Science.gov

Sample records for aboard space vehicles

  1. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  2. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  3. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  4. Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle.

    PubMed

    Burkhalter, B B; McLean, J E; Curtis, J P; James, G S

    1991-12-01

    Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

  5. All Aboard for Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.

    This book is designed as a resource for teachers and parents concerned with early childhood education. It is hoped that the ideas and activities presented herein will serve in the creation of a space science and mathematics curriculum that is both child-centered and exciting. The basic philosophy for this curriculum is that of Piaget. This…

  6. Living aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The crew habitat of the Space Shuttle is briefly characterized. Subjects discussed include the overall layout of the crew quarters; the air-purification and climate-control facilities; menus and food-preparation techniques; dishwashing, laundry, toilet, bathing, and shaving procedures; and recreation and sleeping accommodations. Drawings and a photograph are provided.

  7. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  8. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  9. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  10. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  11. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  12. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  13. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  14. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  15. High temperature heat pipe experiments aboard the space shuttle

    SciTech Connect

    Woloshun, K.A.; Merrigan, M.A.; Sena, J.T. ); Secary, C.J. )

    1993-01-10

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most space nuclear power systems, there is no experimental data on the operation of these heat pipes in a zero gravity or micro gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation. Three SST/potassium heat pipes are being designed, fabricated, and ground tested. It is anticipated that these heat pipes will fly aboard the space shuttle in 1995. Three wick structures will be tested: homogeneous, arterial, and annular gap. Ground tests are described that simulate the space shuttle environment in every way except gravity field.

  16. Space vehicle concepts

    NASA Technical Reports Server (NTRS)

    Tucker, Michael; Meredith, Oliver; Brothers, Bobby

    1986-01-01

    Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.

  17. Aeroacoustics of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2014-01-01

    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  18. ISS Update: Science Aboard Kounotori3

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Pete Hasbrook, associate program scientist, about the experiments traveling to the International Space Station aboard the H-II Transfer Vehicle...

  19. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  20. Microbiology facilities aboard Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Cioletti, L. A.; Mishra, S. K.; Richard, Elizabeth E.; Taylor, R.

    1990-01-01

    A comprehensive microbiological facility is being designed for use on board Space Station Freedom (SSF). Its purpose will be to conduct microbial surveillance of the SSF environment and to examine clinical specimens. Air, water, and internal surfaces will be periodically monitored to satisfy requirements for a safe environment. Crew health will remain a principle objective for every mission. This paper will review the Microbiology Subsystem capabilities planned for SSF application.

  1. Combustion experimentation aboard the space transportation system

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.

    1981-01-01

    A description is presented of the preliminary concept, specifications, and general requirements of a proposed Combustion Facility (CF) for the Spacelab payload of the Space Transportation System. The CF will permit an experimenter to use suitably contained liquid, gas, or solid fuels. He can specify and establish the composition and pressure level of the atmosphere in which the combustion will take place. It will be possible to characterize the experiment with common types of instrumentation as well as selected specialized equipment, to study the combustion process visually by direct observation and by motion picture coverage, and to obtain time histories of pertinent experimental parameters. During an experimental period, the CF will depend on Spacelab resources for power, heat rejection, and vacuum. Activating the CF and preparing it for the various experiments, performing the experiments, and shutting down the facility will be largely manual operations performed by flight personnel.

  2. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  3. Protein crystallization aboard the Space Shuttle and the Mir space station

    NASA Technical Reports Server (NTRS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.

    1993-01-01

    Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.

  4. The aerobraking space transfer vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, Glen; Carpenter, Brian; Corns, Steve; Harris, Robert; Jun, Brian; Munro, Bruce; Pulling, Eric; Sekhon, Amrit; Welton, Walt; Jakubowski, A.

    1990-01-01

    With the advent of the Space Station and the proposed Geosynchronous Operation Support Center (GeoShack) in the early 21st century, the need for a cost effective, reusable orbital transport vehicle has arisen. This transport vehicle will be used in conjunction with the Space Shuttle, the Space Station, and GeoShack. The vehicle will transfer mission crew and payloads between low earth and geosynchronous orbits with minimal cost. Recent technological advances in thermal protection systems such as those employed in the Space Shuttle have made it possible to incorporate and aerobrake on the transfer vehicle to further reduce transport costs. The research and final design configuration of the aerospace senior design team from VPISU, working in conjunction with NASA, are presented. The topic of aerobraking and focuses on the evolution of an Aerobraking Space Transfer Vehicle (ASTV), is addressed.

  5. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  6. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  7. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  8. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired. PMID:24483559

  9. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  10. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  11. Space transfer vehicles and space basing

    NASA Technical Reports Server (NTRS)

    Kelley, Joe

    1991-01-01

    The topics covered include the following: (1) space basing agenda; (2) mission scenario 4E-5B, crew and Lunar Excursion Vehicle (LEV) delivery; (3) final concept candidate, crew concept 4E-2B; (4) space transfer vehicle (STV) concept 4E-5B; (5) configuration summary for crew concept 4E-5B; (6) configuration definition for crew concept 4E-5B; (7) low earth orbit node assembly and checkout operations; (8) criteria for operation objectives; (9) LTV and STV main engines; (10) Space Station Freedom impacts; (11) aerobrakes; and (12) on orbit operations. This document is presented in viewgraph form.

  12. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS #3, 7, and 8

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.

    1989-01-01

    Since the United States of America is moving into an age of reusable space vehicles, both electronic and photographic materials will continue to be an integral part of the recording techniques available. Film as a scientifically viable recording technique in astronomy is well documented. There is a real need to expose various types of films to the Shuttle environment. Thus, the main objective was to look at the subtle densitometric changes of canisters of IIaO film that was placed aboard the Space Shuttle 3 (STS-3).

  13. The SAGE III's mission aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Pitts, Michael; Thomason, Larry; Zawodny, Joseph; Flittner, David; Hill, Charles; Roell, Marilee; Vernier, Jean-Paul

    2014-05-01

    The Stratospheric Aerosol and Gas Experiment (SAGE III) is being prepared for deployment on the International Space Station (ISS) in 2015. Constructed in the early 2000s, the instrument is undergoing extensive testing and refurbishment prior to delivery to ISS. In addition, ESA is refurbishing their Hexapod which is a high-accuracy pointing system developed to support ISS external payloads, particularly SAGE III. The SAGE III instrument refurbishment also includes the replacement of the neutral density filter that has been associated with some instrument performance degradation during the SAGE III mission aboard METEOR/3M mission (2002-2005). We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss SAGE III-ISS refurbishment including results from Sun-look testing. We also will discuss potential revisions to the science measurements and the expected measurement accuracies determined in part through examination of the SAGE III-METEOR/3M measurement data quality. In addition, we will discuss potential mission science goals enabled by the mid-inclination ISS orbit. No dedicated field campaign for SAGE III validation is anticipated. Instead, validation will primarily rely on a collaborative effort with international groups making in situ and ground-based measurements of aerosol, ozone, and other SAGE III data products. A limited balloon-based effort with a yet-to-be-determined validation partner is also in the planning stages.

  14. Space-vehicle trajectories - Optimization

    NASA Astrophysics Data System (ADS)

    Marec, J. P.

    The application of control-theory optimization techniques to the motion of powered vehicles in space is discussed in an analytical review. Problems addressed include the definition of optimal orbital transfer; propulsion-system modeling; parametric optimization and the Hohmann transfer; optimal transfer in general, uniform, and central gravitational fields; and interplanetary rendezvous. Typical numerical results are presented in graphs and briefly characterized.

  15. Analog FM/FM versus digital color TV transmission aboard space station

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.

  16. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  17. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  18. Leasecraft - An innovative space vehicle

    NASA Astrophysics Data System (ADS)

    Deskevich, J.

    1984-01-01

    The Leasecraft system has been developed by an American aerospace company with the objective to further the industrialization of space with its significant business potential. This system comprises a low orbit space platform, an operation control center, user accommodations, and services such as payload interfaces, documentation, and ground support equipment and procedures. Potential applications of Leasecraft considered are related to the processing of pharmaceuticals and materials, satellite-aided search and rescue, data collection, and support of NASA's astrophysics programs. The Leasecraft space vehicle will accommodate up to five modular power subsystems, including a communications and data handling module, a modular attitude control subsystem, a special function module, two alternative solar array assemblies, a tracking and data relay satellite system antenna assembly, a propulsion module, and optional primary and secondary payload modules.

  19. Unmanned space vehicle technology demonstrator

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Accardo, D.; Grassi, M.; Curreri, F.

    2007-02-01

    The unmanned space vehicle (USV) program has been undertaken by the Italian Center for Aerospace Research with the aim of developing flying test beds of next generation reentry launch vehicles. In this framework, the development of small demonstrators is also foreseen to validate technological and operational aspects of full-scale vehicles and missions. In this paper, a small-scale demonstrator of the sub-orbital re-entry test mission of the USV program is described. Both mission profile and objectives are very challenging in terms of demonstrator guidance, navigation and control. After a short description of the mission and demonstrator architectures, particular emphasis is given to the guidance and navigation analysis. To this end, mission objectives and reduced-scale system constaints are integrated and translated into innovative guidance solutions relying on optimization techniques. Then, performance of a commercial-off-the-shelf GPS-aided, miniature inertial navigation system over the proposed trajectories is evaluated by Monte Carlo analysis. Standalone inertial and GPS-aided inertial navigation performance is also compared considering GPS loss conditions due to antenna plasma effects.

  20. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  1. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  2. Planned development of the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

  3. ISS Update: Powering the Space Exploration Vehicle

    NASA Video Gallery

    In the Space Vehicle Mock-Up Facility at Johnson Space Center in Houston, NASA Public Affairs Officer Brandi Dean talks with Abbie Ryan, lead engineer for the fuel cell of the Multi-Mission Space E...

  4. Project Explorer - Student experiments aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.

    1979-01-01

    Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.

  5. Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick

    2008-01-01

    Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle

  6. Lightning Protection for the Orion Space Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  7. 'Smart SPHERES' Fly High Aboard International Space Station

    NASA Video Gallery

    On Dec. 12 engineers at NASA's Ames Research Center, Moffett Field, Calif., and Johnson Space Center in Houston conducted an experiment using small, free-flying robotic satellites called "Smart SPH...

  8. Microbial antibiotic production aboard the International Space Station.

    PubMed

    Benoit, M R; Li, W; Stodieck, L S; Lam, K S; Winther, C L; Roane, T M; Klaus, D M

    2006-04-01

    Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.

  9. Commercial combustion research aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  10. Restraining Loose Equipment Aboard the International Space Station: The Payload Equipment Restraint System

    NASA Technical Reports Server (NTRS)

    Smith Kenneth A.; Reynolds, David W.

    2003-01-01

    As the International Space Station (ISS) grows, so do the supplies and equipment needed to support its daily operations. Each day many items must be unstowed and moved to various worksites so that they are readily available to the crew. Due to the lack of gravity, these items ,may become loose and float away if not restrained. The Payload Equipment Restraint System (PERS) was developed to meet the new and unique challenge of restraining loose equipment aboard the ISS.

  11. Electric Vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  12. Microbiology operations and facilities aboard restructured Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.

  13. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  14. Prospects for Interdisciplinary Science Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  15. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  16. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  17. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  18. A Simple Space Station Rescue Vehicle

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1995-01-01

    Early in the development of the Space Station it was determined that there is a need to have a vehicle which could be used in the event that the Space Station crew need to quickly depart and return to Earth when the Space Shuttle is not available. Unplanned return missions might occur because of a medical emergency, a major Space Station failure, or if there is a long-term interruption in the delivery of logistics to the Station. The rescue vehicle ms envisioned as a simple capsule-type spacecraft which would be maintained in a dormant state at the Station for several years and be quickly activated by the crew when needed. During the assembly phase for the International Space Station, unplanned return missions will be performed by the Russian Soyuz vehicle, which can return up to three people. When the Station assembly is complete there will be a need for rescue capability for up to six people. This need might be met by an additional Soyuz vehicle or by a new vehicle which might come from a variety of sources. This paper describes one candidate concept for a Space Station rescue vehicle. The proposed rescue vehicle design has the blunt-cone shape of the Apollo command module but with a larger diameter. The rescue vehicle would be delivered to the Station in the payload bay of the Space Shuttle. The spacecraft design can accommodate six to eight people for a one-day return mission. All of the systems for the mission including deorbit propulsion are contained within the conical spacecraft and so there is no separate service module. The use of the proven Apollo re-entry shape would greatly reduce the time and cost for development and testing. Other aspects of the design are also intended to minimize development cost and simplify operations. This paper will summarize the evolution of rescue vehicle concepts, the functional requirements for a rescue vehicle, and describe the proposed design.

  19. Microbial Diversity Aboard Spacecraft: Evaluation of the International Space Station

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Thrasher, Adrianna N.; Healy, Mimi; Ott, C. Mark; Pierson, Duane L.

    2003-01-01

    An evaluation of the microbial flora from air, water, and surface samples provided a baseline of microbial diversity onboard the International Space Station (ISS) to gain insight into bacterial and fungal contamination during the initial stages of construction and habitation. Using 16S genetic sequencing and rep-PeR, 63 bacterial strains were isolated for identification and fingerprinted for microbial tracking. The use of these molecular tools allowed for the identification of bacteria not previously identified using automated biochemical analysis and provided a clear indication of the source of several ISS contaminants. Fungal and bacterial data acquired during monitoring do not suggest there is a current microbial hazard to the spacecraft, nor does any trend indicate a potential health risk. Previous spacecraft environmental analysis indicated that microbial contamination will increase with time and require continued surveillance.

  20. The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

    2005-01-01

    The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

  1. Zack Crues on Space Exploration Vehicle Mockup

    NASA Video Gallery

    Zack Crues, the Space Exploration Vehicle modeling and simulation lead, talks to NASA Public Affairs Officer Brandi Dean about the importance of creating an immersive virtual reality environment fo...

  2. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  3. Microstructure Analysis of Directionally Solidified Aluminum Alloy Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Angart, Samuel Gilbert

    This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt-Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis

  4. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  5. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  6. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  7. [Light microscopy of statocyst cell elements from Helix lucorum (space experiment aboard the orbital station "MIR")].

    PubMed

    Gorgiladze, G I; Bukiia, R D; Kalandarishvili, E L; Taktakishvili, A D; Davitashvili, M T; Gelashvili, N Sh; Madzhagaladze, N B; Galkin, V A

    2013-01-01

    Statocyst epithelial lining of terrestrial pulmonary snail Helix lucorum is a spatially arranged structure consisting of 13 cell ensembles. Each ensemble has a sensory cell surrounded by companion cells. The sensory cell on the anterior statocyst pole is star-shaped due to multiple protoplasmatic protrusions on its body. The remaining 12 polygon-shaped cells form 3 tires along the statocyst internal perimeter: anterior, middle or equatorial and posterior. There are 4 cells in each tire. Topography of every sensory cell on the statocyst internal surface was described as well as cell nuclei size and form, nucleoli number and patterns of cytoplasm vacuolization. Space free of sensory cells is occupied by supporting or intercalary cells. Exposure to space microgravity over 40, 43, 102 and 135 days aboard the orbital station MIR affected morphology of the sensory cells. Specifically, this appeared as reductions in cell height and, consequently, extension of the statocyst cavity internal diameter and volume in the space-flown snails.

  8. The transportation of fine arts materials aboard the space shuttle Columbia. GAS payload No. 481: Vertical horizons

    NASA Technical Reports Server (NTRS)

    Kurtz, Ellery; Wishnow, Howard

    1988-01-01

    The Vertical Horizons experiment represents an initial investigation into the transportation of fine arts materials aboard a space shuttle. Within the confines of a GAS canister, artist quality fine arts materials were packaged and exposed to the rigors of space flight in an attempt to identify adverse effects.

  9. Life-cycle experiments of medaka fish aboard the international space station.

    PubMed

    Ijiri, Kenichi

    2003-01-01

    Fish are the most likely candidates to be the first vertebrate to live their life cycle aboard the International Space Station (ISS). In the space-shuttle experiment using medaka, the fry born in space had the same number of germ cells as the ground control fish, and these germ cells later developed to produce the offspring on the ground. Fry hatched in space did not exhibit any looping behavior regardless of their strain, visual acuity, etc. The aquatic habitat (AQH) is a space habitat designed for long-term breeding of medaka, zebrafish and Xenopus, and recent advancements in this hardware also support fish life-cycle experiments. From the crosses between two strains, fish having good eyesight and less sensitivity to gravity were obtained, and their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions. These are possible candidates for the first adult medaka (parent fish) to start a life cycle aboard ISS. Embryos were treated with a three-dimensional clinostat. Such simulated microgravity caused no differences in tissue architecture or in gene expression within the retina, nor in formation of cartilage (head skeleton). Otolith formation in embryos and fry was investigated for wild-type and mutant (ha) medaka. The ha embryos could not form utricular otoliths. They formed saccular otoliths but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly light-dependent at the time of hatching, showing a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light dependent to gravity dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as model fish in studying the differences expected for the fish that have experienced a life cycle in microgravity. PMID:14631634

  10. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  11. Space vehicle acoustics prediction improvement for payloads. [space shuttle

    NASA Technical Reports Server (NTRS)

    Dandridge, R. E.

    1979-01-01

    The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

  12. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  13. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  14. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  15. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  16. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  17. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  18. A linear accelerator in the space: The beam experiment aboard rocket

    SciTech Connect

    O'Shea, P.G.; Butler, T.A.; Lynch, M.T.; McKenna, K.F.; Pongratz, M.B.

    1990-01-01

    On July 13, 1989 the BEAM experiment Aboard Rocket (BEAR) linear accelerator was successfully launched and operated in space. The flight demonstrated that a neutral hydrogen beam could be successfully propagated in an exoatmospheric environment. The accelerator, which was the result of an extensive collaboration between Los Alamos National Laboratory and industrial partners, was designed to produce a 10 mA (equivalent), 1 MeV neutral hydrogen beam in 50 {mu}s pulses at 5 Hz. The major components were a 30 keV H{sup {minus}} injector a 1 MeV radio frequency quadrupole, two 425 Mhz RF amplifiers, a gas cell neutralizer, beam optics, vacuum system and controls. The design was strongly constrained by the need for a lightweight rugged system that would survive the rigors of launch and operate autonomously. Following the flight the accelerator was recovered and operated again on the laboratory. 6 figs., 2 tabs.

  19. Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bruce, R. J.; Pierson, D. L.

    2004-01-01

    Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.

  20. Metis aboard the Solar Orbiter space mission: Doses from galactic cosmic rays and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Fabi, Michele; Grimani, Catia; Antonucci, Ester

    2016-03-01

    The aim of this work is to calculate the dose released by galactic cosmic rays (GCRs) and solar energetic particles (SEPs) in the polarimeter of the Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph [1] aboard the Solar Orbiter. This investigation is performed with a Monte Carlo method by considering the role of SEP events of proper intensity at a heliocentric distance from the Sun averaged along the spacecraft orbit. Our approach can be extended to other space missions reaching short distances from the Sun, such as Solar Probe Plus. This study indicates that the deposited dose on the whole set of polarimeter lenses and filters during ten years of the Solar Orbiter mission is of about 2000 Gy. For cerium treated lenses, a dose of 106 Gy of gamma radiation from a 60Co source causes a few percent transmittance loss.

  1. Space vehicle approach velocity judgments under simulated visual space conditions.

    PubMed

    Haines, R F

    1989-02-01

    There were 35 volunteers who responded when they first perceived an increase in apparent size of a collimated, two-dimensional perspective image of an Orbiter vehicle. The variables of interest included the presence (or absence) of a fixed reticle within the field of view (FOV), background starfield velocity, initial range to the vehicle and vehicle closure velocity. It was found that: 1) increasing vehicle approach velocity yielded a very small (but significant) effect of faster detection of vehicle movement, nevertheless, response variability was relatively large; 2) including the fixed reticle in the FOV produced significantly slower detection of vehicle radial movement, however this occurred only at the largest range and the magnitude of the effect was only about 15% of the one sigma value; and 3) increasing background star velocity during this judgment led to slower detection of vehicle movement. While statistically significant, this effect was small and occurred primarily at the largest range. A possible explanation for the last two findings is that other static and dynamic objects within the visual field may compete for available attention which otherwise would be available for judging image expansion; thus, the target's retinal image has to expand more than otherwise for its movement to be detected. This study also showed that the Proximity Operations Research Mockup at NASA/Ames can be used effectively to investigate a variety of visual judgment questions related to future space operations. These findings are discussed in relation to previous research and possible underlying mechanisms. PMID:2930426

  2. Space vehicle approach velocity judgments under simulated visual space conditions

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1989-01-01

    There were 35 volunteers who responded when they first perceived an increase in apparent size of a collimated, two-dimensional perspective image of an Orbiter vehicle. The variables of interest included the presence (or absence) of a fixed reticle within the field of view (FOV), background starfield velocity, initial range to the vehicle and vehicle closure velocity. It was found that: 1) increasing vehicle approach velocity yielded a very small (but significant) effect of faster detection of vehicle movement, nevertheless, response variability was relatively large; 2) including the fixed reticle in the FOV produced significantly slower detection of vehicle radial movement, however this occurred only at the largest range and the magnitude of the effect was only about 15% of the one sigma value; and 3) increasing background star velocity during this judgment led to slower detection of vehicle movement. While statistically significant, this effect was small and occurred primarily at the largest range. A possible explanation for the last two findings is that other static and dynamic objects within the visual field may compete for available attention which otherwise would be available for judging image expansion; thus, the target's retinal image has to expand more than otherwise for its movement to be detected. This study also showed that the Proximity Operations Research Mockup at NASA/Ames can be used effectively to investigate a variety of visual judgment questions related to future space operations. These findings are discussed in relation to previous research and possible underlying mechanisms.

