This has been accomplished through a series of scientific and technical publications. One…

  13. Standards of conduct for NASA special government employees

    NASA Technical Reports Server (NTRS)

    1967-01-01

    NASA regulations prescribing standards of conduct for all NASA employees, including special government employees, were approved by the Civil Service Commission on September 19, 1967, and by the Administrator on October 12, 1967, and were published in the Federal Register (32 F.R. 14648-14659) on October 21, 1967. The standards of conduct regulations are issued under Executive Order 11222 of May 11, 1965 (30 F.R. 6469, 3 C.F.R. 1965 Supp.; 5 C.F.R. 735.104), and Chapter 735 of the Federal Personnel Manual. For the convenience of special government employees, those portions of the NASA standards of conduct regulations which are applicable only to special government employees, Part F and Appendixes E, F, and G, are reissued in this handbook. Except for references to 'parts,' 'subparts,' 'sections,' etc., the text is identical to that published in the Federal Register.

  14. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  15. NASA Tech Briefs, November/December 1986, Special Edition

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics: Computing: The View from NASA Headquarters; Earth Resources Laboratory Applications Software: Versatile Tool for Data Analysis; The Hypercube: Cost-Effective Supercomputing; Artificial Intelligence: Rendezvous with NASA; NASA's Ada Connection; COSMIC: NASA's Software Treasurehouse; Golden Oldies: Tried and True NASA Software; Computer Technical Briefs; NASA TU Services; Digital Fly-by-Wire.

  16. NASA scientific and technical publications: A catalog of Special Publications, Reference Publications, Conference Publications, and Technical Papers, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalog lists 239 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered in the NASA scientific and technical information database during accession year 1987. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  17. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1991-1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This catalog lists 458 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into the NASA Scientific and Technical Information database during accession year 1991 through 1992. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  18. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1987-1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This catalog lists 783 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into NASA Scientific and Technical Information Database during the year's 1987 through 1990. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  19. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This catalog lists 190 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into the NASA scientific and technical information database during accession year 1989. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  20. Educational opportunities within the NASA Specialized Center of Research and Training in Gravitational Biology.

    PubMed

    Guikema, J A; Spooner, B S

    1994-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.

  1. Educational opportunities within the NASA specialized center of research and training in gravitational biology

    NASA Technical Reports Server (NTRS)

    Guikema, James A.; Spooner, Brian S.

    1994-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.

  2. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  3. The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology.

    PubMed

    Spooner, B S; Guikema, J A

    1992-01-01

    The Life Sciences Division of NASA has initiated a NASA Specialized Centers of Research and Training (NSCORT) program. Three Centers were designated in late 1990, as the culmination of an in-depth peer review analysis of proposals from universities across the nation and around the world. Kansas State University was selected as the NSCORT in Gravitational Biology. This Center is headquartered in the KSU Division of Biology and has a research, training, and outreach function that focuses on cellular and developmental biology.

  4. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  5. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  6. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  7. 48 CFR 17.106-3 - Special procedures applicable to DoD, NASA, and the Coast Guard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Special procedures applicable to DoD, NASA, and the Coast Guard. 17.106-3 Section 17.106-3 Federal Acquisition Regulations... Multiyear Contracting 17.106-3 Special procedures applicable to DoD, NASA, and the Coast Guard....

  8. 48 CFR 17.106-3 - Special procedures applicable to DoD, NASA, and the Coast Guard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Special procedures applicable to DoD, NASA, and the Coast Guard. 17.106-3 Section 17.106-3 Federal Acquisition Regulations... Multiyear Contracting 17.106-3 Special procedures applicable to DoD, NASA, and the Coast Guard....

  9. 48 CFR 17.106-3 - Special procedures applicable to DoD, NASA, and the Coast Guard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Special procedures applicable to DoD, NASA, and the Coast Guard. 17.106-3 Section 17.106-3 Federal Acquisition Regulations... Multiyear Contracting 17.106-3 Special procedures applicable to DoD, NASA, and the Coast Guard....

  10. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  11. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  12. 48 CFR 17.106-3 - Special procedures applicable to DoD, NASA, and the Coast Guard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicable to DoD, NASA, and the Coast Guard. 17.106-3 Section 17.106-3 Federal Acquisition Regulations... Multiyear Contracting 17.106-3 Special procedures applicable to DoD, NASA, and the Coast Guard. (a... termination for insufficient funding. In the event funds are not made available for the continuation of...

  13. 48 CFR 17.106-3 - Special procedures applicable to DoD, NASA, and the Coast Guard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... applicable to DoD, NASA, and the Coast Guard. 17.106-3 Section 17.106-3 Federal Acquisition Regulations... Multiyear Contracting 17.106-3 Special procedures applicable to DoD, NASA, and the Coast Guard. (a... termination for insufficient funding. In the event funds are not made available for the continuation of...

  14. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  15. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  16. Issues in NASA program and project management. Special Report: 1993 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, ED (Editor); Kishiyama, Jenny S. (Editor)

    1993-01-01

    This volume is the seventh in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1993 Conference: perspectives in NASA program/project management; the best job in aerospace; improvements in project management at NASA; strategic planning...mapping the way to NASA's future; new NASA procurement initiatives; international cooperation; and industry, government and university partnership. A section on resources for NASA managers rounds out the publication.

  17. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  18. Development of NASA's Space Communications and Navigation Test Bed Aboard ISS to Investigate SDR, On-Board Networking and Navigation Technologies

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.

    2010-01-01

    NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.

  19. A Brief Subject Index for N.A.S.A.'s Special Publications Relating to Astronomy.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1981-01-01

    Presents NASA astronomy publications by subject: Earth; Moon; Mercury and Venus; Mars; Jupiter and Saturn; Planets (general); Comets, Meteors, and Asteroids; Sun; Astronomy from Various NASA Missions; Miscellaneous Astrophysics; Telescopes and Instrumentation; and Extra-Terrestrial Life. Includes listing of NASA Technical Conference Proceedings…

  20. Issues in NASA program and project management. Special report: 1995 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.

  1. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  2. NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Crawford, John P.; Drinkwater, Mark R.; Emery, William J.; Eppler, Duane T.; Farmer, L. Dennis; Fowler, Charles W.; Goodberlet, Mark; Jentz, Robert R.; Milman, Andrew

    1992-01-01

    The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided.

  3. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    ERIC Educational Resources Information Center

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  4. "Festival of Flight Special": Opening Space for Next Generation Explorers. NASA CONNECT[TM]. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)

  5. ISS Update: NASA Astronaut Mike Fincke

    NASA Video Gallery

    NASA Public Affairs Officer Rob Navias talks with NASA Astronaut Mike Fincke inside the Mission Control Center at Johnson Space Center. They discuss the current activities taking place aboard the I...

  6. NASA Earth Resources Survey Symposium. Volume 2-A: Special session presentations. Plenary summaries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Practical application of earth resources survey data is considered. The utilization and results of data from NASA programs involving LANDSAT, the Skylab Earth Resources Experiment Package, and aircraft, as well as other data acquisition programs are included. User services and requirements and applications in land use, agriculture, coastal zone management, and geology are among the topics covered. For Vol. 1A, see N76-17469.

  7. NASA Specialized Center for Research and Training (NSCORT) in space environmental health

    NASA Technical Reports Server (NTRS)

    Clarkson, Thomas W.; Utell, Mark J.; Morgenthaler, George W.; Eberhardt, Ralph; Rabin, Robert

    1992-01-01

    Activities of the Center for Space Environmental Health (CSEH), one of several NSCORTs supported by NASA in order to advance knowledge in environmental health in space habitats, are reviewed. Research in environmental health will define the standards or requirements needed to protect human health. This information will affect mission plans and the design of space habitats. This reseach will study unique contaminant stresses and lead to risk models for human health and performance.

  8. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  10. Summary of the Geocarto International Special Issue on "NASA Earth Science Satellite Data for Applications to Public Health" to be Published in Early 2014

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2013-01-01

    At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.

  11. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  12. Recent NASA research accomplishments aboard the ISS.

    PubMed

    Pellis, Neal R; North, Regina M

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.

  13. NASA standard GAS Can satellite. [Get-Away Special canister for STS Orbiter

    NASA Technical Reports Server (NTRS)

    Cudmore, Patrick H.; Mcintosh, W.; Edison, M.; Nichols, S.; Mercier, E.

    1989-01-01

    The Get-Away Special canister (GAS Can) satellite is a small, (150 lb) low-cost satellite making it possible for commercial and scientific institutions to conduct experiments in space on an economical and short-term basis. The current model is called Xsat (Exceptional Satellite) and is designed to be launched from a GAS canister on the STS Orbiter; also provided is a low-cost automated PC-operated ground station for commercial, scientific, and government users. The Xsat structure is diagrammed, and details such as payload interface, weight restrictions, and structural loads are described in detail, pointing out that Xsat has a maximum payload weight of 50 lbs, and has a natural vibration frequency of around 45 Hz, with a minimum requiremet of 35 Hz. Thermal designs, power system, electronics, computer design and bus system, and satellite operations are all outlined.

  14. NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'

  15. Issues in NASA Program and Project Management. Special Edition: A Collection of Papers on NASA Procedures and Guidance 7120.5A. Volume 14

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1998-01-01

    A key aspect of NASA's new Strategic Management System is improving the way we plan, approve, execute and evaluate our programs and projects. To this end, NASA has developed the NASA Program and Project Management processes and Requirements-NASA Procedures and Guidelines (NPG) 7120.5A, which formally documents the "Provide Aerospace Products and Capabilities" crosscutting process, and defines the processes and requirements that are responsive to the Program/Project Management-NPD 7120.4A. The Program/Project Management-NPD 7120.4A, issued November 14, 1996, provides the policy for managing programs and projects in a new way that is aligned with the new NASA environment. An Agencywide team has spent thousands of hours developing the NASA Program and Project Management Processes and Requirements-NPG 7120.5A. We have created significant flexibility, authority and discretion for the program and project managers to exercise and carry out their duties, and have delegated the responsibility and the accountability for their programs and projects.

  16. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  17. NASA News

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The launch of NOAA E, an advanced TIROS N (ATN) environmental monitoring satellite, carrying special search and rescue instrumentation is announced. NOAA E carries instrumentation for a demonstration to search and rescue (SAR) mission agencies for evaluation of a satellite aided SAR system that may lead to the establishment of an operational capability. The ability of a spaceborne system to acquire, track and locate existing Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs) that are being used aboard general aviation and other aircraft, and ships, and are operating on 121.5 and 243 Megahertz frequencies is demonstrated.

  18. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  19. ISS Update: Launching Aboard the Soyuz to Live on the Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Mike Fossum, astronaut and Commander of Expedition 29, about his Soyuz launch experience and his insight into life aboard the station. Question...

  20. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.

  1. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  2. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  3. NASA Successfully Launches Three Smartphone Satellites

    NASA Video Gallery

    Three smartphones destined to become low-cost satellites rode to space Sunday aboard the maiden flight of Orbital Science Corp.'s Antares rocket from NASA's Wallops Island Flight Facility in Virgin...

  4. NASA Camera Catches Moon 'Photobombing' Earth

    NASA Video Gallery

    On July 5, 2016, the moon passed between NOAA's DSCOVR satellite and Earth. NASA's EPIC camera aboard DSCOVR snapped these images over a period of about four hours. In this set, the far side of the...

  5. NASA, Rockets, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2015-01-01

    General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.

  6. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  7. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  8. Apollo 9 crewmen arrive aboard U.S.S. Guadelcanal

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 9 crewmen arrive aboard the U.S.S. Guadelcanal as they step from a helicopter to receive a red-carpet welcome. Two of the crewmen salute the crowd of newsmen, Navy and NASA personnel gathered to greet them. Left to right are Astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt.

  9. Nichelle Nichols, NASA Recruiter

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Actress Nichelle Nichols was born in Robbins, Illinois on December 29, 1936. She played Lieutenant Uhura the Communications Officer on the U.S.S. Enterprise in the original series, Star Trek. Nichols stayed with the show and has appeared in six Star Trek movies. Her portrayal of Uhura on Star Trek marked one of the first non-stereotypical roles assigned to an African-American actress. She also provided the voice for Lt. Uhura on the Star Trek animated series in 1974-75. Before joining the crew on Star Trek, she sang and danced with Duke Ellington's band. Nichols was always interested in space travel. She flew aboard the C-141 Astronomy Observatory, which analyzed the atmospheres of Mars and Saturn on an eight hour, high altitude mission. From the late 1970's until the late 1980's, NASA employed Nichelle Nichols to recruit new astronaut candidates. Many of her new recruits were women or members of racial and ethnic minorities, including Guion Bluford (the first African-American astronaut), Sally Ride (the first female American astronaut), Judith Resnik (one of the original set of female astronauts, who perished during the launch of the Challenger on January 28, 1986), and Ronald McNair (the second African-American astronaut, and another victim of the Challenger accident). Currently Nichelle Nichols is actively involved in movies and special appearances. She is also a spokesperson for her favorite charity, 'The Kwanzaa Foundation.'

  10. Structural Analysis of the QCM Aboard the ER-2

    NASA Technical Reports Server (NTRS)

    Jones, Phyllis D.; Bainum, Peter M.; Xing, Guangqian

    1997-01-01

    As a result of recent supersonic transport (SST) studies on the effect they may have on the atmosphere, several experiments have been proposed to capture and evaluate samples of the stratosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000 - 70,000 feet. The ER-2 is primarily used by NASA for Earth resources to test new sensor systems before they are placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. Some of the experiments are designed to extract data from the atmosphere around the ER-2. For the current flight experiment, the QCM is housed in a frame that is connected to an outer pod that is attached to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM is a frequency induced instrument. Therefore, a structural analysis of the instrument within the frame is imperative to determine if resonance and/or undesirable deformations occur.

  11. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  12. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  13. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  14. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  15. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  16. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  17. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  18. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.217 Suppression...

  19. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology.

    PubMed

    Spooner, B S

    1993-04-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  10. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  11. Crewmen of the Gemini 7 spacecraft arrive aboard aircraft carrier

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts James A. Lovell Jr., (left), pilot, and Frank Borman, command pilot, are shown just after they arrived aboard the aircraft carrier U.S.S. Wasp. Greeting the astronauts are Donald Stullken (at Lovell's right), Recovery Operations Branch, Landing and Recovery Division; Dr. Howard Minners (standing beside Borman), Flight Medicine Branch, Cneter Medical Office, Manned Spacecraft Center, and Bennett James (standing behind Borman), a NASA Public Affairs Officer.

  12. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  13. NASA sea ice and snow validation plan for the Defense Meteorological Satellite Program special sensor microwave/imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Swift, Calvin T. (Editor)

    1987-01-01

    This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed.

  14. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  15. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  16. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  17. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prospective NASA contractor is provided with information that describes the agency and its procurement practices. Products include ideas, manufacturing capabilities, fabricated components, construction, basic materials, and specialized services. NASA assistance in marketing these and other products is emphasized. Small and minority business enterprises are discussed. The agency's scientific and technical information activities are also discussed.

  18. Biomass Burning Effects on the Western Africa Climate: the NASA-Unified WRF Simulation for 9-16 August 2006 during the AMMA Special Observing

    NASA Astrophysics Data System (ADS)

    Iguchi, T.; Matsui, T.; Tao, Z.; Kim, D.; Ichoku, C. M.

    2015-12-01

    Western Africa climate could be under the influence of various type aerosols. Biomass burning aerosols, mostly caused by savanna fires, particularly cause large uncertainty in deducing aerosol impacts on the climate because of the complicated anthropogenic and natural factors. We have investigated the aerosol impacts using a state-of-the-art regional atmospheric modeling system in fully coupled simulations of aerosols, radiation and cloud-precipitation components. The NASA-Unified WRF (NU-WRF) version 7, "Arthur", is employed in a form using the GCE cloud microphysics directly tied to aerosol number concentration forecasted in the GOCART aerosol emission and transport module. Realistic aerosol surface emission and loading from the domain are provided from PREP-CHEM-SRC system and the MERRA aerosol reanalysis. LIS-spinup system is used to initialize the high-resolution heterogeneous land surface states instead of using interpolation from coarser reanalysis data. We have conducted several sensitivity tests for the case of 9-16 August 2006 during the AMMA special observing period (SOP) peak-monsoon phase to evaluate various aerosol impacts on the regional radiative balance and cloud-precipitation patterns through direct/indirect effects and feedback to the land surface process.