  3. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  4. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  5. Ares Launch Vehicles Overview: Space Access Society

    NASA Technical Reports Server (NTRS)

    Cook, Steve

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, which transports the Orion Crew Exploration Vehicle, and the Ares V Cargo Launch Vehicle, which transports the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit, where it will rendezvous with the Lunar Module in the Earth Departure Stage, which will then propel the combination into lunar orbit. The imperative to explore space with the combination of astronauts and robots will be the impetus for inventions such as solar power and water and waste recycling. This next chapter in NASA's history promises to write the next chapter in American history, as well. It will require this nation to provide the talent to develop tools, machines, materials, processes, technologies, and capabilities that can benefit nearly all aspects of life on Earth. Roles and responsibilities are shared between a nationwide Government and industry team. The Exploration Launch

  6. Solid rocket motor space launch vehicles

    NASA Astrophysics Data System (ADS)

    MacLaren, A. J.; Trudeau, H. D.

    Space launch vehicles based on solid rocket motors are more cost effective than liquid rocket engine boosters. When stringent performance and dimension (length and diameter) constraints can be relaxed, design and manufacturing margins can be increased. Designing and manufacturing quality into the product, increases solid rocket motor reliability and substantially reduces cost. Since propulsion is a major component of recurring launch cost, such improvements result in reliability and a lower launch service cost. Higher reliability has implications for insurance costs as well as weighing the merits of self insurance against buying insurance. The inherent simplicity of solid rocket motor based space launch vehicles reduces assembly, checkout, and launch cycle times thus also reducing costs.

  7. Solid rocket motor space launch vehicles

    NASA Astrophysics Data System (ADS)

    MacLaren, A. J.; Trudeau, H. D.

    1992-08-01

    Space launch vehicles based on solid rocket motors are more cost effective than liquid rocket engine boosters. When stringent performance and dimension (length and diameter) constraints can be relaxed, design and manufacturing margins can be increased. Designing and manufacturing quality into the product, increases solid rocket motor reliability and substantially reduces cost. Since propulsion is a major component of recurring launch cost, such improvements result in reability and a lower launch service cost. Higher reliability has implications for insurance costs as well as weighing the merits of self insurance against buying insurance. The inherent simplicity of solid rocket motor based space launch vehicles reduces assembly, checkout, and launch cycle times thus also reducing costs.

  8. Automation for deep space vehicle monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1991-01-01

    Information on automation for deep space vehicle monitoring is given in viewgraph form. Information is given on automation goals and strategy; the Monitor Analyzer of Real-time Voyager Engineering Link (MARVEL); intelligent input data management; decision theory for making tradeoffs; dynamic tradeoff evaluation; evaluation of anomaly detection results; evaluation of data management methods; system level analysis with cooperating expert systems; the distributed architecture of multiple expert systems; and event driven response.

  9. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  10. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Chris; Inman, Sharon K.; Tuttle, Loraine; Neeley, James R.; Jones, James V.

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk.

  11. Variations in digestive physiology of rats after short duration flights aboard the US space shuttle.

    PubMed

    Rabot, S; Szylit, O; Nugon-Baudon, L; Meslin, J C; Vaissade, P; Popot, F; Viso, M

    2000-09-01

    The purpose of this work was to assess the influence of microgravity on several endogenous and microbial parameters of digestive physiology. On the occasion of two Spacelab Life Sciences missions, SLS-1 (a 9-day space flight) and SLS-2 (a 14-day space flight), Sprague-Dawley rats flown aboard the US space shuttle were compared to age-matched ground-based controls. In both flights, exposure to microgravity modified cecal fermentation: concentration and profile of short-chain fatty acids were altered, whereas urea and ammonia remained unchanged. Only in SLS-1 was there an induction of intestinal glutathione-S-transferase. Additional analyses in SLS-2 showed a decrease of hepatic CYP450 and of colonic goblet cells containing neutral mucin. After a postflight recovery period equal to the mission length, only modifications of the hepatic and intestinal xenobiotic metabolizing enzymes still persisted. These findings should help to predict the alterations of digestive physiology and detoxification potential likely to occur in astronauts. Their possible influence on health is discussed.

  12. [Light microscopy of statocyst cell elements from Helix lucorum (space experiment aboard the orbital station "MIR")].

    PubMed

    Gorgiladze, G I; Bukiia, R D; Kalandarishvili, E L; Taktakishvili, A D; Davitashvili, M T; Gelashvili, N Sh; Madzhagaladze, N B; Galkin, V A

    2013-01-01

    Statocyst epithelial lining of terrestrial pulmonary snail Helix lucorum is a spatially arranged structure consisting of 13 cell ensembles. Each ensemble has a sensory cell surrounded by companion cells. The sensory cell on the anterior statocyst pole is star-shaped due to multiple protoplasmatic protrusions on its body. The remaining 12 polygon-shaped cells form 3 tires along the statocyst internal perimeter: anterior, middle or equatorial and posterior. There are 4 cells in each tire. Topography of every sensory cell on the statocyst internal surface was described as well as cell nuclei size and form, nucleoli number and patterns of cytoplasm vacuolization. Space free of sensory cells is occupied by supporting or intercalary cells. Exposure to space microgravity over 40, 43, 102 and 135 days aboard the orbital station MIR affected morphology of the sensory cells. Specifically, this appeared as reductions in cell height and, consequently, extension of the statocyst cavity internal diameter and volume in the space-flown snails. PMID:24490279

  13. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.

  14. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  15. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  16. Launch Vehicle Assessment for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  17. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  18. Overview of the Development of the Temporary Sleep Station Hygiene Liner Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reid, Ethan A.

    2010-01-01

    Since the beginning of manned operations aboard the International Space Station (ISS), the crew had performed hygiene activities within the aisle way (the habitable volume, not including the sleep areas) of the ISS. The Crew used wet towels, re-hydrated body soap, and "no-rinse" shampoo to cleanse themselves amongst the stowage and systems hardware, referred to as "racks", even without a designated area to dry the wet items. Performing hygiene in this manner became an accepted method; no isolated location was available to the Crew. After several years of hygiene operations, some of the fabric-covered racks began to grow biological material (generically described as mold) and soon became a Crew health concern. Hygiene has one of the strongest impacts on Crew morale, and mandating changes to the Crew routine would have been met with strong resistance. The answer to the conundrum was to develop a liner to be placed within the Temporary Sleep Station (TeSS), one of the Crew s sleeping racks. This liner provided the Crew a means to perform hygiene activities within a private, enclosed area that also significantly decreased the potential to grow mold. This paper will describe the development of the TeSS Hygiene Liner, its impacts on the ISS and Crew, as well as its contribution to hygiene activities used in space today.

  19. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  20. Microstructural Evaluation and Comparison of Solder Samples Processed Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Hua, F.; Anilkumar, A. V.

    2008-01-01

    Samples from the In-Space Soldering Investigation (ISSI), conducted aboard the International Space Station (ISS), are being examined for post-solidification microstructural development and porosity distribution. In this preliminary study, the internal structures of two ISSI processed samples are compared. In one case 10cm of rosin-core solder was wrapped around a coupon wire and melted by conduction, whereas, in the other a comparable length of solder was melted directly onto the hot wire; in both cases the molten solder formed ellipsoidal blobs, a shape that was maintained during subsequent solidification. In the former case, there is clear evidence of porosity throughout the sample, and an accumulation of larger pores near the hot end that implies thermocapillary induced migration and eventual coalescence of the flux vapor bubbles. In the second context, when solder was fed onto the wire. a part of the flux constituting the solder core is introduced into and remains within the liquid solder ball, becoming entombed upon solidification. In both cases the consequential porosity, particularly at a solder/contact interface, is very undesirable. In addition to compromising the desired electrical and thermal conductivity, it promotes mechanical failure.

  1. Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.

  2. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station

    NASA Astrophysics Data System (ADS)

    Inatani, Junji; Ozeki, Hiroyuki; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2000-12-01

    A submillimeter limb-emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as KIBO) at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb-emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gases by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, Hcl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32-626.32 GHz and 649.12-650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing the latitudes form 38 S to 65 N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid- latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weak emission lines attributing to less-abundant species.

  3. Biosafety in Space Vehicles and Habitats

    NASA Astrophysics Data System (ADS)

    Wong, Wing; Arneson, David; Pierson, Duane

    2010-09-01

    Biohazardous materials can be found in space vehicles and habitats include blood, body-waste, visible microbial contamination, and payload experiments containing bacteria, fungi, animals, plants, toxins, recombinant DNA, or mammalian cell lines. To mitigate the potential hazards that these biohazardous materials present to the crew and the space environments, sound biosafety principles and practices such as thorough risk assessment, sufficient level of containment, effective remedial actions, adequate system design, and the use of proper personal protective equipment are needed. The Biosafety Review Board(BRB) at Johnson Space Center plays a critical role in ensuring the proper biosafety principles and practices are applied. The BRB includes a team of microbiologists, cell biologists, physicians, industrial hygienists, and safety professionals to assess the wide range of biohazardous materials encountered.

  4. Carbon composites in space vehicle structures

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  5. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  6. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  7. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.; Block, Gladys; Rice, Barbara L.; Davis-Street, Janis E.

    2005-01-01

    Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.

  8. A model for predicting the radiation exposure for mission planning aboard the international space station

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Lewis, Brent J.; Tomi, Leena

    2014-04-01

    The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East-West asymmetry were observed at this location.

  9. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    SciTech Connect

    Spady, B.R.; Synowicki, R.A.; Hale, J.S.; Devries, M.J.; Woollam, J.A.; Moore, A.W.; Lake, M. |

    1995-02-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  10. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    NASA Technical Reports Server (NTRS)

    Spady, Blaine R.; Synowicki, R. A.; Hale, Jeffrey S.; Devries, M. J.; Woollam, John A.; Moore, Arthur W.; Lake, Max

    1995-01-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  11. Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Willsey, Mark; Bailey, Brad

    2011-01-01

    In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

  12. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  13. Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos I and Cytos M experiments.

    PubMed

    Panel, H; Tixador, R; Nefedov, Y u; Gretchko, G; Richoilley, G; Bassler, R; Monrozies, E

    1981-01-01

    Results of the Cytos M experiment and complementary results of the Cytos I experiment flown aboard the Soviet orbital station Salyut 6 are shown. Space flight of Paramecia cultures resulted in a stimulating effect on cell proliferation, in a larger cell volume, in changes in cell dry weight, cell total protein and the electrolyte content of the culture media in which the organisms were grown. The assumption of a possible effect of weightlessness on membrane permeability is discussed.

  14. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  15. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  16. A Survey of Staphylococcus sp and its Methicillin Resistance aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Ott, C.; Healy, M.; Pierson, D. L.

    2004-01-01

    Background: Within the past few years, methicillin-resistant Staphylococcus aureus has emerged in environments with susceptible hosts in close proximity, such as hospitals and nursing homes. As the International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts occupying ISS or on surfaces of the space station itself. Methods: Identification of isolates was completed using VITEK (GPI cards, BioMerieux), 16S ribosomal DNA analysis (MicroSeq 500, ABI), and Rep-PCR DNA fingerprinting (Divemilab, Bacterial Barcodes). Susceptibility tests were performed using VITEK (GPS-105 cards, BioMerieux) and resistance characteristics were evaluated by testing for the presence of the mecA gene (PBP2' MRSA test kit, Oxoid). Results: Rep-PCR analysis indicated the transfer of S. aureus between crewmembers and between crewmembers and ISS surfaces. While a variety of S. aureus were identified from both the crewmembers and environment, evaluations of the microbial population indicated minimal methicillin resistance. Results of this study indicated that within the semi-closed ISS environment, transfer of bacteria between crewmembers and their environment has been occurring, although there was no indication of a high concentration of methicillin resistant Staphylococcus species. Conclusions: While this study suggests that the spread of methicillin resistant S. aureus is not currently a concern aboard ISS, the increasing incidence of Earth-based antibiotic resistance indicates a need for continued clinical and environmental monitoring.

  17. The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.

    2009-01-01

    This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering

  18. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  19. Microscale packed bed reactor for controlled hydrogen peroxide decomposition as a fuel cell oxidant aboard unmanned undersea vehicles

    NASA Astrophysics Data System (ADS)

    Lennon, E.; Burke, A. A.; Ocampo, M.; Besser, R. S.

    The multiphase catalytic decomposition of hydrogen peroxide into water and oxygen is notoriously susceptible to thermal runaway (heat of reaction: -98 kJ mol -1). The high surface area to volume ratio (S/ V) in a microscale packed bed (MPB) reactor (radius 0.5 mm) was investigated for reducing the risk of thermal runaway during hydrogen peroxide decomposition to oxygen intended as a fuel cell oxidant aboard an unmanned undersea vehicle (UUV). A microscale reactor channel with a S/ V of ∼2 × 10 3 m 2 m -3 simulated under convective cooling generated a significant heat rise (T rise ∼ 100 K), whereas a microreactor with a higher S/ V (∼200 × 10 3 m 2 m -3) achieved thermal control (T rise < 10 K) over the simulated reaction zone. Although thermal management was successfully accomplished using the higher S/ V, experimental conversions of hydrogen peroxide to oxygen (5-18%) measured from the outlet were lower than simulated conversions (38-63%). Simulation assumptions, such as homogeneously dispersed flow and perfect catalyst interaction among other factors, contributed to the discrepancies between the simulated and experimental degrees of peroxide conversion to oxygen. Even though thermal control of the MPB was achieved, this work indicates that mass transfer limitations are a factor in the MPB reactor during a multiphase reaction, like decomposition of hydrogen peroxide to oxygen and water, and suggests means to overcome them even on the microscale level.

  20. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  1. Quantum test of the equivalence principle and space-time aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Williams, Jason; Chiow, Sheng-wey; Yu, Nan; Müller, Holger

    2016-02-01

    We describe the Quantum Test of the Equivalence principle and Space Time (QTEST), a concept for an atom interferometry mission on the International Space Station (ISS). The primary science objective of the mission is a test of Einstein’s equivalence principle with two rubidium isotope gases at a precision of better than 10-15, a 100-fold improvement over the current limit on equivalence principle violations, and over 1,000,000 fold improvement over similar quantum experiments demonstrated in laboratories. Distinct from the classical tests is the use of quantum wave packets and their expected large spatial separation in the QTEST experiment. This dual species atom interferometer experiment will also be sensitive to time-dependent equivalence principle violations that would be signatures for ultralight dark-matter particles. In addition, QTEST will be able to perform photon recoil measurements to better than 10-11 precision. This improves upon terrestrial experiments by a factor of 100, enabling an accurate test of the standard model of particle physics and contributing to mass measurement, in the proposed new international system of units (SI), with significantly improved precision. The predicted high measurement precision of QTEST comes from the microgravity environment on ISS, offering extended free fall times in a well-controlled environment. QTEST plans to use high-flux, dual-species atom sources, and advanced cooling schemes, for N > 106 non-condensed atoms of each species at temperatures below 1 nK. Suppression of systematic errors by use of symmetric interferometer configurations and rejection of common-mode errors drives the QTEST design. It uses Bragg interferometry with a single laser beam at the ‘magic’ wavelength, where the two isotopes have the same polarizability, for mitigating sensitivities to vibrations and laser noise, imaging detection for correcting cloud initial conditions and maintaining contrast, modulation of the atomic hyperfine states

  2. Space Technology Research Vehicle (STRV)-1 program

    NASA Astrophysics Data System (ADS)

    Stubstad, John; Blott, Richard J.; Shoemaker, James

    2000-11-01

    The Space Technology Research Vehicle (STRV)-1 program, initiated by the UK Ministry of Defence and the US Ballistic Missile Defense Organization under terms of an agreement originally signed by President Reagan and Prime Minister Thatcher, has resulted in new opportunities for researchers to acquire low-cost on-orbit data. The STRV-1 a/b satellites were launched into a geotransfer orbit (GTO) on June 1994, and continued operation until the mission was terminated in September, 1998. Data returned from the on-board experiments has provided new insights into the nature of the terrestrial radiation belts and the effects of this radiation on critical spacecraft materials and components. The flexibility of the on-board computer also enabled successful demonstration of new space communication protocol standards. Transfer of day-to-day satellite operations from the Defence Evaluation and Research Agency to the University of Colorado clearly showed that spacecraft conforming to CCSDS standard protocols can be rapidly cross- supported across an international boundary. The next satellites in the STRV-1 program, STRV-1 c/d, will carry 21 hardware experiments sponsored by the US, UK, Canada, and ESA, and will provide on-board computing capability for conducting three software experiments. Launch into GTO in the latter part of 2000 will result in exposure of all satellite systems and experiments to increasing solar activity and its resulting influence on Van Allen belt radiation fluence.

  3. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  4. Wooden Spaceships: Human-Centered Vehicle Design for Space

    NASA Technical Reports Server (NTRS)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  5. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  6. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  7. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  8. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  9. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  10. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  11. 46 CFR 116.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Guards in vehicle spaces. 116.940 Section 116.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.940 Guards in vehicle spaces. On a vessel authorized to carry one or...

  12. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  13. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  14. 46 CFR 177.940 - Guards in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Guards in vehicle spaces. 177.940 Section 177.940 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.940 Guards in vehicle spaces. On a...

  15. Coupled Loads Analysis Accuracy from the Space Vehicle Perspective

    NASA Astrophysics Data System (ADS)

    Dickens, J. M.; Wittbrodt, M. J.; Gate, M. M.; Li, L. H.; Stroeve, A.

    2001-01-01

    Coupled loads analysis (CLA) consists of performing a structural response analysis, usually a time-history response analysis, with reduced dynamic models typically provided by two different companies to obtain the coupled response of a launch vehicle and space vehicle to the launching and staging events required to place the space vehicle into orbit. The CLA is performed by the launch vehicle contractor with a reduced dynamics mathematical model that is coupled to the launch vehicle, or booster, model to determine the coupled loads for each substructure. Recently, the booster and space vehicle contractors have been from different countries. Due to the language differences and governmental restrictions, the verification of the CLA is much more difficult than when working with launch vehicle and space vehicle contractors of the same country. This becomes exceedingly clear when the CLA analysis results do not seem to pass an intuitive judgement. Presented in the sequel are three checks that a space vehicle contractor can perform on the results of a coupled loads analysis to partially verify the analysis.

  16. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (< 20 years!) accumulation of sufficient data for countermeasures formulation. Indeed, there is no guarantee that even with the data, a practical or sufficiently robust set of countermeasures will be forthcoming. Providing an artificial gravity (AG) environment by crew centrifugation aboard deep-space human exploration vehicles, long a staple technique of science fiction, has received surprisingly limited engineering assessment. This is most likely due to a number of factors: the lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as

  17. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; Mclean, Kyle F.; McMann, Joseph; Melf, Markus; Miner, Linda; Ohl, Raymond G.; Redman, Kevin; Roedel, Andreas; Schweiger, Paul; Plate, Maurice T.; Wells, Martyn; Wenzel, Greg W.; Williams, Patrick K.; Young, Jerrod

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  18. Automation of vehicle processing at Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Vargo, Rick; Sklar, Mike; Wegerif, Dan

    1991-02-01

    A methodology for applying the Kennedy Space Center vehicle processing experience to similar operations at Space Station Freedom is described. First, the required on-orbit processing tasks are identified. These tasks are then evaluated for automation suitability, and robotic manipulator and artificial intelligence technologies are investigated to automate selected physical and cognitive tasks. Effects on processing times, extra-vehicular activity savings, and required resources for incorporating these automation enhancements are identified. Results of the following case studies are included: Phobos Gateway Vehicle On-Orbit Assembly and Launch, Lunar Evolution Vehicle On-Orbit Refurbishment, and Mars Mission Vehicle On-Orbit Assembly and Launch.

  19. Automation of vehicle processing at Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Vargo, Rick; Sklar, Mike; Wegerif, Dan

    1991-01-01

    A methodology for applying the Kennedy Space Center vehicle processing experience to similar operations at Space Station Freedom is described. First, the required on-orbit processing tasks are identified. These tasks are then evaluated for automation suitability, and robotic manipulator and artificial intelligence technologies are investigated to automate selected physical and cognitive tasks. Effects on processing times, extra-vehicular activity savings, and required resources for incorporating these automation enhancements are identified. Results of the following case studies are included: Phobos Gateway Vehicle On-Orbit Assembly and Launch, Lunar Evolution Vehicle On-Orbit Refurbishment, and Mars Mission Vehicle On-Orbit Assembly and Launch.

  20. Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24

  1. Vehicle for Space Transfer and Recovery (VSTAR), volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). VSTAR will provide for economic use of high altitude spaceflight for both the public and private sector. VSTAR components will be built and tested using earth based facilities. These components will then be launched using the space shuttle, into low earth orbit (LEO) where it will be constructed on a U.S. built space station. Once in LEO the vehicle components will be assembled in modules which can then be arranged in various configurations to perform the required missions.

  2. Expendable launch vehicle transportation for the space station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.

  3. Vehicle performance impact on space shuttle design and concept evaluation

    NASA Technical Reports Server (NTRS)

    Craig, M. K.

    1972-01-01

    The continuing examination of widely varied space shuttle concepts makes an understanding of concept interaction with vehicle performance imperative. The estimation of vehicle performance is highly appurtenant to all aspects of shuttle design and hence performance has classically been a key indicator of overall concept desirability and potential. Vehicle performance assumes the added role of defining interactions between specific design characteristics, the sum total of which define a specific concept. Special attention is given to external tank effects.

  4. NASP derived vehicles - Not just to space

    NASA Astrophysics Data System (ADS)

    Johnson, Donald B.; Espinosa, Angel M.; Althuis, Jeffrey S.

    1992-12-01

    NASP-derived vehicles (NDVs) are presently noted to include not only exoatmospheric launch vehicles but also hypersonic cruisers. A conceptual development status evaluation is presented for such hypersonic aircraft, with a view to their likely military and civilian missions and the technical issues that remain to be solved for their implementation. Attention is given to plausible NDV configurations, propulsion systems, and performance goals for Mach 4.0 fighter-bomber, Mach 5.0 commercial/military transport, Mach 10.0 long-range cruiser, and SSTO launch vehicle.

  5. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  6. Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, 13C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground.

  7. Risk Considerations of Bird Strikes to Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  8. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    NASA Technical Reports Server (NTRS)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  9. Geostationary space launch vehicles and the US dilemma

    NASA Astrophysics Data System (ADS)

    Clapp, William G.

    1994-06-01

    The U.S. commercial space launch program no longer dominates the world and is now playing 'catch-up' with the world's first commercial launch company, Arianespace. The effort to regain the lead in the commercial space launch market has been hindered by declining Department of Defense budgets. President Clinton's space policy prohibits expensive new launch vehicles and limits the Department of Defense to low-cost upgrades of existing launch vehicles. The U.S. government created the space sector and has an obligation to ensure a smooth and effective split from the emerging commercial space program. Until the ties are severed, the Department of Defense must consider commercial space launch interests when making decisions. Ariane has provided an excellent 'bench mark' for the U.S. to base future launch vehicle upgrades. The 198 commercial satellite launches since 1965 have provided a significant amount of data that were used to critically compare space launch vehicles. The dilemma was that U.S. space launch vehicles were found to be economically superior to Ariane for specific military payloads, but were not effective at launching commercial satellites over a wide range of payload weights. Ariane advantages were identified and low-cost recommendations have been made. If the U.S. sets the target of first equaling and then surpassing Ariane, the U.S. could once again dominate the world commercial launch market.

  10. Second Generation RLV Space Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Daniel, C. C.

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  11. Second Generation RLV Space Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle; Daniel, Charles; Throckmorton, David A. (Technical Monitor)

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistent fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At $776M for phase 1, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  12. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  13. Aircraft operability methods applied to space launch vehicles

    SciTech Connect

    Young, D.

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The {open_quotes}building in{close_quotes} of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program. {copyright} {ital 1997 American Institute of Physics.}

  14. Design optimization for a space based, reusable orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Future NASA and DOD missions will benefit from high performance, reusable orbit transfer vehicles. With the advent of a space station, advanced engine technology, and various new vehicle concepts, reusable orbit transfer vehicles that provide significant economic benefits and mission capability improvements will be realized. Engine and vehicle design criteria previously have lacked definition with regard to issues such as space basing and servicing, man-rating and reliability, performance, mission flexibility, and life cycle cost for a reusable vehicle. The design study described here has resulted in the definition of a reusable orbit transfer vehicle concept and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine. These design criteria include number of engines per vehicle, nozzle design, etc. The major characteristics of the vehicle preliminary design include low lift to drag aerocapture capability, a main propulsion system failure criteria of fail operational/fail safe, and either two main engines with a high performance attitude control system for back-up or three main engines with which to meet this failure criteria. In addition, a maintenance approach has been established for the advanced vehicle concept.

  15. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  16. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  17. Development of Superconducting Submillimeter-Wave Limb-Emission Sounder (JEM/SMILES) Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Manabe, Takeshi

    2002-06-01

    In recent years, stratospheric ozone depletion is one of the most significant global environmental issues. it is well known that stratospheric trace gases, which include chlorine oxides and bromine oxides, play a crucial role in the process of stratospheric ozone destruction. Although the abundances of these trace gases are as low as in the order of parts par billion or less, they are quite efficient to destroy stratospheric ozone by catalytic reactions. In order to establish the techniques to monitor stratospheric Ozone and Ozone depleting molecules, CRL (Communications Research Laboratory and NASDA are collaborating to develop Superconducting Submillimeter-Limb Emission Sounder (JEM/SMILES) to be aboard the Japanese Experiment Module (JEM) of the International Space Station. In this paper, the outline of the JEM/SMILES project and the payload instrument is introduced.

  18. [Levels of radiation exposure and radiation risk in flights aboard the orbital complex "Mir" and the International space station].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V; Petrov, V M

    2001-01-01

    The paper presents results of calculating mean daily values of absorbed and equivalent doses from galactic cosmic rays (GCR) and Earth's radiation belts (ERB) to crew members on orbital missions aboard Mir and the International space station during solar minimum and maximum. Calculated doses were corrected in accordance with the dosimetric and spectrometric data from Mir missions 18 through to 23 that took place in the period of solar minimum. Contribution of local and albedo neutrons to equivalent dose was also taken into account. Presented are calculated total radiation risk and tumor risk over life time for Mir and ISS crews following missions of varying duration, and predictions for reduction in life span in view of recent dosimetric data. PMID:11840866

  19. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  20. Methods of assessing structural integrity for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Stuckenberg, F. H.

    1971-01-01

    A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.

  1. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  2. Vehicle Engineering Development Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Champion, Robert H., Jr.

    1999-01-01

    New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.

  3. Design optimization of space launch vehicles using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  4. SLI Artist's Concept-Vehicle Enroute to Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  5. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  6. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  7. Ascent optimization of an airbreathing space vehicle

    NASA Astrophysics Data System (ADS)

    Bulirsch, R.; Chudej, K.

    In the present paper the optimized ascent of a Saenger type lower stage is studied. The controls and the time of changing from turbo to ramjet acceleration are optimized simultaneously. Valuable information concerning the design of the vehicle due to the optimized flight path can be gained. The optimal control problem is reduced to a multipoint boundary value problem which is solved by the multiple shooting algorithm. A good first estimate of state and especially adjoint variables for starting the multiple shooting algorithm is computed via a direct colocation method. Very accurate solutions including the switching structure are obtained through this hybrid approach.

  8. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  9. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  10. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  11. Space shuttle vehicle automatic docking study

    NASA Technical Reports Server (NTRS)

    Blanchard, E. P.; Hutchinson, R. C.; Johnson, L. B.

    1971-01-01

    The material presented is divided into three main areas of accomplishment. The first is a description of the angle only docking sensor concept and the computational requirements to develop useful guidance information from the raw angle only data. The second describes the analytical effort including the MIT in-house computer simulation, the development of guidance equations and vehicle stability related thereto, and presents the results of studies covering the effects of employing Kalman filtering with the sensor. The third area presents the conclusions and recommendations resulting from the program. Much of the material has appeared in previous reports, but is included here for the sake of completeness. New material indicating how the computer might operate to identify the individual sources in the target array is included.

  12. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  13. Investigation of Vehicle Requirements and Options for Future Space Tourism

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  14. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    NASA Astrophysics Data System (ADS)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  15. Design of specific hardware to obtain embryos and maintain adult urodele amphibians aboard a space station

    NASA Astrophysics Data System (ADS)

    Husson, D.; Chaput, D.; Bautz, A.; Davet, J.; Durand, D.; Dournon, C.; Duprat, A. M.; Gualandris-Parisot, L.

    The study of the influence of weightlessness on fertilization and embryonic development of a vertebrate is of importance in the understanding of basic embryogenesis and in the preparation of the future exploration of space. Accordingly, specific hardware was designed to perform experiments on board the MIR space station with an amphibian vertebrate model, taking into account the biological requirements and the multiple constraints of a longterm space mission. This paper describes the biological uses and presents the technological specifications of the device developed under CNES management. The hardware was adapted to and is compatible with biological requirements as confirmed by three experiments performed in space on board the orbital MIR station.

  16. Development of superconducting submillimeter-wave limb emission sounder (JEM/SMILES) aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Ozeki, Hiroyuki; Inatani, Junji; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2001-12-01

    A submillimeter wave limb emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as 'KIBO') at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb Emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gasses by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, HCl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32 - 626.32 GHz, and 649.12 - 650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing latitudes from 38S to 65N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid-latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weal emission lines attributing to less-abundant species.

  17. Space Debris Orbit Determination Method with the Use of Onboard Optical Sensors of Space Vehicles

    NASA Astrophysics Data System (ADS)

    Sokolov, N.; Ivanov, V.; Nosova, K.; Selezneva, I.

    2013-08-01

    The analytical method is proposed for determining the parameters of space debris orbits avoiding the iterative calculation process. The initial information is the measurements of absolute magnitude and orientation of the vector connecting the center of mass of operated space vehicle and the position of space debris fragment. The calculation errors are estimated depending on the initial data.

  18. Advanced robotics for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-extravehicular activity tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for robot services. Similarly, a set of robot primitives is presented that can be used to model robot actions for alternative robot reference configurations. The robot primitives are tied to technologies and used for composing robot operations for an automated refueling scenario. Robotics technology issues and design accommodation guidelines (hooks and scars) for Space Station Freedom are described.

  19. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  20. Investigation of abort procedures for space shuttle-type vehicles

    NASA Technical Reports Server (NTRS)

    Powell, R. W.; Eide, D. G.

    1974-01-01

    An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.

  1. Design of specific hardware to obtain embryos and maintain adult urodele amphibians aboard a space station.

    PubMed

    Husson, D; Chaput, D; Bautz, A; Davet, J; Durand, D; Dournon, C; Duprat, A M; Gualandris-Parisot, L

    2001-01-01

    The study of the influence of weightlessness on fertilization and embryonic development of a vertebrate is of importance in the understanding of basic embryogenesis and in the preparation of the future exploration of space. Accordingly, specific hardware was designed to perform experiments on board the MIR space station with an amphibian vertebrate model, taking into account the biological requirements and the multiple constraints of a long-term mission. This paper describes the biological uses and presents the technological specifications of the device developed under CNES management. The hardware was adapted to and is compatible with biological requirements as confirmed by three experiments performed in space on board the orbital MIR station.

  2. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  3. A shadowgraph study of Space Transportation System (STS): The Space Shuttle Launch Vehicle (SSLV)

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1994-01-01

    A shadowgraph study of the space transportation system (STS), the space shuttle launch vehicle, is presented. The shadowgraphs presented in this study were obtained over the past 10 years from wind tunnel tests performed in the NASA Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during the space shuttle development program. Shadowgraphs of the STS at various angles-of-attack and roll angles are shown for the Mach range of 0.6 to 4.96. The major flow field phenomena over the mated vehicle configuration are shown in these shadowgraphs. Shadowgraphs are also presented for the orbiter without the lower stack (reentry configuration) and the lower stack without the orbiter. A short study of external tank nose geometry effects on the mated vehicles flow field is presented. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle encounters during the ascent stage of flight.

  4. Multisensor Network Deployment Using Low Cost Delivery Space Vehicle

    NASA Astrophysics Data System (ADS)

    Saleh, R. A.; Thurber, C. H.; Kestay, L. P.

    2012-10-01

    A novel approach is to use low cost launch space vehicle to deliver a network of large number of microsensors over an extended area of a body to observe multiple phenomena then transmit the data back to Earth through a relay system.

  5. Cryogenic fluid management technology requirements for the Space Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Cramer, John M.; Brown, Norman S.

    1989-01-01

    An in-house study was performed to design a cryogenic Space Transfer Vehicle (STV) for the late 1990s that can evolve with the demanding mission requirements of the manned exploration initiatives. An assessment of cryogenic fluid management technology issues associated with the STV was performed to identify technology gaps and propose advanced development activities.

  6. Assessment of potential buffet problems on the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Muhlstein, L., Jr.

    1972-01-01

    Buffet of the space shuttle launch and reentry configuration is an area requiring continued evaluation to produce a safe reliable vehicle of minimum weight. Buffet forces result from flow separation and therefore can not be predicted accurately. Buffet loads are highly sensitive to configuration, angle of attack, and Mach number and can be reliably determined only by wind tunnel tests of elastically scaled models.

  7. Development of control systems for space shuttle vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Skelley, E. D.; Stein, G.; Ward, M. D.; Skelton, G. B.; Yore, E. E.; Rupert, J. G.; Phelps, R. K.

    1971-01-01

    Control of winged two-stage space shuttle vehicles was investigated. Control requirements were determined and systems capable of meeting these requirements were synthesized. Control requirements unique to shuttles were identified. It is shown that these requirements can be satisfied by conventional control logics. Linear gain schedule controllers predominate. Actuator saturations require nonlinear compensation in some of the control systems.

  8. Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986

    NASA Technical Reports Server (NTRS)

    Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.

    1987-01-01

    Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.

  9. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  10. Low Earth Orbital Mission Aboard the Space Test Experiments Platform (STEP-3)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.

    1992-01-01

    A discussion of the Space Active Modular Materials Experiments (SAMMES) is presented in vugraph form. The discussion is divided into three sections: (1) a description of SAMMES; (2) a SAMMES/STEP-3 mission overview; and (3) SAMMES follow on efforts. The SAMMES/STEP-3 mission objectives are as follows: assess LEO space environmental effects on SDIO materials; quantify orbital and local environments; and demonstrate the modular experiment concept.

  11. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1988-01-01

    Future satellite communication and scientific spacecraft will utilize antennas with dimensions as large as 20 meters. In order to commercially use these large, low sidelobe and multiple beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. Furthermore, it will be desirable to demonstrate the applicability of surface compensation techniques for slowly varying surface distortions which could result from thermal effects. An overview of recent advances in performing RF measurements on large antennas is presented with emphasis given to the application of a space based far-field range utilizing the Space Shuttle and the concept of a newly developed nonuniform sampling technique.

  12. Observations of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard deep space 1

    USGS Publications Warehouse

    Soderblom, L.A.; Becker, T.L.; Bennett, G.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Isbell, C.; Giese, B.; Hare, T.; Hicks, M.D.; Howington-Kraus, E.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Owen, T.C.; Rayman, M.D.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2002-01-01

    The nucleus of the Jupiter-family comet 19P/Borrelly was closely observed by the Miniature Integrated Camera and Spectrometer aboard the Deep Space 1 spacecraft on 22 September 2001. The 8-kilometer-long body is highly variegated on a scale of 200 meters, exhibiting large albedo variations (0.01 to 0.03) and complex geologic relationships. Short-wavelength infrared spectra (1.3 to 2.6 micrometers) show a slope toward the red and a hot, dry surface (???345 kelvin, with no trace of water ice or hydrated minerals), consistent with ???10% or less of the surface actively sublimating. Borrelly's coma exhibits two types of dust features: fans and highly collimated jets. At encounter, the near-nucleus coma was dominated by a prominent dust jet that resolved into at least three smaller jets emanating from a broad basin in the middle of the nucleus. Because the major dust jet remained fixed in orientation, it is evidently aligned near the rotation axis of the nucleus.

  13. GALILEO Signal In Space Triple Carrier four Space Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Tabacco, P.; Vernucci, A.; Cornacchini, C.; Richichi, F.; Botticchio, T.; Meta, F.

    2008-08-01

    The state of art of GALILEO Signal In Space specifications has been implemented by Space Engineering GALILEO Simulator. The design and quality test results of this Professional Instrument, aimed to support GALILEO receiver development, will be described in this Paper. The current version is compatible with SIS ICD vers. 12.0, but would allow easy migration to MBOC for L1 carrier, when this specification will be formalized by a new SIS ICD release. For what concern the E5 signal the Simulator is a truly Alt-BOC coherent generator allowing a 120MHz analog Bandwidth being generated digitally and not as two separate E5a and E5b analog signals. The current version of Space Engineering Signal In Space Simulator allow to generate up to four Satellites for all the three carriers L1, E5 and E6 simultaneously and it is a self contained unit, complete of AC power supplying adapter and fan cooling system, arranged in a single Compact-PCI (C-PCI)19" Rack.

  14. Cyber threat impact assessment and analysis for space vehicle architectures

    NASA Astrophysics Data System (ADS)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  15. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  16. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  17. Space and planetary environment criteria guidelines for use in space vehicle development. Volume 1: 1982 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Compiler); West, G. S. (Compiler)

    1983-01-01

    Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.

  18. Technology issues associated with using densified hydrogen for space vehicles

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  19. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1987-01-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Space Station will grow in capacity, in its range of capabilities, and its economy of operation as a laboratory and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar dynamic power generation, now compete to power the station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the station's increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the station to exploit long tethers (200 to 300 km long) could yield increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  20. Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.

    1988-01-01

    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.

  1. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation, was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  2. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  3. Robust on-off pulse control of flexible space vehicles

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  4. Space transfer vehicle concepts and requirements. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1991-04-01

    The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.

  5. Space transfer vehicle concepts and requirements. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.

  6. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  7. Space vehicle approach velocity judgments under simulated visual space conditions

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Thirty-five volunteers responded when they first perceived an increase in apparent size of a collimated, 2-D image of an Orbiter vehicle. The test variables of interest included the presence of a fixed angular reticle within the field of view (FOV); three initial Orbiter distances; three constant Orbiter approach velocities corresponding to 1.6, 0.8, and 0.4 percent of the initial distance per second; and two background starfield velocities. It was found that: (1) at each initial range, increasing approach velocity led to a larger distance between the eye and Orbiter image at threshold; (2) including the fixed reticle in the FOV produced a smaller distance between the eye and Orbiter image at threshold; and (3) increasing background star velocity during this judgment led to a smaller distance between the eye and Orbiter image at threshold. The last two findings suggest that other detail within the FOV may compete for available attention which otherwise would be available for judging image expansion; thus, the target has to approach the observer nearer than otherwise if these details were present. These findings are discussed in relation to previous research and possible underlying mechanisms.

  8. Protein crystal growth aboard the U.S. space shuttle flights STS-31 and STS-32.

    PubMed

    DeLucas, L J; Smith, C D; Carter, D C; Twigg, P; He, X M; Snyder, R S; Weber, P C; Schloss, J V; Einspahr, H M; Clancy, L L; McPherson, A; Koszelak, S; Vandonselaar, M M; Prasad, L; Quail, J W; Delbaere, L T; Bugg, C E

    1992-01-01

    The first microgravity protein crystal growth experiments were performed on Spacelab I by Littke and John. These experiments indicated that the space grown crystals, which were obtained using a liquid-liquid diffusion system, were larger than crystals obtained by the same experimental system on earth. Subsequent experiments were performed by other investigators on a series of space shuttle missions from 1985 through 1990. The results from two of these shuttle flights (STS-26 and STS-29) have been described previously. The results from these missions indicated that the microgravity grown crystals for a number of different proteins were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth. This paper presents the results obtained from shuttle flight STS-32 (flown in January, 1990) and preliminary results from the most recent shuttle flight, STS-31 (flown in April, 1990).

  9. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  10. Concept study on Deep Space Orbit Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Yasuhiro

    2007-12-01

    In this paper, the concept of Orbit Transfer Vehicle for Deep Space Exploration (Deep Space OTV) is proposed, and its effectiveness and feasibility are discussed. Basic concept is the separation of two functions required for the deep space exploration, the transportation to the destination, and the exploration at the destination. Deep Space OTV is a spacecraft specialized for the transportation to the deep space destination. It is an expendable spacecraft propelled by solar electric propulsion. The payload of Deep Space OTV is Explorer, which is a spacecraft specialized for the exploration at the deep space destination. The effectiveness of the concept is discussed qualitatively, focused on the merits of the separations of two functions. The feasibility of Deep Space OTV is discussed based on the conceptual design of the spacecraft and its applicability to deep space missions. Several deep space missions are modeled and the payload capacity of Deep Space OTV is estimated. The missions include Asteroid rendezvous, Mars orbiter, Lunar lander, and so on.

  11. Building ISOC Status Displays for the Large AreaTelescope aboard the Gamma Ray Large Area Space Telescope (GLAST) Observatory

    SciTech Connect

    Ketchum, Christina; /SLAC

    2006-09-01

    In September 2007 the Gamma Ray Large Area Space Telescope (GLAST) is scheduled to launch aboard a Delta II rocket in order to put two high-energy gamma-ray detectors, the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM) into low earth orbit. The Instrument Science Operations Center (ISOC) at SLAC is responsible for the LAT operations for the duration of the mission, and will therefore build an operations center including a monitoring station at SLAC to inform operations staff and visitors of the status of the LAT instrument and GLAST. This monitoring station is to include sky maps showing the location of GLAST in its orbit as well as the LAT's projected field of view on the sky containing known gamma-ray sources. The display also requires a world map showing the locations of GLAST and three Tracking and Data Relay Satellites (TDRS) relative to the ground, their trail lines, and ''footprint'' circles indicating the range of communications for each satellite. The final display will also include a space view showing the orbiting and pointing information of GLAST and the TDRS satellites. In order to build the displays the astronomy programs Xephem, DS9, SatTrack, and STK were employed to model the position of GLAST and pointing information of the LAT instrument, and the programming utilities Python and Cron were used in Unix to obtain updated information from database and load them into the programs at regular intervals. Through these methods the indicated displays were created and combined to produce a monitoring display for the LAT and GLAST.

  12. Space vehicle with artificial gravity and earth-like environment

    NASA Technical Reports Server (NTRS)

    Gray, V. H. (Inventor)

    1973-01-01

    A space vehicle adapted to provide an artificial gravity and earthlike atmospheric environment for occupants is disclosed. The vehicle comprises a cylindrically shaped, hollow pressure-tight body, one end of which is tapered from the largest diameter of the body, the other end is flat and transparent to sunlight. The vehicle is provided with thrust means which rotates the body about its longitudinal axis, generating an artificial gravity effect upon the interior walls of the body due to centrifugal forces. The walls of the tapered end of the body are maintained at a temperature below the dew point of water vapor in the body and lower than the temperature near the transparent end of the body. The controlled environment and sunlight permits an earth like environment to be maintained wherein the CO2/O2 is balanced, and food for the travelers is supplied through a natural system of plant life grown on spacecraft walls where soil is located.

  13. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…

  14. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  15. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  16. Logistical and Analytical Approach to a Failure Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    McDanels, Seve; Wright, M. Clara; Salazar, Victoria; Lubas, David; Tucker, Bryan

    2009-01-01

    The starboard Solar Alpha Rotary Joint (SARJ) from the International Space Station (ISS) began exhibiting off-nominal electrical demands and vibration. Examination by spacewalking astronauts revealed metallic debris contaminating the system and damage to the outboard race of the SARJ. Samples of the contamination were returned to Earth and analyzed. Excessive friction caused the nitride region of the 15-5 PH stainless steel race to spall, generating the debris and damaging the race surface. Excessive vibration and excess power was required to operate the system as a result.