  19. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  20. A Case for Hypogravity Studies Aboard ISS

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2014-01-01

    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent

  1. Get away special the low-cost route to orbit

    NASA Technical Reports Server (NTRS)

    Prouty, C.

    1986-01-01

    NASA has established the Get Away Special (GAS) program as a means for providing anyone who wishes the opportunity to place a small self-contained experimental payload aboard a Space Shuttle mission for a very low cost. The GAS program is now well established, and has a respectable history with 53 payloads flown to date. The GAS experimenters are a diverse group who have demonstrated that people from all walks of life, and from many nations, are interested in working in space. This paper traces the history of the program from its concept through the development phase to the present time, and takes a brief look at the future. It also addresses the steps involved in making a payload reservation and the programmatic and technical relationships that are established between NASA and GAS customers.

  2. Structural Loading on the QCM/SAW Instrument Aboard the ER-2 Used for Atmospheric Testing

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Jones, Phyllis D.; Irish, Sandra M.; Xing, Guang-Qian

    1998-01-01

    Several experiments have been proposed to capture and evaluate samples of the atmosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) / surface acoustical wave (SAW) instrument installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000-70,000 feet. The primary use of the ER-2 is by NASA for Earth resources to test new sensor systems before being placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above the sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. The purpose of some of the experiments is to extinct data from the atmosphere around the ER-2. For the current CSTEA flight experiment, the housing of the QCM is in a frame that connects to an outer pod that attaches to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM output data is based on the determination of beat frequencies between a pair of oscillators (one coated, the second uncoated, according to the chemical reaction being monitored). A structural analysis of this system can indicate whether potential resonances may exist between the (higher) structural modal frequencies and the beat frequencies. In addition undesirable deformations may result due to maximum expected static or dynamic loads during typical flight conditions. If the deformations are excessive they may adversely affect the accuracy the instrumentation output.

  3. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  4. Implementation of an Aerosol-Cloud Microphysics-Radiation Coupling into the NASA Unified WRF: Simulation Results for the 6-7 August 2006 AMMA Special Observing Period

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Matsui, T.; Tao, W.-K.; Tan, Q.; Peters-Lidard, C.; Chin, M.; Pickering, K.; Guy, N.; Lang, S.; Kemp, E. M.

    2014-01-01

    Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol

  5. Video of Tissue Grown in Space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Principal investigator Leland Chung grew prostate cancer and bone stromal cells aboard the Space Shuttle Columbia during the STS-107 mission. Although the experiment samples were lost along with the ill-fated spacecraft and crew, he did obtain downlinked video of the experiment that indicates the enormous potential of growing tissues in microgravity. Cells grown aboard Columbia had grown far larger tissue aggregates at day 5 than did the cells grown in a NASA bioreactor on the ground.

  6. New Crewmates Welcomed Aboard Station

    NASA Video Gallery

    NASA astronaut Karen Nyberg, Russian Federal Space Agency cosmonaut Fyodor Yurchikhin and European Space Agency astronaut Luca Parmitano joined their Expedition 36 crewmates when the hatches betwee...

  7. The Biostack Experiments I and II aboard Apollo 16 and 17.

    PubMed

    Bucker, H

    1974-01-01

    The concept of the Biostack experiment has become practicable through European scientific collaboration and with help of NASA. The objectives of this experiment flown aboard Apollo 16 and 17 are to study the biological effects of individual heavy cosmic particles of high-energy loss (HZE) not available on earth; to study the influence of additional spaceflight factors; to get some knowledge on the mechanism by which HZE particles damage biological materials; to get information on the spectrum of charge and energy of the cosmic ions in the spacecraft; to estimate the radiation hazards for man in space. For this purpose the Biostack experiment comprises a widespread spectrum of biological objects, and various radiobiological end-points are under investigation. Bacterial spores, protozoa cysts, plant seeds, shrimp eggs, and insect eggs were included in the Biostack experiment packages together with different physical radiation detectors (nuclear emulsions, plastics, AgCl crystals, and LiF thermoluminescence dosimeters). By using special arrangements of biological objects and physical track detectors, individual evaluation of tracks was obtained allowing the identification of each penetrating particle in relation to the possible biological effects on its path. The response of the different biological objects to space flight and HZE ions bombardment was of different degree, presumably depending on the ability of the organism to replace the cells damaged by a hit. The results help to estimate the radiation hazard for astronauts during space missions of long duration.

  8. NASA's Role in Understanding Climate Change

    NASA Video Gallery

    Earth's climate is changing because of human activity. Learn about NASA's role in understanding climate and climate change with Gilberto Colón, special assistant to the deputy director of NASA's Go...

  9. Tracing the History of the Energy Sector Related Applications Using Specially Adapted NASA Long-Term Climate Data Sets and Measures of Their Socio-Economic Value

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Hoell, J. M.; Chandler, W.; Westberg, D. J.; Zhang, T.

    2012-12-01

    In the mid-1990's the National Renewable Energy Laboratory approached NASA Langley Research Center to gain information about the solar resource in Africa as estimated via early satellite based methods. From this began an effort that eventually involved collaboration with DOE NREL, Natural Resources Canada RETScreen International, and numerous other partners in industry and universities to make progressively improved data products available for the renewable energy and other energy related applications. In 2002, NASA Applied Science projects were initiated providing a more focused effort to accomplish the goal of empowering energy related decision support tools using NASA meteorological and climate related data sets. At this time, NASA Langley Research Center reorganized a project aimed to make long-term solar energy and meteorological data sets available to Energy sector related industries, including sustainable buildings and agroclimatology. This task involved the design and adaption of NASA derived data sets that these industries use, key partnerships, a commitment to validation, a commitment to expansion of parameters and data products over time, and a web based interface that allows energy industry specialists to obtained the needed data parameters in easy to use formats. This presentation shows the history of the NASA Langley Research Center effort to provide data sets for energy sector applications. This includes the development and usage of the Surface meteorology and Solar Energy (SSE, http://eosweb.larc.nasa.gov/sse/) web interface that has been improved under the Prediction of Worldwide renewable Energy Resource Project (POWER, http://power.larc.nasa.gov). Through the years the data sets provided now span more than 30 years and since 2009 include global parameters released within about 4-6 days of real time. The history of usage of this web site is discussed in terms of key partnerships and new data releases. We will present ways of categorizing the

  10. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  12. Problem Solving: The "Wright" Math. The Centennial of Flight Special Edition. An Educator Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT[TM].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of integrated mathematics, science, and technology instructional distance learning programs for students in grades 6-8. This program is designed for students to learn about the evolution of flight. The program has three components--television broadcast, Web activity, and lesson guide--which are designed as an…

  13. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  14. The Road to NASA

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2010-01-01

    This slide presentation describes the career path and projects that the author worked on during her internship at NASA. As a Graduate Student Research Program (GSRP) participant the assignments that were given include: Human Mesenchymal Stem Cell Research, Spaceflight toxicology, Lunar Airborne Dust Toxicity Advisory Group (LADTAG) and a special study at Devon Island.

  15. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Using special equipment aboard the Altus II, scientists in ACES will gather electric, magnetic, and optical measurements of the thunderstorms, gauging elements such as lightning activity and the electrical environment in and around the storms. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  16. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  17. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  18. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  19. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  20. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  1. NASA Solve

    NASA Video Gallery

    NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...

  2. STS-9 and Spacelab 1. NASA Educational Briefs for the Classroom.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Designed for classroom use, this publication provides an overview of the first Space Shuttle/Spacelab mission, a cooperative venture between the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The main purpose of ESA's Spacelab, which will be carried aboard NASA's Space Shuttle (technically called the…

  3. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  4. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  5. This is NASA

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

  6. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  7. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  8. Vestibular Function Research aboard Spacelab

    NASA Technical Reports Server (NTRS)

    Mah, R. W.; Daunton, N. G.

    1978-01-01

    NASA is planning to perform a series of Vestibular Function Research (VFR) investigations on the early STS missions to investigate those neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome. The first flight is scheduled for the 1981 Spacelab III Mission in which four frog specimens, mounted on a frog tilting/centrifuge device, will be subjected to periodic acceleration stimuli and periods of artificial gravity. The vestibular nerve firing responses of each frog specimen will be monitored through implanted neutral bouyancy microelectrodes and transmitted to the ground for quick analysis during the flight. The experimentation will be directed at investigating: (1) adaptation to weightlessness; (2) response to acceleration stimuli; (3) response to artificial gravity (in a weightlessness environment) and (4) readaptation to earth's gravity upon return.

  9. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  12. NASA thesaurus. Volume 3: Definitions

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Publication of NASA Thesaurus definitions began with Supplement 1 to the 1985 NASA Thesaurus. The definitions given here represent the complete file of over 3,200 definitions, complimented by nearly 1,000 use references. Definitions of more common or general scientific terms are given a NASA slant if one exists. Certain terms are not defined as a matter of policy: common names, chemical elements, specific models of computers, and nontechnical terms. The NASA Thesaurus predates by a number of years the systematic effort to define terms, therefore not all Thesaurus terms have been defined. Nevertheless, definitions of older terms are continually being added. The following data are provided for each entry: term in uppercase/lowercase form, definition, source, and year the term (not the definition) was added to the NASA Thesaurus. The NASA History Office is the authority for capitalization in satellite and spacecraft names. Definitions with no source given were constructed by lexicographers at the NASA Scientific and Technical Information (STI) Facility who rely on the following sources for their information: experts in the field, literature searches from the NASA STI database, and specialized references.

  13. NASA's Postdoctoral Fellowship Programs

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.; Gelino, D. M.; Allen, R. J.; Prestwich, A. H.

    2013-01-01

    The three named fellowships --- the Einstein, Hubble and Sagan programs --- are among the most prestigious postdoctoral positions in astronomy. Their policies are closely coordinated to ensure the highest scientific quality, the broadest possible access to a diverse community of recent PhD graduates, and flexibility in completing the 3 year appointments in light of individual personal circumstances. We will discuss practical details related to "family-friendly" best practices such as no-cost extensions and the ability to transfer the host institution in response to "two body problems." We note, however, that the terms of the NASA fellowships are such that fellows become employees of their host institutions which set specific policies on issues such as parental leave. We look forward to participating in the discussion at this special session and conveying to NASA any suggestions for improving the fellowship program.

  14. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  15. Paresev 1-C with inflatable wing testbed aboard a truck in preparation for flight tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Aboard a truck and ready for a test flight is the Paresev 1-C on the ramp at the NASA Flight Research Center, Edwards, California. The half-scale version of the inflatable Gemini parawing was pre-flighted by being carried across the Rosamond dry lakebed on the back of a truck before a tow behind a International Harvester Carry-All. The inflatable center spar ran fore and aft and measured 191 inches, two other inflatable spars formed the leading edges. The three compartments were filled with nitrogen under pressure to make them rigid. The Paresev 1-C was very unstable in flight with this configuration.

  16. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  17. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  18. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite sits on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket waiting for launch. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  19. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As light peers over the horizon at the crack of dawn, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite waits for launch on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  20. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  1. NASA Glenn Research Center Overview

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2002-01-01

    This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).

  2. NASA Work Experience

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2015-01-01

    I have had the opportunity to support the analytical laboratories in chemical analysis of unknown samples, using Optical Microscopy (OM), Polarizing Light Microscopy (PLM), Fourier-Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEMEDS), and X-ray Powder Diffraction (XPD). I have assisted in characterizing fibers pulled from a spacecraft, a white fibrous residue discovered in a jet refueler truck, brown residue from a plant habitat slated for delivery to the ISS (International Space Station), corrosion on a pipe from a sprinkler, and air filtration material brought back from the ISS. I also conducted my own fiber study in order to practice techniques and further my understanding of background concepts. Furthermore, I had the opportunity to participate in diverse work assignments, where I was assigned to work with other branches of the engineering department for 1-2 days each. The first was in the Materials Science branch where I participated in the construction of the plant habitat intended for use in research aboard the ISS. The second was in the Testing Design branch where I assisted with tensile and hardness testing of over 40 samples. In addition, I have had the privilege to attend multiple tours of the NASA KSC campus, including to the Astronaut Crew Quarters, the VAB (the main area, the Columbia room, and the catwalk), the Visitor Center housing the shuttle Atlantis, the Saturn-V exhibit, the Prototype laboratory, SWAMP WORKS, the Shuttle Landing Facility, the Crawler, and the Booster Fabrication Facility (BFF). Lastly, much of my coursework prepared me for this experience, including numerous laboratory courses with topics diverse as chemistry, physics, and biology.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. NASA EM Followup of LIGO-Virgo Candidate Events

    NASA Technical Reports Server (NTRS)

    Blackburn, Lindy L.

    2011-01-01

    We present a strategy for a follow-up of LIGO-Virgo candidate events using offline survey data from several NASA high-energy photon instruments aboard RXTE, Swift, and Fermi. Time and sky-location information provided by the GW trigger allows for a targeted search for prompt and afterglow EM signals. In doing so, we expect to be sensitive to signals which are too weak to be publicly reported as astrophysical EM events.

  10. Stennis hosts 2010 Special Olympics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    B.J. Matherne, 27, of Gulfport, scores a soccer goal during one of the 2010 Special Olympic games at NASA's John C. Stennis Space Center on March 27. Stennis serves as an annual host for the special needs event. Each year, local, regional and national Special Olympics events are hosted in more than 150 countries for persons with special needs. An international Special Olympics competition is held every two years.

  11. NASA, Building Tomorrow's Future

    NASA Technical Reports Server (NTRS)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  12. STS-65 Earth observation of Lake Chad, Africa, taken aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Lake Chad, Africa. This is another long term ecological monitoring site for NASA scientists. Lake Chad was first photographed from space in 1965. A 25-year length-of-record data set exists for this environmentally important area. A number of these scenes have been digitized, rectified, classified and results show that the lake area has been shrinking and only 15% to 20% of the surface water is visible on space images. NASA's objective in monitoring this lake is to document the intra- and interannual areal changes of the largest standing water body in the Sahelian biome of North Africa. These areal changes are an indicator of the presence or absence of drought across the arguably overpopulated, overgrazed, and over biological carrying capacity limits nations of the Sahel.

  13. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  14. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA's newest space telescope, the Chandra X-ray Observatory, is scheduled for launch not earlier than July 20, 1999, aboard Space Shuttle mission STS-93. The world's most powerful X-ray observatory, Chandra will join the Hubble Space Telescope and NASA's other great observatories in an unprecedented study of our universe. With its capability to "see" an otherwise invisible but violent, vibrant and ever-changing universe, Chandra will provide insights into the universe's structure and evolution. The following information is designed to assist news media representatives cover launch and activation of the Chandra X-ray Observatory. Covering from the Chandra Control Center NASA will establish a news center at the Chandra X-ray Observatory Operations Control Center in Cambridge, Mass., during the critical period of launch and early activation. The news center will be open from approximately two days prior to launch until the observatory is established in its operating orbit approximately 11 days after launch. The telephone numbers for the news center are: (617) 496-4454 (617) 496-4462 (617) 496-4484 The news center will be staffed around the clock during the Shuttle mission by media relations officers knowledgeable about the Chandra mission and its status. Media covering from the news center will be provided work space and have opportunities for face-to-face interviews with Chandra management, control team members and Chandra scientists. They will be able to participate in daily Chandra status briefings and have access to a special control room viewing area. Additionally, media covering from Cambridge will receive periodic status reports on Chandra and the STS-93 mission, and will be able to participate in interactive televised briefings on the STS-93 mission originating from other NASA centers. While advance accreditation is not required, media interested in covering Chandra from the Operations Control Center should contact Dave Drachlis by telephone at (256) 544

  15. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  16. NASA's GPS tracking system for Aristoteles

    NASA Astrophysics Data System (ADS)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  17. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  18. 48 CFR 1835.016-71 - NASA Research Announcements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA Research Announcements... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 1835.016-71 NASA Research Announcements. (a) Scope. An NRA is used to announce research interests in support of NASA's programs,...

  19. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  20. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  1. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  2. 14 CFR 1260.50 - Special conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Deviations are not required for changes made to special conditions. (b) Special conditions will be printed in... necessary. (e) Grants and cooperative agreements awarded by NASA to commercial organizations where...

  3. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs if... produce, potable water. (b) The Commissioner of Food and Drugs may base his approval or disapproval of...

  4. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... health authorities of contiguous foreign nations. (c) Overboard water treated on vessels shall be from... COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.90 Approval of treatment aboard conveyances. (a) The treatment of water aboard conveyances shall be approved by the Commissioner of Food and Drugs...

  5. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  6. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  7. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  8. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  9. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of...

  10. Low energy neutron measurements aboard encounter missions

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Maksimovic, M.; Trottet, G.

    Neutrons in the MeV to GeV range are produced by interaction of flare accelerated ions with the solar atmosphere. Because of their lifetime, only high energy neutrons (> 100 MeV) have a high probability to be detected at earth's orbit. So far, around fifteen solar neutron events have been observed either by high energy detectors aboard spacecrafts at 1 AU or by ground based neutron monitors. Neutrons between 10 and 100 MeV have also been detected for a few events through their proton decay. Measurements of solar neutrons closer to the Sun aboard encounter missions will allow to probe for the first time the MeV neutrons which are produced by the nuclear reactions of energetic ions with thresholds around 1 MeV/nuc and will provide information on the accelerated ion spectrum in the energy range between ˜ 1 MeV and 100 MeV/nuc in complementarity with what can be deduced from γ -ray line emission. The close proximity of the Sun would allow to measure neutron events for many more flares opening a new field of solar physics. Combined with near in-situ ion measurements and γ -ray observations, neutrons will bring information on the link between interacting and escaping ions while getting rid of most of the transport effects.

  11. National Report on the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  12. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  13. NASA - Beyond Boundaries

    NASA Technical Reports Server (NTRS)

    McMillan, Courtenay

    2016-01-01

    NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.

  14. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  15. ISS Update: Human Research Aboard Station

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs at the Marshall Space Flight Center’s Payload Operations Integration Center in Huntsville, Ala., recently spoke with Public Affairs Officer Kelly Humphries ...

  16. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  17. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  18. Biological investigations aboard the biosatellite Cosmos-1129

    NASA Astrophysics Data System (ADS)

    Tairbekov, M. G.; Parfyonov, G. P.; Platonova, R. W.; Abramova, V. M.; Golov, V. K.; Rostopshina, A. V.; Lyubchenko, V. Yu.; Chuchkin, V. G.

    Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.

  19. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  20. Microstructure Analysis of Directionally Solidified Aluminum Alloy Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Angart, Samuel Gilbert

    This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt-Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis

  1. A cumulative index to Aeronautical Engineering: A special bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (80) through NASA SP-7037 (91) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics (AIAA) and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes.

  2. NASA Celebrates the World Year of Physics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2005-01-01

    Celebrating the World Year of Physics presents NASA with an opportunity to inform educators of the importance of physics in our everyday lives. indeed, almost all NASA programs fake advantage of physical concepts in some fashion. Special programs throughout the year, affiliated with the World Year of Physics, are identifed to inform and inspire educators, students, and the general public. We will discuss these programs in detail and outline how educators may become more involved.

  3. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  4. GROUP-C and LITES Experiments for Ionospheric Remote Sensing aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.

    2013-12-01

    Ionospheric irregularities, also known as ionospheric bubbles, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Understanding irregularity formation, development, and evolution is vital for efforts within NASA and DoD to forecast scintillation. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the International Space Station (ISS) would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. The GPS Radio Occultation and Ultraviolet Photometry Colocated (GROUPC) and the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet. By combining for the first time high-sensitivity in-track photometry with vertical ionospheric airglow spectrographic imagery, we demonstrate that high-fidelity optical tomographic reconstruction of bubbles can be performed from the ISS. Ground-based imagery can supplement the tomography by providing all-sky images of ionospheric structures (e.g. bubbles and TIDs) and of signatures of lower atmospheric dynamics, such as gravity waves, that may play a role in irregularity formation. The optical instrumentation can be augmented with additional sensors to provide measurements of scintillation and in situ plasma density, composition, and drifts.

  5. Stennis hosts 2010 Special Olympics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Sarah Johnson, 28, of Gulfport, carries in the Olympic torch to signal the start of the 2010 Area III Special Olympic games at NASA's John C. Stennis Space Center on March 27. Stennis volunteers hosted special needs athletes from across the area for the event. Stennis is an annual host of the games.

  6. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  7. NASA's Astrophysics Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima

    2011-05-01

    NASA conducts a balanced Astrophysics Education and Public Outreach program over K-12, higher education, informal education and public outreach, with the goal of taking excitement of NASA's scientific discoveries to the public, and generating interest in students in the area of Science, Technology, Education and Mathematics (STEM). Examples of classroom material, innovative research programs for teachers and students, collaborative programs with libraries, museums and planetaria, and programs for special needs individuals are presented. Information is provided on the competitive opportunities provided by NASA for participation in Astrophysics educational programs.

  8. NASA's Astronant Family Support Office

    NASA Technical Reports Server (NTRS)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve

    2014-01-01

    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  9. A Symmetry Breaking Experiment Aboard Mir and the Stability of Rotating Liquid Films

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.; Gomes, D.; McCuan, J.; Weislogel, M.

    1999-01-01

    We discuss results from two parts of our study on the behavior of liquids under low-gravity conditions. The first concerns the Interface Configuration Experiment (ICE) aboard the Space Station Mir on the Mir-21/NASA-2 mission; for a certain 'exotic' container, distinct asymmetric liquid configurations are found as locally stable ones, even though the container itself is rotationally symmetric, in confirmation of mathematical results and numerical computations. The second investigation concerns the behavior of slowly rotating liquids; it is found that a rotating film instability observed previously in a physical experiment in 1-g, scaled to render gravity effects small, does not correspond to mathematical and computational results obtained for low gravity. These latter results are based on the classical equilibrium theory enhanced with a van der Waals potential of adhesion.

  10. Survey Analysis of Materials Processing Experiments Aboard STS-47: Spacelab J

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) is a survey outline of materials processing experiments aboard Space Shuttle Mission STS-47: Spacelab J, a joint venture between NASA and the National Space Development Agency of Japan. The mission explored materials processing experiments including electronics and crystal growth materials, metals and alloys, glasses and ceramics, and fluids. Experiments covered include Growth of Silicone Spherical Crystals and Surface Oxidation, Growth Experiment of Narrow Band-Gap Semiconductor Lead-Tin-Tellurium Crystals in Space, Study on Solidification of Immiscible Alloys, Fabrication of Very-Low-Density, High-Stiffness Carbon Fiber/Aluminum Hybridized Composites, High Temperature Behavior of Glass, and Study of Bubble Behavior. The TM underscores the historical significance of these experiments in the context of materials processing in space.

  11. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  12. Improved data analysis for EPHIN aboard SOHO

    NASA Astrophysics Data System (ADS)

    Terasa, Christoph; Gómez-Herrero, Raúl; Klassen, Andreas; Müller-Mellin, Reinhold; Heber, Bernd

    2010-05-01

    The COSTEP instrument aboard the Solar and Heliospheric Observatory (SOHO) spacecraft consists of two separate energetic particle detectors, the Low Energy Ion and Electron Instrument (LION) and the Electron Proton Helium Instrument (EPHIN). These detectors allow measurement of electrons, protons and helium of solar, interplanetary or galactic origin in the energy range of 44 keV per particle up to several tens of MeV per nucleon. The objectives of these instruments are the study of particle emissions from the Sun, the galaxy and the heliosphere. EPHIN is collecting data since the launch of the mission in December 1995 covering more than a full 11-year solar cycle. Late in 1996 one of the semiconductor detectors became noisy, affecting the quality of the data in the upper energy range. We used the energy-range empiric relation by Goulding et al. to resconstruct the energy loss of nuclei in the affected detector. New dynamic spectra and long-term quiet time spectra using these techniques are presented.

  13. Mercury exposure aboard an ore boat.

    PubMed Central

    Roach, Richard R; Busch, Stephanie

    2004-01-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  14. Occupational lead exposure aboard a tall ship

    SciTech Connect

    Landrigan, P.J.; Straub, W.E.

    1985-01-01

    To evaluate occupational exposures to lead in shipfitters cutting and riveting lead-painted iron plates aboard an iron-hulled sailing vessel, the authors conducted an environmental and medical survey. Lead exposures in seven personal (breathing zone) air samples ranged from 108 to 500 micrograms/mT (mean 257 micrograms/mT); all were above the Occupational Safety and Health Administration (OSHA) standard of 50 micrograms/mT. In two short-term air samples obtained while exhaust ventilation was temporarily disconnected, mean lead exposure rose to 547 micrograms/mT. Blood lead levels in ten shipfitters ranged from 25 to 53 micrograms/dl. Blood lead levels in shipfitters were significantly higher than in other shipyard workers. Smoking shipfitters had significantly higher lead levels than nonsmokers. Lead levels in shipfitters who wore respirators were not lower than in those who wore no protective gear. Four shipfitters had erythrocyte protoporphyrin (EP) concentrations above the adult upper normal limit of 50 micrograms/dl. A close correlation was found between blood lead and EP levels. Prevalence of lead-related symptoms was no higher in shipfitters than in other workers. These data indicate that serious occupational exposure to lead can occur in a relatively small boatyard.

  15. Mercury exposure aboard an ore boat.

    PubMed

    Roach, Richard R; Busch, Stephanie

    2004-06-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  16. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.

  17. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Part A is a master list of management directives in force as of March 31, 1993. Chapter 1 contains introductory informative material on how to use this Handbook. Chapter 2 is a complete master list of Agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B is the index to NASA management directives in force as of March 31, 1993. This part contains an in-depth alphabetical index to all NASA management directives other than Handbooks. NHB's 1610.6, 'NASA Personnel Security Handbook,' 1620.3, 'NASA Physical Security Handbook,' 1640.4, 'NASA Information Security Program,' 1900.1, 'Standards of Conduct for NASA Employees,' 5103.6, 'Source Evaluation Board Handbook,' and 7400.1, 'Budget Administration Manual,' are indexed in-depth. All other NHB's are indexed by titles only.

  18. Surface Tension Demonstration Aboard the ISS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, photographed this view of a surface tension demonstration using water that is held in place by a metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS). The Expedition Six crew was delivered to the station via the Space Shuttle Orbiter Endeavor STS-113 mission which was launched on November 23, 2002.

  19. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  20. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  1. NASA Now: Rocket Engineering

    NASA Video Gallery

    What’s the difference between fission and fusion? What are the applications & benefits of nuclear power & propulsion at NASA? How can NASA gain nuclear energy’s benefits for space exploration? ...

  2. NASA Now: Balloon Research

    NASA Video Gallery

    In this NASA Now program, Debbie Fairbrother discusses two types of high-altitude balloons that NASA is using to test scientific instruments and spacecraft. She also talks about the Ideal Gas Law a...

  3. Building 1100--NASA

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

  4. The NASA Organization

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook, effective 13 September 1994, documents the NASA organization, defines terms, and sets forth the policy and requirements for establishing, modifying, and documenting the NASA organizational structure and for assigning organizational responsibilities.

  5. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  6. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  7. #NASATweetup @NASA_Langley

    NASA Video Gallery

    NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

  8. 10 day flight performance of the plant generic bioprocessing apparatus (PGBA) plant growth facility aboard STS-77

    NASA Astrophysics Data System (ADS)

    Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert

    1997-01-01

    PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.

  9. 10 day flight performance of the plant generic bioprocessing apparatus (PGBA) plant growth facility aboard STS-77

    SciTech Connect

    Hoehn, A.; Chamberlain, D.J.; Forsyth, S.W.; Hanna, D.S.; Scovazzo, P.; Horner, M.B.; Stodieck, L.S.; Todd, P.; Heyenga, A.G.; Kliss, M.H.

    1997-01-01

    PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). {ital Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens} were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support. {copyright} {ital 1997 American Institute of Physics.}

  10. NASA fills key positions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    NASA Administrator Sean O'Keefe has named Shannon Lucid, a NASA astronaut and veteran of five Space Shuttle flights, to serve as the agency's chief scientist. Lucid replaces Kathie Olsen, whom President Bush has said he intends to nominate as associate administrator for science in the White Office of Science and Technology Policy.President Bush also has announced his intention to nominate former NASA astronaut and Assistant Deputy Administrator Major General Charles F. Bolden as NASA Deputy Administrator.

  11. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  12. The NASA Clinic System

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Williams, Richard

    2009-01-01

    NASA maintains on site occupational health clinics at all Centers and major facilities NASA maintains an on-site clinic that offers comprehensive health care to astronauts at the Johnson Space Center NASA deploys limited health care capability to space and extreme environments Focus is always on preventive health care

  13. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  14. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  15. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a Roman candle, the exhaust from the Boeing Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  16. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  17. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  18. NASA Now: Microbes @ NASA: Early Earth Ecosystems

    NASA Video Gallery

    What may look like green slime growing on a pond is what scientists call a microbial mat! Why does NASA care about slime? Microbial mats are living examples of the most ancient biological communiti...

  19. NASA-MUST: Driving the STEM Agenda

    ERIC Educational Resources Information Center

    Abdul-Alim, Jamaal

    2012-01-01

    This article discusses the NASA-MUST (Motivating Undergraduates in Science and Technology) program which annually serves 115 students from diverse backgrounds. The program is in its sixth year. While the program is open to all students, a special emphasis is placed on those from groups that are underrepresented in STEM fields. Participating…

  20. Special Days, Special Ways.

    ERIC Educational Resources Information Center

    Clarke, Jacqueline

    2001-01-01

    Presents unique ways to create special rituals that recognize individual students' achievements and milestones. Ideas include throwing a send-off party for a student who is moving; holding monthly birthday luncheons; choosing an ambassador to accompany new students around school; and making a lost tooth container that students can use to safely…

  1. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  2. NASA logo painted on orbiter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A KSC worker paints the NASA logo on the port wing of the orbiter Endeavour, which is scheduled to launch in December for STS-88. The paint is a special pigment that takes 18 hours to dry; the whole process takes approximately two weeks to complete. The NASA logo, termed 'meatball,' was originally designed in the late 1950s. It symbolized NASA's role in aeronautics and space in the early years of the agency. The original design included a white border surrounding it. The border was dropped for the Apollo 7 mission in October 1968, replaced with royal blue to match the background of the emblem. In 1972 the logo was replaced by a simple and contemporary design -- the 'worm' -- which was retired from use last year. NASA reverted to its original logo in celebration of the agency's 40th anniversary in October, and the 'golden age' of America's space program. All the orbiters will bear the new logo.

  3. Technology's Role in NASA's Future

    NASA Video Gallery

    NASA Chief Technologist Bobby Braun talks to NASA managers about the vital role technology research and development will play in NASA's future. Braun discusses how NASA will use new technologies to...

  4. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  5. A NASA family of minicomputer systems, Appendix A

    NASA Technical Reports Server (NTRS)

    Deregt, M. P.; Dulfer, J. E.

    1972-01-01

    This investigation was undertaken to establish sufficient specifications, or standards, for minicomputer hardware and software to provide NASA with realizable economics in quantity purchases, interchangeability of minicomputers, software, storage and peripherals, and a uniformly high quality. The standards will define minicomputer system component types, each specialized to its intended NASA application, in as many levels of capacity as required.

  6. NASA thesaurus combined file postings statistics

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA Thesaurus Combined File Postings Statistics is published semiannually (January and July). This alphabetical listing of postable subject terms contained in the NASA Thesaurus is used to display the number of postings (documents) indexed by each subject term from 1968 to date. The postings totals per item are separated by announcement of other media into STAR, IAA, COSMIC, and OTHER, columnar entries covering the NASA document collection (1968 to date). This is a cumulative publication, and except for special cases, no reference is needed to previous issuances. Retention of the January 1992 issue could be helpful for book information. With the July 1992 issue, NALNET book statistics have been replaced by COSMIC statistics for NASA funded software. File postings statistics for the Alternate Data Base covering NASA collection from 1962 through 1967 were published on a one-time basis in September 1975. Subject terms for the Alternate Data Base are derived from the subject Authority List, reprinted 1985, which is available upon request. The distribution of 19,697,748 postings among the 17,446 NASA Thesaurus terms is tabulated on the last page of the NASA Thesaurus Combined File Postings Statistics.

  7. A NASA Strategy for Leveraging Emerging Launch Vehicles for Routine, Small Payload Missions

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.