  17. The Cold Atom Laboratory: a facility for ultracold atom experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Aveline, David; CAL Team

    2016-05-01

    Spread across the globe there are many different experiments in cold quantum gases, enabling the creation and study of novel states of matter, as well as some of the most accurate inertial sensors currently known. The Cold Atom Laboratory (CAL), being built at NASA's Jet Propulsion Laboratory (JPL), will be a multi-user facility that will allow the first study of ultracold quantum gases in the microgravity conditions of the International Space Station (ISS). The microgravity environment offers a wealth of advantages for studies of cold atoms, including expansion into extremely weak traps and achieving unearthly cold temperatures. It will also enable very long interaction times with released samples, thereby enhancing the sensitivity of cold atom interferometry. We will describe the CAL mission objectives and the flight hardware architecture. We will also report our ongoing technology development for the CAL mission, including the first microwave evaporation to Bose-Einstein condensation (BEC) on a miniaturized atom chip system, demonstrated in JPL's CAL Ground Testbed. We will present the design, setup, and operation of two experiments that reliably generate and probe BECs and dual-species mixtures of Rb-87 and K-39 (or K-41). CAL is scheduled to launch to the ISS in 2017. The CAL mission is supported by NASA's SLPS and ISS-PO. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract with the National Aeronautics and Space Administration.

  18. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  19. Optimum propellant usage for reaction jet systems of space vehicles

    NASA Technical Reports Server (NTRS)

    Liu, T. C.; Thompson, Z.; Fisher, P. H., Jr.

    1974-01-01

    The on-off type control for reaction jet systems is proven to be the optimal fuel scheme. However, due to the nonlinear characteristics of this type control, no direct method of solution is known for this optimal process being applied to the attitude control of space vehicles. This paper will discuss the optimization of fuel usage for an attitude control of space vehicles. A computation technique is developed for the calculation of optimal control law. The method of calculus of variations is applied to the estimation of the changes of performance index as well as terminal constraints. Thus an algorithm is obtained by the steepest descent method. A numerical example is given in the paper.

  20. Lignification in young plant seedlings grown on earth and aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cowles, Joe R.; Lemay, R.; Jahns, G.; Scheld, W. H.; Peterson, C.

    1989-01-01

    The Space Shuttle era has provided an opportunity for investigators to conduct experiments in a microgravity environment. Two Shuttle flights, STS-3 and STS-51F, each contained an experiment designed principally to determine whether young plant seedlings exposed to microgravity had reduced lignin content in comparison to seedlings grown at one gravity. Three different plant species, pine, oats, and mung beans, were exposed for eight days to the microgravity environment of the Shuttle. The lignin content of in-flight seedlings was less than the control seedlings in all seven sets of seedlings included in these two experiments. In five sets of seedlings, the reduction in lignin content in flight seedlings ranged from 6 to 24 percent and was statistically significant. In addition, the activity of two enzymes involved in lignin synthesis, phenylalanine ammonia lyase and peroxidase, were significantly reduced in pine seedlings. It was therefore concluded that microgravity, as perceived by young plant seedlings, results in reduced lignin synthesis.

  1. Feasibility of an Incoherent-scatter Radar Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Baron, M. J.; Tsunoda, R. T.; Petriceks, J.; Kunnes, H.

    1976-01-01

    The results of a preliminary study to investigate the feasibility of conducting an incoherent scatter radar experiment on board the space shuttle are presented. The results indicate that such an experiment is technically feasible. The more difficult questions to answer are whether the system can be made flexible enough to justify the problems and costs involved. The design parameters and the tradeoffs that are available in the consideration of these questions are evaluated. Some of the more serious limitations pertain to: (1) the presence of ground clutter and F region auroral clutter; (2) available average power; (3) weight and volume associated with required antenna size, transmitter, and energy storage devices; and (4) antenna breakdown associated with high power transmitter problems.

  2. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    NASA Technical Reports Server (NTRS)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  3. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  4. A space maintainability experiment aboard the Ben Franklin submersible during the 30-day Gulf Stream drift mission.

    NASA Technical Reports Server (NTRS)

    Kappler, J. R.; May, C. B.

    1972-01-01

    In the summer of 1969, a deep submersible drifted for 30 days below the surface of the Gulf Stream, while operated by a six man crew. The main purpose of the mission was oceanographic research. The crew's activities and completely self-contained environment resembled those of a space station such as Skylab. Because of these similarities aspects of onboard vehicle maintenance during the actual conduct of a scientific mission were investigated. The maintainability study was accomplished in six distinct phases. Two useful plots of manpower distribution were developed. A maintenance action summary is presented in a table.

  5. Pointing control design for autonomous space vehicle applications

    SciTech Connect

    Young, K.D.

    1993-03-01

    This paper addresses the design of pointing control systems for autonomous space vehicles. The function of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor. We outline the development of novel nonlinear control algorithms which exploit the availability of on- board sensors. Simulation results comparing the performance of the different pointing control implementations are presented.

  6. Tethered space recovery vehicle deployment/re-entry demonstration

    NASA Technical Reports Server (NTRS)

    Florence, D.

    1988-01-01

    The feasibility of utilizing existing Space Re-entry Vehicle (SRV) hardware for a Shuttle Orbiter-based tethered SRV deployment and re-entry demonstration using the Small Expendable Deployer System has been investigated. Options for mounting the SRV in the Orbiter, modifications and additions required to the existing SRV hardware have been defined. Flight demonstration scenarios from the Orbiter have been investigated, and re-entry motion and targeting uncertainties have been determined.

  7. New space vehicle archetypes for human planetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  8. Command and control displays for space vehicle operations

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Zetocha, Paul; Aleva, Denise

    2010-04-01

    This paper shall examine several command and control facility display architectures supporting space vehicle operations, to include TacSat 2, TacSat 3, STPSat 2, and Communications Navigation Outage Forecasting System (CNOFS), located within the Research Development Test & Evaluation Support Complex (RSC) Satellite Operations Center 97 (SOC-97) at Kirtland Air Force Base. A principal focus is to provide an understanding for the general design class of displays currently supporting space vehicle command and control, e.g., custom, commercial-off-the-shelf, or ruggedized commercial-off-the-shelf, and more specifically, what manner of display performance capabilities, e.g., active area, resolution, luminance, contrast ratio, frame/refresh rate, temperature range, shock/vibration, etc., are needed for particular aspects of space vehicle command and control. Another focus shall be to address the types of command and control functions performed for each of these systems, to include how operators interact with the displays, e.g., joystick, trackball, keyboard/mouse, as well as the kinds of information needed or displayed for each function. [Comparison with other known command and control facilities, such as Cheyenne Mountain and NORAD Operations Center, shall be made.] Future, anticipated display systems shall be discussed.

  9. Laser Fine-Adjustment Thruster For Space Vehicles

    SciTech Connect

    Rezunkov, Yu. A.; Egorov, M. S.; Repina, E. V.; Safronov, A. L.; Rebrov, S. G.

    2010-05-06

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  10. Invited article: data analysis of the floating potential measurement unit aboard the international space station.

    PubMed

    Barjatya, Aroh; Swenson, Charles M; Thompson, Donald C; Wright, Kenneth H

    2009-04-01

    We present data from the Floating Potential Measurement Unit (FPMU) that is deployed on the starboard truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of a floating potential probe, a wide-sweeping spherical Langmuir probe, a narrow-sweeping cylindrical Langmuir probe, and a plasma impedance probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data are presented from August 5, 2006 and March 3, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and Utah State University-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in situ density matches the USU-GAIM model better than the IRI, and the derived in situ temperatures are comparable to the average temperatures given by the IRI. PMID:19405644

  11. Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.

    2009-01-01

    We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.

  12. Quality factor and dose equivalent investigations aboard the Soviet space station MIR.

    PubMed

    Bouisset, P; Nguyen, V D; Akatov, Y A; Siegrist, M; Parmentier, N; Archangelsky, V V; Vorojtsov, A S; Petrov, V M; Kovalev, E E

    1992-01-01

    Since Dec 1988, date of the French-Soviet joint space mission "ARAGATZ", the CIRCE device (Compteur Intégrateur de Rayonnement Complexe dans l'Espace) had recorded dose equivalent and quality factor inside the MIR station (380-410 km, 51.5 degrees). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods, viz Dec 1988, Mar-Apr 1989 and Jan-Feb 1990 are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high LET (Linear Energy Transfer) events with quality factors in the range 10-20. PMID:11537031

  13. Features of the Gravity Probe B Space Vehicle

    NASA Astrophysics Data System (ADS)

    Reeve, William; Green, Gaylord

    2007-04-01

    Space vehicle performance enabled successful relativity data collection throughout the Gravity Probe B mission. Precision pointing and drag-free translation control was maintained using proportional helium micro-thrusters. Electrical power was provided by rigid, double sided solar arrays. The 1.8 kelvin science instrument temperature was maintained using the largest cryogenic liquid helium dewar ever flown in space. The flight software successfully performed autonomous operations and safemode protection. Features of the Gravity Probe B Space Vehicle mechanisms include: 1) sixteen helium micro-thrusters, the first proportional thrusters flown in space, and large-orifice thruster isolation valves, 2) seven precision and high-authority mass trim mechanisms, 3) four non-pyrotechnic, highly reliable solar array deployment and release mechanism sets. Early incremental prototyping was used extensively to reduce spacecraft development risk. All spacecraft systems were redundant and provided multiple failure tolerance in critical systems. Lockheed Martin performed the spacecraft design, systems engineering, hardware and software integration, environmental testing and launch base operations, as well as on-orbit operations support for the Gravity Probe B space science experiment.

  14. Balanced Expertise Distribution in Remote Ultrasound Imaging Aboard The International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David

    2004-01-01

    Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science

  15. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  16. Initial Results from the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria; Parker, Linda; Bui, Them

    2007-01-01

    The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.

  17. Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. In-space operations for lunar and Mars space transfer vehicles

    NASA Technical Reports Server (NTRS)

    Raper, James L., Sr.; Vargo, Rick C.

    1993-01-01

    The objective of this paper is to discuss the in-space operations required to process the lunar and Mars mission vehicles envisioned for the Space Exploration Initiative (SEI). Recent studies, which have examined the degree to which on-orbit operations change as a function of the Earth-to-orbit (ETO) launch vehicle size, identified a common set of on-orbit vehicle processing tasks, and generated functional requirements for in-space processing nodes are summarized in this paper. Timelines for on-orbit processing of two different lunar transfer vehicles (LTV's) were developed to compare a 'current practice,' labor-intensive EVA approach to ones utilizing telerobotics and advanced automation. LTV aerobrake concepts ranging from simple deployment to considerable assembly are compared. Similar timelines for the on-orbit processing of a nuclear Mars transfer vehicle (MTV) are also presented. Aerobrakes can be processed in a timely manner and should not be ruled out for SEI missions. The 'tall pole' time interval for on-orbit vehicle initial processing is the delivery of elements to orbit, not the processing tasks.

  19. Advanced Technologies Demonstrated by the Miniature Integrated Camera and Spectrometer (MICAS) Aboard Deep Space 1

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Beauchamp, Patricia M.; Soderblom, Laurence A.; Brown, Robert H.; Chen, Gun-Shing; Lee, Meemong; Sandel, Bill R.; Thomas, David A.; Benoit, Robert T.; Yelle, Roger V.

    2007-04-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80 185 nm), two high-resolution visible imagers (10 20 μrad/pixel, 400 900 nm), and a short-wavelength infrared imaging spectrometer (1250 2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85 140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to ˜50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly

  20. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The

  1. Remote profiling of lake ice using an S-band short pulse radar aboard an all-terrain vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Mueller, R. A.; Schertler, R. J.

    1975-01-01

    An airborne short-pulse radar system to measure ice thickness was designed. The system supported an effort to develop an all-weather Great Lakes Ice Information System to aid in extending the winter navigation season. Experimental studies into the accuracy and limitations of the system are described. A low power version was operated from an all-terrain vehicle on the Straits of Mackinac during March 1975. The vehicle allowed rapid surveying of large areas and eliminated the ambiguity in location between the radar system and the ground truth ice auger team. It was also possible to the effects of snow cover, surface melt water, pressure ridging, and ice type upon the accuracy of the system. Over 25 sites were explored which had ice thicknesses from 29 to 60 cm. The maximum radar overestimate was 9.8 percent, while the maximum underestimate was 6.6 percent. The average error of the 25 measurements was 0.1 percent.

  2. Some Problems of Rocket-Space Vehicles' Characteristics co- ordination

    NASA Astrophysics Data System (ADS)

    Sergienko, Alexander A.

    2002-01-01

    of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.

  3. Maximum Aerodynamic Force on an Ascending Space Vehicle

    NASA Astrophysics Data System (ADS)

    Backman, Philip

    2012-03-01

    The March 2010 issue of The Physics Teacher includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in the article), where the combined effect of air density and the shuttles speed produce the greatest aerodynamic stress on the vehicle as it ascends through the atmosphere toward orbit. Official commentary during a launch2 refers to this point in the ascent with language such as "space shuttle main engines throttling back as vehicle enters area of maximum dynamic pressure" and occurs in a range between 45 and 60 s after launch. (In dealing with this stress, the space shuttles main engines reduce their thrust at approximately 45 s to reduce acceleration, and return to normal levels again some 15 s later as maximum dynamic pressure is traversed.) This paper presents an analysis, accessible to introductory-level students, that predicts the time of Max. AirPressure for a given ascending spacecraft.

  4. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David; Borowski, Allan; Bungo, Michael W.; Dulchavsky, Scott; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Norwoord, Kelly; Platts, Steven H.; Poston, Sue; Roper, Matthew; Sandoz, Gwenn; Thomas, James D.

    2011-01-01

    Echocardiography is ideally suited for cardiovascular imaging in remote environments, but the expertise to perform it is often lacking. In 2001, an ATL HDI5000 was delivered to the International Space Station (ISS). The instrument is currently being used in a study to investigate the impact of long-term microgravity on cardiovascular function. The purpose of this report is to describe the methodology for remote guidance of echocardiography in space. Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image optimization to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2 second transmission delay. The expert sonographer uses these images along with two-way audio to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 19 resting echocardiograms and 4 exercise studies have been performed in-flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, but remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 12 video loops and 21 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research

  5. Human response to vibroacoustic environments of space vehicles

    NASA Astrophysics Data System (ADS)

    Willshire, K. F.

    1984-10-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  6. Human response to vibroacoustic environments of space vehicles

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To insure efficient utilization of the system, space station design and operations will require special habitability considerations for the occupants and crew because of the relatively long duration missions. Of particular concern is the environment in which the personnel will live and work, and how it affects both the performance and comfort of the occupants. Current criteria do not consider possible effects of reduced gravity, long duration, and confinement. Preliminary to developing space station vibroacoustic habitability criteria, the adequacy of criteria for other space vehicles has been reviewed. In this paper, responses to the noise and vibration environments of both Skylab and Shuttle are discussed. Some astronauts have reported sleep interference, communication interference, distraction, and general annoyance as noise related complaints. In addition, information from the Russian Salyut missions, as well as similar based situtations (e.g., submarines), is reviewed.

  7. Flow and heat transfer in space vehicle tile gaps

    NASA Technical Reports Server (NTRS)

    Garimella, S. V.; Shollenberger, K. A.; Eibeck, P. A.; White, S.

    1992-01-01

    The flow patterns and the characteristics of the convective heat transfer in intersecting tile gaps on space vehicles were experimentally investigated using a water channel flow facility for simulating flow conditions in the tile gaps on the Aeroassist Flight Experiment (AFE) vehicle. It was found that penetration of external flow into the perpendicular gap was limited in most cases to roughly two gap widths, while greater entrainment occurred in the parallel gap. Heat transfer in the bulk of the perpendicular gap occurred by natural convection. The Reynolds number and the relative tile-height differences had the strongest influence on heat transfer and affected both the magnitude and the symmetry of the temperature and the flow fields.

  8. Reliable compact electrical power source systems for space launch vehicles

    SciTech Connect

    Young, A.R.

    1996-12-31

    Described herein are several key technologies utilized in the design of a family of direct-drive turboalternator systems for space launch vehicles. These systems automatically provide conditioned and regulated electrical power at various voltages, powering actuators, valves, and avionics throughout the vehicle. The simple and robust ring-wound two-pole toothless alternator operates at peripheral speeds, making it suitable to be driven directly by a turbine, thereby eliminating the weight, reliability, zero ``g`` lubrication, and cooling issues of a speed-reducing gearbox, while allowing the turbine to operate at reasonable efficiency. Additionally, the use of self-aligning foil bearing and catalytic combustors or cold gas propellants enhance the reliability. The power conditioner and electronic controller provide hands-off regulated ac or dc power on demand, maintaining critical parameters within established limits and performance while reporting on built-in health-monitoring tests.

  9. Designing space vehicle shields for meteoroid protection: A new analysis

    NASA Astrophysics Data System (ADS)

    Swift, H. F.; Bamford, R.; Chen, R.

    Dual-layer meteroid shields consisting of sacrificial bumper plates spaced some distance outboard from the vehicle hull are the most effective structures yet conceived for protecting space vehicles from supervelocity meteroid impacts. This paper presents a new analysis for designing dual-layer shields. The analysis is based upon energy and momentum conservation, fundamental electromagnetic radiation physics, and observation of results from extensive experimental impact investigations conducted at relatively low velocities (near 7 km/s). One important conclusion is that most of the kinetic energy of a meteoroid striking a dual-layer shield is expended as radiation at the stagnation zone on the face plate of the underlying structure. The analysis includes systematic procedures to evaluate the response of shield designs for a given impact threat. Similar applications of the analysis can be used to support a mathematically rigorous procedure for optimum shield design. The research described here supported the Halley Intercept Mission Project at the Jet Propulsion Laboratory, C.I.T., under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.

  10. Space shuttle: Structural integrity and assessment study. [development of nondestructive test procedures for space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1974-01-01

    A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented.

  11. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  12. Interpretation of Observations of Trans-Spectral Phenomena Acquired Using Hyperspectral Sensors Aboard a Remotely Operated Vehicle in Exuma Sound

    NASA Technical Reports Server (NTRS)

    Costello, D.; Carder, Kendall L.; Ivey, J.; English, D.

    2001-01-01

    Hyper-spectral (512-channel) optical data acquired during a relatively deep (102m) dive of our ROSEBUD Remotely Operated Vehicle (ROV) in the clear waters of Exuma Sound, Bahamas provided the opportunity to investigate the trans-spectral shift of photonic energy (inelastic scattering) as a function of water depth. Results show a convolution of several spectral processes (e.g. absorption, scattering) involving water molecules, dissolved material and particulates as well as trans-spectral (inelastic) processes involving fluorescence by water molecules (Raman), dissolved material and chlorophyll. The spectral signatures of these convolved causes and effects allow deconvolution with a hyperspectral approach. Intrinsic to the convolution was the ability to position the vehicle at depths where Raman fluorescence dominated at red wavelengths. Results show that the calculated Raman absorption coefficients are generally consistent with historical values (i.e. 0.9 x 10(sup)-4 at 525 nm excitation) and that an angstrom exponent of 5 is more appropriate than the often cited value of 4.

  13. Classroom Analysis of Rotating Space Vehicles in 2001: A Space Odyssey.

    ERIC Educational Resources Information Center

    Borgwald, James M.; Schreiner, Serge

    1993-01-01

    This article describes the use of modern science fiction movies as a vehicle to teach scientific principles. The resulting artificial gravity from a spinning space station in movie "2001" is calculated from measurements taken off of the screen. A mathematical explanation is provided. (MVL)

  14. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  15. Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.

  16. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  17. Modeling of space vehicle propellant mixing. [cryogenic propellants

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.

    1983-01-01

    An experimental program was conducted to examine the liquid flow patterns that result from the axial-jet mixing of ethanol in 10-cm-diameter spherical and cylindrical containers under zero-, reduced-, and normal-gravity conditions. Dimensionless parameters were developed that characterized the observed liquid flow patterns and the bulk-liquid mixing phenomena. The correlations developed, were used to analyze a typical liquid hydrogen tank and internal thermodynamic vent system for a shuttle-compatible space tug similar to current orbit transfer vehicle concepts.

  18. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  19. Optimal ascent of a Horus/Saenger type space vehicle

    NASA Astrophysics Data System (ADS)

    Sachs, Gottfried; Drexler, Johannes

    Two optimization methods are used to study the optimal ascent trajectory of the rocket-powered second stage of the Saenger II space vehicle. In the lower region of the flight path angle at separation, it is found that the lifting capability (together with the thrust vector inclination due to angle of attack) is most important in achieving an ascent. Also considered for the optimal ascent trajectory is a zero-thrust phase following separation, instead of the immediate application of full thrust. The effect of a longitudinal acceleration constraint is investigated.

  20. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  1. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  2. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  3. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  4. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  5. Space Vehicle Power System Comprised of Battery/Capacitor Combinations

    NASA Technical Reports Server (NTRS)

    Camarotte, C.; Lancaster, G. S.; Eichenberg, D.; Butler, S. M.; Miller, J. R.

    2002-01-01

    Recent improvements in energy densities of batteries open the possibility of using electric rather that hydraulic actuators in space vehicle systems. However, the systems usually require short-duration, high-power pulses. This power profile requires the battery system to be sized to meet the power requirements rather than stored energy requirements, often resulting in a large and inefficient energy storage system. Similar transient power applications have used a combination of two or more disparate energy storage technologies. For instance, placing a capacitor and a battery side-by-side combines the high energy density of a battery with the high power performance of a capacitor and thus can create a lighter and more compact system. A parametric study was performed to identify favorable scenarios for using capacitors. System designs were then carried out using equivalent circuit models developed for five commercial electrochemical capacitor products. Capacitors were sized to satisfy peak power levels and consequently "leveled" the power requirement of the battery, which can then be sized to meet system energy requirements. Simulation results clearly differentiate the performance offered by available capacitor products for the space vehicle applications.