    2005-01-01

    Orbital flight opportunities for small payloads have always been few and far between, and then on February 1, 2002, the situation got worse. In the wake of the loss of the Columbia during STS- 107, changing NASA missions and priorities led to the termination of the Shuttle Small Payloads Projects, including Get-Away Special, Hitcbker, and Space Experiment Module. In spite of the limited opportunities, long queue, and restrictions associated with flying experiments on a man-rated transportation system; the carriers provided a sustained, high quality experiment services for education, science, and technology payloads, and was one of the few games in town. Attempts to establish routine opportunities aboard existing ELVs have been unsuccessful, as the cost-per-pound on small ELVs and conflicts with primary spacecraft on larger vehicles have proven prohibitive. Ths has led to a backlog of existing NASA-sponsored payloads and no prospects or plans for fbture opportunities within the NASA community. The prospects for breaking out of this paradigm appear promising as a result of NASA s partnership with DARPA in pursuit of low-cost, responsive small ELVs under the Falcon Program. Through this partnership several new small ELVs, providing 1000 lbs. to LEO will be demonstrated in less than two years that promise costs that are reasonable enough that NASA, DoD, and other sponsors can once again invest in small payload opportunities. Within NASA, planning has already begun. NASA will be populating one or more of the Falcon demonstration flights with small payloads that are already under development. To accommodate these experiments, Goddard s Wallops Flight Facility has been tasked to develop a multi-payload ejector (MPE) to accommodate the needs of these payloads. The MPE capabilities and design is described in detail in a separately submitted abstract. Beyond use of the demonstration flights however, Goddard has already begun developing strategies to leverage these new ELVs

  8. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  9. NASA ALLSTAR Project

    NASA Technical Reports Server (NTRS)

    Levy, Cesar; Ebadian, M. A.

    1998-01-01

    We finished the material development of Level 1, Level 2 and most of Level 3. We created three new galleries, one of streaming videos enabling the user to select his/her appropriate speed of Internet connectivity for better performance. The second gallery on NASA's X-series aircraft and the third is on F-series aircraft, We also completed the placement and activation of all thirteen kiosks. We added one more kiosk over the number suggested in the proposal at Baker Aviation High School - a Dade County Public School for special aviation programs. We felt that the goals of this school matched ALLSTAR's goals and that the placement of the kiosk would better help the local students become interested in the Aviation and Aeronautics field. We continue to work on the development of our "Teacher Resource Guide to ALLSTAR material" in which we tied our material into the national and Florida State standards. We finished the Florida Sunshine State standards, getting positive feedback from local and other educators who use the material on a regular basis. We had another successful workshop on October 29th, 1997. We introduced the ALLSTAR website and kiosk to about twenty science and history teachers from Dade County Public Schools (DCPS). Most teachers were from middle schools, although we had some from elementary schools also. We provided several demonstrations of the ALLSTAR material to local schools in the Dade County Public Schools (DCPS) system. We used the ALLSTAR material with FIU's summer immersion program for FLAME students. This program includes a high number of minority students interested in science and engineering. We also presented the material at National Science Teachers Association (NSTA) and National Congress on Aviation and Space Education (NCASE) conferences and will be presenting the material at the Southeast Florida Aviation Consortium (SEFAC). We provided two on-site workshops in the NSTA conference with total attended of about 70 teachers. The BBS was

  10. Gemini 4 astronauts relax aboard Navy helicopter after recovery

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 astronauts, James A. McDivitt (right), command pilot, and Edward H. White II, (left), pilot, relax aboard a U.S. Navy helicopter on their way to the aircraft carrier U.S.S. Wasp after recovery from the Gemini 4 spacecraft. They had been picked up out of the Atlantic Ocean following a successful splashdown (33532); White (left) and McDivitt listen to the voice of President Lyndon B. Johnson as he congratulated them by telephone on the successful mission. They are shown aboard the carrier U.S.S. Wasp just after their recovery (33533).

  11. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  12. 29 CFR 783.35 - Employees serving as “watchmen” aboard vessels in port.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 783.35 Employees serving as “watchmen” aboard vessels in port. Various situations are presented with respect to employees rendering watchman or similar service aboard a vessel in port. Members of the crew... crew rendering watchman or similar services aboard the vessel during this period would not appear to...

  13. NASA/ESA CV-990 airborne simulation of Spacelab

    NASA Technical Reports Server (NTRS)

    Mulholland, D.; Neel, C.; De Waard, J.; Lovelett, R.; Weaver, L.; Parker, R.

    1975-01-01

    The paper describes the joint NASA/ESA extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); and schedule requirements to prepare for such a Spacelab mission.

  14. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  15. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  16. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  17. 14 CFR 1260.50 - Special conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... through 1260.38, NASA grants and cooperative agreements are subject to special conditions, which either... 1260.69, but NASA may impose other conditions as discussed in § 1260.114 or as the requirements dictate...; § 1260.125(h), Revision of Budget and Program Plans; and § 1260.132, Real Property. (d) Research...

  18. 14 CFR 1260.50 - Special conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... through 1260.38, NASA grants and cooperative agreements are subject to special conditions, which either... 1260.69, but NASA may impose other conditions as discussed in § 1260.114 or as the requirements dictate...; § 1260.125(h), Revision of Budget and Program Plans; and § 1260.132, Real Property. (d) Research...

  19. NASA Exploration Design Challenge

    NASA Video Gallery

    From the International Space Station, astronaut Sunita Williams welcomes participants to the NASA Exploration Design Challenge and explains the uncertainties about the effects of space radiation on...

  20. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Prospective contractors are acquainted with the organizational structure of NASA, and the major technical program offices and selected staff offices at the Headquarters level are briefly described. The basic procedures for Federal procurement are covered. A primer is presented on how to market to NASA. While the information is specific to NASA, many of the principles are applicable to other agencies as well. Some of the major programs are introduced which are available to small and disadvantaged businesses. The major research programs and fields of interest at individual NASA centers are summarized.

  1. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  2. NASA agenda for tomorrow

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Key elements of national policy, NASA goals and objectives, and other materials that comprise the framework for NASA planning are included. The contents are expressed as they existed through much of 1988; thus they describe the strategic context employed by NASA in planning both the FY 1989 program just underway and the proposed FY 1990 program. NASA planning will continue to evolve in response to national policy requirements, a changing environment, and new opportunities. Agenda for Tomorrow provides a status report as of the time of its publication.

  3. NASA's Flight Opportunities Program

    NASA Video Gallery

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  4. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. Survey of NASA V and V Processes/Methods

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Nelson, Stacy

    2002-01-01

    The purpose of this report is to describe current NASA Verification and Validation (V&V) techniques and to explain how these techniques are applicable to 2nd Generation RLV Integrated Vehicle Health Management (IVHM) software. It also contains recommendations for special V&V requirements for IVHM. This report is divided into the following three sections: 1) Survey - Current NASA V&V Processes/Methods; 2) Applicability of NASA V&V to 2nd Generation RLV IVHM; and 3) Special 2nd Generation RLV IVHM V&V Requirements.

  6. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  7. End-To-END Performance of the Future MOMA Instrument Aboard the ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Pinnick, V. T.; Buch, A.; Szopa, C.; Grand, N.; Danell, R.; Grubisic, A.; van Amerom, F. H. W.; Glavin, D. P.; Freissinet, C.; Coll, P. J.; Stalport, F.; Humeau, O.; Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.

    2015-12-01

    Following the SAM experiment aboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment aboard the 2018 ExoMars mission will be the continuation of the search for organic matter on the Mars surface. One advancement with the ExoMars mission is that the sample will be extracted as deep as 2 meters below the Martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatile compounds) of the Martian soil, MOMA is equipped with a dual ion source ion trap mass spectrometer utilizing UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC). In order to analyze refractory organic compounds and chiral molecules during GC-ITMS analysis, samples may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). Previous experimental reports have focused on coupling campaigns between the breadboard versions of the GC, provided by the French team (LISA, LATMOS, CentraleSupelec), and the MS, provided by the US team (NASA-GSFC). This work focuses on the performance verification and optimization of the GC-ITMS experiment using the Engineering Test Unit (ETU) models which are representative of the form, fit and function of the flight instrument including a flight-like pyrolysis oven and tapping station providing by the German team (MPS). The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. References: [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  8. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  9. Extreme Environments: Why NASA?

    NASA Astrophysics Data System (ADS)

    Meyer, M. A.

    2002-12-01

    Life on our planet is the only known example in the universe and so we are relegated to this planet for the study of life. However, life may be a natural consequence of planet formation, and so the study of the origin, evolution, distribution and future of life may be greatly informed by planetary exploration. Astrobiology has adopted several approaches to study life on Earth, for deducing our origins, for determining the likelihood of life elsewhere, and for enabling the search for evidence of past or present life. The first approach has been the Exobiology Program, centered around understanding the origins of life and which supports individual investigator research. Second has been the construction of consortia-type research in which researchers from different disciplines focus on a larger problem. This structure began with NASA Specialized Centers of Research and Training and has grown to include the Astrobiology Institute - a collection of competitively selected groups of researchers attacking problems in Astrobiology as individual teams and as a consolidated Institute. With the formation of an intellectual basis for exploring for life elsewhere, Astrobiology has initiated the competitive research and development program in instrument development (Astrobiology Science and Technology for Instrument Development [ASTID] Program) that would enable future mission instruments for the exploration of planetary bodies in the search for prebiotic chemistry, habitable environments (past or present), biomarkers, and possibly life itself. However, the act of exploring requires robust instrumentation, mobile robotic platforms, efficient operations, and a high level of autonomy. To this end, Astrobiology has started a new research activity that promotes scientifically-driven robotic exploration of extreme environments on Earth that are analogous to suspected habitable environments on other planetary bodies. The program is called Astrobiology Science and Technology for

  10. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC) and is seen here on the ramp with NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) in the background. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by

  11. Gemini 12 crew arrives aboard U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    A happy Gemini 12 prime crew arrives aboard the aircraft carrier, U.S.S. Wasp. Astronauts James A. Lovell Jr. (left), command pilot, and Edwin E. Aldrin Jr., pilot, had just been picked up from the splashdown area by helicopter.

  12. Predicting Airborne Particle Levels Aboard Washington State School Buses.

    PubMed

    Adar, Sara D; Davey, Mark; Sullivan, James R; Compher, Michael; Szpiro, Adam; Liu, L-J Sally

    2008-10-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  13. 2008 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Richard W.

    2008-01-01

    Welcome to the 2008 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. This year, along with full length articles concerning various subject areas, we have provided updates to standard subjects with links back to the 2007 original article. Additionally, we present summaries from the various NASA Range Safety Program activities that took place throughout the year, as well as information on several special projects that may have a profound impact on the way we will do business in the future. The sections include a program overview and 2008 highlights of Range Safety Training; Range Safety Policy; Independent Assessments and Common Risk Analysis Tools Development; Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging Range Safety-related technologies; Special Interests Items that include recent changes in the ELV Payload Safety Program and the VAS explosive siting study; and status reports from all of the NASA Centers that have Range Safety responsibilities. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. We have made a great effort to include the most current information available. We recommend that this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. This is the third year we have utilized this web-based format for the annual report. We continually receive positive feedback on the web-based edition, and we hope you enjoy this year's product as well. It has been a very busy and productive year on many fronts as you will note as you review this report. Thank you to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the

  14. NASA and the practice of space law

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1985-01-01

    The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.

  15. Master list and index to NASA directives

    NASA Technical Reports Server (NTRS)

    1984-01-01

    All NASA management directives in force as of August 1, 1984 are listed by major subject headings showing number, effective date, title, responsible office, and distribution code. Delegations of authority in print by that date are listed numerically as well as by the installation or office to which special authority is assigned. Other consolidated lists show all management handbooks, directives applicable to the Jet Propulsion Laboratory, directives published in the Code of Federal Regulations, complementary manuals, and NASA safety standards. Distribution policies and instructions for ordering directives are included.

  16. Master list and index to NASA directives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    All NASA management directives in force as of August 1, 1982 are listed by major subject headings showing number, effective data, title, responsible office, and distribution code. Delegations of authority in print by that date are listed numerically as well as by the installation or office to which special authority is assigned. Other consolidated lists show all management handbooks, directives applicable to the Jet Propulsion Laboratory, directions published in the Code of Federal Regulations, complementary manuals, and NASA safety standards. Distribution policies and instructions for ordering directives are included.

  17. Station focus of NASA budget hearing

    NASA Astrophysics Data System (ADS)

    Jones, Richard

    One of the most important events in this year's consideration of the NASA fiscal year 1994 budget request occurred on April 28 with the appearance of NASA Administrator Daniel S. Goldin and his senior staff before the House VA, HUD, Independent Agencies Appropriations Subcommittee, which largely determines the space agency's funding. Subcommittee chairman Louis Stokes (D-Ohio) said that “we face some very special problems this year.” He cautioned that the subcommittee is “totally dependent on the allocation which we are given,” referring to the money his subcommittee is given to fund all of the programs under its jurisdiction.

  18. NASA Sponsors Cancer Research at Children's Hospital

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Administrator Dan Goldin (left), during a visit at Children's Hospital of Wisconsin in Milwaukee, Wisconsin, discussed how NASA's special lighting technology may soon treat cancer. Goldin talked with Dr.Harry Whelan (right) and Dr. Kerneth Reichert (center left), both pediatric neurologists with the Hospital and professors at the Medical College of Wisconsin in Milwaukee. Accompanied by Astronaut Mary Ellen Weber, Goldin was shown this innovative treatment, called Photodynamic Therapy, a method used to destroy the tumor without damaging the delicate brain tissue around it. The treatment uses tiny pinhead-size Light Emitting Diodes (LEDs) developed for Space Product Development plant growth experiments.

  19. NASA directives: Master list and index

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this Handbook. Chapter 2 is a complete master list of Agency-wide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office of Installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B contains an in-depth alphabetical index to all NASA management directives other than Handbooks.

  20. NASA's Astronomy Education Program: Reaching Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise Anne; Hertz, Paul; Meinke, Bonnie

    2015-08-01

    An overview will be given of the rich programs developed by NASA to inject the science from it's Astrophysics missions into STEM activities targeted to diverse audiences. For example, Astro4Girls was started as a pilot program during IYA2009. This program partners NASA astrophysics education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families, and has been executed across the country. School curricula and NASA websites have been translated in Spanish; Braille books have been developed for the visually impaired; programs have been developed for the hearing impaired. Special effort has been made to reach underrepresented minorities. Audiences include students, teachers, and the general public through formal and informal education settings, social media and other outlets. NASA Astrophysics education providers include teams embedded in its space flight missions; professionals selected though peer reviewed programs; as well as the Science Mission Directorate Astrophysics Education forum. Representative examples will be presented to demonstrate the reach of NASA education programs, as well as an evaluation of the effectiveness of these programs.

  1. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  2. NASA Engineering Network (NEN)

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Trevarthen, Ellie; Yew, Manson

    2008-01-01

    This slide presentation reviews the NASA Engineering Network (NEN). NEN is designed to search documents over multiple repositories, submit and browse NASA Lessons Learned, collaborate and share ideas with other engineers via communities of practice, access resources from one portal, and find subject matter experts via the People, Organizations, Projects, Skills (POPS) locator.

  3. NASA Now: Propulsion

    NASA Video Gallery

    In this episode of NASA Now, you’ll visit NASA’s Spacecraft Propulsion Research Facility, called B-2, at NASA Plum Brook Station. You’ll meet Dr. Louis Povinelli and Brian Jones who explain w...

  4. NASA: what now?

    NASA Astrophysics Data System (ADS)

    2011-04-01

    This month marks 50 years since Yuri Gagarin first ventured into space in the Vostok 1 mission, and 30 years since NASA's first shuttle flight. As the shuttle Endeavour prepares for its final flight, seven experts outline what NASA's priorities need to be.

  5. NASA Information Summaries.

    ERIC Educational Resources Information Center

    Mar, May 1987, 1988

    1988-01-01

    This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in Space" (PMS-026); (6) "Countdown!: NASA Launch Vehicles and…

  6. NASA educational publications

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is a catalog of educational and technical publications, sponsored by NASA, that are available to the general public from the Government Printing Office (GPO). The following types of publications are announced: periodicals, educational publications, NASA Facts, posters and wallsheets, other publications of interest to educators, scientific and technical publications, and educational materials from Regional Service Centers.

  7. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  8. NASA publications manual 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The various types of NASA publications are described, including formal series, contributions to external publications, informal papers, and supplementary report material. The physical appearance and reproduction procedures for the format of the NASA formal series are discussed, and samples are provided. Matters relating to organization, content, and general style are also considered.

  9. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  10. This is NASA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The organization, operations, functions, and objectives of NASA are outlined. Data include manned space flights, satellite weather observations, orbiting radio relays, and new views of the earth and beyond the earth as observed by satellites. Details of NASA's work in international programs, educational training programs, and adopting space technology to earth uses are also given.

  11. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve R.

    2009-01-01

    This slide presentation reviews several projects that NASA Dryden personnel are involved with: Integrated Resilient Aircraft Controls Project (IRAC), NASA G-III Research Aircraft, X-48B Blended Wing Body aircraft, Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Orion CEV Launch Abort Systems Tests.

  12. NASA Technology Plan 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  13. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  14. Attrition of NASA scientists

    NASA Astrophysics Data System (ADS)

    During the past 3 1/2 years the number of physical scientists employed by the National Aeronautics and Space Administration (NASA) has dropped by more than 15%. The number of mathematics personnel also dropped by about 13%. NASA says these figures represent a trend to increase the agency's emphasis on its primary activity—aerospace engineering—that began with the completion of the Apollo missions.For the same period the number of NASA personnel falling into the categories of aero-space engineering and electronic engineering increased slightly—by 1.2% and 3.1%, respectively. The decrease in both total NASA personnel and total scientific work force was about the same; NASA's scientific work force declined about 2.8%, compared with a total agency work force decrease of 2.9% .

  15. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  16. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  17. NASA Social: Behind the Scenes at NASA Dryden

    NASA Video Gallery

    More than 50 followers of NASA's social media websites went behind the scenes at NASA's Dryden Flight Research Center during a "NASA Social" on May 4, 2012. The visitors were briefed on what Dryden...

  18. In-situ observation of Martian neutral exosphere: Results from MENCA aboard Indian Mars Orbiter Mission (MOM)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pratim Das, Tirtha; Dhanya, M. B.; Thampi, Smitha V.

    2016-07-01

    Till very recently, the only in situ measurements of the Martian upper atmospheric composition was from the mass spectrometer experiments aboard the two Viking landers, which covered the altitude region from 120 to 200 km. Hence, the exploration by the Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Mars Orbiter Mission (MOM) spacecraft of ISRO and the Neutral Gas and Ion Mass Spectrometer (NGIMS) experiment aboard the Mars Atmosphere and Volatile ENvironment (MAVEN) mission of NASA are significant steps to further understand the Martian neutral exosphere and its variability. MENCA is a quadrupole based neutral mass spectrometer which observes the radial distribution of the Martian neutral exosphere. The analysis of the data from MENCA has revealed unambiguous detection of the three major constituents, which are amu 44 (CO2), amu 28 (contributions from CO and N2) and amu 16 (atomic O), as well as a few minor species. Since MOM is in a highly elliptical orbit, the MENCA observations pertain to different local times, in the low-latitude region. Examples of such observations would be presented, and compared with NGIMS results. Emphasis would be given to the observations pertaining to high solar zenith angles and close to perihelion period. During the evening hours, the transition from CO2 to O dominated region is observed near 270 km, which is significantly different from the previous observations corresponding to sub-solar point and SZA of ~45°. The mean evening time exospheric temperature derived using these observations is 271±5 K. These are the first observations corresponding to the Martian evening hours, which would help to provide constraints to the thermal escape models.

  19. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  20. Measurements of nitric acid, carboxylic acids, and selected aerosol species for the NASA/GTE Pacific Mission - West (PEM-WEST)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1993-01-01

    The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall

  1. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space

  2. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported down a road at NASA's Dryden Flight Research Center, Edwards, California, upon its arrival there in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more

  3. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported across the ramp after its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more

  4. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians unload NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) into a hangar upon its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more

  5. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). Captive-carry flights attached under the wing of Dryden's B-52 are scheduled to begin in July, with unpiloted free-flights from the B-52 scheduled to begin in the fall. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and

  6. Combustion experimentation aboard the space transportation system

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.

    1981-01-01

    A description is presented of the preliminary concept, specifications, and general requirements of a proposed Combustion Facility (CF) for the Spacelab payload of the Space Transportation System. The CF will permit an experimenter to use suitably contained liquid, gas, or solid fuels. He can specify and establish the composition and pressure level of the atmosphere in which the combustion will take place. It will be possible to characterize the experiment with common types of instrumentation as well as selected specialized equipment, to study the combustion process visually by direct observation and by motion picture coverage, and to obtain time histories of pertinent experimental parameters. During an experimental period, the CF will depend on Spacelab resources for power, heat rejection, and vacuum. Activating the CF and preparing it for the various experiments, performing the experiments, and shutting down the facility will be largely manual operations performed by flight personnel.

  7. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  8. NASA CONNECT: Atmospheric Detectives

    NASA Technical Reports Server (NTRS)

    1999-01-01

    'The Measurement of All Things: Atmospheric Detectives' is the second of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'The Measurement of All Things: Atmospheric Detectives' students will learn how scientists use satellites, lasers, optical detectors, and wavelengths of light to measure the presence of certain gaseous elements, compounds, and aerosols in the Earth's atmosphere.

  9. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  10. NASA/OAI Research Associates program

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1994-01-01

    The intent of this activity was the development of a cooperative program between the Ohio Aerospace Institute and the NASA Lewis Research Center with the objective of better preparing recent university graduates for careers in government aerospace research laboratories. The selected individuals were given the title of research associate. To accomplish the aims of this effort: (1) the research associates were introduced to the NASA Lewis Research Center and its mission/programs, (2) the research associates directly participated in NASA research and development programs, and (3) the research associates were given continuing educational opportunities in specialized areas. A number of individuals participated in this project during the discourse of this cooperative agreement. Attached are the research summaries of eight of the research associates. These reports give a very good picture of the research activities that were conducted by the associates.

  11. Implementing DSpace at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Lowe, Greta

    2007-01-01

    This presentation looks at the implementation of the DSpace institutional repository system at the NASA Langley Technical Library. NASA Langley Technical Library implemented DSpace software as a replacement for the Langley Technical Report Server (LTRS). DSpace was also used to develop the Langley Technical Library Digital Repository (LTLDR). LTLDR contains archival copies of core technical reports in the aeronautics area dating back to the NACA era and other specialized collections relevant to the NASA Langley community. Extensive metadata crosswalks were created to facilitate moving data from various systems and formats to DSpace. The Dublin Core metadata screens were also customized. The OpenURL standard and Ex Libris Metalib are being used in this environment to assist our customers with either discovering full-text content or with initiating a request for the item.

  12. NASA Breakthrough Propulsion Physics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Editor); Williamson, Gary Scott (Editor)

    1999-01-01

    In August 1997, NASA sponsored a 3-day workshop to assess the prospects emerging from physics that may eventually lead to creating propulsion breakthroughs -the kind of breakthroughs that could revolutionize space flight and enable human voyages to other star systems. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Because the propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research tasks that could make measurable progress toward these grand ambitions. This workshop was one of the first steps for the new NASA Breakthrough Propulsion Physics program led by the NASA Lewis Research Center.

  13. NASA guidelines on report literature

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA seeks for inclusion in its Scientific and Technical Information System research reports, conference proceedings, meeting papers, monographs, and doctoral and post graduate theses which relate to the NASA mission and objectives. Topics of interest to NASA are presented.

  14. NASA Technical Standards Program Overview

    NASA Technical Reports Server (NTRS)

    Gill, Paul

    2005-01-01

    Contents include the following: Establish and maintain "NASA Preferred Technical Standard" as a common baseline for NASA programs. Support the use of technical standards on NASA program in the systems requirement process.

  15. NASA replanning efforts continue

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.

  16. NASA guest investigators

    NASA Astrophysics Data System (ADS)

    The National Aeronautics and Space Administration (NASA) is now seeking guest investigators to participate in the International Sun-Earth Explorer (ISEE) and International Cometary Explorer (ICE) programs. The ISEE/ICE project is a joint NASA/European Space Agency (ESA) venture. A budget of approximately $500,000 to support the ISEE/ICE Guest Investigator Program is expected for fiscal year 1985, and a similar amount is expected for FY 1986.Although NASA welcomes proposals at any time, proposals must be received by mid-October in order to be considered in the initial selection. Those arriving after mid-November may be held for another selection period.

  17. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This booklet of pocket statistics includes the 1996 NASA Major Launch Record, NASA Procurement, Financial, and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Luanch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  18. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Plan summarizes the Agency's vision, mission, and values. Specific goals are listed for each externally focused Enterprise: Mission to Planet Earth, Aeronautics, Human Exploration and Development of Space, Space Science, and Space Technology. These Enterprises satisfy the needs of customers external to NASA. The Strategic Functions (Space Communications, Human Resources, and Physical Resources) are necessary in order to meet the goals of the Enterprises. The goals of these Functions are also presented. All goals must be met while adhering to the discussed values and operating principles of NASA. A final section outlines the implementing strategy.

  19. NASA's supercomputing experience

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ron

    1990-01-01

    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.

  20. NASA educational briefs

    NASA Technical Reports Server (NTRS)

    Vogt, G. L.

    1982-01-01

    In response to a large public demand for information, the Educational Services Branch of NASA has undertaken a series of publications designed for use by teachers, titled 'Educational Briefs for the Classroom', which has resulted in six to eight issues each year for the last three years. Typical of the topics to which the series is dedicated have been space suits, manned spaceflight mission summaries, solar cells, planetary encounter data, orbits, and rocketry. The planning committee for Educational Briefs is aided in its selection of topics by the many letters received by NASA. Following the Voyager Saturn flybys, NASA received more than 175,000 letters from both children and adults.

  1. The NASA Exobiology Programme

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    NASA will indeed conduct a more active search for life beyond Earth. Research on the Martian meteorites will be augmented by $2 million to be contributed equally by NASA and NSF (National Science Foundation). The science strategy for the NASA Mars Surveyor Program now places a much higher priority on the search for life, particularly fossil evidence. This program features two launches per opportunity (every two years, starting this November). The focus on Exobiology emphasizes high resolution multispectral orbital mapping to locate key aqueous sedimentary minerals, the exploration of ancient terrains by capable rovers, and the need for multiple sample return missions. Additional information is contained within the original extended abstract.

  2. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  3. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  4. NASA DEVELOP Students Rev Up Response to Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren M.

    2010-01-01

    After the April 20th explosion aboard the Deepwater Horizon drilling rig in the Gulf of Mexico, the world witnessed one of the worst oil spill catastrophes in global history. In an effort to mitigate the disaster, the U.S. government moved quickly to establish a unified command for responding to the spill. Some of the command's most immediate needs were to track the movement of the surface oil slick, establish a baseline measurement of pre-oil coastal ecosystem conditions, and assess potential air quality and water hazards related to the spill. To help address these needs and assist the Federal response to the disaster, NASA deployed several of its airborne and satellite research sensors to collect an unprecedented amount of remotely-sensed data over the Gulf of Mexico region. Although some of these data were shared with the public via the media, much of the NASA data on the disaster was not well known to the Gulf Coast community. The need existed to inform the general public about these datasets and help improve understanding about how NASA's science research was contributing to oil spill response and recovery. With its extensive experience conducting community-oriented remote sensing projects and close ties to organizations around Gulf of Mexico, the NASA DEVELOP National Program stood in a unique position to meet this need.

  5. NASA Technical Management Report (533Q)

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Sanchez, B. (Technical Monitor)

    2001-01-01

    The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

  6. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Silhouetted against the gray sky, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander lifts off from Launch Complex 17B, Cape Canaveral Air Station, at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  7. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amid clouds of exhaust, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander clears Launch Complex 17B, Cape Canaveral Air Station, after launch at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  8. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amid clouds of exhaust and into a gray-clouded sky , a Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  9. The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander into a cloud-covered sky at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  10. NASA's atmospheric variability experiments /AVE/

    NASA Technical Reports Server (NTRS)

    Hill, K.; Turner, R. E.

    1977-01-01

    A series of seven mesoscale experiments were conducted under the NASA program, Atmospheric Variability Experiments (AVE). Rawinsonde, satellite, aircraft, and ground observations were recorded during specially selected meteorological periods lasting from 1 to 3 days. Details are presented for each AVE relative to observation times, experiment size and location, and significant weather. Some research results based on the use of these AVE data are referenced. These include contributions to regional numerical prediction; relations between wind shears, instability, and thunderstorm motion and development; relations between moisture and temperature and the probability of convection; retrieval of tropospheric temperature profiles from cloud-contaminated satellite data; variation of convection intensity as a result of atmospheric variability; and effects of cloud rotation on their trajectories.

  11. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  12. NASA Technology Applications Team

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

  13. NASA 2014: Earth

    NASA Video Gallery

    For the first time in more than a decade, five NASA Earth science missions will be launched into space in the same year, opening new and improved remote eyes to monitor our changing planet. The lau...

  14. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  15. NASA Now: Black Holes

    NASA Video Gallery

    In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...

  16. NASA Now: Expedition 26

    NASA Video Gallery

    In this installment of NASA Now, meet associate International Space Station program scientist Tara Ruttley, who talks about the complexity of conducting research from this one-of-a-kind orbiting sc...

  17. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  18. NASA: Increasing the Awesome

    NASA Video Gallery

    Contemplating the ritual of sending Washington a check every April 15, popular Internet vlogger Hank Green of Vlogbrothers explains why he believes NASA is worth every .45 penny of your hard-earned...

  19. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The following subject areas are covered: summary of the NASA program goals and objectives; major mission performance; USSR spaceflights; summary comparisons of the USA and USSR space records; and selected technical, financial, and manpower data.

  20. NASA's Arctic Voyage 2010

    NASA Video Gallery

    NASA's first oceanographic research expedition left Alaska on June 15, 2010. The ICESCAPE mission will head into the Arctic to study sea ice and the changing ocean ecosystem. Listen to the scientis...

  1. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  2. NASA Archives: UARS

    NASA Video Gallery

    This animation, produced in 1999, shows an artist concept of NASA's Upper Atmosphere Research Satellite, launched in 1991. UARS measured chemical compounds found in the ozone layer, wind and temper...

  3. NASA Now: Extremophiles

    NASA Video Gallery

    NASA research scientists Dr. Margarita Marinova and Dr. Alfonso Davila discuss how scientists study microbes that live in Earth’s extreme environments to better understand places where life might...

  4. NASA Now: Inflatable Structures

    NASA Video Gallery

    NASA senior research engineer Judith Watson is one of a team of engineers at NASA’s Langley Research Center who are studying inflatable structures that might one day be used to establish an outpo...

  5. NASA's Hurricane Hunters

    NASA Video Gallery

    During the 2010 hurricane season, NASA deployed its piloted DC-8 and WB-57, and unmanned Global Hawk aircraft in a massive effort to collect as much data as possible, arming hurricane researchers w...

  6. NASA Now: SLOPE

    NASA Video Gallery

    Welcome to the SLOPE facility at NASA’s Glenn Research Center in Cleveland, Ohio. In this building, NASA engineers experiment with different wheel designs for lunar rovers. They use a simulated c...

  7. NASA Goes to School

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.

    1975-01-01

    The Educational Programs Division of NASA (National Aeronautics and Space Administration) produces a variety of educational programs and resources: professional educational conferences, teacher services, development of instructional resources, audiovisual media, and career guidance materials. (MW)

  8. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  9. NASA's Mars Landings

    NASA Video Gallery

    This video shows the landing sites of all six NASA spacecraft to reachMars—Viking 1, Viking 2, Pathfinder, Spirit, Opportunity, Phoenix—and thetarget location where Curiosity will touch down ...

  10. NASA Now: Aquarius

    NASA Video Gallery

    During this NASA Now program, Dr. David Le Vine explains how Aquarius will help us better predict our climate and how melting glaciers affect ocean salinity. The Aquarius satellite will scan the en...

  11. NASA and energy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.

  12. NASA Now: Mars Excavation

    NASA Video Gallery

    In this NASA Now episode, you will hear from Kurt Sacksteder, Chief of the Space Environments and Experiments Branch at NASA’s Glenn Research Center in Cleveland, Ohio. Sacksteder talks about the...

  13. NASA's commercial space program

    NASA Technical Reports Server (NTRS)

    Ott, Richard H.