  6. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  7. A study of the compatibility of science instruments with the solar electric propulsion space vehicle

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.

    1973-01-01

    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  8. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  9. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  10. Space transfer vehicle concepts and requirements study. Volume 2, book 1: STV concept definition and evaluation

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The topics covered include the following: mission analysis; initial and evolutionary space transfer vehicle (STV) concept definition; configuration and subsystem trade studies; and operations and logistics.

  11. A methodology for rapid vehicle scaling and configuration space exploration

    NASA Astrophysics Data System (ADS)

    Balaba, Davis

    2009-12-01

    The Configuration-space Exploration and Scaling Methodology (CESM) entails the representation of component or sub-system geometries as matrices of points in 3D space. These typically large matrices are reduced using minimal convex sets or convex hulls. This reduction leads to significant gains in collision detection speed at minimal approximation expense. (The Gilbert-Johnson-Keerthi algorithm [79] is used for collision detection purposes in this methodology.) Once the components are laid out, their collective convex hull (from here on out referred to as the super-hull) is used to approximate the inner mold line of the minimum enclosing envelope of the vehicle concept. A sectional slicing algorithm is used to extract the sectional dimensions of this envelope. An offset is added to these dimensions in order to come up with the sectional fuselage dimensions. Once the lift and control surfaces are added, vehicle level objective functions can be evaluated and compared to other designs. The size of the design space coupled with the fact that some key constraints such as the number of collisions are discontinuous, dictate that a domain-spanning optimization routine be used. Also, as this is a conceptual design tool, the goal is to provide the designer with a diverse baseline geometry space from which to chose. For these reasons, a domain-spanning algorithm with counter-measures against speciation and genetic drift is the recommended optimization approach. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [60] is shown to work well for the proof of concept study. There are two major reasons why the need to evaluate higher fidelity, custom geometric scaling laws became a part of this body of work. First of all, historical-data based regressions become implicitly unreliable when the vehicle concept in question is designed around a disruptive technology. Second, it was shown that simpler approaches such as photographic scaling can result in highly suboptimal concepts

  12. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  13. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  14. Motion and Heating During Atmosphere Reentry of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Wong, Thomas J.; Goodwin, Glen; Slye, Robert E.

    1960-01-01

    The results of an analysis of the motion and heating during atmospheric reentry of manned space vehicles has shown the following: 1. Flight-corridor depths which allow reentry in a single pass decrease rapidly as the reentry speed increases if the maximum deceleration is limited to 10 g. 2. Use of aerodynamic lift can result in a three-to five fold increase in corridor depth over that available to a ballistic vehicle for the same deceleration limits. 3. Use of aerodynamic lift to widen these reentry corridors causes a heating penalty which becomes severe for values of the lift-drag ratio greater than unity for constant lift-drag entry. 4. In the region of most intense convective heating the inviscid flow is generally in chemical equilibrium but the boundary-layer flows are out of equilibrium. Heating rates for the nonequilibrium boundary layer are generally lower than for the corresponding equilibrium case. 5. Radiative heating from the hot gas trapped between the shock wave and the body stagnation region may be as severe as the convective heating and unfortunately occurs at approximately the same time in the flight.

  15. Dispersion analysis techniques within the space vehicle dynamics simulation program

    NASA Technical Reports Server (NTRS)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).

  16. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  17. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  18. Practices in adequate structural design. [of space vehicles and space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    An account is given of the guidelines for safe and reliable space vehicle design, especially in the structural engineering area, which have been formulated by NASA in the aftermath of the Space Shuttle Challenger accident in 1986. Illustrative examples are presented from state-of-the-art, performance-driven hardware whose design ineluctably gives rise to a high sensitivity to small variations and uncertainties. It is recommended that such hardware be designed with a view to easy inspectability and manufacturability, with emphasis on the role played in system structures by fracture mechanics. Static and dynamic coupling effects must be precluded wherever possible.

  19. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  20. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concentrations of CO began increasing gradually (Figure 1). The results from samples returned on this flight indicate that the CO concentrations, after dropping in late 2009, have cycled upward and then settled back to concentrations near 2 mg/m3. In any case, these changes are well below the 180-day SMAC for CO, which is17 mg/m3. There is no threat to crew health. Carbon Dioxide: This anthropogenic compound has drawn much attention recently because of the possibility that it could contribute to the effects of intracranial hypertension experienced because of spaceflight-induced fluid shifts. From now on we will maintain a plot (Figure 2) of carbon dioxide concentrations ( SD) by averaging the values found in the 3-5 mini-GSC samples taken each month in diverse locations of the ISS. This will enable us to estimate the average exposure of crewmembers to carbon dioxide during their stay aboard the ISS. In general, concentrations are being maintained below 3.5 mmHg. Figure 1

  1. O/S analysis of conceptual space vehicles. Part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.

  2. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  3. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  4. ISS Update: SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean conducts an interview with SpaceX 2 Lead Visiting Vehicle Officer Dorrie Tomayko about the second commercial resupply mission to the International Space Stat...

  5. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  6. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    NASA Technical Reports Server (NTRS)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  7. Required Area for a Crew Person in a Space Vehicle

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.

    1998-01-01

    This 176 page report was written in circa 1966 to examine the effects of confmement during space flight. One of the topics covered was the required size of a space vehicle for extended missions. Analysis was done using size of crew and length of time in a confmed space. The report was based on all information available at that time. The data collected and analyzed included both NASA and (when possible) Russian missions flown to date, analogs (such as submarines), and ground studies. Both psychological and physiological responses to confmement were examined. Factors evaluated in estimating the degree of impairment included the level of performance of intellectual, perceptual, manual and co-ordinated tasks, response to psychological testing, subjective comments of the participants, nature and extent of physiological change, and the nature and extent of behavioral change and the nature and extent of somatic complaints. Information was not included from studies where elements of perceptual isolation were more than mildly incidental - water immersion studies, studies in darkened and acoustically insulated rooms, studies with distorted environmental inputs - unpattemed light and white noise. Using the graph from the document, the upper line provides a threshold of minimum acceptable volumeall points above the line may be considered acceptable. The lower line provides a threshold of unacceptable volume - all points below the line are unacceptable. The area in between the two lines is the area of doubtful acceptability where impairment tends to increase with reduction in volume and increased duration of exposure. Reference is made of the Gemini VII, 14-day duration mission which had detectable impairment with a combination of 40 cubic feet per man for 14 days. In line with all other data this point should be in the 'marked impairment' zone. It is assumed that the state of fitness, dedication and experience influenced this outcome.

  8. Experiment aboard Russian satellite "Foton M2" in 2005: new approaches for study on stimulating effect of space flight on cell proliferation and regeneration in Urodela

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.

    A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU

  9. Life cycle cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.

  10. 77 FR 23463 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at Kodiak Launch Complex, Alaska... two species of pinnipeds incidental to space vehicle and missile launch operations at the Kodiak... launch operations at the KLC, were issued on March 22, 2011 (76 FR 16311, March 23, 2011), and remain...

  11. Space transportation vehicle design evaluation using saturated designs

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1993-01-01

    An important objective in the preliminary design and evaluation of space transportation vehicles is to find the best values of design variables that optimize the performance characteristic (e.g. dry weight). For a given configuration, the vehicle performance can be determined by the use of complex sizing and performance evaluation computer programs. These complex computer programs utilize iterative algorithms and they are generally too expensive and/or difficult to use directly in multidisciplinary design optimization. An alternative is to use response surface methodology (RSM) and obtain quadratic polynomial approximations to the functional relationships between performance characteristics and design variables. In RSM, these approximation models are then used to determine optimum design parameter values and for rapid sensitivity studies. Constructing a second-order model requires that 'n' design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. There, 3(n) factorial experiments (point designs or observations) may be necessary. For small values of 'n' such as two or three, this design works well. However, when a large number of design parameters are under study, the number of design points required for a full-factorial design may become excessive. Fortunately, these quadratic polynomial approximations can be obtained by selecting an efficient design matrix using central composite designs (CCD) from design of experiments theory. Each unique point design from the CCD matrix is then conducted using computerized analysis tools (e.g. POST, CONSIZ, etc.). In the next step, least squares regression analysis is used to calculate the quadratic polynomial coefficients from the data. However, in some multidisciplinary applications involving a large number of design variables and several disciplines, the computerized performance synthesis programs may get too time consuming and expensive to run even with the use of

  12. Unmanned, space-based, reusable orbital transfer vehicle, DARVES. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The design of an unmanned, space-based, reusable Orbital Transfer Vehicle (OTV) is presented. This OTV will be utilized for the delivery and retrieval of satellites from geosynchronous Earth orbit (GEO) in conjunction with a space station assumed to be in existence in low Earth orbit (LEO). The trade analysis used to determine the vehicle design is presented, and from this study a vehicle definition is given.

  13. RFID in Space: Exploring the Feasibility and Performance of Gen 2 Tags as a Means of Tracking Equipment, Supplies, and Consumable Products in Cargo Transport Bags onboard a Space Vehicle or Habitat

    NASA Technical Reports Server (NTRS)

    Jones, Erick C.; Richards, Casey; Herstein, Kelli; Franca, Rodrigo; Yagoda, Evan L.; Vasquez, Reuben

    2008-01-01

    Current inventory management techniques for consumables and supplies aboard space vehicles are burdensome and time consuming. Inventory of food, clothing, and supplies are taken periodically by manually scanning the barcodes on each item. The inaccuracy of reading barcodes and the excessive amount of time it takes for the astronauts to perform this function would be better spent doing scientific experiments. Therefore, there is a need for an alternative method of inventory control by NASA astronauts. Radio Frequency Identification (RFID) is an automatic data capture technology that has potential to create a more effective and user-friendly inventory management system (IMS). In this paper we introduce a Design for Six Sigma Research (DFSS-R) methodology that allows for reliability testing of RFID systems. The research methodology uses a modified sequential design of experiments process to test and evaluate the quality of commercially available RFID technology. The results from the experimentation are compared to the requirements provided by NASA to evaluate the feasibility of using passive Generation 2 RFID technology to improve inventory control aboard crew exploration vehicles.

  14. Common Cause Failure Modeling in Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Ring, Rob; Novack, Steven D.; Britton, Paul

    2015-01-01

    Common Cause Failures (CCFs) are a known and documented phenomenon that defeats system redundancy. CCFs are a set of dependent type of failures that can be caused for example by system environments, manufacturing, transportation, storage, maintenance, and assembly. Since there are many factors that contribute to CCFs, they can be reduced, but are difficult to eliminate entirely. Furthermore, failure databases sometimes fail to differentiate between independent and dependent CCF. Because common cause failure data is limited in the aerospace industry, the Probabilistic Risk Assessment (PRA) Team at Bastion Technology Inc. is estimating CCF risk using generic data collected by the Nuclear Regulatory Commission (NRC). Consequently, common cause risk estimates based on this database, when applied to other industry applications, are highly uncertain. Therefore, it is important to account for a range of values for independent and CCF risk and to communicate the uncertainty to decision makers. There is an existing methodology for reducing CCF risk during design, which includes a checklist of 40+ factors grouped into eight categories. Using this checklist, an approach to produce a beta factor estimate is being investigated that quantitatively relates these factors. In this example, the checklist will be tailored to space launch vehicles, a quantitative approach will be described, and an example of the method will be presented.

  15. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space...

  16. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  17. A decade on board America's Space Shuttle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.

  18. Future space transportation systems analysis study. Phase 1: Technical report, appendices. [a discussion of orbit transfer vehicles, lunar transport vehicles, space shuttles, and reusable spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.

  19. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    NASA Technical Reports Server (NTRS)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  20. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  1. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.

    2006-01-01

    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  2. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2010-01-01

    Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture was designed to reduce the complexity and labor intensity of ground operations for America s next journeys beyond low-Earth orbit (LEO). The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. Since completing the Preliminary Design Review in 2008, work has continued to push the Ares I beyond the concept phase and into full vehicle development, while tackling fresh engineering challenges and performing pathfinding activities related to vehicle manufacturing and ground operations.

  3. Sensor systems for vehicle environment perception in a Highway Intelligent Space System.

    PubMed

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-05-15

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility.

  4. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    PubMed Central

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  5. Sensor systems for vehicle environment perception in a Highway Intelligent Space System.

    PubMed

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  6. Viability of Bacillus subtilis spores exposed to space environment in the M-191 experiment system aboard Apollo 16.

    PubMed

    Bucker, H; Horneck, G; Wollenhaupt, H; Schwager, M; Taylor, G R

    1974-01-01

    During the Apollo 16 space flight, in the experiment system M-191, (microbial response to space environment) spores of Bacillus subtilis 168 were exposed to space vacuum or solar UV irradiation with a peak wavelength of 254 nm or both. The effects of these space factors on the colony-forming ability of the spores were studied. It was found (i) that space vacuum alone did not affect the survival of pre-dried spores; (ii) that space vacuum in combination with solar UV irradiation with a peak wavelength of 254 nm had a synergistic effect, which may by attributed to a UV supersensitivity of the spores during vacuum exposure. These results agreed with findings of simulation experiments on earth. It was concluded that air dried spores may survive exposure to space vacuum if shielded against solar UV irradiation.

  7. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  8. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. 1828.371 Section 1828.371 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space...

  9. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. 1828.371 Section 1828.371 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space...

  10. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  11. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  12. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  13. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-Flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David S.; Borowski, Allan; Bungo, Michael W.; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Lee, Stuart M.; Norwood, Kelly; Platts, Steven H.; Matz, Timothy; Roper, Matthew; Sandoz, Gwenn; Thomas, James D.

    2012-01-01

    Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image quality to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2- second transmission delay. The expert sonographer uses these images, along with twoway audio, to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 27 resting echocardiograms and 5 exercise studies have been performed during flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, and remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 27 video loops and 30 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research-quality echocardiography to be performed by non-experts aboard the ISS. Analysis is underway and additional subjects are being recruited to define the impact of microgravity on cardiac structure and systolic and diastolic function.

  14. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2015-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  15. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  16. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  17. 76 FR 27308 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... vehicle and missile launch operations at the KLC, were issued on March 22, 2011 (76 FR 16311, March 23... Marine Mammals Incidental to Space Vehicle and Missile Launch Operations at Kodiak Launch Complex, Alaska... Kodiak Launch Complex (KLC) in Kodiak, Alaska. DATES: Effective from April 30, 2011, through April...

  18. Application of the MESA reactive hydrocode to space vehicle explosive ordnance devices

    NASA Technical Reports Server (NTRS)

    Goldstein, Selma

    1993-01-01

    The construction of detailed computational models of the dynamic behavior of various explosive ordnance devices used on space vehicles is discussed. The following topics are presented in viewgraph form: numerical methods, explosives and detonations, and the MESA computer code.

  19. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  20. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  1. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  2. Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107).

    PubMed

    Niihori, Maki; Mogami, Yoshihiro; Naruse, Kiyoshi; Baba, Shoji A

    2004-09-01

    A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by close-up CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry.

  3. Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107).

    PubMed

    Niihori, Maki; Mogami, Yoshihiro; Naruse, Kiyoshi; Baba, Shoji A

    2004-09-01

    A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by close-up CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry. PMID:15459450

  4. Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.

  5. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  6. Application of the integrated modular engine (IME) to space vehicle concepts

    NASA Astrophysics Data System (ADS)

    Cramer, John M.; Wakefield, Michael E.

    1992-07-01

    The incorporation of integrated modular engines (IME) in space vehicles offers attractive benefits which include improved system reliability and fault tolerance, increased I(sp) and thrust/weight ratio, and improved operability and maintainability. This paper summarizes a study that was performed to define concepts for three cryogenic space vehicles incorporating the IME: a trans-lunar injection stage, a lunar lander, and an upper stage for a launch vehicle. The goals of the study were to quantify potential IME benefits, identify issues that must be addressed, and define the technical and programmatic actions required to develop the IME.

  7. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  8. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  9. Analysis of Dynamic Stability of Space Launch Vehicles under Aerodynamic Forces Using CFD Derived Data

    NASA Astrophysics Data System (ADS)

    Trikha, M.; Gopalakrishnan, S.; Mahapatra, D. Roy

    2011-09-01

    A computational framework is developed to investigate the dynamic stability of space launch vehicles subjected to aerodynamic forces. A detailed mechanics based mathematical model of a moving flexible vehicle is used. The aerodynamic forces on the vehicle are obtained from simulation using Computational Fluid Dynamics (CFD) package. The objective behind this investigation is to analyze the problem of aeroelastic instability in blunt/conical nose slender space launch vehicles. Coupling among the rigid-body modes, the longitudinal vibration modes, and the transverse vibrational modes are considered. The effect of propulsive thrust as a follower force is also considered. A one-dimensional finite element model is developed to investigate the occurrence of aeroelastic instabilities of various types. Eigenvalues of the vehicle are determined in order to analyze the stable regimes. As a special case, we show numerical simulations by considering a typical vehicle configuration, for a vehicle Mach number of 0.8. Phenomenon of flutter is observed at this Mach number. The proposed analysis is suitable for different launch events such as vehicle take-off, maximum dynamic pressure regime, thrust transients, stage separation etc. The approach developed in this paper can be utilized for preliminary design of launch vehicles and establishing the stability boundaries for different trajectory parameters.

  10. Space Wear Vision -Development of a Wardrobe for Life in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Orndorff, Evelyne

    2015-01-01

    one of shirts used as sleep-wear. The IVA (Intra Vehicular Activity) Clothing Study has been the first study with Roscosmos under the "Utilization Sharing Plan On-Board ISS," while the other studies have been conducted at the Johnson Space Center in a controlled environment similar to the ISS. For exercise clothing, study participants wore garments during aerobic exercise. For routine wear clothing, study participants wore the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reasons for retiring a used garment. More studies have been initiated on Earth, and some should be planned to engage more astronauts and cosmonauts in the design of the new space wear. Future studies will extend to other types of garments in the wardrobe; another will address microbial growth on textiles. Others will address cleaning and sanitation of clothing in space vehicles. Efforts will be made for additional ISS studies with NASA's international partners.

  11. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

    2012-12-01

    We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

  12. The development of the Space Environment Viability of Organics (SEVO) experiment aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite

    NASA Astrophysics Data System (ADS)

    Bramall, Nathan E.; Quinn, Richard; Mattioda, Andrew; Bryson, Kathryn; Chittenden, Julie D.; Cook, Amanda; Taylor, Cindy; Minelli, Giovanni; Ehrenfreund, Pascale; Ricco, Antonio J.; Squires, David; Santos, Orlando; Friedericks, Charles; Landis, David; Jones, Nykola C.; Salama, Farid; Allamandola, Louis J.; Hoffmann, Søren V.

    2012-01-01

    The Space Environment Viability of Organics (SEVO) experiment is one of two scientific payloads aboard the triple-cube satellite Organism/ORganic Exposure to Orbital Stresses (O/OREOS). O/OREOS is the first technology demonstration mission of the NASA Astrobiology Small Payloads Program. The 1-kg, 1000-cm3 SEVO cube is investigating the chemical evolution of organic materials in interstellar space and planetary environments by exposing organic molecules under controlled conditions directly to the low-Earth orbit (LEO) particle and electromagnetic radiation environment. O/OREOS was launched on November 19, 2010 into a 650-km, 72°-inclination orbit and has a nominal operational lifetime of six months. Four classes of organic compounds, namely an amino acid, a quinone, a polycyclic aromatic hydrocarbon (PAH), and a metallo-porphyrin are being studied. Initial reaction conditions were established by hermetically sealing the thin-film organic samples in self-contained micro-environments. Chemical changes in the samples caused by direct exposure to LEO radiation and by interactions with the irradiated microenvironments are monitored in situ by ultraviolet/visible/near-infrared (UV/VIS/NIR) absorption spectroscopy using a novel compact fixed-grating CCD spectrometer with the Sun as its light source. The goals of the O/OREOS mission include: (1) demonstrating key small satellite technologies that can enable future low-cost astrobiology experiments, (2) deploying a miniature UV/VIS/NIR spectrometer suitable for in-situ astrobiology and other scientific investigations, (3) testing the capability to establish a variety of experimental reaction conditions to enable the study of astrobiological processes on small satellites, and (4) measuring the chemical evolution of organic molecules in LEO under conditions that can be extrapolated to interstellar and planetary environments. In this paper, the science and technology development of the SEVO instrument payload and its

  13. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    SciTech Connect

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom.

  14. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  15. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  16. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  17. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  18. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  19. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  20. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  1. Maximum Aerodynamic Force on an Ascending Space Vehicle

    ERIC Educational Resources Information Center

    Backman, Philip

    2012-01-01

    The March 2010 issue of "The Physics Teacher" includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in…

  2. Development and Performance of the Oxygen Sensor in the CSA-CP Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Beck, Steve; James, John T.

    2004-01-01

    A combustion products analyzer (CPA) was built for use on Shuttle in response to several thermodegradation incidents that had occurred during early flights. The CPA contained sensors that measured carbon monoxide, hydrogen chloride, hydrogen cyanide, and hydrogen fluoride. These marker compounds, monitored by the CPA, were selected based upon the likely products to be released in a spacecraft fire. When the Toxicology Laboratory group at Johnson Space Center (JSC) began to assess the air quality monitoring needs for the International Space Station (ISS), the CPA was the starting point for design of an instrument to monitor the atmosphere following a thermodegradation event. The final product was significantly different from the CPA and was named the compound specific analyzer-combustion products (CSA-CP). The major change from the CPA that will be the focus of this paper was the replacement of an unreliable hydrogen fluoride (HF) sensor with an oxygen sensor. A reliable HF sensor was not commercially available, but as the toxicology group reviewed the overall monitoring strategy for ISS, it appeared that a portable oxygen sensor to backup the major constituent analyzer was needed. Therefore, an oxygen sensor replaced the HF sensor in the new instrument. This paper will describe the development, deployment, and performance of the CSA-CP oxygen sensor on both Shuttle and ISS. Also, data for CSA-CP oxygen sensor accuracy at nominal and reduced pressures will be presented.