    1992-01-01

    This paper will review the goals, status and progress of NASA's commercial space development program administered by the Office of Commercial Programs (OCP). The technologies and flight programs underway by NASA's Centers for Commercial Development (CCDS), NASA's field centers, and the NASA/Industry Joint Endeavor Programs will be summarized. A summary of completed and upcoming commercial payload activities on Shuttle, suborbital rockets, and orbital ELV's will be provided. The new commercial infrastructure and transportation initiatives will be discussed including the Wake Shield Facility, Consort and Joust suborbital rocket programs, the COMET orbital and recovery program, and the Commercial Middeck Accommodation Module Program with Spacehab Inc. Finally, the Commercial Space Station Freedom Program planned by OCP will be reviewed.

  14. NASA Now: Got Math?

    NASA Video Gallery

    In this NASA Now program, Jim Garvin, Ph.D, chief scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., explains how mathematics is a vital tool not only in everything happening at N...

  15. NASA's AVE/VAS program

    NASA Technical Reports Server (NTRS)

    Hill, C. K.; Turner, R. E.

    1983-01-01

    A discussion is presented concerning the Atmospheric Variability Experiment (AVE) which was conducted during the spring of 1982 as part of NASA's Visible and Infrared Spin-Scan Radiometer (VISSR) Atmospheric Sounder (VAS) demonstration. The AVE/VAS Ground Truth Field Experiment is examined in detail, which comprised the obtaining of rawinsonde observations during various meteorological conditions on four different days when VAS data were obtained. These experiments were performed over 24 hr periods in a mesoscale network of 24 National Weather Service rawinsonde sites and 13 NASA and NOAA special sites. The VAS, operating as a part of the GOES satellite system, was employed to provide two-dimensional cloud mapping capability during each of the AVE/VAS experiment periods. Among the goals of this AVE/VAS program, in addition to management of the acquisition and processing of the data, were to perform the research and development needed to produce data products from VAS radiances, to validate the data, and to assess the impact of the data on mesoscale meteorological forecasting and research requirements.

  16. NASA/State Education Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is cooperating with state departments of education in a number of special education programs. An example is Maryland Summer Centers for Gifted and Talented Students sponsored by the Maryland State Department of Education. Some 2,600 students participated in the 1990 program. One of the 12 centers is the Center for Space Science and Technology at Goddard Space Flight Center, which provides instruction to students of the 9-12 grade level. This center is operated by a three organization partnership that includes the Maryland State Department of Education, the University of Maryland and Goddard Space Flight Center, which hosts the instructional program and provides volunteer scientists and engineers as instructors. Typical two-week space intern program includes panel discussions, lectures, tours, field trips and hands-on activity focusing on various space science topics. Senior high students benefit from a one-to-one mentor relationship with a volunteer scientist or engineer. Another example was the Paducah (Kentucky) NASA Community Involvement Project, a joint educational effort of Langley and Lewis Research Centers, Marshall Space Flight Center, the Kentucky Department of Education, the City of Paducah and Paducah Independent Schools. It was a 16 day exposition/symposium featuring seminars on space subjects.

  17. AGU testifies on NASA Budget

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  18. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  19. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  20. AASE-2 In-Situ Tracer Correlations of Methane Nitrous Oxide and Ozone as Observed Aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walgea, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition II field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-II expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March a compared to January and February results.

  1. AASE-2 in-situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8

    NASA Technical Reports Server (NTRS)

    Collins, J. E., Jr.; Sachse, G. W.; Anderson, B. E.; Weinheimer, A. J.; Walega, J. G.; Ridley, B. A.

    1993-01-01

    We report in situ stratospheric measurements of CH4, N2O, and O3 obtained aboard the NASA DC-8 during the January-March 1992 Airborne Arctic Stratospheric Expedition 2 field campaign. These data demonstrate a strong linear correlation between N2O and CH4 in the lower stratosphere thus indicating that both species are effective tracers of stratospheric air motion. Measurements of both species on constant geometric height surfaces indicate that significant subsidence of the arctic stratospheric air mass occurred at DC-8 altitudes over the course of the AASE-2 expedition. In addition, a widespread reduction in O3 mixing ratios (up to 20%) relative to these conserved tracers was also observed in the lower stratosphere in March as compared to January and February results.

  2. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Daehler, Erik; Zanoni, Vicki; Schiller, Stephen; Thome, Kurtis

    2002-01-01

    NASA acquired imagery from the IKONOS satellite as part of its Scientific Data Purchase (SDP) program, which purchases scientific data sets from commercial sources. This viewgraph presentation describes the IKONOS satellite and its sensors, and then gives an overview of characterization efforts undertaken by NASA in cooperation with other government agencies. The characterization included relative radiometric correction, absolute radiometric characterization of data from Lunar Lake Playa, Nevada, and calibration of data from Stennis Space Center, Mississippi.

  3. NASA gateway requirements analysis

    NASA Technical Reports Server (NTRS)

    Duncan, Denise R.; Doby, John S.; Shockley, Cynthia W.

    1991-01-01

    NASA devotes approximately 40 percent of its budget to R&D. Twelve NASA Research Centers and their contractors conduct this R&D, which ranges across many disciplines and is fueled by information about previous endeavors. Locating the right information is crucial. While NASA researchers use peer contacts as their primary source of scientific and technical information (STI), on-line bibliographic data bases - both Government-owned and commercial - are also frequently consulted. Once identified, the STI must be delivered in a usable format. This report assesses the appropriateness of developing an intelligent gateway interface for the NASA R&D community as a means of obtaining improved access to relevant STI resources outside of NASA's Remote Console (RECON) on-line bibliographic database. A study was conducted to determine (1) the information requirements of the R&D community, (2) the information sources to meet those requirements, and (3) ways of facilitating access to those information sources. Findings indicate that NASA researchers need more comprehensive STI coverage of disciplines not now represented in the RECON database. This augmented subject coverage should preferably be provided by both domestic and foreign STI sources. It was also found that NASA researchers frequently request rapid delivery of STI, in its original format. Finally, it was found that researchers need a better system for alerting them to recent developments in their areas of interest. A gateway that provides access to domestic and international information sources can also solve several shortcomings in the present STI delivery system. NASA should further test the practicality of a gateway as a mechanism for improved STI access.

  4. NASA Efforts on Nanotechnology

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2003-01-01

    An overview of the field of nanotechnology within the theme of "New efforts in Nanotechnology Research," will be presented. NASA's interest, requirements and current efforts in this emerging field will be discussed. In particular, NASA efforts to develop nanoelectronic devices, fuel cells, and other applications of interest using this novel technology by collaborating with academia will be addressed. Progress on current collaborations in this area with the University of Puerto Rico will be highlighted.

  5. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  6. NASA supported research programs

    NASA Technical Reports Server (NTRS)

    Libby, W. F.

    1975-01-01

    A summary of the scientific NASA grants and achievements accomplished by the University of California, Los Angles, is presented. The development of planetary and space sciences as a major curriculum of the University, and statistical data on graduate programs in aerospace sciences are discussed. An interdisciplinary approach to aerospace science education is emphasized. Various research programs and scientific publications that are a direct result of NASA grants are listed.

  7. 2006 NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 14, 2004, President George W. Bush announced A Renewed Spirit of Discovery: The President's Vision for U.S. Space Exploration, a new directive for the Nation's space program. The fundamental goal of this directive is "to advance U.S. scientific, security, and economic interests through a robust space exploration program." In issuing it, the President committed the Nation to a journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond. He challenged NASA to establish new and innovative programs to enhance understanding of the planets, to ask new questions, and to answer questions that are as old as humankind. NASA enthusiastically embraced the challenge of extending a human presence throughout the solar system as the Agency's Vision, and in the NASA Authorization Act of 2005, Congress endorsed the Vision for Space Exploration and provided additional guidance for implementation. NASA is committed to achieving this Vision and to making all changes necessary to ensure success and a smooth transition. These changes will include increasing internal collaboration, leveraging personnel and facilities, developing strong, healthy NASA Centers,a nd fostering a safe environment of respect and open communication for employees at all levels. NASA also will ensure clear accountability and solid program management and reporting practices. Over the next 10 years, NASA will focus on six Strategic Goals to move forward in achieving the Vision for Space Exploration. Each of the six Strategic Goals is clearly defined and supported by multi-year outcomes that will enhance NASA's ability to measure and report Agency accomplishments in this quest.

  8. NASA tech brief evaluations

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1994-01-01

    A major step in transferring technology is to disseminate information about new developments to the appropriate sector(s). A useful vehicle for transferring technology from the government sector to industry has been demonstrated with the use of periodical and journal announcements to highlight technological achievements which may meet the needs of industries other than the one who developed the innovation. To meet this end, NASA has very successfully pursued the goal of identifying technical innovations through the national circulation publication; NASA Tech Briefs. At one time the Technology Utilization Offices of the various centers coordinated the selection of appropriate technologies through a common channel. In recent years, each NASA field center has undertaken the task of evaluating submittals for Tech Brief publication independently of the others. The University of Alabama in Huntsville was selected to assist MSFC in evaluating technology developed under the various programs managed by the NASA center for publication in the NASA Tech Briefs journal. The primary motivation for the NASA Tech Briefs publication is to bring to the attention of industry the various NASA technologies which, in general, have been developed for a specific aerospace requirement, but has application in other areas. Since there are a number of applications outside of NASA that can benefit from innovative concepts developed within the MSPC programs, the ability to transfer technology to other sectors is very high. In most cases, the innovator(s) are not always knowledgeable about other industries which might potentially benefit from their innovation. The evaluation process can therefore contribute to the list of potential users through a knowledgeable evaluator.

  9. NASA's Technology Utilization Program.

    NASA Technical Reports Server (NTRS)

    Farley, C. F.

    1972-01-01

    NASA's Technology Utilization Program is described, illustrating how it can be useful in achieving improved productivity, providing more jobs, solving public sector challenges, and strengthening the international competitive situation. Underlying the program is the fact that research and development conducted in NASA's aeronautics and space programs have generated much technical information concerning processes, products, or techniques which may be useful to engineers, doctors, or to others. The program is based on acquisition and publication, working with the user, and applications engineering.

  10. NASA Briefing for Unidata

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher

    2016-01-01

    The NASA representative to the Unidata Strategic Committee presented a semiannual update on NASAs work with and use of Unidata technologies. The talk covered the program of cloud computing prototypes being undertaken for the Earth Observing System Data and Information System (EOSDIS). Also discussed were dataset interoperability recommendations ratified via the EOSDIS Standards Office and the HDF Product Designer tool with respect to its possible applicability to data in network Common Data Form (NetCDF) version 4.

  11. NASA Tech House

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA Technology Utilization House, called Tech House, was designed and constructed at NASA's Langley Research Center in Hampton, Virginia, to demonstrate new technology that is available or will be available in the next several years and how the application of aerospace technology could help advance the homebuilding industry. Solar energy use, energy and water conservation, safety, security, and cost were major considerations in adapting the aerospace technology to the construction of Tech House.

  12. Nasa's Emerging Productivity Program

    NASA Technical Reports Server (NTRS)

    Braunstein, D. R.

    1984-01-01

    The goals, membership, and organizational structure of the NASA Productivity Steering Committee are described as well as steps taken to make NASA a leader in the development and application of productivity and quality concepts at every level of agency management. The overall strategy for the Productivity Improvement and Quality Enhancement (PIQE) Program is through employee involvement, both civil servant and contractor, in all phases of agency-wide activity. Elements of the PIQE program and initial thrusts are examined.

  13. NASA Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    This viewgraph presentation reviews the characterization of radiometric data by NASA. The objective was to perform radiometric vicarious calibrations of imagery and compare with vendor-provided calibration coefficients. The approach was to use multiple, well-characterized sites. These sites are widely used by the NASA science community for radiometric characterization of airborne and space borne sensors. Using the data from these sites, the investigators performed independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  14. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  15. NASA thesaurus: Astronomy vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  16. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  17. Study of balloon and thermal control material degradation aboard LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas

    1991-01-01

    The initial results of analysis performed on a number of polymeric materials which were exposed aboard the Long Duration Exposure Facility (LDEF) are discussed. These materials include two typical high altitude balloon films (a polyester and a polyethylene) and silver-backed Teflon from thermal control blanket samples. The techniques used for characterizing changes in mechanical properties, chemical structure and surface morphology include Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy, and dynamic mechanical analysis.

  18. Apollo 10 crewmembers arrive aboard U.S.S. Princeton

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 10 crewmembers arrive aboard the U.S.S. Princeton as they step from a helicopter to receive a red carpet welcome. Left to right, are Astronauts Eugene A. Cernan, lunar module pilot; Thomas P. Stafford, commander; and John W. Young, command module pilot. Standing in left foreground is Dr. Donald E. Stullken, Chief, Recovery Operations Branch, Landing and Recovery Division, Manned Spacecraft Center.

  19. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  20. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  1. International Cooperation at NASA

    NASA Astrophysics Data System (ADS)

    Tawney, Timothy; Feldstein, Karen

    International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning

  2. Background reduction for quiet time particle fluxes aboard the Solar and Heliospheric Observatory

    NASA Astrophysics Data System (ADS)

    Valtonen, E.; Kecskeméty, K.; Kunow, H.; Müller-Mellin, R.; Torsti, J.

    2001-06-01

    Two versions of a method are presented to determine the background of energetic particle telescopes during low-flux periods at low energies. Traditional procedures first evaluate pulse heights of particle sensors working in coincidence then select certain areas of the ΔE/Δx versus E plane, where E is energy, and finally, accept all events falling on those areas as real particles. Such methods, however, often fail during low-flux conditions, as the background may become comparable to the genuine particle flux. The alternative methods suggested here analyze the shape of the distribution near the track of genuine particles and provide statistical estimation of its parameters to separate the background from the real particle flux. Results are presented for protons and helium during quiet activity periods of the recent solar minimum using data from energetic particle telescopes Energetic and Relativistic Nuclei and Electron (ERNE) Low Energy Detector (LED) and Comprehensive Suprathermal and Energetic Particle Analyzer (COSTEP) Electron Proton Helium Instrument (EPHIN) aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. SOHO is a project of international collaboration between the European Space Agency and NASA.

  3. NASA Exercise Physiology and Countermeasures Project Overview

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Ploutz-Snyder, Lori

    2009-01-01

    Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.

  4. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, executive summary

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, NASA 712, a Convair 990 aircraft, was destroyed by fire during an aborted takeoff at March Air Force Base in California. Material ejected from a blowout in the tires of the right main landing gear penetrated the right-wing fuel tank. The leaking fuel ignited. Fire engulfed the right wing and fuselage as the aircraft stopped its forward motion. The crew of four and the 15 scientists and technicians aboard escaped without serious injury.

  5. Laser Initiated Ordnance (LIO) activities in NASA

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1994-01-01

    Laser initiated ordnance appears to offer the advantages of greater reliability, enhanced safety, lighter, less costly products, and improvements in spacecraft system designs which can lead to higher operational efficiency. But the lack of flight demonstrations has prevented the application of this new technology into new programs. Hence, a three-phase technology program was initiated by NASA to provide flight proof of their technical and programmatic feasibility: flight demonstration aboard an unmanned commercial vehicle (Pegasus), use as a Space Shuttle payload, and the most demanding of applications, namely, solid rocket motor vehicle ignition and flight termination. The programs investigate, via flight demonstrations the use of fully solid state laser diode systems to reduce potential hazards imposed by stray electrical signals. Inadvertent ignition has proven to cause serious problems. While the current electromechanical have been made safe, the result has been complex systems. Now is the time to take advantage of this new technology to further enhance safety and reliability of spacecraft systems. Two of the three phases are underway; an announcement of opportunity for the third, a sounding rocket flight demonstration, was made at the workshop.

  6. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  7. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  8. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  9. NASA Accountability Report

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  10. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  11. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  12. NASA science committee appointments

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-10-01

    NASA Administrator Michael Griffin has made three new appointments to the NASA Advisory Council's (NAC' Science Committee, NASA announced on 22 September. Edward David, president of EED, Inc., and science advisor to the President from 1970 to 1973, will serve as the committee-s chair. Also appointed to the committee were Owen Garriott, a retired scientist astronaut, and Alan Stern, executive director of the Space Science and Engineering Division of the Southwest Research Institute (San Antonio, Tex.). David, Garriott, and Stern-who are among nine new members of the full advisory committee that were announced on 22 September-will replace three members of the Science Committee who resigned in August: Science Committee Chair Charles Kennel (Scripps Institution of Oceanography), Wesley Huntress (Carnegie Institution of Washington), and Eugene Levy (Rice University). The NAC's next public meeting will be held on 12 October at Goddard Space Flight Center in Greenbelt, Md.

  13. Technological Innovations from NASA

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.

    2006-01-01

    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  14. NASA Langley Highlights, 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.

  15. Type NASA-23

    NASA Technical Reports Server (NTRS)

    Binayak, Panda; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    NASA-23 alloy has been designed to fulfil NASA's unique need for a high strength, oxidation-and corrosion resistant alloy that is compatible with a high-pressure hydrogen environment. This alloy is a precipitation hardened iron-nickel base alloy with excellent strength and ductility art gaseous hydrogen (GH2), comparable to those of other alloys in its class, Inconel 718 and IN-903. NASA-23 has been designed with a sufficient amount of chromium to provide good corrosion/oxidation resistance. For hydrogen resistance, the alloy maintains a (Ni + Co)/Fe ratio close to 1.26, the same as that of Incoloy 903. Hardening constituents, Nb, Ti, and Al, are optimized for strength and ductility both in air and GH2 atmospheres.

  16. NASA's Space Grant program

    NASA Technical Reports Server (NTRS)

    Dasch, E. Julius

    1990-01-01

    Program descriptions are provided for both phases of the U.S. NASA Space Grant College and Fellowship Program. While Phase I consisted of the designation of 21 universities and university consortia as Space Grant Colleges/Consortia intended to maintain a balanced program of research, curriculum, and public service, the recently implemented Phase II is designed to broaden participation in the Space Grant Program by targeting states that are currently not as involved in NASA programs as are the states for which Phase one is constructed. The Phase II/Capability Enhancement Grants (CEG) thus provide grants to states with little or no present NASA involvement, with planning grants expected to lead to substantive grant proposals. States are to compete in either the Programs Grants category or the CEG category, with only one proposal accepted from each state. Program Grants, CEGs, and Fellowship requirements are outlined.

  17. NASA Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda

    1997-01-01

    If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.

  18. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains how our weather occurs, and why Solar radiation is responsible. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  19. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  20. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  1. NASA's space processing program

    NASA Technical Reports Server (NTRS)

    Bredt, J. H.

    1977-01-01

    The NASA Space Processing Program was initiated to develop uses of space flight that will support research efforts and manufacturing operations on the ground by processing materials in space. It is expected that the unique conditions that are available in space will provide a basis for a wide variety of economically beneficial services to science and industry in fields such as metallurgy, electronic materials, glass technology, fluid physics and chemistry, and in biological material preparation as well. Plans are described for developing payload equipment to implement materials processing experiments on the missions of the space transportation system (STS). This equipment is intended to support a diversified program of NASA-sponsored materials processing experiments by all classes of scientists, as well as pilot activities by non-NASA sponsors.

  2. NASA DEVELOP students

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA DEVELOP students at Stennis Space Center recently held a midterm review with George Crozier, who serves as a science adviser to the team. The team also was joined by Jamie Favors of the Mobile (Ala.) County Health Department DEVELOP Team; Cheri Miller, the team's NASA adviser; and Kenton Ross, a team science adviser. Students participating in the meeting included: Lauren Childs, Jason Jones, Maddie Brozen, Matt Batina, Jenn Frey, Angie Maki and Aaron Brooks. The primary purpose of the meeting was to update Crozier on the status of the team's work for the summer 2008 term and discuss plans for the fiscal year 2009 project proposal. This included discussion of a possible project to study the effects of hurricanes on the Florida panhandle. DEVELOP is a NASA-sponsored, student-led, student-run program focused on developing projects to help communities.

  3. Exobiology: The NASA program

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Harper, Lynn; Andersen, Dale

    1992-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.

  4. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  5. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  6. NASA Tech Briefs, April 1995. Volume 19, No. 4

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue of the NASA Tech Briefs has a special focus section on video and imaging, a feature on the NASA invention of the year, and a resource report on the Dryden Flight Research Center. The issue also contains articles on electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences and life sciences. In addition to the standard articles in the NASA Tech brief, this contains a supplement entitled "Laser Tech Briefs" which features an article on the National Ignition Facility, and other articles on the use of Lasers.

  7. Reducing the complexity of NASA's space communications infrastructure

    NASA Astrophysics Data System (ADS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-07-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  8. NASA research in aeropropulsion

    SciTech Connect

    Stewart, W.L.; Weber, R.J.

    1981-12-01

    Future advances in aircraft propulsion systems will be aided by the research performed by NASA and its contractors. This paper gives selected examples of recent accomplishments and current activities relevant to the principal classes of civil and military aircraft. Some instances of new emerging technologies with potential high impact on further progress are discussed. NASA research described includes noise abatement and fuel economy measures for commercial subsonic, supersonic, commuter, and general aviation aircraft, aircraft engines of the jet, turboprop, diesel and rotary types, VTOL, X-wing rotocraft, helicopters, and ''stealth'' aircraft. Applications to military aircraft are also discussed.

  9. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  10. NASA's Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Cooke, William; McNamara, Heather

    2004-01-01

    The Meteoroid Environment Office (MEO) has recently been formed within the Engineering Directorate at NASA's Marshall Space Flight Center. With agency-wide responsibility for defining the meteoroid environments for spacecraft engineering operations purposes, the MEO will distribute a state-of-the-art sporadic meteoroid model as well as meteor shower forecasts for spacecraft operators. To improve these models and forecasts, the MEO will manage an observation and research program. Office responsibilities, products, and plans will be discussed in this paper. The MEO is sponsored by the Office of Safety and Mission Assurance at NASA Headquarters.

  11. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2014-01-01

    The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.

  12. Origins of NASA names

    NASA Technical Reports Server (NTRS)

    Wells, H. T.; Whiteley, S. H.; Karegeannes, C. E.

    1976-01-01

    Names are selected for NASA spaceflight projects and programs from various sources. Some have their foundations in mythology and astrology or legend and folklore. Some have historic connotations; others are based on a description of their mission, often resulting in an acronym. Included are names of launch vehicles, spacecraft, manned spaceflight programs, sounding rockets, and NASA field installations. This study is limited to names of approved projects through 1974; it does not include names of numerous projects which have been or are being studied or projects that were canceled or postponed before reaching actual flight.

  13. NASA electric propulsion program

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Finke, R. C.

    1976-01-01

    Major portions of the NASA electric propulsion technology program have attained the level of maturity required to achieve near-term technology readiness for flight missions for primary and auxiliary propulsion application. Advanced electric propulsion program elements addressing less immediate requirements are in more exploratory stages. This paper will discuss the NASA electric propulsion technology program including - planetary and earth orbit raising applications, attitude control and stationkeeping of geosynchronous satellites, and the research support program. Objectives, requirements, and hardware status are presented for each program.

  14. NASA Standard Measures Overview

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.

    2008-01-01

    Due to the limited in-flight resources available for human physiological research in the foreseeable future, NASA has increased its reliance on head-down bed rest. NASA has created the Bed Rest Project at the Johnson Space Center, which is implemented on the 6th floor of the Children's Hospital at UTMB. It has been conducted for three years. The overall objective of the Project is to use bed rest to develop and evaluate countermeasures for the ill effects of space flight before flight resources are requested for refinement and final testing.

  15. NASA Langley Highlights, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research.

  16. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  17. NASA Publications Guide

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The publication programs and management policies of NASA are described and the details that authors and publication specialists need to know to carry out the agency's mission of disseminating the scientific and technical information derived from its activities are highlighted. Topics covered include the various kinds of NASA formal publications; selection of publication medium; printing and distribution; and requirements concerning style and format standards, copyright transfers, the cover, color, and foldouts. The sections of a report are delineated and editorial and page make-up responsibilities are also discussed.

  18. Status of a NASA Standard and Three NASA Handbooks

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.

    2011-01-01

    NASA-STD-7003 Pyroshock Test Criteria, May 18, 1999, has been revised per direction of NASA Headquarters to make it a mandatory standard and to update it for advances in the discipline since it's initial release. NASA-HDBK-7004B Force Limited Vibration Testing, January 31, 2003, and NASA-HDBK-7005 Dynamic Environmental Criteria, March 13, 2001, are being updated to reflect advances in the disciplines since their last release. Additionally, a new NASA handbook, NASA-HDBK-7008 Spacecraft Structural Dynamics Testing is currently being prepared. This paper provides an overview of each document, summarizes the major revisions for the documents undergoing update, and provides the development schedules.

  19. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  20. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  1. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  2. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  3. Specialized Science

    PubMed Central

    Fang, Ferric C.

    2014-01-01

    As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049

  4. Specialized science.

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2014-04-01

    As the body of scientific knowledge in a discipline increases, there is pressure for specialization. Fields spawn subfields that then become entities in themselves that promote further specialization. The process by which scientists join specialized groups has remarkable similarities to the guild system of the middle ages. The advantages of specialization of science include efficiency, the establishment of normative standards, and the potential for greater rigor in experimental research. However, specialization also carries risks of monopoly, monotony, and isolation. The current tendency to judge scientific work by the impact factor of the journal in which it is published may have roots in overspecialization, as scientists are less able to critically evaluate work outside their field than before. Scientists in particular define themselves through group identity and adopt practices that conform to the expectations and dynamics of such groups. As part of our continuing analysis of issues confronting contemporary science, we analyze the emergence and consequences of specialization in science, with a particular emphasis on microbiology, a field highly vulnerable to balkanization along microbial phylogenetic boundaries, and suggest that specialization carries significant costs. We propose measures to mitigate the detrimental effects of scientific specialism. PMID:24421049

  5. Special Needs.

    ERIC Educational Resources Information Center

    Braswell, Ray, Ed.

    This document contains the following papers on special needs instruction and technology: (1) "Hawaii Special Education Teacher Induction" (Kalena Oliva and Quinn Avery); (2) "The Impact of Group v Individual Use of Hypermedia-Based Instruction" (Lewis R. Johnson, Louis P. Semrau, and Gail E. Fitzgerald); (3) "Assistive Technology Meets…

  6. NASA Space Technology Can Improve Soldier Health, Performance and Safety

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.

    2000-01-01

    One of the primary goals of NASA Life Sciences research is '... to enable a permanent human presence in space.' To meet this goal, NASA is creating alternative protocols designed to evaluate and test countermeasures that will account for and correct the environmental effects of space flight on crewmembers health, safety, and operational performance. NASA investigators have previously evaluated the effects of long-duration space flight on physiology and performance of cosmonauts aboard the MIR space station. They also initiated tests of a countermeasure, Autogenic-Feedback Training Exercise (AFTE) designed to prevent and/or correct adverse effects, i.e., facilitate adaptation to space and re-adaptation to Earth. AFTE is a six-hour physiological training program that has proven to be a highly efficient and effective method for enabling people to monitor and voluntarily control a range of their own physiological responses, thereby minimizing adverse reactions to environmental stress. However, because of limited opportunities to test this technology with space flight crews, it is essential to find operational or 'real world' environments in which to validate the efficacy of this approach.

  7. 75 FR 57830 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Permit on motor vehicles that transport these packages from paragraph 10. 10898-M Hydac Corporation, 49... means of acoustic emission (AE) and ultrasonic examination (UE) in lieu of hydrostatic testing. 12706-M... remove the Inc., Columbus, IN. requirement that a copy of the special permit to be carried aboard...

  8. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  9. NASA's Software Bank (CLIPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    C Language Integrated Production System (CLIPS) is a NASA Johnson Space Center developed software shell for developing expert systems, is used by researchers at Ohio State University to determine solid waste disposal sites to assist in historic preservation. The program has various other applications and has even been included in a widely-used textbook.

  10. NASA's Software Bank (ASAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA-developed Artificial Satellite Analysis Program (ASAP), was purchased from COSMIC and used to enhance OPNET, a program for developing simulations of communications satellite networks. OPNET's developer, MIL3, applied ASAP to support predictions of low Earth orbit, enabling the company to offer satellite modeling capability to customers earlier than if they had to actually develop the program.

  11. NASA Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1999-01-01

    The Fiscal Year 1998 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1998 and highlights of the ground- and-flight-based research are provided.

  12. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  13. NASA and Me

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2010-01-01

    Topics in this student project report include: biography, NASA history and structure, overview of Johnson Space Center facilities and major projects, and an overview of the Usability Testing and Analysis Facility (UTAF). The UTAF section slides include space habitat evaluations with mockups, crew space vehicle evaluations, and human factors research.

  14. Education News at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA s challenging missions provide unique opportunities for engaging and educating America s youth, the next generation of explorers. Led by Chief Education Officer Dr. Adena Williams Loston, the Agency coordinates education programs for students, faculty, and institutions in order to help inspire and motivate the scientists and engineers of the future.

  15. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA Global Hawk is operational and supporting Earth science research. 29 Flights were conducted during the first year of operations, with a total of 253 flight hours. Three major science campaigns have been conducted with all objectives met. Two new science campaigns are in the planning stage

  16. NASA Facts, The Countdown.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet describes the preparations for launching a giant Atlas, Gemini (Titan 11), or Saturn launch vehicle. The material is intended for use in elementary general science. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  17. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles

    2002-01-01

    The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  18. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  19. Doing business with NASA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Because many U.S. businesses and companies want to do business with NASA, the Agency sends out procurement specialists to trade shows and conferences and organizes seminars to educate the business public on how to get on procurement lists to become product and service providers to the federal government.

  20. What's Up at NASA?

    ERIC Educational Resources Information Center

    Clapp, Betty

    1988-01-01

    The National Aeronautics and Space Administration's (NASA) five-year plan to help elementary school teachers meet mathematics and science curriculum needs includes increasing the availability of instructional materials, providing greater access to teacher resource centers and workshops, and offering new sources of information for teachers and…

  1. NASA lithium cell applications

    NASA Technical Reports Server (NTRS)

    Juvinall, G. L.

    1978-01-01

    The advantages of lithium systems are described and a general summary of their application in present and future NASA programs is presented. Benefits of the lithium systems include an increased payload weight and an increased cost effectiveness to the customer. This also allows for more flexibility in the design of future space transportation systems.

  2. NASA metric transition plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.

  3. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  4. NASA highlights, 1986 - 1988

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

  5. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    A viewgraph presentation on the satus of NASA Dryden's aircraft guidance and control is shown. The topics include: 1) Autonomous Airborne Refueling Demonstration (AARD); 2) Ikhana Project Update; 3) Quiet Spike; 4) F-15 Intelligent Flight Control System; 5) C-20A Precision Autopilot Development; and 6) X-48 Blended Wing Body.

  6. My Career at NASA

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.

    2009-01-01

    This viewgraph presentation reviews the work of the presenter at NASA Dryden Flight Research Center. He describes what he does, the projects that he has worked on and the background that led him to his position. The presentation has many pictures of aircraft in flight

  7. This is NASA.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The mission of the National Aeronautics and Space Administration (NASA) is space exploration and research in space and aeronautics for peaceful purposes and for the benefit of all mankind. The organization and programs which have been established to carry out this mission are described. Full color illustrations for the book were selected from the…

  8. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan R. (Editor); Henderson, Robin N. (Technical Monitor)

    2000-01-01

    The Fiscal Year 1999 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1999 and highlights of the ground-and-flight research are provided.

  9. NASA Computational Mobility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This blue sky study was conducted in order to study the feasibility and scope of the notion of Computational Mobility to potential NASA applications such as control of multiple robotic platforms. The study was started on July lst, 2003 and concluded on September 30th, 2004. During the course of that period, four meetings were held for the participants to meet and discuss the concept, its viability, and potential applications. The study involved, at various stages, the following personnel: James Allen (IHMC), Albert0 Canas (IHMC), Daniel Cooke (Texas Tech), Kenneth Ford (IHMC - PI), Patrick Hayes (IHMC), Butler Hine (NASA), Robert Morris (NASA), Liam Pedersen (NASA), Jerry Pratt (IHMC), Raul Saavedra (IHMC), Niranjan Suri (IHMC), and Milind Tambe (USC). A white paper describing the notion of a Process Integrated Mechanism (PIM) was generated as a result of this study. The white paper is attached to this report. In addition, a number of presentations were generated during the four meetings, which are included in this report. Finally, an execution platform and a simulation environment were developed, which are available upon request from Niranjan Suri (nsuri@,ihmc.us).