  3. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    NASA Technical Reports Server (NTRS)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  4. Crystallization of the collagen-like polypeptide (PPG)10 aboard the International Space Station. 1. Video observation.

    PubMed

    Vergara, Alessandro; Corvino, Ermanno; Sorrentino, Giosué; Piccolo, Chiara; Tortora, Alessandra; Carotenuto, Luigi; Mazzarella, Lelio; Zagari, Adriana

    2002-10-01

    Single chains of the collagen model polypeptide with sequence (Pro-Pro-Gly)(10), hereafter referred to as (PPG)(10), aggregate to form rod-shaped triple helices. Crystals of (PPG)(10) were grown in the Advanced Protein Crystallization Facility (APCF) both onboard the International Space Station (ISS) and on Earth. The experiments allow the direct comparison of four different crystallization environments for the first time: solution in microgravity ((g), agarose gel in (g, solution on earth, and gel on earth. Both on board and on ground, the crystal growth was monitored by a CCD video camera. The image analysis provided information on the spatial distribution of the crystals, their movement and their growth rate. The analysis of the distribution of crystals reveals that the crystallization process occurs as it does in batch conditions. Slow motions have been observed onboard the ISS. Different to Space-Shuttle experiment, the crystals onboard the ISS moved coherently and followed parallel trajectories. Growth rate and induction time are very similar both in gel and in solution, suggesting that the crystal growth rate is controlled by the kinetics at the interface under the used experimental conditions. These results provide the first data in the crystallogenesis of (PPG)(10), which is a representative member of non-globular, rod-like proteins.

  5. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  6. Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.

  7. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  8. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  9. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  10. Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.

  11. Modification and development of the external tank hydrogen vent umbilical system for the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Tatem, Bemis C., Jr.

    1988-01-01

    The design and development of a new T-O lock and secondary release mechanism which is being introduced to the ET Hydrogen Vent Umbilical System for the next launch of the Space Shuttle Vehicle is described. Critical analysis of the system in early 1986 indicated the need for an improvement in the secondary release system. The new T-O lock increases the clearance with the vehicle during secondary disconnect and is described.

  12. Centaur space vehicle pressurized propellant feed system tests

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Engine firing tests, using a full-scale flight-weight vehicle, were performed to evaluate a pressurized propellant feed system for the Centaur. The pressurant gases used were helium and hydrogen. The system was designed to replace the boost pumps currently used on Centaur. Two liquid oxygen tank pressurization modes were studied: (1) directly into the ullage and (2) below the propellant surface. Test results showed the two Centaur RL10 engines could be started and run over the range of expected flight variables. No system instabilities were encountered. Measured pressurization gas quantities agreed well with analytically predicted values.

  13. Advantageous use of slush and gelled slush in space vehicles

    NASA Technical Reports Server (NTRS)

    Adamson, J. Z.

    1971-01-01

    The advantages of combining both slush and gel have been recognized. These advantages are: (1) a reduction in the gelling agent necessary; (2) the achievement of active positioning; and (3) a potential increase in impulse density. The need for extended mission capability as indicated by present mission planning is outlined and the expected schedules are presented. A condensed version of analytical and testing conclusions as related to storage systems and slush is given. The significant results of slush flow testing and its possible influence on vehicle propulsion systems are presented, and the characterization and preparation of gels are discussed in relation to future applications, advantages, and disadvantages.

  14. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space...

  15. STS-65 crew works inside the IML-2 spacelab module aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, four members of the STS-65 crew busy themselves with experiments in support of the second International Microgravity Laboratory (IML-2) mission. Mission Specialist (MS) Donald A. Thomas with his feet hooked on a center aisle stowage unit handrail talks with MS Leroy Chiao in the foreground while Payload Commander (PLC) Richard J. Hieb takes notes at Rack 5 Biorack (BR) glovebox. Japanese Payload Specialist Chiaki Mukai reviews her notes in the background. Mukai represents the National Space Development Agency (NASDA) of Japan.

  16. Specification list and function structure for a full-body dynamometer to be used aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    NASA has a need for a machine which can be used as an exercise device and as an instrument to measure an astronaut's muscle performance. The purpose of the exercise device is to work various muscle groups of the astronaut to prevent muscle atrophy, the loss of muscle strength and mass from prolonged exposure to a microgravity environment. The measurement part of the machine will be used to collect data on the strength and power of the astronaut's muscle groups to be used in studies examining the effects of prolonged space inhabitation. The principle device used in this machine to both exercise and measure muscle performance is the dynamometer. The dynamometer converts electrical energy to mechanical energy and mechanical energy to electrical energy or signals. The task of the designer will be to incorporate a dynamometer into a device which can meet all of the needs discussed above. This memorandum has two sections which clarify the design task of producing a full-body dynamometer. The first section is a specification list. The specification list provides the requirements that the designer must meet in his/her design. The second part is a function structure. The function structure shows graphically the flow of material, energy, and information through the machine. These two items will be used by the designer in the design process for the full-body dynamometer.

  17. Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers.

    PubMed

    Morris, Heather C; Damon, Michael; Maule, Jake; Monaco, Lisa A; Wainwright, Norm

    2012-09-01

    Abstract A portable, rapid, microbial detection unit, the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was launched to the International Space Station (ISS) as a technology demonstration unit in December 2006. Results from the first series of experiments designed to detect Gram-negative bacteria on ISS surfaces by quantifying a single microbial biomarker lipopolysaccharide (LPS) were reported in a previous article. Herein, we report additional technology demonstration experiments expanding the on-orbit capabilities of the LOCAD-PTS to detecting three different microbial biomarkers on ISS surfaces. Six different astronauts on more than 20 occasions participated in these experiments, which were designed to test the new beta-glucan (fungal cell wall molecule) and lipoteichoic acid (LTA; Gram-positive bacterial cell wall component) cartridges individually and in tandem with the existing Limulus Amebocyte Lysate (LAL; Gram-negative bacterial LPS detection) cartridges. Additionally, we conducted the sampling side by side with the standard culture-based detection method currently used on the ISS. Therefore, we present data on the distribution of three microbial biomarkers collected from various surfaces in every module present on the ISS at the time of sampling. In accordance with our previous experiments, we determined that spacecraft surfaces known to be frequently in contact with crew members demonstrated higher values of all three microbial molecules. Key Words: Planetary protection-Spaceflight-Microbiology-Biosensor. Astrobiology 12, 830-840. PMID:22984871

  18. Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers.

    PubMed

    Morris, Heather C; Damon, Michael; Maule, Jake; Monaco, Lisa A; Wainwright, Norm

    2012-09-01

    Abstract A portable, rapid, microbial detection unit, the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was launched to the International Space Station (ISS) as a technology demonstration unit in December 2006. Results from the first series of experiments designed to detect Gram-negative bacteria on ISS surfaces by quantifying a single microbial biomarker lipopolysaccharide (LPS) were reported in a previous article. Herein, we report additional technology demonstration experiments expanding the on-orbit capabilities of the LOCAD-PTS to detecting three different microbial biomarkers on ISS surfaces. Six different astronauts on more than 20 occasions participated in these experiments, which were designed to test the new beta-glucan (fungal cell wall molecule) and lipoteichoic acid (LTA; Gram-positive bacterial cell wall component) cartridges individually and in tandem with the existing Limulus Amebocyte Lysate (LAL; Gram-negative bacterial LPS detection) cartridges. Additionally, we conducted the sampling side by side with the standard culture-based detection method currently used on the ISS. Therefore, we present data on the distribution of three microbial biomarkers collected from various surfaces in every module present on the ISS at the time of sampling. In accordance with our previous experiments, we determined that spacecraft surfaces known to be frequently in contact with crew members demonstrated higher values of all three microbial molecules. Key Words: Planetary protection-Spaceflight-Microbiology-Biosensor. Astrobiology 12, 830-840.

  19. Using the Flow-3D General Moving Object Model to Simulate Coupled Liquid Slosh - Container Dynamics on the SPHERES Slosh Experiment: Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul

    2013-01-01

    The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.

  20. The Ares I Crew Launch Vehicle: Human Space Access for the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle (Figure 1), the United States first new human-rated launch vehicle in over 25 years. Ares I will provide the core space launch capabilities the United States needs to continue providing crew and cargo access to the International Space Station (ISS), maintaining the U.S. pioneering tradition as a spacefaring nation, and enabling cooperative international ventures to the Moon and beyond. This paper will discuss programmatic, design, fabrication, and testing progress toward building this new launch vehicle.

  1. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  2. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  3. Application of Closed Loop Optimal Guidance for a Constant Thrust Space Vehicle

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Mahdy; Abbasi Mahale, Mahdi

    2016-01-01

    This research presents derivation and implementation of the explicit guidance problem to steer a space vehicle into exo atmospheric phase of flight to develop three-dimensional optimal trajectory. The proposed guidance algorithm is in association with continuous powered flight of the space vehicle in ascent manoeuvre. Stability, accuracy and simplicity of this approach are the improved developments in comparison with the IGM approach. This algorithm uses the calculus of variation method for the two boundary-value injection problem to generate an optimal trajectory of space vehicle with online generation of steering command to inject to any desired orbit. Here the end conditions have been determined as the orbital height, inclination and eccentricity where the initial conditions are fixed. The simulation results are considered which shows the accuracy and simplicity of this method to reach to the desired orbit in minimum fuel.

  4. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  5. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such

  6. On Rainfall Modification by Major Urban Areas. Part 1; Observations from Space-borne Rain Radar Aboard TRMM

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshell; Starr, David OC. (Technical Monitor)

    2001-01-01

    A novel approach is introduced to correlating urbanization and rainfall modification. This study represents one of the first published attempts (possibly the first) to identify and quantify rainfall modification by urban areas using satellite-based rainfall measurements. Previous investigations successfully used rain gauge networks and around-based radar to investigate this phenomenon but still encountered difficulties due to limited, specialized measurements and separation of topographic and other influences. Three years of mean monthly rainfall rates derived from the first space-based rainfall radar, Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of data at half-degree latitude resolution enables identification of rainfall patterns around major metropolitan areas of Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Preliminary results reveal an average increase of 5.6% in monthly rainfall rates (relative to a mean upwind CONTROL area) over the metropolis but an average increase of approx. 28%, in monthly rainfall rates within 30-60 kilometers downwind of the metropolis. Some portions of the downwind area exhibit increases as high as 51%. It was also found that maximum rainfall rates found in the downwind impact area exceeded the mean value in the upwind CONTROL area by 48%-116% and were generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are quite consistent studies of St. Louis (e.g' METROMEX) and Chicago almost two decades ago and more recent studies in the Atlanta and Mexico City areas.

  7. Low vapor pressure cryogenic propellant tank design for the Space-Based Orbital Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Torre, C. N.; McCool, R. C.; Rinker, M. W.; Bennett, F. O.; Kerr, J. R.

    1986-06-01

    Orbital Transfer Vehicle concepts are currently being studied by aerospace contractors for NASA Marshall Space Flight Center to identify technology needs for development of these vehicles based at the Space Station in the mid-1990s. The Space-Based Orbital Transfer Vehicle (SBOTV) must be lightweight to minimize propellant mass while having durable structures and systems to minimize propellant mass while having durable structures and systems to minimize refurbishment/maintenance requirements and associated cost. Unlike ground-based vehicles, an SBOTV designed to operate solely in the vacuum environment of space does not require that propellant tank pressures be maintained above atmospheric pressure (14.7 psia). Reducing operating pressures results in a corresponding reduction in a corresponding reduction in vehicle inert weight, propellant weight, and operational costs. The economic and performance advantages of low vapor pressure aluminum tanks for the SBOTV system have been identified. Development of such tanks requires an examination of new low-density aluminum-lithium alloys, assessment of their micrometeoroid protection needs and thermal insulation characteristics, fracture and fatigue analyses of very thin gauges, and design of low-conductivity tank support concepts and low-pressure cryogenic liquid oxygen and hydrogen manufacturing and delivery. This paper describes a structural concept for one of many of the SBOTV cryogenic tank systems and presents the results of analytical models constructed to examine the feasibility of thin gauge tanks.

  8. Subjective and objective evaluation of sense of space for vehicle occupants based on anthropometric data.

    PubMed

    Hiamtoe, Pitarn; Steinhardt, Florian; Köhler, Uwe; Bengler, Klaus

    2012-01-01

    At present, the number of the vehicle requirements has been continuously increasing. These requirements can be related to the customer as well as the technical requirements. Among these, the "feeling of space" of the occupants inside the vehicles can be regarded as one of the most important factors. In this respect, the driver and passengers should be able to experience positive feeling of space inside the vehicle. There are numerous factors that can influence the sense of space inside the vehicle. These include geometry (vehicle dimensions), light exposure, ambient lights, colors, material selection and material surface. Depending on the selection, the sense of space can be dramatically influenced by these factors. In general, human feeling is subjective and cannot be measured by any instrument. The measure can nevertheless be carried out by utilizing the method of subjective evaluation. Throughout the experiments, the method of evaluation is developed and the factors which can influence the interior feeling are analyzed. In this process, psychological perception, architectural aspects and anthropometry are considered and knowledge from the other domains is transferred in the form of a multidisciplinary approach. The experiments with an aim to evaluate the overall sense of space in the vehicle are carried out based on the physical mock up of BMW 1 series (E87). The space perception with different interior dimensions and anthropometric data of test persons are also analyzed. The use of Computer Aided Technology was shown by CATIA V5, PCMAN and RAMSIS. The results show a good correlation between the subjective evaluation and the geometric values.

  9. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-ll1 (UF2) in June 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting

  10. A Year in Space: Early Results and Lessons Learned from the First Year-Long Expedition Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Bogomolov, V. V.

    2016-01-01

    the astronaut and cosmonaut to perform rudimentary tasks requiring sensorimotor coordination immediately after landing to define human capabilities soon after landing on Mars after an extended transit. Both investigations were highly successful in large part to the thorough integration of the implementation processes of the two partners. Kelly's assignment as the one-year crewmember also provided a serendipitous opportunity for the "Twins Study" comparing changes in his body at the genetic level with those occurring on Earth in his identical twin brother Mark Kelly. Data analysis from this expedition will commence in earnest after frozen in-flight samples are delivered to Earth in May aboard a commercial cargo spacecraft. Detailed results are expected in early 2017. Preliminary results and implementation improvements will be reviewed in this presentation.

  11. Expert system isssues in automated, autonomous space vehicle rendezvous

    NASA Technical Reports Server (NTRS)

    Goodwin, Mary Ann; Bochsler, Daniel C.

    1987-01-01

    The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.

  12. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  13. Recent activities on winged space vehicle by ISAS

    NASA Astrophysics Data System (ADS)

    Inatanai, Yoshifumi

    The current status of Himes, an experimental highly maneuverable unmanned spacecraft and reentry vehicle being developed by ISAS, is reviewed and illustrated with drawings and photographs. The current Himes configuration has length 13.6 m, wingspan 9.33 m, gross lift-off weight 14.0 tons, and empty weight 3.6 tons and employs advanced LOX/LH2 engines providing vacuum thrust 14 x 2 tons and vacuum specific impulse 435 sec. Low-speed glide tests of a Himes scale model have been successfully completed, and a reentry test (launched by solid rocket from a high-altitude balloon) is planned. The high-pressure expander technology to be used in the Himes engines was sucessfully ground tested in 1987.

  14. Numerical methods for aerothermodynamic design of hypersonic space transport vehicles

    NASA Astrophysics Data System (ADS)

    Wanie, K. M.; Brenneis, A.; Eberle, A.; Heiss, S.

    1993-04-01

    The requirement of the design process of hypersonic vehicles to predict flow past entire configurations with wings, fins, flaps, and propulsion system represents one of the major challenges for aerothermodynamics. In this context computational fluid dynamics has come up as a powerful tool to support the experimental work. A couple of numerical methods developed at MBB designed to fulfill the needs of the design process are described. The governing equations and fundamental details of the solution methods are shortly reviewed. Results are given for both geometrically simple test cases and realistic hypersonic configurations. Since there is still a considerable lack of experience for hypersonic flow calculations an extensive testing and verification is essential. This verification is done by comparison of results with experimental data and other numerical methods. The results presented prove that the methods used are robust, flexible, and accurate enough to fulfill the strong needs of the design process.

  15. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1971-01-01

    The unsteady aerodynamics of the proposed delta planform, high cross range, shuttle orbiters, are investigated. It is found that these vehicles are subject to five unsteady-flow phenomena that could compromise the flight dynamics. The phenomena are as follows: (1) leeside shock-induced separation, (2) sudden leading-edge stall, (3) vortex burst, (4)bow shock-flap shock interaction, and (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding deterimental effects of the stall phenomena; however, stall must be fixed or controlled when traversing the stall region. Other phenomana may be controlled by carefully programmed control deflections and some configuration modifications. Ways to alter the occurrence of the various flow conditions are explored.

  16. The General Discussion on Thermal Technologies in Advanced Space Transfer Vehicles

    NASA Astrophysics Data System (ADS)

    Qi, Feng; Wang, Guo-hui

    2016-07-01

    In recent years, the boundary of space exploration has been wider and wider. So the demand of new-generation spacecrafts, carriers and transfer vehicles becomes urged. In this article, thermal questions and first-stage counter-measure technical methods and the relative important recent improvements in these methods are discussed about two important types of new conceptive Space Transfer Vehicles (STVs), the nuclear-thermal propelling STV and laser propelled STV, especially on the heat generation, heat collection, heat transfer and heat control. At the end of this article, pieces of advice and several predictions are put forward, generally and principally.

  17. Integrating Human Factors into Space Vehicle Processing for Risk Management

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah; Richards, Kimberly J.

    2008-01-01

    This presentation will discuss the multiple projects performed in United Space Alliance's Human Engineering Modeling and Performance (HEMAP) Lab, improvements that resulted from analysis, and the future applications of the HEMAP Lab for risk assessment by evaluating human/machine interaction and ergonomic designs.

  18. Superconducting magnets and devices for space vehicles and experiments

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1971-01-01

    Superconductivity research has been oriented toward those problems that tend to restrict the greater application of superconducting devices in space research and technology. These include magnetic problems of high field magnets, increasing operating temperatures, and development of useful competitive superconducting instruments.

  19. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  20. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR.

    PubMed

    Orban, J I; Piert, S J; Guryeva, T S; Hester, P Y

    1999-10-01

    A series of studies were conducted to determine the effect of activities preceding spaceflight and during space-flight on calcium utilization during quail embryonic development. In the pre-space trials, fertile quail eggs were subjected to pre-flight dynamics including forces of centrifugation, vibration, or a combination of vibration and centrifugation prior to incubation for 6 or 16 days. Quail eggs were also tested for survivability in a refrigerator stowage kit for eggs (RSKE) which was subsequently used to transport the eggs to space. Eggs in the RSKE were subjected to shuttle launch dynamics including G force and random vibration profiles. The space-flight trial involved 48 quail eggs launched on space shuttle Flight STS-76 which were subsequently incubated in a Slovakian incubator onboard space station, MIR. Two ground control trials, each with 48 eggs with and without exposure to shuttle launch dynamics were initiated 5 days post-launch. Eggshells from all study trials were retrieved and analyzed for calcium content. Results showed that neither pre-flight activities nor shuttle launch dynamics had an effect on calcium utilization by developing embryos. However, calcium utilization by developing embryos incubated in microgravity was impaired by 12.6% when compared to embryos incubated on earth under laboratory control environment. This impairment was believed to be due to unidentified factors of the microgravity environment.

  1. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig

    2007-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007

  2. Thermal preparation of foods in space-vehicle environments

    NASA Technical Reports Server (NTRS)

    Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.

    1974-01-01

    Convection is the primary heat transfer mechanism for most foods heated in an earth-based environment. In contrast, in the low-gravity environment of space flight, the primary heat transfer mechanism is conduction (or radiation in the absence of a conducting medium). Conduction heating is significantly slower and less efficient than convection heating. This fact poses a problem for food heating during space flight. A numerical model has been developed to evaluate this problem. This model simulates the food-heating process for Skylab. The model includes the effect of a thermally controlled on/off heat flux. Parametric studies using this model establish how the required heating time is affected by: the thermal diffusivity of the nutrient materials, the power level of the heater, the initial food temperatures, and the food container dimensions.

  3. Inter-Module Ventilation Changes to the International Space Station Vehicle to Support Integration of the International Docking Adapter and Commercial Crew Vehicles

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Balistreri, Steven F., Jr.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.

  4. An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.

    2014-01-01

    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.

  5. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  6. Development of Backscatter X-Ray Imaging Techniques for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2009-01-01

    This slide presentation reviews the development of backscatter x ray (BSX) imaging techniques to perform inspection of spacecraft components. The techniques are currently being enhanced to advance Non-Destructive Testing (NDT) methods for future space vehicle applications. The presentation includes an overview of x ray techniques, a description of current BSX applications used on the space shuttle, the development for Constellation applications, and the use of the system for foam applications.

  7. Levitation characteristics of a high-temperature superconducting Maglev system for launching space vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Wenjiang; Liu, Yu; Chen, Xiaodong; Wen, Zheng; Duan, Yi; Qiu, Ming

    2007-05-01

    Maglev launch assist is viewed as an effective method to reduce the cost of space launch. The primary aerodynamic characteristics of the Maglev launch vehicle and the space vehicle are discussed by analyzing their aerodynamic shapes and testing a scale mode in a standard wind tunnel. After analyzing several popular Maglev systems, we present a no-controlling Maglev system with bulk YBaCuO high-temperature superconductors (HTSs). We tested a HTS Maglev system unit, and obtained the levitation force density of 3.3 N/cm2 and the lateral force density of 2.0 N/cm2. We also fabricated a freely levitated test platform to investigate the levitation characteristics of the HTS Maglev system in load changing processes. We found that the HTS system could provide the strong self-stable levitation performance due to the magnetic flux trapped in superconductors. The HTS Maglev system provided feasibility for application in the launch vehicle.

  8. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    NASA Technical Reports Server (NTRS)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  9. Compilation of Papers Presented to Meeting on Space Vehicle Landing and Recovery Research and Technology

    NASA Technical Reports Server (NTRS)

    1962-01-01

    A meeting on Space Vehicle Landing and Recovery was held on July 10-11, 1962 at NASA Headquarters. The Centers were asked to participate in this meeting in accordance with their interest, activities, and requirements in the subject area. Primary emphasis was directed toward parachutes, parachute-rocket systems, paragliders, and lifting rotor concepts applicable to bothe booster and spacecraft landing and recovery.

  10. Phase 1 Navstar/GPS ephemeris and space vehicle clock performance summary

    NASA Technical Reports Server (NTRS)

    Bierman, A. B.

    1980-01-01

    The Navstar/Global Positioning System (GPS) is considered. The issue of control segment accuracy in predicting space vehicle (SV) clock and ephemeris states for broadcast to the user community is addressed. Both the highly precise ephemeris and clock prediction data blocks and the less precise (but longer period of utility) almanac data block are evaluated.

  11. A Capability to Generate Physics-based Mass Estimating Relationships for Conceptual Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Marcus, Leland

    2002-01-01

    This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).

  12. Analysis of International Space Station Vehicle Materials on MISSE 6

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Golden, Johnny; Kravchenko, Michael; O'Rourke, Mary Jane

    2010-01-01

    The International Space Station Materials and Processes team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. Results for the following MISSE 6 samples materials will be presented: deionized water sealed anodized aluminum; Hyzod(tm) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; Beta Cloth with Teflon(tm) reformulated without perfluorooctanoic acid (PFOA), and electroless nickel. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: more deionized water sealed anodized aluminum, including Photofoil(tm); indium tin oxide (ITO) over-coated Kapton(tm) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth (alpha/beta transformation); and beta cloth backed with a black coating rather than aluminization. MISSE 8 samples are: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, protective fiberglass tapes and sleeve materials, and optical witness samples to monitor contamination.

  13. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; Zapp, E. Neal; Shelfer, Tad D.

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  14. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  15. Automated procedure execution for space vehicle autonomous control

    NASA Technical Reports Server (NTRS)

    Broten, Thomas A.; Brown, David A.

    1990-01-01

    Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.

  16. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  17. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Technical Reports Server (NTRS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    1990-01-01

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  18. Analysis of International Space Station Vehicle Materials Exposed on Materials International Space Station Experiment from 2001 to 2011

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Golden, J. L.; Kravchenko, M.

    2013-01-01

    Since August 2001, the Materials on International Space Station Experiment (MISSE) has provided data on a variety of materials and spacecraft components, including samples chosen to provide sustaining engineering and life extension data for the International Space Station vehicle itself. This Technical Publication is by no means a complete set of MISSE data but does provide changes in solar absorptance, infrared emittance, and visual appearance due to atomic oxygen, ultraviolet radiation, and thermal cycling in vacuum. Conversion coatings, anodizes, thermal control coatings with organic and inorganic binders, multilayer insulation components, optical materials, and part markings are discussed.

  19. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  20. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  1. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  2. Space transfer vehicle concepts and requirements, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  3. Space transfer vehicle concepts and requirements, volume 2, book 1

    NASA Astrophysics Data System (ADS)

    1991-04-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  4. Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.

  5. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-IOO1A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  6. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  7. The Space Shuttle's first super lightweight external tank is transported to KSC's Vehicle Assembly B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle's first super lightweight external tank is moved on a barge toward the turn basin at Kennedy Space Center from Port Canaveral, Fla. The tank is scheduled to undergo processing at KSC's Vehicle Assembly Building for flight on STS- 91, targeted for launch in late May. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. The tank was sent from the NASA Michoud Assembly Facility in New Orleans.

  8. Dispersion analysis and linear error analysis capabilities of the space vehicle dynamics simulation program

    NASA Technical Reports Server (NTRS)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.

  9. Space vehicle design and operation for efficient use of Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Stancati, Mike L.; Hodge, John R.; Borowski, Stanley K.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is a high-leverage, and possibly enabling, propulsion choice for sending humans to Mars. Important performance gains are expected for NTP Mars transfer vehicle over their counterparts, the conventional chemical systems. These gains come in spite of vehicle unique requirements for NTP engine development and operations: expected higher development costs, prelaunch and in-space handing safeguards, extra propellant for reactor cool-down after engine burns, and safe, managed disposal of spent NTP engines. Prior studies have also shown that these NTP engines and stages, sized for Mars missions, could increase delivered payloads for some piloted lunar mission as well.

  10. A vehicle scheduling algorithm using non-serial discrete dynamic programming with space shuttle applications

    NASA Technical Reports Server (NTRS)

    Dupnick, E.

    1973-01-01

    Description of the development and operation of a vehicle-scheduling algorithm which has applications to the NASA problem of assigning payloads to space delivery vehicles. The algorithm is based on a discrete, integer-valued, nonserial, dynamic-programming solution to the classical problem of developing resource utilization plans with limited resources. The algorithm places special emphasis on incorporating interpayload (precedence) relationships; maintaining optimal alternate schedule definitions (a unique feature of dynamic programming) in the event of contingencies (namely, resource inventory changes) without problem resolution; and, by using a special information storage technique, reducing the computational complexity of solving realistic problems.

  11. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  12. CARINA - A space vehicle with re-entry capabilities for microgravity experiments

    NASA Astrophysics Data System (ADS)

    Borriello, G.; Sansone, A.; Ricciardi, A.

    1992-08-01

    An Italian autonomous space vehicle with recovery capabilities, named CARINA (Capsula di Rientro Non Abitata), is described with special attention given to the technological developments in areas pertaining to the reentry system, including reentry aerothermodynamics and the design of the thermal protection system. Consideration is also given to the configuration of the CARINA vehicle (comprised of the expendable Service Module and the Apollo-like Reentry Module), the subsystems and their performances, the mission life cycle, the microgravity utilization aspects, and the programmatic aspects.

  13. Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle

    NASA Technical Reports Server (NTRS)

    Kasper, Harold J.; Ring, Darryl S.

    1990-01-01

    The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.

  14. Applying a Crew Accommodations Resource Model to Future Space Vehicle Research

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer Linda

    2003-01-01

    The success of research and development for human space flight depends heavily on modeling. In addition, the use of such models is especially critical at the earliest phase of research and development of any manned vehicle or habitat. NASA is currently studying various innovative and futuristic propulsion technologies to enable further exploration of space by untended as well as tended vehicles. Details such as vehicle mass, volume, shape and configuration are required variables to evaluate the success of the propulsion concepts. For tended vehicles, the impact of the crew's requirements on those parameters must be included. This is especially important on long duration missions where the crew requirements become more complex. To address these issues, a crew accommodations resource model, developed as a mission planning tool for human spaceflight (Stillwell, Boutros, & Connolly), was applied to a reference mission in order to estimate the volume and mass required to sustain a crew for a variety of long duration missions. The model, which compiled information from numerous different sources and contains various attributes which can be modified to enable comparisons across different dimensions, was instrumental in deriving volume and mass required for a tended long duration space flight. With the inclusion of some additional variables, a set of volume and mass requirements were provided to the project. If due consideration to crew requirements for volume and mass had not been entertained, the assumptions behind validation of the propulsion technology could have been found to be incorrect, possibly far into development of the technology or even into the design and build of test vehicles. The availability and use of such a model contributes significantly by increasing the accuracy of human space flight research and development activities and acts as a cost saving measure by preventing inaccurate assumptions from driving design decisions.

  15. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  16. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several

  17. Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle

    NASA Technical Reports Server (NTRS)

    Jain, A. C.; Woods, G. H.

    1988-01-01

    Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.

  18. Liquid droplet radiator development status. [waste heat rejection devices for future space vehicles

    NASA Technical Reports Server (NTRS)

    White, K. Alan, III

    1987-01-01

    Development of the Liquid Droplet Radiator (LDR) is described. Significant published results of previous investigators are presented, and work currently in progress is discussed. Several proposed LDR configurations are described, and the rectangular and triangular configurations currently of most interest are examined. Development of the droplet generator, collector, and auxiliary components are discussed. Radiative performance of a droplet sheet is considered, and experimental results are seen to be in very good agreement with analytical predictions. The collision of droplets in the droplet sheet, the charging of droplets by the space plasma, and the effect of atmospheric drag on the droplet sheet are shown to be of little consequence, or can be minimized by proper design. The LDR is seen to be less susceptible than conventional technology to the effects of micrometeoroids or hostile threats. The identification of working fluids which are stable in the orbital environments of interest is also made. Methods for reducing spacecraft contamination from an LDR to an acceptable level are discussed. Preliminary results of microgravity testing of the droplet generator are presented. Possible future NASA and Air Force missions enhanced or enabled by a LDR are also discussed. System studies indicate that the LDR is potentially less massive than heat pipe radiators. Planned microgravity testing aboard the Shuttle or space station is seen to be a logical next step in LDR development.

  19. A prototype computerized synthesis methodology for generic space access vehicle (SAV) conceptual design

    NASA Astrophysics Data System (ADS)

    Huang, Xiao

    2006-04-01

    Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth

  20. Real-time vehicle detection and tracking based on perspective and non-perspective space cooperation

    NASA Astrophysics Data System (ADS)

    Arróspide, Jon; Salgado, Luis; Nieto, Marcos; Jaureguizar, Fernando

    2009-02-01

    In recent years advanced driver assistance systems (ADAS) have received increasing interest to confront car accidents. In particular, video processing based vehicle detection methods are emerging as an efficient way to address accident prevention. Many video-based approaches are proposed in the literature for vehicle detection, involving sophisticated and costly computer vision techniques. Most of these methods require ad hoc hardware implementations to attain real-time operation. Alternatively, other approaches perform a domain change --via transforms like FFT, inverse perspective mapping (IPM) or Hough transform-- that simplifies otherwise complex feature detection. In this work, a cooperative strategy between two domains, the original perspective space and the transformed non-perspective space computed trough IPM, is proposed in order to alleviate the processing load in each domain by maximizing the information exchange between the two domains. A system is designed upon this framework that computes the location and dimension of the vehicles in a video sequence. Additionally, the system is made scalable to the complexity imposed by the scenario. As a result, real-time vehicle detection and tracking is accomplished in a general purpose platform. The system has been tested for sequences comprising a wide variety of scenarios, showing robust and accurate performance.

  1. International Space Station as an Observation Platform for Hypersonic Re-Entry of its Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2001-01-01

    The International Space Station (ISS) will receive an armada of visiting supply vehicles during its life in orbit. Over 500 tons of material will be destroyed in targeted re-entries of these vehicles. Because all such re-entries lie in the same orbital plane of the station, and because the visiting vehicles typically deorbit within a few hours of departure, the ISS will usually be within sight of the re-entry process, at a range of only 300-600 kilometers. This vantage point offers an unprecedented opportunity for systematically measuring hypersonic destructive processes. This paper examines the integrated operational constraints of the ISS, its supply vehicles, and candidate sensors which can be employed in the scientific observation of the re-entry process. It is asserted the ISS program has the potential to reduce the worldwide risks from future deorbiting spacecraft, through systematic experimental characterization of the factors which affect the rupture, debris survival, and footprint size of its visiting vehicle fleet.

  2. Space Station Freedom/lunar transfer vehicle propellant operation hazard analysis

    NASA Technical Reports Server (NTRS)

    Dominick, Sam; Stevenson, Steven M.; Feingold, Harvey

    1991-01-01

    Space Station Freedom (SSF), as a transportation node for Space Exploration Initiative missions, would involve the assembly and refurbishing of lunar and Mars transfer vehicles. This includes operations involving cryogenic propellants (LH2 7 LO2) such as storing and handling of loaded propellant tanks, assembly onto the vehicle, and propellant transfer. Cryogenic propellants dictate rigorous safety precautions and impose unique requirements to ensure flight safety to both personnel and SSF elements. The objective of this study is to identify potential hazards and risks associated with cryogenic propellants. This involves identification of pertinent system design features and operational procedures. Criticality of identified risks/hazards shall be assessed and those that fall in the catastrophic and critical categories shall include mitigating solutions.

  3. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Wimsatt, J. C.

    1973-01-01

    An experimental sterilization facility was developed to simulate conditions that will be encountered during terminal sterilization of space vehicles. The system consists of a temperature controlled oven with a nitrogen gas stream containing a known concentration of water. Moisture analyzers are utilized to monitor the gas flowing over spore samples contained in the oven. In its original configuration, no provision was made for the control of water vapor during the sterilization cycle. Because moisture profoundly influences the thermal inactivation of bacterial spores, an upper limit for the moisture content in the gas used to sterilize the space vehicle was established (25% RH at 0 C STP). Accordingly, a controller was developed and installed to provide these conditions in the experimental sterilization facility.

  4. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  5. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  6. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  7. Macroinformational analysis of conditions for controllability of space-vehicle orbit

    NASA Astrophysics Data System (ADS)

    Glazov, B. I.

    2011-12-01

    The general axiomatics of information measures for the macro analysis of relations of an information-cybernetic system in the control is introduced. The general structure of a semantically marked graph of open and closed relations of an information-cybernetic system between the participants in the environment, as well as thenecessary axiomatic and technological information-cybernetic system conditions of controllability and observability of objects, for the case of a space vehicle in orbit, are justified.

  8. Development of control systems for space shuttle vehicles. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.

    1971-01-01

    A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.

  9. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  10. Considerations for Medical Transport from the Space Station via an Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Hamilton, Glenn C.; Stizza, Denis; Garrison, Richard; Gerstner, David

    2001-01-01

    In developing a permanently crewed space station, the importance of medical care has been continually reaffirmed; and the health maintenance facility (HMF) is an integral component. It has diagnostic, therapeutic, monitoring, and information management capability. It is designed to allow supportive care for: (1) non-life-threatening illnesses; e.g., headache, lacerations; (2) moderate to severe, possibly life-threatening illnesses; e.g., appendicitis, kidney stones; and (3) severe, incapacitating, life-threatening illnesses; e.g., major trauma, toxic exposure. Since the HMF will not have a general surgical capability, the need for emergency escape and recovery methods has been studied. Medical risk assessments have determined that it is impossible to accurately predict the incidence of crewmember illness/injury. A best estimate is 1:3 per work-year, with 1% of these needing an ACRV. For an eight-person crew, this means that one assured crew return vehicle (ACRV) will be used every 4 to 12 years. The ACRV would serve at least three basic objectives as: (1) a crew return if the space shuttle is unavailable; (2) an escape vehicle from a major time-critical space station emergency; and (3) a full or partial crew return vehicle for a medical emergency. The focus of this paper is the third objective for the ACRV.

  11. Asymmetrical booster guidance and control system design study. Volume 3: Space shuttle vehicle SRB actuator failure study. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The investigation of single actuator failures on the space shuttle solid rocket booster required the analysis of both square pattern and diamond pattern actuator configurations. It was determined that for failures occuring near or prior to the region of maximum dynamic pressure, control gain adjustments can be used to achieve virtually nominal mid-boost vehicle behavior. A distinct worst case failure condition was established near staging that could significantly delay staging. It is recommended that the square pattern be retained as a viable alternative to the baseline diamond pattern because the staging transient is better controlled resulting in earlier staging.

  12. Development of space stable thermal control coatings for use on large space vehicles

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.

    1972-01-01

    A reserach project to develop space stable thermal control coatings for large surfaces is discussed. Four major tasks are considered: (1) pigment development, (2) binder development, (3) environmental effects evaluations, and (4) general coatings investigations.

  13. Maintaining and servicing a space-based Orbital Transfer vehicle (OTV) at the Space Station

    NASA Astrophysics Data System (ADS)

    Maloney, J. W.; Pena, L. R.

    1986-09-01

    A candidate space-based OTV (SBOTV) is described as well as the advantages inherent to space basing, the requirements for accommodating an SBOTV, candidate hangar/support equipment, turnaround operations options, selection and definition of the most economical turnaround operations at the Space Station and maintenance of an OTV at the Space Station (SS). OTV launching, servicing/maintenance, payload integration and retrieval comprise the various space operations to be performed. Alternative methods for performing the turnaround operations (i.e. EVA with teleoperations or teleoperations only) are investigated and it is shown that the 'teleoperation only' option fulfills the need for reducing the amount of EVA manhours while simultaneously reducing the total manhours for SBOTV turnaround at the Space Station. It is concluded that modularity, accessibility, standardization of interfaces, lightweight construction, and a proper balance between EVA and teleoperations/robotics activities are key to the successful performance of an OTV at the SS in the 1990s. Man's ability to react to unexpected situations, interpret results and modify operations in real time must also be taken advantage of.

  14. RS-25 for the NASA Crew Launch Vehicle: The Evolution of SSME for Space Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael H.; Genge, Gary G.; Greene, William D.; Jacobs, William; McArthur, J. Craig; Mims, Michael J.; Tepool, J. Eric; Wofford, Steven J.

    2006-01-01

    As a first step towards the fulfillment of the National Vision for Space Exploration, NASA has begun development of the Crew Launch Vehicle (CLV). The CLV will act, in conjunction with the Crew Exploration Vehicle, as the next generation human launch system to first support missions to the International Space Station (ISS), then later to support the lunar return missions, and then after that to exploration missions to Mars and beyond. The CLV is a two-stage launch vehicle with the first stage based upon the Space Shuttle solid rocket booster. The newly designed, expendable second stage is powered by a single RS-25 liquid hydrogen/liquid oxygen rocket engine. The RS-25 is essentially the Space Shuttle Main Engine (SSME) evolved for a new mission, new environments, and new conditions. The CLV Upper-Stage Engine (USE) office has been established to develop the RS-25 in support of the CLV Project. This paper presents an outline and discussion of the risks associated with this endeavor of transforming the SSME into the upper-stage, altitude-start RS-25 and the plans being undertaken to understand and mitigate these risks. In addition, to meet the long-term requirements of the CLV launch manifest, it will be necessary to redevelop the RS-25, with its long history as the reusable SSME for the Space Shuttle Program, as an expendable engine. While the first flights of CLV will be using heritage SSME hardware, beyond that a new version of RS-25 as an expendable engine is being pursued by the CLV USE element. The goals of this work include the need to make the hardware more producible while maintaining the inherent and inherited reliability of the basic design. This paper will also discuss the risks and present the plans for developing both this next generation version of the RS-25 and for developing the manufacturing capacity necessary to support the CLV Project.

  15. Analysis of Separation Corridors for Visiting Vehicles from the International Space Station

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.; Schrock, Rita R.; Schrock, Mark B.; Lowman, Bryan C.

    2011-01-01

    The International Space Station (ISS) is a very dynamic vehicle with many operational constraints that affect its performance, operations, and vehicle lifetime. Most constraints are designed to alleviate various safety concerns that are a result of dynamic activities between the ISS and various Visiting Vehicles (VVs). One such constraint that has been in place for Russian Vehicle (RV) operations is the limitation placed on Solar Array (SA) positioning in order to prevent collisions during separation and subsequent relative motion of VVs. An unintended consequence of the SA constraint has been the impacts to the operational flexibility of the ISS resulting from the reduced power generation capability as well as from a reduction in the operational lifetime of various SA components. The purpose of this paper is to discuss the technique and the analysis that were applied in order to relax the SA constraints for RV undockings, thereby improving both the ISS operational flexibility and extending its lifetime for many years to come. This analysis focused on the effects of the dynamic motion that occur both prior to and following RV separations. The analysis involved a parametric approach in the conservative application of various initial conditions and assumptions. These included the use of the worst case minimum and maximum vehicle configurations, worst case initial attitudes and attitude rates, and the worst case docking port separation dynamics. Separations were calculated for multiple ISS docking ports, at varied deviations from the nominal undocking attitudes and included the use of two separate attitude control schemes: continuous free-drift and a post separation attitude hold. The analysis required numerical propagation of both the separation motion and the vehicle attitudes using 3-degree-of-freedom (DOF) relative motion equations coupled with rigid body rotational dynamics to generate a large set of separation trajectories.

  16. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  17. Fracture control methods for space vehicles. Volume 1: Fracture control design methods. [for space shuttle configuration planning

    NASA Technical Reports Server (NTRS)

    Liu, A. F.

    1974-01-01

    A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.

  18. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  19. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  20. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  1. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  2. Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver

    NASA Technical Reports Server (NTRS)

    Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry

    1999-01-01

    This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and Modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design and tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges of that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.

  3. Automatic theodolite for pre-launch azimuth alignment of the saturn space vehicles.

    PubMed

    Mrus, G J; Zukowsky, W S; Kokot, W; Yoder, P R; Wood, J T

    1971-03-01

    The inertial guidance system in the Saturn 1B and Saturn 5 space vehicles is aligned in azimuth prior to lift-off by a Perkin-Elmer high precision, automatic alignment theodolite. This special theodolite, designated the AALT-SV-M2, acquires and locks onto the autocollimated images from each of two porro prisms mounted within the instrument unit on top of the S4-B booster stage of the vehicle. A separate retroreflecting prism on the skin of the instrument unit near the porro prisms is also tracked to eliminate the effects of vehicle sway. The theodolite itself is located in an underground hut between the crawler-ways about 232 m from the base of the vehicle. Six of these theodolite systems have been built by Perkin-Elmer under contract to NASA. These units have been used successfully in all the Saturn launches to date; they have consistently achieved better than the required alignment accuracy of +/-2 sec of arc for all missions. In this paper, we describe the theodolite and its function as an integrated electrooptical system. The means employed to separate the various return images into the proper channels and to generate the required error signals are discussed.