  10. NASA Propagation Information Center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1989-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  11. NASA Research Announcement

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    2002-01-01

    This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.

  12. NASA Facts, Solar Cells.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  13. NASA propagation information center

    NASA Astrophysics Data System (ADS)

    Smith, Ernest K.; Flock, Warren L.

    1990-07-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  14. NASA and general aviation

    NASA Technical Reports Server (NTRS)

    Ethell, J. L.

    1986-01-01

    General aviation remains the single most misunderstood sector of aeronautics in the United States. A detailed look at how general aviation functions and how NASA helps keep it on the cutting edge of technology in airfoils, airframes, commuter travel, environmental concerns, engines, propellers, air traffic control, agricultural development, electronics, and safety is given.

  15. NASA Facts: Voyager

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A news release on NASA's Voyager project is presented. The spacecraft, science instrumentation, experiments and a mission profile are described. A drawing identifying Voyager's major components and instrumentation was included along with diagrams showing the path of Voyager 1 (JST trajectory) past Jupiter, and the path of Voyager 2 (JXT trajectory) during its encounter with Jupiter. An exercise for student involvement was also provided.

  16. Technology transfer within NASA

    NASA Technical Reports Server (NTRS)

    St.cyr, William

    1992-01-01

    Viewgraphs on technology transfer within NASA are provided. Assessment of technology transfer process, technology being transfered, issues and barriers, and observations and suggestions are addressed. Topics covered include: technology transfer within an organization (and across organization lines/codes) and space science/instrument technology and the role of universities in the technology development/transfer process.

  17. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Integrated Services Environment

    NASA Technical Reports Server (NTRS)

    Ing, Sharon

    2005-01-01

    This slide presentation will begin with a discussion on NASA's current distributed environment for directories, identity management and account management. We will follow with information concerning the drivers, design, reviews and implementation of the NISE Project. The final component of the presentation discusses processes used, status and conclusions.

  19. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  20. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  1. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  2. University guide to NASA, 1993

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide provides brief descriptions of the two NASA Headquarters program offices through which NASA primarily funds universities, the Office of Space Science and Applications and the Office of Aeronautics and Space Technology. It also describes NASA's Office of Commercial Programs, which funds the Centers for the Commercial Development of Space and the Small Business Innovation Research Program. This guide explains the roles played by NASA's eight field centers and the Jet Propulsion Laboratory, and gives a sampling of ongoing NASA-wide educational programs and services. Most importantly, this guide provides practical information in the form of names and telephone numbers of NASA contacts.

  3. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concentrations of CO began increasing gradually (Figure 1). The results from samples returned on this flight indicate that the CO concentrations, after dropping in late 2009, have cycled upward and then settled back to concentrations near 2 mg/m3. In any case, these changes are well below the 180-day SMAC for CO, which is17 mg/m3. There is no threat to crew health. Carbon Dioxide: This anthropogenic compound has drawn much attention recently because of the possibility that it could contribute to the effects of intracranial hypertension experienced because of spaceflight-induced fluid shifts. From now on we will maintain a plot (Figure 2) of carbon dioxide concentrations ( SD) by averaging the values found in the 3-5 mini-GSC samples taken each month in diverse locations of the ISS. This will enable us to estimate the average exposure of crewmembers to carbon dioxide during their stay aboard the ISS. In general, concentrations are being maintained below 3.5 mmHg. Figure 1

  4. NASA Schedule Management Handbook

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  5. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  6. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA | Raymonda Azrelyant Yeh Women@NASA 2015

    NASA Video Gallery

    Raymonda Azrelyant Yeh - Senior Accountant for NASA Goddard Space Flight Center The Women@NASA project is the perfect opportunity to celebrate women from across the agency who contribute to NASA’...

  8. NASA Now: Inspiration and Education: Building a Career at NASA

    NASA Video Gallery

    Be sure not to miss this episode of NASA Now, when three experts who work in very different fields at NASA discuss their jobs, responsibilities and what they enjoy most about their work. They also ...

  9. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  10. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  11. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  12. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service... Stations Aboard Aircraft. FOR FURTHER INFORMATION CONTACT: Andrea Kelly, Satellite Division,...

  13. Special Delivery.

    ERIC Educational Resources Information Center

    Zimmer, Phil

    1986-01-01

    Specialized publications such as "Opera News,""Gourmet," and "Forbes" can bring an institution's story to targeted audiences. The experiences of Chautauqua Institution are described. Some of the benefits of marketing articles to these publications are discussed. (MLW)

  14. NASA UAS Update

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  15. An apparatus for preparing benthic samples aboard ship

    USGS Publications Warehouse

    Pepper, Phillip N.; Girard, Thomas L.; Stapanian, Martin A.

    2001-01-01

    We describe a safe and effective apparatus for washing and reducing the volume of benthic samples collected by grab samplers aboard ship. The sample is transferred directly from the dredge to the apparatus and then washed with water pumped through pipes in the apparatus and from onboard hoses. Wastewater and materials smaller than 0.541 mm in diameter are washed overboard. Larger materials, including benthic organisms, collect on an upper 0.64-cm screen and on a lower 30-mm-mesh stainless steel bolt cloth. A collection jar is screwed into the bottom of the apparatus. Therefore, transfer of sample material from the apparatus to the jar is quick and easy. This apparatus has several advantages for use aboard ship over others described in the literature, especially in rough seas, in cold weather, and at night. The apparatus provides a safe and convenient platform for washing and reducing samples, and samples can be prepared while the vessel is traveling at full speed.

  16. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  17. New aspects of the RPW instrument antennas aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Kapper, Michael; Plettemeier, Dirk; Rucker, Helmut O.; Maksimovic, Milan

    2013-04-01

    The E-field sensors (boom antennas) of the RPW instrument aboard the Solar Orbiter spacecraft are subject to severe influence of the conducting spacecraft body and other large structures such as the solar panels in close vicinity of the antennas. In this contribution we outline our newest results in finding the true properties of the antennas with additional emphasis on the influence of the built-in heating circuit for deployment. Knowledge of the true properties of the connected antenna system and receiver hardware is an essential component in ensuring the overall performance of a scientific radio and plasma wave instrument. Compared to other spaceborne multiport scatterers, the ANT sensors aboard Solar Orbiter are more sophisticated in mechanical design with features including tubular shaped pipes with radiators along with several hinges. This combined with the challenging environment (closest proximity to Sun is about 0.29 AU) makes finding the true properties even more pressing than with previous spaceborne radio astronomy observatories. Our numerical investigations also provide an important benchmark against measured antenna characteristics using a scale model of the Solar Orbiter spacecraft in an anechoic chamber. The current calibration results are to provide useful input to goniopolarimetry techniques like polarization analysis, direction finding and ray tracing, all of which depend crucially on the effective axes, allowing for significant improvements to the corresponding scientific data analysis.

  18. NASA Now: Air Traffic Management

    NASA Video Gallery

    In this episode of NASA Now, you’ll meet aerospace engineer Aisha Bowe, who is helping NASA solve this complex problem. Learn why there is no perfectly designed system and all technological solut...

  19. Commercialization in NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Various issues associated with commercialization in NASA space operations are presented in viewgraph form. Specific topics include: 1) NASA's financial outlook; 2) Space operations; 3) Space operations technology; and 4) Strategies associated with these operations.

  20. NASA Reveals Most Unusual Planet

    NASA Video Gallery

    In exploring the universe, NASA has uncovered one planet more unusual than all others. This 30 second video shows you which planet that is, and explains that NASA science helps us better understand...

  1. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  2. 77 FR 27855 - Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard America! Holdings, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Surface Transportation Board Celerity Partners IV, LLC, Celerity AHI Holdings SPV, LLC, and All Aboard...., d/b/a All Aboard America AGENCY: Surface Transportation Board. ACTION: Notice Tentatively Approving and Authorizing Transaction. SUMMARY: All Aboard America! Holdings, Inc. (AHI), Celerity AHI...

  3. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  4. Requirements management at NASA

    NASA Technical Reports Server (NTRS)

    Rosenburg, L.

    2001-01-01

    Requirements have always been acknowledged as the backbone of any system. However, in many past development efforts, requirements were paid little heed. At NASA, in recent years, the hue and cry for project development has been "Faster, Better, Cheaper and Safer". This has impacted the way we develop software; it has increased the risks to quality, safety and reliability. At NASA, the Software Assurance Technology Center (SATC) is working with projects to emphasize the criticality of requirements throughout development, not just in the initial phases. This emphasis is on requirements relationship to all aspects of quality, including reliability and safety. In this presentation, we will look at some of these relationships through the eyes of quality.

  5. NASA head sworn in

    NASA Astrophysics Data System (ADS)

    James C. Fletcher was sworn in on May 12, 1986, as administrator of the National Aeronautics and Space Administration (NASA). At a news conference after he was sworn in, Fletcher said that NASA would deal with both its technical problems and its procedural problems before the shuttle will fly again. According to press accounts, he stressed that funds should be made available to replace the Challenger orbiter, which was lost in an explosion on January 28.Fletcher, who had also headed the agency from 1971 to 1977, succeeds James M. Beggs, who was indicted in December 1985 for conspiring to defraud the federal government while serving as a senior executive at the General Dynamics Corporation.

  6. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  7. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  8. NASA and Education

    NASA Technical Reports Server (NTRS)

    1990-01-01

    President Bush endorsed a package of six goals developed by the governors of the 50 states, among them making the United States first in the world in mathematics and science achievement. The crux of the technical manpower problem is that too few people in the workforce today have the skills required to function in a technologically advanced society. All over the U.S., government, industry and academic organizations, individually and in concert, at the national, state and local levels, are accelerating efforts to find remedies for the educational and training maladies that threaten America's scientific and technological future. NASA is among the leading education promoting organizations and the agency is expanding its effort. In May 1990, NASA and the Department of Energy concluded an agreement for a cooperative program directed at encouraging more U.S. students to pursue careers in science, engineering and mathematics, and at improving the instructional process in those areas at the precollege and university levels.

  9. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  10. NASA's Exobiology Program.

    PubMed

    DeVincenzi, D L

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  11. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  12. NASA's Hypersonic Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Hutt, John; McClinton, Charles

    2002-01-01

    NASA has established long term goals for access to space. The third generation launch systems are to be fully reusable and operational around 2025. The goal for third-generation launch systems represents significant reduction in cost and improved safety over the current first generation system. The Advanced Space Transportation Office (ASTP) at NASA s Marshall Space Flight Center (MSFC) has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonic Investment Area (HIA), third generation technologies are being pursued in the areas of propulsion, airframe, integrated vehicle health management (IVHM), avionics, power, operations and system analysis. These technologies are being matured through research and both ground and flight-testing. This paper provides an overview of the HIA program plans and recent accomplishments.

  13. NASA reload program

    NASA Technical Reports Server (NTRS)

    Byington, Marshall

    1993-01-01

    Atlantic Research Corporation (ARC) contracted with NASA to manufacture and deliver thirteen small scale Solid Rocket Motors (SRM). These motors, containing five distinct propellant formulations, will be used for plume induced radiation studies. The information contained herein summarizes and documents the program accomplishments and results. Several modifications were made to the scope of work during the course of the program. The effort was on hold from late 1991 through August, 1992 while propellant formulation changes were developed. Modifications to the baseline program were completed in late-August and Modification No. 6 was received by ARC on September 14, 1992. The modifications include changes to the propellant formulation and the nozzle design. The required motor deliveries were completed in late-December, 1992. However, ARC agreed to perform an additional mix and cast effort at no cost to NASA and another motor was delivered in March, 1993.

  14. NASA's Exobiology Program

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  15. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  16. Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch

    NASA Astrophysics Data System (ADS)

    1998-06-01

    CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data

  17. Spinoff 2001: Special Millennium Feature

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.

  18. NASA Product Peer Review Process

    NASA Technical Reports Server (NTRS)

    Jenks, Ken

    2009-01-01

    This viewgraph presentation describes NASA's product peer review process. The contents include: 1) Inspection/Peer Review at NASA; 2) Reasons for product peer reviews; 3) Different types of peer reviews; and 4) NASA requirements for peer reviews. This presentation also includes a demonstration of an actual product peer review.

  19. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  20. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  1. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  2. NASA Oceanic Processes Program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This, the Sixth Annual Report for NASA's Oceanic Processes Program, provides an overview of recent accomplishments, present activities, and future plans. Although the report was prepared for Fiscal Year 1985 (October 1, 1984 to September 30, 1985), the period covered by the Introduction extends into June 1986. Sections following the Introduction provide summaries of current flight projects and definition studies, brief descriptions of individual research activities, and a bibliography of refereed journal articles appearing within the past two years.

  3. NASA Headquarters training catalog

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA Headquarters training catalog is a comprehensive listing of all educational and employee development programs. This course catalog contains descriptions of course content, objectives, target audience, prerequisites, length of course, approximate number of times the course is offered per year, and cost of the course. Curriculum areas include graduate and undergraduate academic study; professional development program; and executive management, senior management, and supervisory development programs. Secretarial/clerical and general computer skills programs are also included.

  4. SETI: The NASA Years

    NASA Astrophysics Data System (ADS)

    Billingham, John

    This chapter, on the years of SETI in NASA, was initially prepared in 2000 for the celebration of Frank Drake's 70th birthday, but has never been previously published. All the material in these pages remains as valid today, in 2010, as it was 10 years ago. So it fits well into this volume on SETI Past, Present, and Future, with only minor revisions, and I am delighted that it is now seeing the light of day.

  5. NASA Photo One

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    2013-01-01

    This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.

  6. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve

    2012-01-01

    NASA Dryden has been engaged in exciting work that will enable lighter weight and more fuel efficient vehicles through advanced control and dynamics technologies. The main areas of emphasis are Enabling Light-weight Flexible Structures, real time control surface optimization for fuel efficiency and autonomous formation flight. This presentation provides a description of the current and upcoming work in these areas. Additionally, status is provided Dryden's work on HTV-2.

  7. NASA New Virtual Airport

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Virtual Airport Tower is located at the Ames Research Center, Moffett Field, California. The Virtual Airport Tower's two-story structure is a full-scale, highly sophisticated simulation facility that will emulate Level 5 air traffic control towers and the busiest airports. It provides the platform to conduct in-depth human factors studies with quantifiable results using actual air traffic controllers, airline dispatchers and airport managers.

  8. Reshaping NASA's Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Liang, Anita D.

    2007-01-01

    We will dedicate ourselves to the mastery and intellectual stewardship of the core competencies of Aeronautics for the Nation in all flight regimes. We will focus our research in areas that are appropriate to NASA's unique capabilities. we will directly address the R&D needs of the Next Generation Air Transportation System (NGATS) in partnership with the member agencies of the Joint Planning and development Office (JPDO).

  9. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  10. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  11. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  12. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  13. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; Liskowsky, David R.; Meadows, Victoria S.; Meyer, Michael A.; Pilcher, Carl B.; Nealson, Kenneth H.; Spormann, Alfred M.; Trent, Jonathan D.; Turner, William W.; Woolf, Neville J.; Yorke, Harold W.

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  14. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  15. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  17. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  18. NASA Records Database

    NASA Technical Reports Server (NTRS)

    Callac, Christopher; Lunsford, Michelle

    2005-01-01

    The NASA Records Database, comprising a Web-based application program and a database, is used to administer an archive of paper records at Stennis Space Center. The system begins with an electronic form, into which a user enters information about records that the user is sending to the archive. The form is smart : it provides instructions for entering information correctly and prompts the user to enter all required information. Once complete, the form is digitally signed and submitted to the database. The system determines which storage locations are not in use, assigns the user s boxes of records to some of them, and enters these assignments in the database. Thereafter, the software tracks the boxes and can be used to locate them. By use of search capabilities of the software, specific records can be sought by box storage locations, accession numbers, record dates, submitting organizations, or details of the records themselves. Boxes can be marked with such statuses as checked out, lost, transferred, and destroyed. The system can generate reports showing boxes awaiting destruction or transfer. When boxes are transferred to the National Archives and Records Administration (NARA), the system can automatically fill out NARA records-transfer forms. Currently, several other NASA Centers are considering deploying the NASA Records Database to help automate their records archives.

  19. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning. PMID:18793098

  20. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.