  4. Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban

    2008-01-01

    The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.

  5. Astronaut Whitson Displays Soybean Growth Aboard ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  6. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    NASA Technical Reports Server (NTRS)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  7. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  8. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horatio (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schleisling, John A. (Inventor)

    1993-01-01

    Methods and apparatus are provided for a single heavylift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a Shuttle Orbiter using the launch vehicle of the Shuttle Orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are pre-integrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  9. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horacio M. (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schliesing, John A. (Inventor)

    1995-01-01

    Methods and apparatus are provided for a single heavy-lift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a shuttle orbiter using the launch vehicle of the shuttle orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are preintegrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  10. The Space Shuttle's first super lightweight external tank is transported to KSC's Vehicle Assembly B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle's first super lightweight external tank is on its way to Kennedy Space Center's Vehicle Assembly Building for processing. The tank, which is scheduled for flight on STS-91 in late May, arrived Feb. 3 in Port Canaveral, where it remained until Feb. 6 due to high winds. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium -- a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well.

  11. The Space Shuttle's first super lightweight external tank is transported to KSC's Vehicle Assembly B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle's first super lightweight external tank is on its way into Kennedy Space Center's Vehicle Assembly Building for processing. The tank, which is scheduled for flight on STS-91 in late May, arrived Feb. 3 in Port Canaveral, where it remained until Feb. 6 due to high winds. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium -- a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well.

  12. The Space Shuttle's first super lightweight external tank is transported to KSC's Vehicle Assembly B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle's first super lightweight external tank is on its way to Kennedy Space Center's Vehicle Assembly Building for processing. The tank, which is scheduled for flight on STS-91 in late May, arrived Feb. 3 in Port Canaveral, where it remained until Feb. 6 due to high winds. It was moved by barge to KSC on Feb. 6. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium -- a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well.

  13. Study of the commonality of space vehicle applications to future national needs (unclassified portion)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A midterm progress report was presented on the study of commonality of space vehicle applications to future national needs. Two of the four objectives in the entire study were discussed. The first one involved deriving functional requirements for space systems based on future needs and environments for the military and civilian communities. Possible space initiatives based on extrapolations of technology were compiled without regard as to need but only with respect to feasibility, given the advanced state of technology which could exist through the year 2,000. The second one involved matching the initiatives against the requirements, developing a methodology to match and select the initiatives with each of the separate plans based on the future environments, and deriving common features of the military and civilian support requirements for these programs.

  14. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  15. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  16. Bioresearch Module Design Definition and Space Shuttle Vehicle Integration Study. Volume 1: Basic Report

    NASA Technical Reports Server (NTRS)

    Lang, A. L., Jr.

    1971-01-01

    Preliminary designs of the Bioexplorer spacecraft, developed in an earlier study program, are analyzed and updated to conform to a new specification which includes use of both the Scout and the space shuttle vehicle for launch. The updated spacecraft is referred to as bioresearch module. It is capable of supporting a variety of small biological experiments in near-earth and highly elliptical earth orbits. The baseline spacecraft design is compatible with the Scout launch vehicle. Inboard profile drawings, weight statements, interface drawings, and spacecraft parts and aerospace ground equipment lists are provided to document the design. The baseline design was analyzed to determine the design and cost impact of a set of optional features. These include reduced experiment power and thermal load, addition of an experiment television monitor, and replacement of VHF with S-band communications. The impact of these options on power required, weight change and cost is defined.

  17. Summary of results of parametric studies of space shuttle booster, orbiter, and launch vehicle concepts

    NASA Technical Reports Server (NTRS)

    Bradley, D.; Buchholz, R. E.

    1972-01-01

    The results of analytical and experimental parametric studies of space shuttle booster, orbiter and launch vehicle aerodynamics are described. During this study over 1700 hours of experimental wind tunnel tests were conducted on several versions of the shuttle booster, orbiter and launch vehicle. Fifteen separate tests were conducted in three different test facilities. Due to the number of test programs conducted and the time required for test preparation, analysis of the test data has been limited to that required to drive the experimental program. A brief description of each of the experimental tests conducted including the test purpose and approach is included. Several test models were designed and fabricated in support of the experimental program. These models are described.

  18. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  19. Some considerations of the dynamics of Space Shuttle vehicle thermal protection system

    NASA Technical Reports Server (NTRS)

    Kuo, C.-C.

    1976-01-01

    Two types of reusable surface insulation under consideration for Space Shuttle applications have been analyzed for flutter stability. The first consisted of silicone rubber-coated Nomex felt bonded to the skin of the vehicle; the second consisted of silicone tiles with ceramic coating on five faces, bonded to Nomex felt which was then attached to the vehicle skin. The piston theory was used to compute the aerodynamic forces on the basis of simple models on the two systems. Exact solutions were obtained, and the effect of different parameters of the flutter stability boundary was investigated. Possible reasons for the slow convergence of the Galerkin technique for analyzing membrane flutter are suggested, and a consistent set of nondimensional parameters convenient for flutter studies is introduced.

  20. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  1. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  2. The development of a simplified Fin Folding Mechanism for a future space transportation vehicle

    NASA Astrophysics Data System (ADS)

    Wood, Brian; Heinrich, Beat; Sutter, Guido; Spycher, Peter; Urmston, Peter

    2005-07-01

    In the time when the Crew Return Vehicle (CRV) was being considered as a follow on joint venture between ESA and NASA, Contraves Space AG was being considered as the sub-contractor for the Fin Folding Mechanism. Although due to the lack of funding in the USA, the CRV programme was stopped, ESTEC decided to continue the development of the Fin Folding Mechanism (FFM) for a "future Space Transportation Vehicle" (STV) for launch and re-entry. Contraves Space was subsequently awarded with a contract to develop a simplified mechanism to replace the mechanism that was designed for CRV. The function of the FFM is to fold the Vehicle Fin inboard so that any future STV can be accommodated in today's launchers. The FFM must be able to support the fin during launch, deploy the fin and then support the fin in the deployed position during re-entry. Contraves Space reviewed the functionality of the old CRV design, with its' different mechanisms for each of the functions, and a synchronisation system, and established a novel design where one mechanism can be used to perform all three functions. The final design utilises a four bar link mechanism, driven over-centre in both of the end positions, driven by a high-torque drive unit comprising a Harmonic Drive, a conventional gearbox and a 3 Phase DC motor. To protect the high-torque drive system against stall, a clutch has been utilised based on spring and rotating ball technology. These devices are used seldom in space, but as surviving stall is often a problem for mechanisms, the results from the test programme will be interesting with respect to the use of such devices in future space mechanisms. The design of the mechanism consists of three almost identical nodes, one of which has been built and is undergoing "qualification" testing at Contraves Space. The mechanism will be subjected to the full range of tests including, functional tests, random vibration tests, thermal vacuum tests and a static load test. This paper will detail

  3. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware

  4. Shuttle orbiter experiments: Use of an operational vehicle for advancement and validation of space systems design technologies

    NASA Technical Reports Server (NTRS)

    Holloway, Paul F.; Throckmorton, David A.

    1995-01-01

    The NASA Orbiter Experiments (OEX) Program provided a mechanism for utilization of an operational space shuttle orbiter as a flight research vehicle, as an adjunct to its normal space transportation mission. OEX Program experiments were unique among orbiter payloads, as the research instrumentation for these experiments were carried as integral parts of the vehicle's structure, rather than being placed in the orbiter's payload bay as mission-unique cargo. On each of its first 17 flights, the Orbiter Columbia carried some type of research instrumentation. Various instrumentation systems were used to measure, in flight, the requisite parameters for determination of the orbiter aerodynamic characteristics over the entire entry flight regime and/or the aerodynamic-heating rates imposed upon the vehicle during the hypersonic portion of atmospheric entry. The data derived from this instrumentation represent benchmark hypersonic flight data heretofore unavailable for a lifting entry vehicle. The data are being used in a continual process of validation of state-of-the-art methods, both experimental and computational, for simulating/predicting the aerodynamic and aerothermal characteristics of advanced space transportation vehicles. This paper describes the OEX Program complement of research experiments, presents typical flight data obtained by these experiments, and demonstrates the utilization of these data for advancement and validation of vehicle aerothermodynamic-design tools. By example, the concept of instrumenting operational vehicles and/or spacecraft in order to perform advanced technology development and validation is demonstrated to be an effective and economical method for maturing space-systems design technologies.

  5. Backscatter x-ray development for space vehicle thermal protection systems

    SciTech Connect

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-23

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  6. Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space representation

    NASA Astrophysics Data System (ADS)

    Brockers, R.; Fragoso, A.; Matthies, L.

    2016-05-01

    Micro air vehicles which operate autonomously at low altitude in cluttered environments require a method for onboard obstacle avoidance for safe operation. Previous methods deploy either purely reactive approaches, mapping low-level visual features directly to actuator inputs to maneuver the vehicle around the obstacle, or deliberative methods that use on-board 3-D sensors to create a 3-D, voxel-based world model, which is then used to generate collision free 3-D trajectories. In this paper, we use forward-looking stereo vision with a large horizontal and vertical field of view and project range from stereo into a novel robot-centered, cylindrical, inverse range map we call an egocylinder. With this implementation we reduce the complexity of our world representation from a 3D map to a 2.5D image-space representation, which supports very efficient motion planning and collision checking, and allows to implement configuration space expansion as an image processing function directly on the egocylinder. Deploying a fast reactive motion planner directly on the configuration space expanded egocylinder image, we demonstrate the effectiveness of this new approach experimentally in an indoor environment.

  7. Raven: An On-Orbit Relative Navigation Demonstration Using International Space Station Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Strube, Matthew; Henry, Ross; Skeleton, Eugene; Eepoel, John Van; Gill, Nat; McKenna, Reed

    2015-01-01

    Since the last Hubble Servicing Mission five years ago, the Satellite Servicing Capabilities Office (SSCO) at the NASA Goddard Space Flight Center (GSFC) has been focusing on maturing the technologies necessary to robotically service orbiting legacy assets-spacecraft not necessarily designed for in-flight service. Raven, SSCO's next orbital experiment to the International Space Station (ISS), is a real-time autonomous non-cooperative relative navigation system that will mature the estimation algorithms required for rendezvous and proximity operations for a satellite-servicing mission. Raven will fly as a hosted payload as part of the Space Test Program's STP-H5 mission, which will be mounted on an external ExPRESS Logistics Carrier (ELC) and will image the many visiting vehicles arriving and departing from the ISS as targets for observation. Raven will host multiple sensors: a visible camera with a variable field of view lens, a long-wave infrared camera, and a short-wave flash lidar. This sensor suite can be pointed via a two-axis gimbal to provide a wide field of regard to track the visiting vehicles as they make their approach. Various real-time vision processing algorithms will produce range, bearing, and six degree of freedom pose measurements that will be processed in a relative navigation filter to produce an optimal relative state estimate. In this overview paper, we will cover top-level requirements, experimental concept of operations, system design, and the status of Raven integration and test activities.

  8. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Technical Reports Server (NTRS)

    Merkel, Lawrence

    1991-01-01

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  9. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Astrophysics Data System (ADS)

    Merkel, Lawrence

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  10. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  11. Nonintrusive techniques of inspections during the pre-launch phase of space vehicle

    NASA Astrophysics Data System (ADS)

    Thirumalainambi, Rajkumar; Bardina, Jorge E.; Miyazawa, Osamu

    2005-05-01

    As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrometer with additional spectrometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. A team of micro flying robots with necessary sensors and photometers is required to internally and externally monitor the entire space vehicle. The micro flying robots should reach an altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robots have an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a `Supervisor' to fix the problems. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. Each robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  12. Non-Intrusive Techniques of Inspections During the Pre-Launch Phase of Space Vehicle

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rejkumar; Bardina, Jorge E.

    2005-01-01

    This paper addresses a method of non-intrusive local inspection of surface and sub-surface conditions, interfaces, laminations and seals in both space vehicle and ground operations with an integrated suite of imaging sensors during pre-launch operations. It employs an advanced Raman spectrophotometer with additional spectrophotometers and lidar mounted on a flying robot to constantly monitor the space hardware as well as inner surface of the vehicle and ground operations hardware. This paper addresses a team of micro flying robots with necessary sensors and photometers to monitor the entire space vehicle internally and externally. The micro flying robots can reach altitude with least amount of energy, where astronauts have difficulty in reaching and monitoring the materials and subsurface faults. The micro flying robot has an embedded fault detection system which acts as an advisory system and in many cases micro flying robots act as a Supervisor to fix the problems. As missions expand to a sustainable presence in the Moon, and extend for durations longer than one year in lunar outpost, the effectiveness of the instrumentation and hardware has to be revolutionized if NASA is to meet high levels of mission safety, reliability, and overall success. The micro flying robot uses contra-rotating propellers powered by an ultra-thin, ultrasonic motor with currently the world's highest power weight ratio, and is balanced in mid-air by means of the world's first stabilizing mechanism using a linear actuator. The essence of micromechatronics has been brought together in high-density mounting technology to minimize the size and weight. The robot can take suitable payloads of photometers, embedded chips for image analysis and micro pumps for sealing cracks or fixing other material problems. This paper also highlights advantages that this type of non-intrusive techniques offer over costly and monolithic traditional techniques.

  13. An improved space-based algorithm for recognizing vehicle models from the side view

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Ding, Youdong; Zhang, Li; Li, Rong; Zhu, Jiang; Xie, Zhifeng

    2015-12-01

    Vehicle model matching problem from the side view is a problem meets the practical needs of actual users, but less focus by researchers. We propose a improved feature space-based algorithm for this problem. The algorithm combines the various advantages of some classic algorithms, and effectively combining global and local feature, eliminate data redundancy and improve data divisibility. And finally complete the classification by quick and efficient KNN. The real scene test results show that the proposed method is robust, accurate, insensitive to external factors, adaptable to large angle deviations, and can be applied to a formal application.

  14. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    Outlined is a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  15. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    This paper will outline a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  16. H2-O2 auxiliary power unit for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    A program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the space shuttle orbiter vehicle is discussed. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial APU configuration with recycled hydrogen flow has been studied and revised towards greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and from the hydraulic system. Steady-state test of the combustor has been successful.

  17. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  18. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  19. Development and characterization of lubricants for use near nuclear reactors in space vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, G. L.; Akawie, R. I.; Gardos, M. N.; Krening, K. C.

    1972-01-01

    The synthesis and evaluation program was conducted to develop wide-temperature range lubricants suitable for use in space vehicles particularly in the vicinity of nuclear reactors. Synthetic approaches resulted in nonpolymeric, large molecular weight materials, all based on some combination of siloxane and aromatic groups. Evaluation of these materials indicated that certain tetramethyl and hexamethyl disiloxanes containing phenyl thiophenyl substituents are extremely promising with respect to radiation stability, wide temperature range, good lubricity, oxidation resistance and additive acceptance. The synthesis of fluids is discussed, and the equipment and methods used in evaluation are described, some of which were designed to evaluate micro-quantities of the synthesized lubricants.

  20. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  1. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle

    NASA Technical Reports Server (NTRS)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.

    1974-01-01

    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  2. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  3. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  4. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  5. A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1986-01-01

    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope.

  6. Guidance and control law for automatic landing flight experiment of reentry space vehicle

    NASA Astrophysics Data System (ADS)

    Miyazawa, Yoshikazu; Ishikawa, Kazutoshi; Fujii, Kenji

    An automatic landing flight experiment with a sub-scale model is being prepared for a planned future reentry space vehicle by the National Aerospace Laboratory and the National Space Development Agency of Japan. The subscale model is dropped from a helicopter at a 1500-m altitude, and, controlled by an on-board navigation, guidance, and control system, it automatically lands on a 1000-m runway. This paper discusses preliminary study results obtained from numerical simulation. The guidance and control law was designed using a multiple delay model and multiple design point approach. Control system robustness against uncertain and time varying dynamics is especially considered in this approach. The control performances are evaluated with appropriately defined quadratic indices of tracking error. Simple control structures are assumed and parameters are obtained with numerical optimization. The approach was successfully applied to the design, and feasibility of the experiment has been verified with numerical simulations.

  7. The Space Shuttle's first super lightweight external tank is lifted in KSC's Vehicle Assembly Buildi

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle's first super lightweight external tank is lifted in KSC's Vehicle Assembly Building for STS-91 pre-flight processing. STS-91 is targeted for launch in late May. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium -- a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well.

  8. H2-O2 auxiliary power unit for Space Shuttle vehicles - A progress report.

    NASA Technical Reports Server (NTRS)

    Joyce, J. P.; Beremand, D. G.; Cameron, H. M.; Jefferies, K. S.

    1973-01-01

    Description of a program to establish technology readiness of hydrogen-oxygen (H2-O2) auxiliary power units for use on board the Space Shuttle orbiter vehicle. Fundamental objectives include experimentally establishing an acceptable propellant flow control method, verification of combustor stability, and adequate thermal management. An initial auxiliary power unit (APU) configuration with recycled hydrogen flow has been studied and revised toward greater simplicity and scaling ease. The selected APU is a recuperated open-cycle, turbine-driven unit. Series flow of cryogenic hydrogen removes internally-generated heat and heat from the hydraulic system. The revised configuration schematic and its calculated performance are reviewed. A weight comparison is made between the shuttle baseline hydrazine and H2-O2 APU systems, showing that hydrogen-oxygen APUs have the potential of increasing the payload of the Space Shuttle.

  9. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts were developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, loadbearing insulation (LBI). Thermal performance measurements were made under space-hold (vacuum) conditions for insulating warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately 0.00008 W/m-K (W = weight,Kg; m = measured; K = temperature) for the MLI systems (liquid hydrogen test results) and 0.00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature).

  10. The Role of Habitability Studies in Space Facility and Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adams, Constance M.

    1999-01-01

    This document is a viewgraph presentation which reviews the role of the space architect in designing a space vehicle with habitability as a chief concern. Habitability is composed of the qualities of the environment or system which support the crew in working and living. All the impacts from habitability are interdependent; i.e., impacts to well-being can impact performance, safety or efficiency. After reviewing the issues relating to habitability the presentation discusses the application of these issues in two case studies. The first studies the Bio-Plex Hab chamber which includes designs of the living and working areas. The second case study is the ISS-TransHab which is being studied as a prototype for Mars transit.

  11. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  12. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.

  13. 76 FR 6448 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Space Vehicle and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Marine Mammals Incidental to Space Vehicle and Test Flight Activities From Vandenberg Air Force Base, CA... of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force (USAF), to take four..., aircraft flight test operations, and helicopter operations at VAFB, were issued on February 6, 2009 (74...

  14. Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    1987-01-01

    equipped with complete guidance, navigation, control and communications systems modules attached near the crew module. Control of vehicle attitude will be provided by a set of small reaction control thrusters quite similar to those on the current Space Shuttle. All crew module and vehicle electrical functions will be powered via a set of H2/O2 fuel cells with radio-isotopic generators as backup supplies. Also included in the burnout mass of 98,000 lb is allowance for 10,000 lbm of miscellaneous payload (scientific equipment or other supplies).

  15. Operational Concept Evaluation of Solid Oxide Fuel Cells for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Poast, Kenneth I.

    2011-01-01

    With the end of the Space Shuttle Program, NASA is evaluating many different technologies to support future missions. Green propellants, like liquid methane and liquid oxygen, have potential advantages for some applications. A Lander propelled with LOX/methane engines is one such application. When the total vehicle design and infrastructure are considered, the advantages of the integration of propulsion, heat rejection, life support and power generation become attractive for further evaluation. Scavenged residual propellants from the propulsion tanks could be used to generate needed electric power, heat and water with a Solid Oxide Fuel Cell(SOFC). In-Situ Resource Utilization(ISRU) technologies may also generate quantities of green propellants to refill these tanks and/or supply these fuel cells. Technology demonstration projects such as the Morpheus Lander are currently underway to evaluate the practicality of such designs and operational concepts. Tethered tests are currently in progress on this vertical test bed to evaluate the propulsion and avionics systems. Evaluation of the SOFC seeks to determine the feasibility of using these green propellants to supply power and identify the limits to the integration of this technology into a space vehicle prototype.

  16. Optimization of maneuvers and resources for the rendezvous of a servicing vehicle to a space station

    NASA Astrophysics Data System (ADS)

    Magne, Jacques; Canu, Richard; Joulot, Antoine

    Addressing the generation of flight scenarios for the rendezvous of a servicing vehicle to a space station, solutions in terms of sequences of maneuvers shall be found that meet a generally complex set of mission constraints while optimizing the needed resources. For the optimization of maneuvers and resources during rendezvous, this paper describes a methodology based on the parametric optimization of a sequence of genetic non-impulsional thrust maneuvers which are defined by the user from a standard catalog, allowing to cope with both translations and rotations. The method uses a reduced gradient algorithm to find an optimal trajectory that meet every mission constraint. Most attention has been paid to the standard of realism in the modeling of the chaser and target dynamics, and in the formalization of the constraints on the approach trajectories; these last ones are defined as the terminal position, the attitude and kinematic capture conditions for berthing or docking, the maximal duration allocated to the approach, path constraints, the propulsive capacities of the chaser and a `safety' constraint, which in other words means that any failure on the chaser during the approach shall result in collision avoiding trajectories or in a mechanical contract to the station within safe limits. The criterion for scenarios optimization can be minimization of propellant consumption or phase duration, or a weighed combination of both. For illustration purpose, example results are given for the final approach of a servicing vehicle to an Earth-pointed space station.

  17. Applications of graphics to support a testbed for autonomous space vehicle operations

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.; Aldridge, J. P.; Benson, S.; Horner, S.; Kullman, A.; Mulder, T.; Parrott, W.; Roman, D.; Watts, G.; Bochsler, Daniel C.

    1989-01-01

    Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics.

  18. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  19. NASA/USRA advanced space design program: The laser powered interorbital vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  20. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.